1
|
Kollert MR, Krämer M, Brisson NM, Schemenz V, Tsitsilonis S, Qazi TH, Fratzl P, Vogel V, Reichenbach JR, Duda GN. Water and ions binding to extracellular matrix drives stress relaxation, aiding MRI detection of swelling-associated pathology. Nat Biomed Eng 2025:10.1038/s41551-025-01369-w. [PMID: 40234703 DOI: 10.1038/s41551-025-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/10/2025] [Indexed: 04/17/2025]
Abstract
Swelling-associated changes in extracellular matrix (ECM) occur in many pathological conditions involving inflammation or oedema. Here we show that alterations in the proportion of loosely bound water in ECM correlate with changes in ECM elasticity and stress relaxation, owing to the strength of water binding to ECM being primarily governed by osmolality and the electrostatic properties of proteoglycans. By using mechanical testing and small-angle X-ray scattering, as well as magnetic resonance imaging (MRI) to detect changes in loosely bound water, we observed that enhanced water binding manifests as greater resistance to compression (mechanical or osmotic), resulting from increased electrostatic repulsion between negatively charged proteoglycans rather than axial contraction in collagen fibrils. This indicates that electrostatic contributions of proteoglycans regulate elasticity and stress relaxation independently of hydration. Our ex vivo experiments in osmotically modulated tendon elucidate physical causes of MRI signal alterations, in agreement with pilot in vivo MRI of inflammatory Achilles tendinopathy. We suggest that the strength of water binding to ECM regulates cellular niches and can be exploited to enhance MRI-informed diagnostics of swelling-associated tissue pathology.
Collapse
Affiliation(s)
- Matthias R Kollert
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Martin Krämer
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Nicholas M Brisson
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Victoria Schemenz
- Department of Operative, Preventive and Pediatric Dentistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Serafeim Tsitsilonis
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Taimoor H Qazi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Georg N Duda
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Bunzendahl L, Moussavi A, Bleyer M, Neumann S, Boretius S. Magnetisation transfer, T1 and T2* relaxation in canine menisci of elderly dogs-an ex vivo study in stifle joints. Front Vet Sci 2025; 12:1521684. [PMID: 40144528 PMCID: PMC11938368 DOI: 10.3389/fvets.2025.1521684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Magnetic resonance imaging (MRI) is widely used in human medicine, offering multiple contrast mechanisms to visualise different tissue types. It is also gaining importance in veterinary medicine, including diagnosing joint disorders. The menisci of the stifle joint play a crucial role in the development of osteoarthritis (OA), and multi-parameter MRI of the menisci may aid in early OA diagnosis, potentially improving therapeutic outcomes. In a previous ex vivo study, we measured T2 relaxation times in menisci of elderly dogs with mild histological signs of degeneration but no clinical symptoms of lameness. As no significant changes in T2 relaxation times were observed in relation to histological scores, the present study extends this investigation by exploring more advanced MR parameters-including T1 relaxation time, T2* relaxation time, magnetisation transfer ratio (MTR), and magnetisation transfer saturation (MTsat)-to assess their potential for detecting early microstructural changes in the menisci. While T2* relaxation times and MTR showed no significant variation across histological scores, MTsat values increased with higher proteoglycan staining. In contrast, the apparent T1 relaxation time (T1app) was lower in menisci with elevated proteoglycan scores and increased with higher cellularity scores. The correlation between MTsat and proteoglycan content suggests that MTsat, along with T1app, could be a promising parameter for characterising the extracellular matrix. However, further research is needed to validate these findings.
Collapse
Affiliation(s)
- Lena Bunzendahl
- Small Animal Clinic, Institute of Veterinary Medicine, Georg-August University of Göttingen, Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Amir Moussavi
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Fachhochschule Südwestfalen, University of Applied Sciences, Hagen, Germany
| | - Martina Bleyer
- Pathology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Stephan Neumann
- Small Animal Clinic, Institute of Veterinary Medicine, Georg-August University of Göttingen, Göttingen, Germany
| | - Susann Boretius
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
3
|
Casula V, Kajabi AW. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. MAGMA (NEW YORK, N.Y.) 2024; 37:949-967. [PMID: 38904746 PMCID: PMC11582218 DOI: 10.1007/s10334-024-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Osteoarthritis (OA) is a disabling chronic disease involving the gradual degradation of joint structures causing pain and dysfunction. Magnetic resonance imaging (MRI) has been widely used as a non-invasive tool for assessing OA-related changes. While anatomical MRI is limited to the morphological assessment of the joint structures, quantitative MRI (qMRI) allows for the measurement of biophysical properties of the tissues at the molecular level. Quantitative MRI techniques have been employed to characterize tissues' structural integrity, biochemical content, and mechanical properties. Their applications extend to studying degenerative alterations, early OA detection, and evaluating therapeutic intervention. This article is a review of qMRI techniques for musculoskeletal tissue evaluation, with a particular emphasis on articular cartilage. The goal is to describe the underlying mechanism and primary limitations of the qMRI parameters, their association with the tissue physiological properties and their potential in detecting tissue degeneration leading to the development of OA with a primary focus on basic and preclinical research studies. Additionally, the review highlights some clinical applications of qMRI, discussing the role of texture-based radiomics and machine learning in advancing OA research.
Collapse
Affiliation(s)
- Victor Casula
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Abdul Wahed Kajabi
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Hashimoto S, Ohsawa T, Omae H, Oshima A, Takase R, Chikuda H. Extracorporeal shockwave therapy for degenerative meniscal tears results in a decreased T2 relaxation time and pain relief: An exploratory randomized clinical trial. Knee Surg Sports Traumatol Arthrosc 2024; 32:3141-3150. [PMID: 39101450 PMCID: PMC11605018 DOI: 10.1002/ksa.12384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE The optimal management of degenerative meniscal tears remains controversial. Extracorporeal shockwave therapy (ESWT) has been shown to promote tissue repair in both preclinical and clinical studies; however, its effect on degenerative meniscal tears remains unknown. This study aimed to examine whether ESWT improves meniscal degeneration. METHODS This randomized trial was conducted between 2020 and 2022 and involved patients with degenerative medial meniscal tears. Patients were allocated to receive either focused ESWT (0.25 mJ/mm2, 2000 impulses, 3 sessions with a 1-week interval) or sham treatment. Patients were evaluated using magnetic resonance imaging (MRI) before treatment and at 12 months after treatment. The primary endpoint was improvement in meniscal degeneration, as assessed by the change in T2 relaxation time from baseline on MRI T2 mapping. Knee pain and clinical outcomes were also examined at the same time. RESULTS Of 29 randomized patients, 27 patients (mean age 63.9 ± 8.7 years; females 37%; ESWT group 14 patients; control group 13 patients) were included in the final analysis. At 12 months postintervention, patients in the ESWT group showed a greater decrease in the T2 relaxation time (ESWT group -2.9 ± 1.7 ms vs. control group 1.0 ± 1.9 ms; p < 0.001) and had less knee pain (p = 0.04). The clinical outcomes at 12 months post-treatment were not statistically significant. No adverse events were reported. CONCLUSION ESWT decreased the T2 relaxation time in the meniscus at 12 months post-treatment. ESWT also provided pain relief, but no differences were observed in clinical outcomes. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- Shogo Hashimoto
- Department of Orthopaedic SurgeryGunma University Graduate School of MedicineMaebashiGunmaJapan
| | - Takashi Ohsawa
- Department of Orthopaedic SurgeryGunma University Graduate School of MedicineMaebashiGunmaJapan
| | - Hiroaki Omae
- Department of Orthopaedic SurgeryZenshukai HospitalMaebashiGunmaJapan
| | - Atsufumi Oshima
- Department of Orthopaedic SurgeryTakasaki Genaral Medical CenterTakasakiGunmaJapan
| | - Ryota Takase
- Department of Orthopaedic SurgeryGunma University Graduate School of MedicineMaebashiGunmaJapan
| | - Hirotaka Chikuda
- Department of Orthopaedic SurgeryGunma University Graduate School of MedicineMaebashiGunmaJapan
| |
Collapse
|
5
|
Zhang L, Mai W, Mo X, Zhang R, Zhang D, Zhong X, Zhao S, Shi C. Quantitative evaluation of meniscus injury using synthetic magnetic resonance imaging. BMC Musculoskelet Disord 2024; 25:292. [PMID: 38622682 PMCID: PMC11020173 DOI: 10.1186/s12891-024-07375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) can diagnose meniscal lesions anatomically, while quantitative MRI can reflect the changes of meniscal histology and biochemical structure. Our study aims to explore the association between the measurement values obtained from synthetic magnetic resonance imaging (SyMRI) and Stoller grades. Additionally, we aim to assess the diagnostic accuracy of SyMRI in determining the extent of meniscus injury. This potential accuracy could contribute to minimizing unnecessary invasive examinations and providing guidance for clinical treatment. METHODS Total of 60 (n=60) patients requiring knee arthroscopic surgery and 20 (n=20) healthy subjects were collected from July 2022 to November 2022. All subjects underwent conventional MRI and SyMRI. Manual measurements of the T1, T2 and proton density (PD) values were conducted for both normal menisci and the most severely affected position of injured menisci. These measurements corresponded to the Stoller grade of meniscus injuries observed in the conventional MRI. All patients and healthy subjects were divided into normal group, degeneration group and torn group according to the Stoller grade on conventional MRI. One-way analysis of variance (ANOVA) was employed to compare the T1, T2 and PD values of the meniscus among 3 groups. The accuracy of SyMRI in diagnosing meniscus injury was assessed by comparing the findings with arthroscopic observations. The diagnostic efficiency of meniscus degeneration and tear between conventional MRI and SyMRI were analyzed using McNemar test. Furthermore, a receiver operating characteristic curve (ROC curve) was constructed and the area under the curve (AUC) was utilized for evaluation. RESULTS According to the measurements of SyMRI, there was no statistical difference of T1 value or PD value measured by SyMRI among the normal group, degeneration group and torn group, while the difference of T2 value was statistically significant among 3 groups (P=0.001). The arthroscopic findings showed that 11 patients were meniscal degeneration and 49 patients were meniscal tears. The arthroscopic findings were used as the gold standard, and the difference of T1 and PD values among the 3 groups was not statistically significant, while the difference of T2 values (32.81±2.51 of normal group, 44.85±3.98 of degeneration group and 54.42±3.82 of torn group) was statistically significant (P=0.001). When the threshold of T2 value was 51.67 (ms), the maximum Yoden index was 0.787 and the AUC value was 0.934. CONCLUSIONS The measurement values derived from SyMRI could reflect the Stoller grade, illustrating that SyMRI has good consistency with conventional MRI. Moreover, the notable consistency observed between SyMRI and arthroscopy suggests a potential role for SyMRI in guiding clinical diagnoses.
