1
|
Sadeeq M, Li Y, Wang C, Hou F, Zuo J, Xiong P. Unlocking the power of antimicrobial peptides: advances in production, optimization, and therapeutics. Front Cell Infect Microbiol 2025; 15:1528583. [PMID: 40365533 PMCID: PMC12070195 DOI: 10.3389/fcimb.2025.1528583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/19/2025] [Indexed: 05/15/2025] Open
Abstract
Antimicrobial peptides (AMPs) are critical effectors of innate immunity, presenting a compelling alternative to conventional antibiotics amidst escalating antimicrobial resistance. Their broad-spectrum efficacy and inherent low resistance development are countered by production challenges, including limited yields and proteolytic degradation, which restrict their clinical translation. While chemical synthesis offers precise structural control, it is often prohibitively expensive and complex for large-scale production. Heterologous expression systems provide a scalable, cost-effective platform, but necessitate optimization. This review comprehensively examines established and emerging AMP production strategies, encompassing fusion protein technologies, molecular engineering approaches, rational peptide design, and post-translational modifications, with an emphasis on maximizing yield, bioactivity, stability, and safety. Furthermore, we underscore the transformative role of artificial intelligence, particularly machine learning algorithms, in accelerating AMP discovery and optimization, thereby propelling their expanded therapeutic application and contributing to the global fight against drug-resistant infections.
Collapse
Affiliation(s)
| | | | | | | | - Jia Zuo
- Biosynthesis and Bio Transformation Center, School of Life Sciences and Medicine,
Shandong University of Technology (SDUT), Zibo, China
| | - Peng Xiong
- Biosynthesis and Bio Transformation Center, School of Life Sciences and Medicine,
Shandong University of Technology (SDUT), Zibo, China
| |
Collapse
|
2
|
Liang Q, Liu Z, Liang Z, Zhu C, Li D, Kong Q, Mou H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172150. [PMID: 38580107 DOI: 10.1016/j.scitotenv.2024.172150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
The use of in-feed antibiotics has been widely restricted due to the significant environmental pollution and food safety concerns they have caused. Antimicrobial peptides (AMPs) have attracted widespread attention as potential future alternatives to in-feed antibiotics owing to their demonstrated antimicrobial activity and environment friendly characteristics. However, the challenges of weak bioactivity, immature stability, and low production yields of natural AMPs impede practical application in the feed industry. To address these problems, efforts have been made to develop strategies for approaching the AMPs with enhanced properties. Herein, we summarize approaches to improving the properties of AMPs as potential alternatives to in-feed antibiotics, mainly including optimization of structural parameters, sequence modification, selection of microbial hosts, fusion expression, and industrially fermentation control. Additionally, the potential for application of AMPs in animal husbandry is discussed. This comprehensive review lays a strong theoretical foundation for the development of in-feed AMPs to achieve the public health globally.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- Fundamental Science R&D Center of Vazyme Biotech Co. Ltd., Nanjing 210000, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
3
|
Zhao L, Li L, Hu M, Fang Y, Dong N, Shan A. Heterologous expression of the novel dimeric antimicrobial peptide LIG in Pichia pastoris. J Biotechnol 2024; 381:19-26. [PMID: 38181981 DOI: 10.1016/j.jbiotec.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
The antimicrobial peptide (AMP) LI is a fusion product of antimicrobial peptide LL37 produced by human neutrophils and Indolicidin secreted by bovine neutrophils. LI retained the antimicrobial activity of the parental peptides and showed high cell selectivity. In this study, the flexible linker Gly-Ser-Gly (G-S-G) was used to ligate LI into dimeric LIG, and constructed the Pichia pastoris (P. pastoris) expression vector pPIC9K-6×His-3×FLAG-LIG. The total protein expression of P. pastoris GS115 reached the highest level (189.6 mg/L) after 96 h induction with 3 % methanol at the initial pH value of 7.0. Finally, 5.9 mg/L of recombinant LIG (rLIG) was obtained after enterokinase digestion and purification. The rLIG had high antimicrobial activity and low hemolytic activity. Compared with monomer LI, GSG linked dimeric LIG, which had no significant change in antimicrobial activity and had good salt ions stability. In this study, the dimeric antimicrobial peptide LIG was successfully expressed, which provided a new idea for the expression of AMPs in the P. pastoris expression system, and had important significance for the application of AMPs.