Collapse
Affiliation(s)
- Lingtao Zhang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, China
| | - Wenfeng Mai
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, China
| | - Xukai Mo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, China
| | - Ruifen Zhang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, China
| | - Dong Zhang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, China
| | - Xing Zhong
- UItrasonic Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuangquan Zhao
- Medical Imaging Center, The Second Affiliated Hospital of Shenzhen University, No. 118 Longjing 2nd Road, Bao'an District, Shenzhen, 518101, China.
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, China.
- Subingtian center for speed research and training, Guangdong Key Laboratory of speed capability research, School of physical education, Jinan University, Shenzhen, China.
| |
Collapse
|
6
|
Histological Findings and T2 Relaxation Time in Canine Menisci of Elderly Dogs—An Ex Vivo Study in Stifle Joints. Vet Sci 2023; 10:vetsci10030182. [PMID: 36977221 PMCID: PMC10053884 DOI: 10.3390/vetsci10030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Osteoarthritis is a chronic disease that often affects the canine stifle joint. Due to their biomechanical function, the menisci in the canine stifle play an important role in osteoarthritis. They compensate for the incongruence in the joint and distribute and minimize compressive loads, protecting the hyaline articular cartilage from damage. Meniscal degeneration favors the development and progression of stifle joint osteoarthritis. Qualitative magnetic resonance imaging (MRI) is the current golden standard for detecting meniscal changes, but it has limitations in detecting early signs of meniscal degeneration. A quantitative MRI offers new options for detecting early structural changes. T2 mapping can especially visualize structural changes such as altered collagen structures and water content, as well as deviations in proteoglycan content. This study evaluated T2 mapping and performed a histological scoring of menisci in elderly dogs that had no or only low radiographic osteoarthritis grades. A total of 16 stifles from 8 older dogs of different sex and breed underwent ex vivo magnet resonance imaging, including a T2 mapping pulse sequence with multiple echoes. A histological analysis of corresponding menisci was performed using a modified scoring system. The mean T2 relaxation time was 18.2 ms and the mean histological score was 4.25. Descriptive statistics did not reveal a correlation between T2 relaxation time and histological score. Ex vivo T2 mapping of canine menisci did not demonstrate histological changes, suggesting that early meniscal degeneration can be present in the absence of radiological signs of osteoarthritis, including no significant changes in T2 relaxation time.
Collapse
|
7
|
Zhang J, Zhu J, Zhao B, Nie D, Wang W, Qi Y, Chen L, Li B, Chen B. LTF induces senescence and degeneration in the meniscus via the NF-κB signaling pathway: A study based on integrated bioinformatics analysis and experimental validation. Front Mol Biosci 2023; 10:1134253. [PMID: 37168259 PMCID: PMC10164984 DOI: 10.3389/fmolb.2023.1134253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Background: The functional integrity of the meniscus continually decreases with age, leading to meniscal degeneration and gradually developing into osteoarthritis (OA). In this study, we identified diagnostic markers and potential mechanisms of action in aging-related meniscal degeneration through bioinformatics and experimental verification. Methods: Based on the GSE98918 dataset, common differentially expressed genes (co-DEGs) were screened using differential expression analysis and the WGCNA algorithm, and enrichment analyses based on Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were further performed. Next, the co-DEGs were imported into the STRING database and Cytoscape to construct a protein‒protein interaction (PPI) network and further validated by three algorithms in cytoHubba, receiver operating characteristic (ROC) curve analysis and the external GSE45233 dataset. Moreover, the diagnostic marker lactotransferrin (LTF) was verified in rat models of senescence and replicative cellular senescence via RT‒qPCR, WB, immunohistochemistry and immunofluorescence, and then the potential molecular mechanism was explored by loss of function and overexpression of LTF. Results: According to the analysis of the GSE98918 dataset, we identified 52 co-DEGs (42 upregulated genes and 10 downregulated genes) in the OA meniscus. LTF, screened out by Cytoscape, ROC curve analysis in the GSE98918 dataset and another external GSE45233 dataset, might have good predictive power in meniscal degeneration. Our experimental results showed that LTF expression was statistically increased in the meniscal tissue of aged rats (24 months) and senescent passage 5th (P5) meniscal cells. In P5 meniscal cells, LTF knockdown inhibited the NF-κB signaling pathway and alleviated senescence. LTF overexpression in passage 0 (P0) meniscal cells increased the expression of senescence-associated secretory phenotype (SASP) and induced senescence by activating the NF-κB signaling pathway. However, the senescence phenomenon caused by LTF overexpression could be reversed by the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). Conclusion: For the first time, we found that increased expression of LTF was observed in the aging meniscus and could induce meniscal senescence and degeneration by activating the NF-κB signaling pathway. These results revealed that LTF could be a potential diagnostic marker and therapeutic target for age-related meniscal degeneration.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiayong Zhu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Boming Zhao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Daibang Nie
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Wang Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Yongjian Qi
- Department of Spine Surgery and Musculoskeletal Tumor, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Liaobin Chen, ; Bin Li, ; Biao Chen,
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Liaobin Chen, ; Bin Li, ; Biao Chen,
| | - Biao Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Liaobin Chen, ; Bin Li, ; Biao Chen,
| |
Collapse
|
8
|
T 2 MRI at 3T of cartilage and menisci in patients with hyperuricemia: initial findings. Skeletal Radiol 2022; 51:607-618. [PMID: 34287675 DOI: 10.1007/s00256-021-03861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare and evaluate T2 values of compartmental femorotibial cartilage and subregional menisci in patients with hyperuricemia at 3T. MATERIALS AND METHODS Thirty-two subjects were included in this study and subdivided into two subgroups: 15 healthy controls (3 females, 12 males; mean age = 45.3 ± 10.9 years), 17 patients with hyperuricemia (2 females, 15 males; mean age = 44.4 ± 12.7 years). All subjects were assessed on a 3T MR scanner using an 8-channel phased-array knee coil (transmit-receive). Wilcoxon rank sum test and analysis of covariance (ANCOVA) were performed to determine whether there were any statistically significant differences in T2 values of compartmental femorotibial cartilage and subregional menisci between the two subgroups. RESULTS Lateral tibial cartilage (48.6 ± 3.5 ms) in healthy subgroup had significantly lower (p < 0.05) T2 values than all subcompartments of femorotibial cartilage in hyperuricemia subgroup. Medial tibial cartilage (56.5 ± 4.3 ms) in hyperuricemia subgroup had significantly higher (p < 0.05) T2 values than all subcompartments of femorotibial cartilage except medial tibial cartilage in healthy subgroup. Medial anterior horn of meniscus (39.4 ± 2.9 ms) in healthy subgroup had significantly lower (p < 0.05) T2 values than all subregional menisci except both medial anterior horn and medial body segment of meniscus in hyperuricemia subgroup. CONCLUSION T2 values in certain compartmental femorotibial cartilage and subregional menisci in patients with hyperuricemia are evidently and abnormally heightened compared with those in healthy subjects, to which special attention should be paid when diagnosing and treating the patients with hyperuricemia in the clinical setting. The LT cartilage had significantly lower T2 values (48.6 ± 3.5 ms) in healthy subgroup compared to all compartmental femorotibial cartilage in cohort with HU. MF cartilage had significantly lower T2 values (51.6 ± 2.9 ms) in healthy subgroup compared to both LF (54.4 ± 4.1 ms) and MT (56.5 ± 4.3 ms) in cohort with HU. MT cartilage had significantly higher T2 values (56.5 ± 4.3 ms) in cohort with HU subgroup compared to LF (52.5 ± 3.0 ms) in healthy subgroup. T2 mapping may be promising and potential sensitive discriminator of understanding and examining the early compositional and structural change in proteoglycan-collagen matrix of human femorotibial cartilage in patients with hyperuricemia.
Collapse
|
9
|
Shen J, Zhao Q, Qi Y, Cofer G, Johnson GA, Wang N. Tractography of Porcine Meniscus Microstructure Using High-Resolution Diffusion Magnetic Resonance Imaging. Front Endocrinol (Lausanne) 2022; 13:876784. [PMID: 35620393 PMCID: PMC9127075 DOI: 10.3389/fendo.2022.876784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
To noninvasively evaluate the three-dimensional collagen fiber architecture of porcine meniscus using diffusion MRI, meniscal specimens were scanned using a 3D diffusion-weighted spin-echo pulse sequence at 7.0 T. The collagen fiber alignment was revealed in each voxel and the complex 3D collagen network was visualized for the entire meniscus using tractography. The proposed automatic segmentation methods divided the whole meniscus to different zones (Red-Red, Red-White, and White-White) and different parts (anterior, body, and posterior). The diffusion tensor imaging (DTI) metrics were quantified based on the segmentation results. The heatmap was generated to investigate the connections among different regions of meniscus. Strong zonal-dependent diffusion properties were demonstrated by DTI metrics. The fractional anisotropy (FA) value increased from 0.13 (White-White zone) to 0.26 (Red-Red zone) and the radial diffusivity (RD) value changed from 1.0 × 10-3 mm2/s (White-White zone) to 0.7 × 10-3 mm2/s (Red-Red zone). Coexistence of both radial and circumferential collagen fibers in the meniscus was evident by diffusion tractography. Weak connections were found between White-White zone and Red-Red zone in each part of the meniscus. The anterior part and posterior part were less connected, while the body part showed high connections to both anterior part and posterior part. The tractography based on diffusion MRI may provide a complementary method to study the integrity of meniscus and nondestructively visualize the 3D collagen fiber architecture.
Collapse
Affiliation(s)
- Jikai Shen
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Qi Zhao
- Physical Education Institute, Jimei University, Xiamen, China
| | - Yi Qi
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Gary Cofer
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - G. Allan Johnson
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Nian Wang
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- *Correspondence: Nian Wang,
| |
Collapse
|
10
|
Bansal S, Meadows KD, Miller LM, Saleh KS, Patel JM, Stoeckl BD, Lemmon EA, Hast MW, Zgonis MH, Scanzello CR, Elliott DM, Mauck RL. Six-Month Outcomes of Clinically Relevant Meniscal Injury in a Large-Animal Model. Orthop J Sports Med 2021; 9:23259671211035444. [PMID: 34796238 PMCID: PMC8593308 DOI: 10.1177/23259671211035444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/04/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The corrective procedures for meniscal injury are dependent on tear type, severity, and location. Vertical longitudinal tears are common in young and active individuals, but their natural progression and impact on osteoarthritis (OA) development are not known. Root tears are challenging and they often indicate poor outcomes, although the timing and mechanisms of initiation of joint dysfunction are poorly understood, particularly in large-animal and human models. PURPOSE/HYPOTHESIS In this study, vertical longitudinal and root tears were made in a large-animal model to determine the progression of joint-wide dysfunction. We hypothesized that OA onset and progression would depend on the extent of injury-based load disruption in the tissue, such that root tears would cause earlier and more severe changes to the joint. STUDY DESIGN Controlled laboratory study. METHODS Sham surgeries and procedures to create either vertical longitudinal or root tears were performed in juvenile Yucatan mini pigs through randomized and bilateral arthroscopic procedures. Animals were sacrificed at 1, 3, or 6 months after injury and assessed at the joint and tissue level for evidence of OA. Functional measures of joint load transfer, cartilage indentation mechanics, and meniscal tensile properties were performed, as well as histological evaluation of the cartilage, meniscus, and synovium. RESULTS Outcomes suggested a progressive and sustained degeneration of the knee joint and meniscus after root tear, as evidenced by histological analysis of the cartilage and meniscus. This occurred in spite of spontaneous reattachment of the root, suggesting that this reattachment did not fully restore the function of the native attachment. In contrast, the vertical longitudinal tear did not cause significant changes to the joint, with only mild differences compared with sham surgery at the 6-month time point. CONCLUSION Given that the root tear, which severs circumferential connectivity and load transfer, caused more intense OA compared with the circumferentially stable vertical longitudinal tear, our findings suggest that without timely and mechanically competent fixation, root tears may cause irreversible joint damage. CLINICAL RELEVANCE More generally, this new model can serve as a test bed for experimental surgical, scaffold-based, and small molecule-driven interventions after injury to prevent OA progression.
Collapse
Affiliation(s)
- Sonia Bansal
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle D. Meadows
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Liane M. Miller
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Kamiel S. Saleh
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Jay M. Patel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Brendan D. Stoeckl
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Elisabeth A. Lemmon
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Michael W. Hast
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Biedermann Lab for Orthopaedic Research, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miltiadis H. Zgonis
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Carla R. Scanzello
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Division of Rheumatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dawn M. Elliott
- Biedermann Lab for Orthopaedic Research, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Gurun E, Akdulum I, Akyuz M, Tokgoz N, Ozhan Oktar S. Shear Wave Elastography Evaluation of Meniscus Degeneration with Magnetic Resonance Imaging Correlation. Acad Radiol 2021; 28:1383-1388. [PMID: 33402299 DOI: 10.1016/j.acra.2020.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 01/24/2023]
Abstract
RATIONALE AND OBJECTIVES The objective of the study was to assess the diagnostic efficiency of shear wave elastography in the grading of meniscal degeneration compared to magnetic resonance imaging (MRI) as a reference standard. MATERIALS AND METHODS Fifty patients were included in the study (who had bilateral knee MRI). Tissue elasticity was measured in the coronal plane from the meniscus body in kilopascal. Nonparametric testing (Mann-Whitney U) was utilized to assess the differences between mean elasticity of the meniscus tissue, gender. The inter-intraobserver agreement was determined by the intraclass correlation coefficient. The correlations between the mean elasticity of the meniscus versus age, height, and body mass index were calculated via the "Pearson Correlation Coefficient Test." The relationship between MRI meniscal degeneration grading and elastography elasticity module was determined via the "Spearman Correlation Test." A p value less than 0.05 was considered statistically significant. RESULTS İnter-intraobserver intraclass correlation coefficient of the lateral and medial meniscus mean stiffness values were good or excellent (>0.8). A statistically significant increase in stiffness of meniscus tissue was observed with an increase in age (p = 0.003 for medial menisci, 0.006 for lateral menisci). Tissue stiffness was higher in the medial meniscus than the lateral meniscus (p < 0.001). A positive correlation was observed between the MRI meniscal degeneration grade and tissue stiffness (p < 0.05). Additionally, mean stiffness values from lateral and medial menisci were higher in the group with degeneration (p < 0.0001). CONCLUSION Meniscus stiffness is increased with aging. There was a statistically significant positive correlation between meniscal stiffness and degeneration grading in MRI.
Collapse
Affiliation(s)
- Enes Gurun
- Department of Radiology, Gazi University Hospital, Ankara, Turkey.
| | - Ismail Akdulum
- Department of Radiology, Gazi University Hospital, Ankara, Turkey
| | - Melih Akyuz
- Department of Radiology, Gazi University Hospital, Ankara, Turkey
| | - Nil Tokgoz
- Department of Radiology, Gazi University Hospital, Ankara, Turkey
| | - Suna Ozhan Oktar
- Department of Radiology, Gazi University Hospital, Ankara, Turkey
| |
Collapse
|
12
|
Okuda M, Kobayashi S, Toyooka K, Yoshimizu R, Nakase J, Hayashi H, Ueda Y, Gabata T. Quantitative differentiation of tendon and ligament using magnetic resonance imaging ultrashort echo time T2* mapping of normal knee joint. Acta Radiol 2021; 63:1489-1496. [PMID: 34558315 DOI: 10.1177/02841851211043834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ligaments and tendons are difficult to differentiate on conventional magnetic resonance imaging (MRI). Ligaments and tendons are different histologically, and tendon graft ligamentization is known to occur after anterior cruciate ligament (ACL) reconstruction. PURPOSE To quantify and differentiate the ultrashort echo time T2* (UTE-T2*) values of normal knee ligaments and tendons using a 1.5-T MRI scanner. MATERIAL AND METHODS The right knees of 12 healthy volunteers (6 men, 6 women; mean age = 30.8 ± 9.6 years) were scanned using a UTE-T2* sequence and the UTE-T2* values of the proximal, middle, and distal portions of the ACL, posterior cruciate ligament (PCL), and patellar tendon (PT) were evaluated. Two doctors manually drew the regions of interest four times and intra- and inter-observer reliability were evaluated by intraclass correlation coefficients. RESULTS The UTE-T2* values of ACL at the proximal, middle, distal, and mean were 12.0 ± 2.3, 11.3 ± 2.3, 12.3 ± 2.6, and 11.9 ± 2.4 ms, respectively. The UTE-T2* values of the PCL at each site were 6.9 ± 1.5, 9.0 ± 1.8, 8.8 ± 2.4, and 8.3 ± 2.1 ms, respectively. The UTE-T2* values of the PT at each site were 7.1 ± 1.7, 4.3 ± 1.7, 4.3 ± 1.8, and 5.2 ± 2.1 ms, respectively. Both intra- and inter-observer reliability showed high agreement rates. There were significant differences among the ACL mean, PCL mean, and PT mean, with a P value <0.01 in all cases. CONCLUSION This study confirms that UTE-T2* mapping can quantify the ACL, PCL, and PT, and tendons and ligaments can be differentiated using the UTE-T2* values in normal volunteer knee joints.
Collapse
Affiliation(s)
- Miho Okuda
- Department of Radiology, Kanazawa University Hospital, Kanazawa, Japan
| | - Satoshi Kobayashi
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazu Toyooka
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Rikuto Yoshimizu
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Junsuke Nakase
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Hayashi
- Division of Radiology, Kanazawa University Hospital, Kanazawa, Japan
| | - Yu Ueda
- MR Clinical Science, Philips Japan, Minato-ku, Japan
| | - Toshifumi Gabata
- Department of Radiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
13
|
Garczyńska K, Tzschätzsch H, Assili S, Kühl AA, Häckel A, Schellenberger E, Berndt N, Holzhütter HG, Braun J, Sack I, Guo J. Effect of Post-mortem Interval and Perfusion on the Biophysical Properties of ex vivo Liver Tissue Investigated Longitudinally by MRE and DWI. Front Physiol 2021; 12:696304. [PMID: 34413787 PMCID: PMC8369239 DOI: 10.3389/fphys.2021.696304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Structural changes of soft tissues on the cellular level can be characterized by histopathology, but not longitudinally in the same tissue. Alterations of cellular structures and tissue matrix are associated with changes in biophysical properties which can be monitored longitudinally by quantitative diffusion-weighted imaging (DWI) and magnetic resonance elastography (MRE). In this work, DWI and MRE examinations were performed in a 0.5-Tesla compact scanner to investigate longitudinal changes in water diffusivity, stiffness and viscosity of ex-vivo rat livers for up to 20 h post-mortem (pm). The effect of blood on biophysical parameters was examined in 13 non-perfused livers (containing blood, NPLs) and 14 perfused livers (blood washed out, PLs). Changes in cell shape, cell packing and cell wall integrity were characterized histologically. In all acquisitions, NPLs presented with higher shear-wave speed (c), higher shear-wave penetration rate (a) and smaller apparent-diffusion-coefficients (ADCs) than PL. Time-resolved analysis revealed three distinct phases: (i) an initial phase (up to 2 h pm) with markedly increased c and a and reduced ADCs; (ii) an extended phase with relatively stable values; and (iii) a degradation phase characterized by significant increases in a (10 h pm in NPLs and PLs) and ADCs (10 h pm in NPLs, 13 h pm in PLs). Histology revealed changes in cell shape and packing along with decreased cell wall integrity, indicating tissue degradation in NPLs and PLs 10 h pm. Taken together, our results demonstrate that the biophysical properties of fresh liver tissue rapidly change within 2 h pm, which seems to be an effect of both cytotoxic edema and vascular blood content. Several hours later, disruption of cell walls resulted in higher water diffusivity and wave penetration. These results reveal the individual contributions of vascular components and cellular integrity to liver elastography and provide a biophysical, imaging-based fingerprint of liver tissue degradation.
Collapse
Affiliation(s)
- Karolina Garczyńska
- Department of Radiology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sanam Assili
- Department of Radiology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biology, SUNY Albany, Albany, NY, United States
| | - Anja A. Kühl
- iPATH.Berlin - Core Unit of Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Akvile Häckel
- Department of Radiology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eyk Schellenberger
- Department of Radiology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Computational Systems Biochemistry Group, Institute of Biochemistry, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hermann-Georg Holzhütter
- Computational Systems Biochemistry Group, Institute of Biochemistry, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Fedje-Johnston W, Johnson CP, Tóth F, Carlson CS, Ellingson AM, Albersheim M, Lewis J, Bechtold J, Ellermann J, Rendahl A, Tompkins M. A pilot study to assess the healing of meniscal tears in young adult goats. Sci Rep 2021; 11:14181. [PMID: 34244551 PMCID: PMC8270994 DOI: 10.1038/s41598-021-93405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Meniscal tears are a common orthopedic injury, yet their healing is difficult to assess post-operatively. This impedes clinical decisions as the healing status of the meniscus cannot be accurately determined non-invasively. Thus, the objectives of this study were to explore the utility of a goat model and to use quantitative magnetic resonance imaging (MRI) techniques, histology, and biomechanical testing to assess the healing status of surgically induced meniscal tears. Adiabatic T1ρ, T2, and T2* relaxation times were quantified for both operated and control menisci ex vivo. Histology was used to assign healing status, assess compositional elements, and associate healing status with compositional elements. Biomechanical testing determined the failure load of healing lesions. Adiabatic T1ρ, T2, and T2* were able to quantitatively identify different healing states. Histology showed evidence of diminished proteoglycans and increased vascularity in both healed and non-healed menisci with surgically induced tears. Biomechanical results revealed that increased healing (as assessed histologically and on MRI) was associated with greater failure load. Our findings indicate increased healing is associated with greater meniscal strength and decreased signal differences (relative to contralateral controls) on MRI. This indicates that quantitative MRI may be a viable method to assess meniscal tears post-operatively.