Collapse
Affiliation(s)
- Lu Zhao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Ling Li
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Mingyang Hu
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
4
|
Mejía-Manzano LA, Ortiz-Alcaráz CI, Parra Daza LE, Suarez Medina L, Vargas-Cortez T, Fernández-Niño M, González Barrios AF, González-Valdez J. Saccharomyces cerevisiae biofactory to produce naringenin using a systems biology approach and a bicistronic vector expression strategy in flavonoid production. Microbiol Spectr 2024; 12:e0337423. [PMID: 38088543 PMCID: PMC10871697 DOI: 10.1128/spectrum.03374-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Flavonoids are a group of compounds generally produced by plants with proven biological activity, which have recently beeen recommended for the treatment and prevention of diseases and ailments with diverse causes. In this study, naringenin was produced in adequate amounts in yeast after in silico design. The four genes of the involved enzymes from several organisms (bacteria and plants) were multi-expressed in two vectors carrying each two genes linked by a short viral peptide sequence. The batch kinetic behavior of the product, substrate, and biomass was described at lab scale. The engineered strain might be used in a more affordable and viable bioprocess for industrial naringenin procurement.
Collapse
Affiliation(s)
| | | | - Laura E. Parra Daza
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - Lina Suarez Medina
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - Teresa Vargas-Cortez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Miguel Fernández-Niño
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Andrés Fernando González Barrios
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - José González-Valdez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| |
Collapse
|
5
|
Song Z, Lin W, Duan X, Song L, Wang C, Yang H, Lu X, Ji X, Tian Y, Liu H. Increased Cordycepin Production in Yarrowia lipolytica Using Combinatorial Metabolic Engineering Strategies. ACS Synth Biol 2023; 12:780-787. [PMID: 36791366 DOI: 10.1021/acssynbio.2c00570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
As the first nucleoside antibiotic discovered in fungi, cordycepin, with its various biological activities, has wide applications. At present, cordycepin is mainly obtained from the natural fruiting bodies of Cordyceps militaris. However, due to long production periods, low yields, and low extraction efficiency, harvesting cordycepin from natural C. militaris is not ideal, making it difficult to meet market demands. In this study, an engineered Yarrowia lipolytica YlCor-18 strain, constructed by combining metabolic engineering strategies, achieved efficient de novo cordycepin production from glucose. First, the cordycepin biosynthetic pathway derived from C. militaris was introduced into Y. lipolytica. Furthermore, metabolic engineering strategies including promoter, protein, adenosine triphosphate, and precursor engineering were combined to enhance the synthetic ability of engineered strains of cordycepin. Fermentation conditions were also optimized, after which, the production titer and yields of cordycepin in the engineered strain YlCor-18 under fed-batch fermentation were improved to 4362.54 mg/L and 213.85 mg/g, respectively, after 168 h. This study demonstrates the potential of Y. lipolytica as a cell factory for cordycepin synthesis, which will serve as the model for the green biomanufacturing of other nucleoside antibiotics using artificial cell factories.
Collapse
Affiliation(s)
- Zeqi Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Wenbo Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiyu Duan
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Liping Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Hui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiaojun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| |
Collapse
|
6
|
Roca-Pinilla R, Lisowski L, Arís A, Garcia-Fruitós E. The future of recombinant host defense peptides. Microb Cell Fact 2022; 21:267. [PMID: 36544150 PMCID: PMC9768982 DOI: 10.1186/s12934-022-01991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
The antimicrobial resistance crisis calls for the discovery and production of new antimicrobials. Host defense peptides (HDPs) are small proteins with potent antibacterial and immunomodulatory activities that are attractive for translational applications, with several already under clinical trials. Traditionally, antimicrobial peptides have been produced by chemical synthesis, which is expensive and requires the use of toxic reagents, hindering the large-scale development of HDPs. Alternatively, HDPs can be produced recombinantly to overcome these limitations. Their antimicrobial nature, however, can make them toxic to the hosts of recombinant production. In this review we explore the different strategies that are used to fine-tune their activities, bioengineer them, and optimize the recombinant production of HDPs in various cell factories.
Collapse
Affiliation(s)
- Ramon Roca-Pinilla
- grid.1013.30000 0004 1936 834XTranslational Vectorology Research Unit, Faculty of Medicine and Health, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145 Australia
| | - Leszek Lisowski
- grid.1013.30000 0004 1936 834XTranslational Vectorology Research Unit, Faculty of Medicine and Health, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145 Australia ,grid.415641.30000 0004 0620 0839Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Anna Arís
- grid.8581.40000 0001 1943 6646Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries IRTA, 08140 Caldes de Montbui, Spain
| | - Elena Garcia-Fruitós
- grid.8581.40000 0001 1943 6646Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries IRTA, 08140 Caldes de Montbui, Spain
| |
Collapse
|