Collapse
Affiliation(s)
- William Fedje-Johnston
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA.,Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Casey P Johnson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Ferenc Tóth
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Cathy S Carlson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Arin M Ellingson
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA.,Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
| | - Melissa Albersheim
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Jack Lewis
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Joan Bechtold
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Jutta Ellermann
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Marc Tompkins
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA. .,Tria Orthopedic Center, Bloomington, MN, USA.
| |
Collapse
|
15
|
Zhu J, Hu N, Hou J, Liang X, Wang Y, Zhang H, Wang P, Chen T, Chen W, Wang L. T 1rho mapping of cartilage and menisci in patients with hyperuricaemia at 3 T: a preliminary study. Clin Radiol 2021; 76:710.e1-710.e8. [PMID: 34016388 DOI: 10.1016/j.crad.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
AIM To compare and assess T1rho values of the femorotibial cartilage compartments and subregional menisci in patients with hyperuricaemia at 3 T. MATERIALS AND METHODS Thirty-two patients were enrolled in the study and were subdivided into two subgroups: 15 healthy controls (three women, 12 men; mean age = 45.3 ± 10.9 years, age range 25-72 years) and 17 patients with asymptomatic hyperuricaemia (two women, 15 men; mean age = 44.4 ± 12.7 years, age range 26-77 years). All patients were evaluated using 3 T magnetic resonance imaging (MRI) using an eight-channel phased-array knee coil (transmit-receive). Wilcoxon's rank sum test and analysis of covariance (ANCOVA) were conducted to determine whether there were any statistically significant differences in the T1rho values of the femorotibial cartilage compartments and subregional menisci between the two subgroups. RESULTS Lateral tibial cartilage (45.8 ± 2.9 ms) in the healthy subgroup had significantly lower (p<0.05) T1rho values than those of all subcompartments of the femorotibial cartilage in the hyperuricaemia subgroup. The lateral femoral cartilage (LF) in hyperuricaemia (54.6 ± 3.9 ms) subgroup had significantly higher (p<0.05) T1rho values than those of all subcompartments of the femorotibial cartilage except the LF in the healthy subgroup. Significantly higher (p<0.05) T1rho values existed in the LF of the healthy (54.6 ± 4.7 ms) subgroup in comparison with those of all subcompartments of femorotibial cartilage except the LF in hyperuricaemia subgroup. CONCLUSIONS T1rho values in certain compartments of the femorotibial cartilage in patients with hyperuricaemia are elevated compared to those in healthy patients presumably due to reduced proteoglycan content, to which particular attention should be paid when diagnosing and treating the patients with hyperuricaemia in a clinical setting.
Collapse
Affiliation(s)
- J Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - N Hu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - J Hou
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region, China
| | - X Liang
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Y Wang
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - H Zhang
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region, China
| | - P Wang
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, MCN AA-1105, Nashville, TN, 37232-2310, USA
| | - T Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - W Chen
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region, China
| | - L Wang
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions; School of Radiation Medicine and Protection, Medical College of Soochow University; School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
16
|
Wang W, Li Z, Peng HM, Bian YY, Li Y, Qian WW, Weng XS, Jin J, Yang XY, Lin J. Accuracy of MRI Diagnosis of Meniscal Tears of the Knee: A Meta-Analysis and Systematic Review. J Knee Surg 2021; 34:121-129. [PMID: 31390675 DOI: 10.1055/s-0039-1694056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study aimed to evaluate the overall diagnostic value of magnetic resonance imaging (MRI) in patients with suspected meniscal tears. PubMed, Cochrane, Embase database updated to November 2017 were searched by the index words to identify qualified studies, including prospective cohort studies and cross-sectional studies. Literature was also identified by tracking using reference lists. Heterogeneity of the included studies was reviewed to select proper effects model for pooled weighted sensitivity, specificity, and diagnostic odds ratio (DOR). Summary receiver operating characteristic (SROC) analyses were performed for meniscal tears. A total of 17 studies were involved in this meta-analysis to explore the diagnostic accuracy of MRI for meniscal tears. The global sensitivity and specificity of MRI of meniscal tears were 92.0% (95% confidence interval [CI]: 88.0-95.0%) and 90.0% (95% CI: 85.0-95.0%) in medial meniscal tears, and 80.0% (95% CI: 66.0-89.0%) and 95.0% (95% CI: 91.0-97.0%) in lateral meniscal tears, respectively. Moreover, the global positive and negative likelihood ratio of MRI of meniscal tears were 10.33 (95% CI: 6.04-17.67) and 0.09 (95% CI: 0.05-0.14) in medial meniscal tears; 16.48 (95% CI: 8.81-30.83) and 0.21 (95% CI: 0.12-0.37) in lateral meniscal tears, respectively. The global DOR was 81.69 (95% CI: 37.94-175.91) in medial meniscal tears and 56.59 (95% CI: 22.51-142.28) in lateral meniscal tears. The results of area under the SROC indicated high accuracy in medial meniscal tears (area under the curve [AUC] = 0.97, 95% CI: 0.95-0.98) and lateral meniscal tears (AUC = 0.96, 95% CI: 0.94-0.97). This review presents a systematic review and meta-analysis to evaluate the diagnostic accuracy of MRI of meniscal tears. Moderate-to-strong evidence suggests that MRI appears to be associated with higher diagnostic accuracy for detecting medial and lateral meniscal tears.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Zheng Li
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Hui-Ming Peng
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Yan-Yan Bian
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Ye Li
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Wen-Wei Qian
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Xi-Sheng Weng
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Jin Jin
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Xin-Yu Yang
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Jin Lin
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, People's Republic of China
| |
Collapse
|
17
|
Bae WC, Tadros AS, Finkenstaedt T, Du J, Statum S, Chung CB. Quantitative magnetic resonance imaging of meniscal pathology ex vivo. Skeletal Radiol 2021; 50:2405-2414. [PMID: 33983499 PMCID: PMC8536602 DOI: 10.1007/s00256-021-03808-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/25/2021] [Accepted: 05/02/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the ability of conventional spin echo (SE) T2 and ultrashort echo time (UTE) T2* relaxation times to characterize pathology in cadaveric meniscus samples. MATERIALS AND METHODS From 10 human donors, 54 triangular (radially cut) meniscus samples were harvested. Meniscal pathology was classified as normal (n = 17), intrasubstance degenerated (n = 33), or torn (n = 4) using a modified arthroscopic grading system. Using a 3-T MR system, SE T2 and UTE T2* values of the menisci were determined, followed by histopathology. Effect of meniscal pathology on relaxation times and histology scores were determined, along with correlation between relaxation times and histology scores. RESULTS Mean ± standard deviation UTE T2* values for normal, degenerated, and torn menisci were 3.6 ± 1.3 ms, 7.4 ± 2.5 ms, and 9.8 ± 5.7 ms, respectively, being significantly higher in degenerated (p < 0.0001) and torn (p = 0.0002) menisci compared to that in normal. In contrast, the respective mean SE T2 values were 27.7 ± 9.5 ms, 25.9 ± 7.0 ms, and 35.7 ± 10.4 ms, without significant differences between groups (all p > 0.14). In terms of histology, we found significant group-wise differences (each p < 0.05) in fiber organization and inner-tip surface integrity sub-scores, as well as the total score. Finally, we found a significant weak correlation between UTE T2* and histology total score (p = 0.007, Rs2 = 0.19), unlike the correlation between SE T2 and histology (p = 0.09, Rs2 = 0.05). CONCLUSION UTE T2* values were found to distinguish normal from both degenerated and torn menisci and correlated significantly with histopathology.
Collapse
Affiliation(s)
- Won C. Bae
- Radiology Service, Veterans Affairs San Diego Healthcare System, MC-114, 3350 La Jolla Village Drive, San Diego, CA 92161 USA ,Department of Radiology, University of California, San Diego, 9427 Health Sciences Drive, La Jolla, CA 92093-0997 USA
| | - Anthony S. Tadros
- Department of Radiology, University of California, San Diego, 9427 Health Sciences Drive, La Jolla, CA 92093-0997 USA
| | - Tim Finkenstaedt
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jiang Du
- Department of Radiology, University of California, San Diego, 9427 Health Sciences Drive, La Jolla, CA 92093-0997 USA
| | - Sheronda Statum
- Radiology Service, Veterans Affairs San Diego Healthcare System, MC-114, 3350 La Jolla Village Drive, San Diego, CA 92161 USA ,Department of Radiology, University of California, San Diego, 9427 Health Sciences Drive, La Jolla, CA 92093-0997 USA
| | - Christine B. Chung
- Radiology Service, Veterans Affairs San Diego Healthcare System, MC-114, 3350 La Jolla Village Drive, San Diego, CA 92161 USA ,Department of Radiology, University of California, San Diego, 9427 Health Sciences Drive, La Jolla, CA 92093-0997 USA
| |
Collapse
|
18
|
Differentiating rheumatoid and psoriatic arthritis: a systematic analysis of high-resolution magnetic resonance imaging features-preliminary findings. Skeletal Radiol 2021; 50:531-541. [PMID: 32845377 PMCID: PMC7811987 DOI: 10.1007/s00256-020-03588-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Because of overlapping phenotypical presentations, the diagnostic differentiation of rheumatoid arthritis (RA) and psoriatic arthritis (PsA) remains challenging. Thus, this study aimed to examine the diagnostic value of distinct imaging features obtained by high-resolution 3-T MRI for the diagnostic differentiation. MATERIALS AND METHODS Seventeen patients with PsA and 28 patients with RA were imaged at high resolution using 3-T MRI scanners and a dedicated 16-channel hand coil. All images were analyzed according to the outcome measures in rheumatology clinical trials' (OMERACT) RAMRIS (Rheumatoid Arthritis Magnetic Resonance Imaging Score) and PsAMRIS (Psoriatic Arthritis Magnetic Resonance Imaging Score) for the presence and intensity of synovitis, flexor tenosynovitis, bone edema, bone erosion, periarticular inflammation, bone proliferation, and joint space narrowing. Next, odds ratios (OR) were calculated to determine the strength of the associations between these imaging features, demographic characteristics, and the outcome RA vs. PsA. RESULTS PsA could be differentiated from RA by extracapsular inflammatory changes (PsAMRIS sub-score "periarticular inflammation"), with low odds for the presence of RA (OR of 0.06, p < 0.01) at all metacarpophalangeal (MCP) joints. A prediction model informed by the items that were strongest associated with the presence of RA or PsA demonstrated excellent differentiating capability with an area under the curve of 98.1%. CONCLUSION High-resolution imaging is beneficial for the identification of relevant imaging features that may assist the clinical differentiation of inflammatory conditions of the hand. At the MCP level, extracapsular inflammatory changes were strongly associated with PsA and may consequently allow the imaging differentiation of PsA and RA.
Collapse
|
19
|
Einarsson E, Svensson J, Folkesson E, Kestilä I, Tjörnstrand J, Peterson P, Finnilä MAJ, Hughes HV, Turkiewicz A, Saarakkala S, Englund M. Relating MR relaxation times of ex vivo meniscus to tissue degeneration through comparison with histopathology. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2. [PMID: 33972933 DOI: 10.1016/j.ocarto.2020.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Quantitative magnetic resonance imaging (MRI), e.g. relaxation parameter mapping, may be sensitive to structural and compositional tissue changes, and could potentially be used to non-invasively detect and monitor early meniscus degeneration related to knee osteoarthritis. Objective To investigate MR relaxation times as potential biomarkers for meniscus degeneration through comparisons with histopathology. Methods We measured MR relaxation parameters in the posterior horn of 40 menisci (medial and lateral) at a wide range of degenerative stages. T1, T2 and T2* were mapped using standard and ultrashort echo time sequences at 9.4 T and compared to gold standard histology using Pauli's histopathological scoring system, including assessment of surface integrity, collagen organization, cellularity and Safranin-O staining. Results All three relaxation times increased with total Pauli score (mean difference per score (95% CI) for T2*: 0.62 (0.37, 0.86), T2: 0.83 (0.53, 1.1) and T1: 24.7 (16.5, 32.8) ms/score). Clear associations were seen with scores of surface integrity (mean difference per score for T2*: 3.0 (1.8, 4.2), T2: 4.0 (2.5, 5.5) and T1: 116 (75.6, 156) ms/score) and collagen organization (mean difference between highest and lowest score for T2*: 5.3 (1.6, 8.9), T2: 6.1 (1.7, 11) and T1: 204 (75.9, 332) ms). The results were less clear for the remaining histopathological measures. Conclusions MR relaxation times T1, T2 and T2* of ex vivo human menisci are associated with histologically verified degenerative processes, in particular related to surface integrity and collagen organization. If confirmed in vivo, MR relaxation times may thus be potential biomarkers for meniscus degeneration.
Collapse
Affiliation(s)
- Emma Einarsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jonas Svensson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Elin Folkesson
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Molecular Skeletal Biology and Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Iida Kestilä
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Jon Tjörnstrand
- Orthopedics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Pernilla Peterson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Mikko A J Finnilä
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - H Velocity Hughes
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Aleksandra Turkiewicz
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Martin Englund
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Eijgenraam SM, Chaudhari AS, Reijman M, Bierma-Zeinstra SMA, Hargreaves BA, Runhaar J, Heijboer FWJ, Gold GE, Oei EHG. Time-saving opportunities in knee osteoarthritis: T 2 mapping and structural imaging of the knee using a single 5-min MRI scan. Eur Radiol 2020; 30:2231-2240. [PMID: 31844957 PMCID: PMC7062657 DOI: 10.1007/s00330-019-06542-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To assess the discriminative power of a 5-min quantitative double-echo steady-state (qDESS) sequence for simultaneous T2 measurements of cartilage and meniscus, and structural knee osteoarthritis (OA) assessment, in a clinical OA population, using radiographic knee OA as reference standard. METHODS Fifty-three subjects were included and divided over three groups based on radiographic and clinical knee OA: 20 subjects with no OA (Kellgren-Lawrence grade (KLG) 0), 18 with mild OA (KLG2), and 15 with moderate OA (KLG3). All patients underwent a 5-min qDESS scan. We measured T2 relaxation times in four cartilage and four meniscus regions of interest (ROIs) and performed structural OA evaluation with the MRI Osteoarthritis Knee Score (MOAKS) using qDESS with multiplanar reformatting. Between-group differences in T2 values and MOAKS were calculated using ANOVA. Correlations of the reference standard (i.e., radiographic knee OA) with T2 and MOAKS were assessed with correlation analyses for ordinal variables. RESULTS In cartilage, mean T2 values were 36.1 ± SD 4.3, 40.6 ± 5.9, and 47.1 ± 4.3 ms for no, mild, and moderate OA, respectively (p < 0.001). In menisci, mean T2 values were 15 ± 3.6, 17.5 ± 3.8, and 20.6 ± 4.7 ms for no, mild, and moderate OA, respectively (p < 0.001). Statistically significant correlations were found between radiographic OA and T2 and between radiographic OA and MOAKS in all ROIs (p < 0.05). CONCLUSION Quantitative T2 and structural assessment of cartilage and meniscus, using a single 5-min qDESS scan, can distinguish between different grades of radiographic OA, demonstrating the potential of qDESS as an efficient tool for OA imaging. KEY POINTS • Quantitative T2values of cartilage and meniscus as well as structural assessment of the knee with a single 5-min quantitative double-echo steady-state (qDESS) scan can distinguish between different grades of knee osteoarthritis (OA). • Quantitative and structural qDESS-based measurements correlate significantly with the reference standard, radiographic degree of OA, for all cartilage and meniscus regions. • By providing quantitative measurements and diagnostic image quality in one rapid MRI scan, qDESS has great potential for application in large-scale clinical trials in knee OA.
Collapse
Affiliation(s)
- Susanne M Eijgenraam
- Deptartment of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, Room Nd-547, 3015, GD, Rotterdam, The Netherlands
- Deptartment of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Max Reijman
- Deptartment of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sita M A Bierma-Zeinstra
- Deptartment of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Deptartment of General Practice, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Brian A Hargreaves
- Deptartment of Radiology, Stanford University, Stanford, CA, USA
- Deptartment of Electrical Engineering, Stanford University, Stanford, CA, USA
- Deptartment of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jos Runhaar
- Deptartment of General Practice, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Frank W J Heijboer
- Deptartment of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Garry E Gold
- Deptartment of Radiology, Stanford University, Stanford, CA, USA
- Deptartment of Bioengineering, Stanford University, Stanford, CA, USA
- Deptartment of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Edwin H G Oei
- Deptartment of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, Room Nd-547, 3015, GD, Rotterdam, The Netherlands.
| |
Collapse
|
21
|
Functional MRI Mapping of Human Meniscus Functionality and its Relation to Degeneration. Sci Rep 2020; 10:2499. [PMID: 32051526 PMCID: PMC7016001 DOI: 10.1038/s41598-020-59573-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Meniscus pathology may promote early osteoarthritis. This study assessed human meniscus functionality (i.e. its response to loading) ex vivo based on quantitative T1, T1ρ, and T2 mapping as a function of histological degeneration and loading. Forty-five meniscus samples of variable degeneration were harvested from the lateral meniscus body region of 45 patients during total knee arthroplasties. Samples underwent serial mapping on a 3.0-T MRI scanner (Achieva, Philips) using a force-controlled and torque-inducing compressive loading device. Samples were measured at three loading positions, i.e. unloaded, loaded to 2 bar (compression force 37 N) and 4 bar (69 N). Histology (Pauli classification) and biomechanics (Elastic Modulus) served as references. Based on histology, samples were trichotomized as grossly intact (n = 14), mildly degenerative (n = 16), and moderate-to-severely degenerative (n = 15) and analyzed using appropriate parametric and non-parametric tests. For T1, we found loading-induced decreases in all samples, irrespective of degeneration. For T1ρ, zonal increases in intact (apex) and decreases in degenerative samples (base) were found, while for T2, changes were ambiguous. In conclusion, force-controlled loading and serial MR imaging reveal response-to-loading patterns in meniscus. Zonal T1ρ response-to-loading patterns are most promising in differentiating degeneration, while T1 and T2 aren’t clearly related to degeneration.and may provide an imaging-based indication of functional tissue properties.
Collapse
|
22
|
Park JY, Kim JK, Cheon JE, Lee MC, Han HS. Meniscus Stiffness Measured with Shear Wave Elastography is Correlated with Meniscus Degeneration. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:297-304. [PMID: 31753598 DOI: 10.1016/j.ultrasmedbio.2019.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to evaluate the diagnostic performance of shear wave elastography (SWE) in human meniscus degeneration, with histology serving as the standard of reference. This comparative in vivo and ex vivo study was performed in 15 medial and 15 lateral menisci from 13 patients undergoing total knee arthroplasty (TKA) for primary osteoarthritis with varus deformity. Patients underwent in vivo coronal measurement with SWE for meniscus before surgery. Then, ex vivo assessment of meniscus stiffness with SWE was performed with the tissue obtained after TKA. SWE measurements were made in coronal and sagittal views with respect to the meniscus. Samples were analyzed histologically on a 0-18 scale according to the level of degeneration based on surface integrity, cellularity, fiber organization, collagen alignment and Safranin O staining intensity. The correlation between SWE measurement scale and histology was analyzed using Spearman's correlation. The area under the receiver operating characteristic curve (AUROC) was used to calculate the diagnostic performance of SWE in evaluating meniscus degeneration. Significant increases in stiffness were observed with increasing histologic degeneration in both in vivo and ex vivo coronal SWE. AUROCs were 0.79 (95% confidence interval [CI]: 0.49-1.00) for in vivo coronal SWE, 0.73 (95% CI: 0.53-0.95) for ex vivo coronal SWE and 0.56 (95% CI: 0.27-0.84) for ex vivo sagittal SWE. The medial meniscus, which exhibited more degeneration on histologic analysis, had greater stiffness than the lateral meniscus on ex vivo coronal SWE. The values of meniscus stiffness measured with SWE are correlated with the degree of meniscus degeneration. Further large-scale prospective studies may confirm the diagnostic performance of SWE as a non-invasive tool to assess meniscus degeneration.
Collapse
Affiliation(s)
- Jae-Young Park
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Jong-Keun Kim
- Department of Orthopedic Surgery, Hanil General Hospital, Seoul, South Korea
| | - Jung-Eun Cheon
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Myung Chul Lee
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Hyuk-Soo Han
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
23
|
A multi-purpose force-controlled loading device for cartilage and meniscus functionality assessment using advanced MRI techniques. J Mech Behav Biomed Mater 2019; 101:103428. [PMID: 31604169 DOI: 10.1016/j.jmbbm.2019.103428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 07/19/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Response to loading of soft tissues as assessed by advanced magnetic resonance imaging (MRI) techniques is a promising approach to evaluate tissue functionality beyond (statically obtained) structural and compositional features. As cartilage and meniscus pathologies are closely intertwined in osteoarthritis (OA) and beyond, both tissues should ideally be studied to elucidate further the underlying mechanisms involved in load transmission and its failure leading to OA. Hence, we devised, constructed and validated a dedicated MRI-compatible pneumatic force-controlled loading device to study cartilage and meniscus functionality in a standardized and reproducible manner and in reference to alternative tissue evaluation methods. Mechanical reference measurements using digital force sensors confirmed the reproducible application of forces in the range of 0-76N. To demonstrate the device's utility in a basic research context, MRI measurements of human articular cartilage (obtained from the lateral femoral condyle, n = 5) and meniscus (obtained from lateral meniscus body, n = 5) were performed in the unloaded (δ0) and loaded configurations (δ1: [cartilage] 0.75 bar corresponding to 15.1 N, [meniscus] 2 bar corresponding to 37.1 N; δ2: [cartilage] 1.5 bar corresponding to 28.6 N, [meniscus] 4 bar corresponding to 69.1 N). Cartilage samples were directly indented, while meniscus samples were subject to torque-induced compression using a dedicated lever compression device. Morphological MR Imaging using Proton Density-weighted sequences and quantitative MR Imaging using T2 and T1ρ mapping were performed serially and at high resolution. For reference, samples underwent subsequent biomechanical and histological reference evaluation. In conclusion, the force-controlled loading device has been validated for the non-invasive response-to-loading assessment of human cartilage and meniscus samples by advanced MRI techniques. Hereby, both tissues may be functionally evaluated in combination, beyond mere static analysis and in reference to histological and biomechanical measures.
Collapse
|
24
|
Towards Patient-Specific Computational Modelling of Articular Cartilage on the Basis of Advanced Multiparametric MRI Techniques. Sci Rep 2019; 9:7172. [PMID: 31073178 PMCID: PMC6509121 DOI: 10.1038/s41598-019-43389-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Cartilage degeneration is associated with tissue softening and represents the hallmark change of osteoarthritis. Advanced quantitative Magnetic Resonance Imaging (qMRI) techniques allow the assessment of subtle tissue changes not only of structure and morphology but also of composition. Yet, the relation between qMRI parameters on the one hand and microstructure, composition and the resulting functional tissue properties on the other hand remain to be defined. To this end, a Finite-Element framework was developed based on an anisotropic constitutive model of cartilage informed by sample-specific multiparametric qMRI maps, obtained for eight osteochondral samples on a clinical 3.0 T MRI scanner. For reference, the same samples were subjected to confined compression tests to evaluate stiffness and compressibility. Moreover, the Mankin score as an indicator of histological tissue degeneration was determined. The constitutive model was optimized against the resulting stress responses and informed solely by the sample-specific qMRI parameter maps. Thereby, the biomechanical properties of individual samples could be captured with good-to-excellent accuracy (mean R2 [square of Pearson's correlation coefficient]: 0.966, range [min, max]: 0.904, 0.993; mean Ω [relative approximated error]: 33%, range [min, max]: 20%, 47%). Thus, advanced qMRI techniques may be complemented by the developed computational model of cartilage to comprehensively evaluate the functional dimension of non-invasively obtained imaging biomarkers. Thereby, cartilage degeneration can be perspectively evaluated in the context of imaging and biomechanics.
Collapse
|
25
|
Zhu J, Hu N, Liang X, Li X, Guan J, Wang Y, Wang L. T2 mapping of cartilage and menisci at 3T in healthy subjects with knee malalignment: initial experience. Skeletal Radiol 2019; 48:753-763. [PMID: 30712122 DOI: 10.1007/s00256-019-3164-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE To assess the relationship between knee alignment and T2 values of femorotibial cartilage and menisci in healthy subjects at 3 T. MATERIALS AND METHODS Thirty-six healthy subjects divided into three subgroups of 12 neutral, 12 varus, and 12 valgus alignment of the femorotibial joint were investigated on 3-T MR scanner using a 2D multi-echo turbo spin-echo (TSE) sequence for T2 mapping. Wilcoxon signed-rank test and analysis of covariance (ANCOVA) were performed to determine any statistically significant differences in subregional T2 values of femorotibial cartilage and menisci among the three subgroups of healthy subjects. RESULTS Lateral femoral anterior cartilage subregion (52 ± 3 ms, mean ± standard deviation; 53 ± 2 ms) had significantly higher T2 values (p < 0.05) than medial femoral anterior cartilage subregion (51 ± 2 ms; 51 ± 2 ms) in varus and valgus groups, respectively. There were statistically significant differences (p < 0.05) in T2 values of tibial central cartilage subregion between lateral and medical compartment among varus, valgus, and neutral subgroups. Lateral body segment of meniscus (41 ± 3 ms) had significantly higher (p < 0.05) T2 values than medial body segment (40 ± 2 ms) in the varus subgroup. CONCLUSIONS Some degree of correlation between knee alignment and subregional T2 values of femorotibial cartilage and menisci exists in healthy subjects. These findings indicate that T2 mapping may be sensitive in assessing the load distribution pattern of human cartilage and menisci with knee alignment abnormality, which may be used as reference baseline when understanding the occurrence and progression of knee osteoarthritis.
Collapse
Affiliation(s)
- Jiangtao Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 San Xiang Road, Suzhou, 215004, Jiangsu Province, China.
| | - Ningfan Hu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 San Xiang Road, Suzhou, 215004, Jiangsu Province, China
| | - Xiaoyun Liang
- Florey Institute of Neuroscience and Mental Health, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia
| | - Xiaojing Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 San Xiang Road, Suzhou, 215004, Jiangsu Province, China
| | - Jian Guan
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.,School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China
| | - Yajuan Wang
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.,School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China
| | - Ligong Wang
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.,School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Bldg. 402, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China
| |
Collapse
|
26
|
The Importance of the Knee Joint Meniscal Fibrocartilages as Stabilizing Weight Bearing Structures Providing Global Protection to Human Knee-Joint Tissues. Cells 2019; 8:cells8040324. [PMID: 30959928 PMCID: PMC6523218 DOI: 10.3390/cells8040324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to review aspects of the pathobiology of the meniscus in health and disease and show how degeneration of the meniscus can contribute to deleterious changes in other knee joint components. The menisci, distinctive semilunar weight bearing fibrocartilages, provide knee joint stability, co-ordinating functional contributions from articular cartilage, ligaments/tendons, synovium, subchondral bone and infra-patellar fat pad during knee joint articulation. The meniscus contains metabolically active cell populations responsive to growth factors, chemokines and inflammatory cytokines such as interleukin-1 and tumour necrosis factor-alpha, resulting in the synthesis of matrix metalloproteases and A Disintegrin and Metalloprotease with ThromboSpondin type 1 repeats (ADAMTS)-4 and 5 which can degrade structural glycoproteins and proteoglycans leading to function-limiting changes in meniscal and other knee joint tissues. Such degradative changes are hall-marks of osteoarthritis (OA). No drugs are currently approved that change the natural course of OA and translate to long-term, clinically relevant benefits. For any pharmaceutical therapeutic intervention in OA to be effective, disease modifying drugs will have to be developed which actively modulate the many different cell types present in the knee to provide a global therapeutic. Many individual and combinatorial approaches are being developed to treat or replace degenerate menisci using 3D printing, bioscaffolds and hydrogel delivery systems for therapeutic drugs, growth factors and replacement progenitor cell populations recognising the central role the menisci play in knee joint health.
Collapse
|
27
|
Eijgenraam SM, Bovendeert FAT, Verschueren J, van Tiel J, Bastiaansen-Jenniskens YM, Wesdorp MA, Nasserinejad K, Meuffels DE, Guenoun J, Klein S, Reijman M, Oei EHG. T 2 mapping of the meniscus is a biomarker for early osteoarthritis. Eur Radiol 2019; 29:5664-5672. [PMID: 30888480 PMCID: PMC6719322 DOI: 10.1007/s00330-019-06091-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/30/2019] [Accepted: 02/08/2019] [Indexed: 12/24/2022]
Abstract
Purpose To evaluate in vivo T2 mapping as quantitative, imaging-based biomarker for meniscal degeneration in humans, by studying the correlation between T2 relaxation time and degree of histological degeneration as reference standard. Methods In this prospective validation study, 13 menisci from seven patients with radiographic knee osteoarthritis (median age 67 years, three males) were included. Menisci were obtained during total knee replacement surgery. All patients underwent pre-operative magnetic resonance imaging using a 3-T MR scanner which included a T2 mapping pulse sequence with multiple echoes. Histological analysis of the collected menisci was performed using the Pauli score, involving surface integrity, cellularity, matrix organization, and staining intensity. Mean T2 relaxation times were calculated in meniscal regions of interest corresponding with the areas scored histologically, using a multi-slice multi-echo postprocessing algorithm. Correlation between T2 mapping and histology was assessed using a generalized least squares model fit by maximum likelihood. Results The mean T2 relaxation time was 22.4 ± 2.7 ms (range 18.5–27). The median histological score was 10, IQR 7–11 (range 4–13). A strong correlation between T2 relaxation time and histological score was found (rs = 0.84, CI 95% 0.64–0.93). Conclusion In vivo T2 mapping of the human meniscus correlates strongly with histological degeneration, suggesting that T2 mapping enables the detection and quantification of early compositional changes of the meniscus in knee OA. Key Points • Prospective histology-based study showed that in vivo T2mapping of the human meniscus correlates strongly with histological degeneration. • Meniscal T2mapping allows detection and quantifying of compositional changes, without need for contrast or special MRI hardware. • Meniscal T2mapping provides a biomarker for early OA, potentially allowing early treatment strategies and prevention of OA progression. Electronic supplementary material The online version of this article (10.1007/s00330-019-06091-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne M Eijgenraam
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, room Nd-547, 3015 GD, Rotterdam, The Netherlands.,Department of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Frans A T Bovendeert
- Department of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Orthopedic Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Joost Verschueren
- Department of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jasper van Tiel
- Department of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Marinus A Wesdorp
- Department of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Kazem Nasserinejad
- Department of Hematology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Duncan E Meuffels
- Department of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jamal Guenoun
- Department of Radiology, Cambridge University Hospitals, Cambridge, UK
| | - Stefan Klein
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, room Nd-547, 3015 GD, Rotterdam, The Netherlands.,Department of Medical Informatics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Max Reijman
- Department of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, room Nd-547, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
28
|
Olsson E, Folkesson E, Peterson P, Önnerfjord P, Tjörnstrand J, Hughes HV, Englund M, Svensson J. Ultra-high field magnetic resonance imaging parameter mapping in the posterior horn of ex vivo human menisci. Osteoarthritis Cartilage 2019; 27:476-483. [PMID: 30552967 PMCID: PMC7610687 DOI: 10.1016/j.joca.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the relationship between meniscus magnetic resonance (MR) relaxation parameters and meniscus degradation through quantitative imaging of ex vivo posterior horns of menisci from subjects with and without knee osteoarthritis (OA). DESIGN We sampled medial and lateral menisci from ten medial compartment knee OA patients (mean age 63 years) undergoing total knee replacement and from ten deceased donors (references, mean age 51 years). MR relaxation parameters T2*, T2 and T1 of the posterior horn were measured at a 9.4 T scanner. Comparisons were made between OA patients and references (with adjustment for age) as well as between medial and lateral menisci from the same knees. RESULTS Mean values (standard deviation) of mean T2* were 13 (3.8), 6.9 (2.3), 7.2 (1.9) and 7.2 (1.7) ms for the medial and lateral patient menisci and the medial and lateral reference menisci, respectively. Corresponding values were 17 (3.7), 9.0 (2.2), 12 (4) and 9.0 (1.3) ms for T2 and 1810 (150), 1630 (30), 1580 (90) and 1560 (50) ms for T1. All three relaxation times were significantly longer in medial OA menisci compared to the other groups. Among medial reference menisci, relaxation times (mainly T1) tended to increase with age. CONCLUSIONS MR relaxation times T2*, T2 and T1 in the posterior horn are longer in the medial menisci of patients with end-stage medial compartment knee OA compared to the corresponding lateral menisci and to reference menisci. The meniscus seems to undergo intrasubstance alterations related to both OA and ageing.
Collapse
Affiliation(s)
- E Olsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden,Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - E Folkesson
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden,Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - P Peterson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - P Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - J Tjörnstrand
- Orthopedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden,Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - HV Hughes
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - M Englund
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - J Svensson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden,Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
29
|
Markes AR, Knox J, Zhong Q, Pedoia V, Li X, Ma CB. An Abnormal Tibial Position Is Associated With Alterations in the Meniscal Matrix: A 3-Year Longitudinal Study After Anterior Cruciate Ligament Reconstruction. Orthop J Sports Med 2019; 7:2325967118820057. [PMID: 30671489 PMCID: PMC6329038 DOI: 10.1177/2325967118820057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: An altered tibial position is still present despite anterior cruciate ligament (ACL) reconstruction. It has been demonstrated that an abnormal tibial position after an ACL injury may play a role in subsequent injuries to the meniscus, which can lead to early cartilage degeneration. Purpose: To determine changes in both the tibial position and the meniscal matrix present before and after ACL reconstruction as well as to evaluate the association between these 2 variables in ACL-injured knees 3 years after reconstruction. Study Design: Cohort study; Level of evidence, 2. Methods: Bilateral knee magnetic resonance imaging (MRI) of 32 patients with unilateral ACL injuries was performed before reconstruction; 13 control participants also underwent MRI. Follow-up MRI was performed up to 3 years after surgery. Tibial position, internal tibial rotation, and T1ρ and T2 values of the menisci were calculated using an in-house MATLAB program. Student t tests and multiple linear regression were used to compare differences between injured, uninjured, and control knees as well as to assess correlations between the tibial position at 3 years and 3-year changes in quantitative MRI meniscal relaxation values. Results: The tibial position of injured knees was more anterior than that of uninjured knees at baseline, 6 months, and 1, 2, and 3 years (P < .05 for all). The T1ρ and T2 values of the menisci of injured knees were greater than those of uninjured and control knees in the posterior lateral and posterior medial horns up to 1 and 2 years after surgery, respectively (P < .05 for all). The tibial position at 3 years was associated with increased T2 values from baseline to 3 years in the posterior medial horn (β = 0.397; P = .031) and anterior medial horn (β = 0.360; P = .040). Conclusion: Results of the current study indicate that there is a persistently altered tibial position after ACL reconstruction. Initial preoperative meniscal abnormalities show prolonged but gradual improvement. Additionally, correlations between the tibial position and changes in the medial meniscal matrix suggest that the tibial position may play a role in the increased susceptibility to medial meniscal tears seen after reconstruction. The development of newer surgical techniques must address a persistently altered tibial position. Quantitative MRI is an effective instrument to evaluate meniscal matrix changes and can serve as an early radiological tool for meniscal injuries.
Collapse
Affiliation(s)
- Alexander R Markes
- University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Joseph Knox
- University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Qunjie Zhong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - C Benjamin Ma
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
30
|
Baboli R, Sharafi A, Chang G, Regatte RR. Biexponential T 1ρ relaxation mapping of human knee menisci. J Magn Reson Imaging 2019; 50:824-835. [PMID: 30614152 DOI: 10.1002/jmri.26631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Measuring T1ρ in the knee menisci can potentially be used as noninvasive biomarkers in detecting early-stage osteoarthritis (OA). PURPOSE To demonstrate the feasibility of biexponential T1ρ relaxation mapping of human knee menisci. STUDY TYPE Prospective. POPULATION Eight healthy volunteers with no known inflammation, trauma, or pain in the knee and three symptomatic subjects with early knee OA. FIELD STRENGTH/SEQUENCE Customized Turbo-FLASH sequence to acquire 3D-T1ρ -weighted images on a 3 T MRI scanner. ASSESSMENT T1ρ relaxation values were assessed in 11 meniscal regions of interest (ROIs) using monoexponential and biexponential models. STATISTICAL TESTS Nonparametric rank-sum tests, Kruskal-Wallis test, and coefficient of variation. RESULTS The mean monoexponential T1ρ relaxation in the lateral menisci were 28.05 ± 4.2 msec and 37.06 ± 10.64 msec for healthy subjects and early knee OA patients, respectively, while the short and long components were 8.07 ± 0.5 msec and 72.35 ± 3.2 msec for healthy subjects and 2.63 ± 2.99 msec and 55.27 ± 24.76 msec for early knee OA patients, respectively. The mean monoexponential T1ρ relaxation in the medial menisci were 34.30 ± 3.8 msec and 37.26 ± 11.38 msec for healthy and OA patients, respectively, while the short and long components were 7.76 ± 0.7 msec and 72.19 ± 4.2 msec for healthy subjects and 3.06 ± 3.24 msec and 55.27 ± 24.59 msec for OA patients, respectively. Statistically significant (P ≤ 0.05) differences were observed in the monoexponential relaxation between some of the ROIs. The T1ρ,short was significantly lower (P = 0.02) in the patients than controls. The rmsCV% ranges were 1.51-16.6%, 3.59-14.3%, and 4.91-15.6% for T1ρ -mono, T1ρ -short, and T1ρ -long, respectively. DATA CONCLUSION Our results showed that in all ROIs, T1ρ relaxation times of outer zones (red zones) were less than inner zones (white zones). Monoexponential T1ρ was increased in medial, lateral, and body menisci of early OA while the biexponential numbers were decreased in early OA patients. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2019;50:824-835.
Collapse
Affiliation(s)
- Rahman Baboli
- From the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Azadeh Sharafi
- From the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Gregory Chang
- From the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ravinder R Regatte
- From the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
31
|
Affiliation(s)
| | | | - O Kenechi Nwawka
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Hollis G Potter
- Sports Health Associate Editor for Imaging, Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
32
|
Kumar NM, Fritz B, Stern SE, Warntjes JBM, Lisa Chuah YM, Fritz J. Synthetic MRI of the Knee: Phantom Validation and Comparison with Conventional MRI. Radiology 2018; 289:465-477. [PMID: 30152739 DOI: 10.1148/radiol.2018173007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose To test the hypothesis that synthetic MRI of the knee generates accurate and repeatable quantitative maps and produces morphologic MR images with similar quality and detection rates of structural abnormalities than does conventional MRI. Materials and Methods Data were collected prospectively between January 2017 and April 2018 and were retrospectively analyzed. An International Society for Magnetic Resonance in Medicine-National Institute of Standards and Technology phantom was used to determine the accuracy of T1, T2, and proton density (PD) quantification. Statistical models were applied for correction. Fifty-four participants (24 men, 30 women; mean age, 40 years; range, 18-62 years) underwent synthetic and conventional 3-T MRI twice on the same day. Fifteen of 54 participants (28%) repeated the protocol within 9 days. The intra- and interday agreements of quantitative cartilage measurements were assessed. Contrast-to-noise (CNR) ratios, image quality, and structural abnormalities were assessed on corresponding synthetic and conventional images. Statistical analyses included the Wilcoxon test, χ2 test, and Cohen Kappa. P values less than or equal to .01 were considered to indicate a statistically significant difference. Results Synthetic MRI quantification of T1, T2, and PD values had an overall model-corrected error margin of 0.8%. The synthetic MRI interday repeatability of articular cartilage quantification had native and model-corrected error margins of 3.3% and 3.5%, respectively. The cartilage-to-fluid CNR and menisci-to-fluid CNR was higher on synthetic than conventional MR images (P ≤ .001, respectively). Synthetic MRI improved short-tau inversion recovery fat suppression (P ˂ .01). Intermethod agreements of structural abnormalities were good (kappa, 0.621-0.739). Conclusion Synthetic MRI of the knee is accurate for T1, T2, and proton density quantification, and simultaneously generated morphologic MR images have detection rates of structural abnormalities similar to those of conventional MR images, with similar acquisition time. © RSNA, 2018.
Collapse
Affiliation(s)
- Neil M Kumar
- From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21287 (N.M.K., J.F.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Faculty of Medicine, University of Zurich, Zurich, Switzerland (B.F.); Bond Business School, Bond University, Gold Coast, Australia (S.E.S.); Center for Medical Imaging Science and Visualization, Linköping University, Linköping, Sweden (J.B.M.W.); Division of Clinical Physiology, Department of Medicine and Health, University Hospital, Linköping, Sweden (J.B.M.W.); SyntheticMR AB, Linköping, Sweden (J.B.M.W.); and Siemens Healthcare GmbH, Erlangen, Germany (Y.M.L.C.)
| | - Benjamin Fritz
- From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21287 (N.M.K., J.F.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Faculty of Medicine, University of Zurich, Zurich, Switzerland (B.F.); Bond Business School, Bond University, Gold Coast, Australia (S.E.S.); Center for Medical Imaging Science and Visualization, Linköping University, Linköping, Sweden (J.B.M.W.); Division of Clinical Physiology, Department of Medicine and Health, University Hospital, Linköping, Sweden (J.B.M.W.); SyntheticMR AB, Linköping, Sweden (J.B.M.W.); and Siemens Healthcare GmbH, Erlangen, Germany (Y.M.L.C.)
| | - Steven E Stern
- From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21287 (N.M.K., J.F.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Faculty of Medicine, University of Zurich, Zurich, Switzerland (B.F.); Bond Business School, Bond University, Gold Coast, Australia (S.E.S.); Center for Medical Imaging Science and Visualization, Linköping University, Linköping, Sweden (J.B.M.W.); Division of Clinical Physiology, Department of Medicine and Health, University Hospital, Linköping, Sweden (J.B.M.W.); SyntheticMR AB, Linköping, Sweden (J.B.M.W.); and Siemens Healthcare GmbH, Erlangen, Germany (Y.M.L.C.)
| | - J B Marcel Warntjes
- From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21287 (N.M.K., J.F.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Faculty of Medicine, University of Zurich, Zurich, Switzerland (B.F.); Bond Business School, Bond University, Gold Coast, Australia (S.E.S.); Center for Medical Imaging Science and Visualization, Linköping University, Linköping, Sweden (J.B.M.W.); Division of Clinical Physiology, Department of Medicine and Health, University Hospital, Linköping, Sweden (J.B.M.W.); SyntheticMR AB, Linköping, Sweden (J.B.M.W.); and Siemens Healthcare GmbH, Erlangen, Germany (Y.M.L.C.)
| | - Yen Mei Lisa Chuah
- From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21287 (N.M.K., J.F.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Faculty of Medicine, University of Zurich, Zurich, Switzerland (B.F.); Bond Business School, Bond University, Gold Coast, Australia (S.E.S.); Center for Medical Imaging Science and Visualization, Linköping University, Linköping, Sweden (J.B.M.W.); Division of Clinical Physiology, Department of Medicine and Health, University Hospital, Linköping, Sweden (J.B.M.W.); SyntheticMR AB, Linköping, Sweden (J.B.M.W.); and Siemens Healthcare GmbH, Erlangen, Germany (Y.M.L.C.)
| | - Jan Fritz
- From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21287 (N.M.K., J.F.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Faculty of Medicine, University of Zurich, Zurich, Switzerland (B.F.); Bond Business School, Bond University, Gold Coast, Australia (S.E.S.); Center for Medical Imaging Science and Visualization, Linköping University, Linköping, Sweden (J.B.M.W.); Division of Clinical Physiology, Department of Medicine and Health, University Hospital, Linköping, Sweden (J.B.M.W.); SyntheticMR AB, Linköping, Sweden (J.B.M.W.); and Siemens Healthcare GmbH, Erlangen, Germany (Y.M.L.C.)
| |
Collapse
|
33
|
Kajabi AW, Casula V, Nissi MJ, Peuna A, Podlipská J, Lammentausta E, Saarakkala S, Guermazi A, Nieminen MT. Assessment of meniscus with adiabatic T 1ρ and T 2ρ relaxation time in asymptomatic subjects and patients with mild osteoarthritis: a feasibility study. Osteoarthritis Cartilage 2018; 26:580-587. [PMID: 29269326 DOI: 10.1016/j.joca.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/23/2017] [Accepted: 12/08/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the ability of magnetic resonance imaging (MRI) adiabatic relaxation times in the rotating frame (adiabatic T1ρ and T2ρ) to detect structural alterations in meniscus tissue of mild OA patients and asymptomatic volunteers. METHOD MR images of 24 subjects (age range: 50-67 years, 12 male), including 12 patients with mild osteoarthritis (OA) (Kellgren-Lawrence (KL) = 1, 2) and 12 asymptomatic volunteers, were acquired using a 3 T clinical MRI system. Morphological assessment was performed using semiquantitative MRI OA Knee Score (MOAKS). Adiabatic T1ρ and T2ρ (AdT1ρ, AdT2ρ) relaxation time maps were calculated in regions of interest (ROIs) containing medial and lateral horns of menisci. The median relaxation time values of the ROIs were compared between subjects classified based on radiographic findings and MOAKS evaluations. RESULTS MOAKS assessment of patients and volunteers indicated the presence of meniscal and cartilage lesions in both groups. For the combined cohort group, prolonged AdT1ρ was observed in the posterior horn of the medial meniscus (PHMED) in subjects with MOAKS meniscal tear (P < 0.05). AdT2ρ was statistically significantly longer in PHMED of subjects with MOAKS full-thickness cartilage loss (P < 0.05). After adjusting for multiple comparisons, differences in medians of observed AdT1ρ and AdT2ρ values between mild OA patients and asymptomatic volunteers did not reach statistical significance. CONCLUSION AdT1ρ and AdT2ρ measurements have the potential to identify changes in structural composition of meniscus tissue associated with meniscal tear and cartilage loss in a cohort group of mild OA patients and asymptomatic volunteers.
Collapse
Affiliation(s)
- A W Kajabi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
| | - V Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
| | - M J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - A Peuna
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - J Podlipská
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Infotech Oulu, University of Oulu, Oulu, Finland.
| | - E Lammentausta
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - S Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - A Guermazi
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA.
| | - M T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
34
|
Nebelung S, Sondern B, Jahr H, Tingart M, Knobe M, Thüring J, Kuhl C, Truhn D. Non-invasive T1ρ mapping of the human cartilage response to loading and unloading. Osteoarthritis Cartilage 2018; 26:236-244. [PMID: 29175373 DOI: 10.1016/j.joca.2017.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/21/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To define the physiological response to sequential loading and unloading in histologically intact human articular cartilage using serial T1ρ mapping, as T1ρ is considered to indicate the tissue's macromolecular content. METHOD 18 macroscopically intact cartilage-bone samples were obtained from the central lateral femoral condyles of 18 patients undergoing total knee replacement. Serial T1ρ mapping was performed on a clinical 3.0-T MRI system using a modified prostate coil. Spin-lock multiple gradient-echo sequences prior to, during and after standardized indentation loading (displacement controlled, strain 20%) were used to obtain seven serial T1ρ maps: unloaded (δ0), quasi-statically loaded (indentation1-indentation3) and under subsequent relaxation (relaxation1-relaxation3). After manual segmentation, zonal and regional regions-of-interest were defined. ROI-specific relative changes were calculated and statistically assessed using paired t-tests. Histological (Mankin classification) and biomechanical (unconfined compression) evaluations served as references. RESULTS All samples were histologically and biomechanically grossly intact (Mankin sum: 1.8 ± 1.2; Young's Modulus: 0.7 ± 0.4 MPa). Upon loading, T1ρ consistently increased throughout the entire sample thickness, primarily subpistonally (indentation1 [M ± SD]: 9.5 ± 7.8% [sub-pistonal area, SPA] vs 4.2 ± 5.8% [peri-pistonal area, PPA]; P < 0.001). T1ρ further increased with ongoing loading (indentation3: 14.1 ± 8.1 [SPA] vs 7.7 ± 5.9% [PPA]; P < 0.001). Even upon unloading (i.e., relaxation), T1ρ persistently increased in time. CONCLUSION Serial T1ρ-mapping reveals distinct and complex zonal and regional changes in articular cartilage as a function of loading and unloading. Thereby, longitudinal adaptive processes in hyaline cartilage become evident, which may be used for the tissue's non-invasive functional characterization by T1ρ.
Collapse
Affiliation(s)
- S Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - B Sondern
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - H Jahr
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany.
| | - M Tingart
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany.
| | - M Knobe
- Department of Orthopaedic Trauma, Aachen University Hospital, Aachen, Germany.
| | - J Thüring
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - C Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - D Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
35
|
Soustelle L, Lamy J, Rousseau F, Armspach JP, Loureiro de Sousa P. A diffusion-based method for long-T2suppression in steady state sequences: Validation and application for 3D-UTE imaging. Magn Reson Med 2017; 80:548-559. [DOI: 10.1002/mrm.27057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Lucas Soustelle
- Université de Strasbourg, CNRS, ICube, FMTS; Strasbourg France
| | - Julien Lamy
- Université de Strasbourg, CNRS, ICube, FMTS; Strasbourg France
| | | | | | | |
Collapse
|
36
|
Cai C, Zeng Y, Zhuang Y, Cai S, Chen L, Ding X, Bao L, Zhong J, Chen Z. Single-Shot ${\text{T}}_{{2}}$ Mapping Through OverLapping-Echo Detachment (OLED) Planar Imaging. IEEE Trans Biomed Eng 2017; 64:2450-2461. [DOI: 10.1109/tbme.2017.2661840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Nebelung S, Post M, Raith S, Fischer H, Knobe M, Braun B, Prescher A, Tingart M, Thüring J, Bruners P, Jahr H, Kuhl C, Truhn D. Functional in situ assessment of human articular cartilage using MRI: a whole-knee joint loading device. Biomech Model Mechanobiol 2017; 16:1971-1986. [PMID: 28685238 DOI: 10.1007/s10237-017-0932-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/23/2017] [Indexed: 12/22/2022]
Abstract
The response to loading of human articular cartilage as assessed by magnetic resonance imaging (MRI) remains to be defined in relation to histology and biomechanics. Therefore, an MRI-compatible whole-knee joint loading device for the functional in situ assessment of cartilage was developed and validated in this study. A formalin-fixed human knee was scanned by computed tomography in its native configuration and digitally processed to create femoral and tibial bone models. The bone models were covered by artificial femoral and tibial articular cartilage layers in their native configuration using cartilage-mimicking polyvinyl siloxane. A standardized defect of 8 mm diameter was created within the artificial cartilage layer at the central medial femoral condyle, into which native cartilage samples of similar dimensions were placed. After describing its design and specifications, the comprehensive validation of the device was performed using a hydraulic force gauge and digital electronic pressure-sensitive sensors. Displacement-controlled quasi-static uniaxial loading to 2.5 mm [Formula: see text] and 5.0 mm [Formula: see text] of the mobile tibia versus the immobile femur resulted in forces of [Formula: see text] N [Formula: see text] and [Formula: see text] N [Formula: see text] (on the entire joint) and local pressures of [Formula: see text] MPa [Formula: see text] and [Formula: see text] MPa [Formula: see text] (at the site of the cartilage sample). Upon confirming the MRI compatibility of the set-up, the response to loading of macroscopically intact human articular cartilage samples ([Formula: see text]) was assessed on a clinical 3.0-T MR imaging system using clinical standard proton-density turbo-spin echo sequences and T2-weighted multi-spin echo sequences. Serial imaging was performed at the unloaded state [Formula: see text] and at consecutive loading positions (i.e. at [Formula: see text] and [Formula: see text]. Biomechanical unconfined compression testing (Young's modulus) and histological assessment (Mankin score) served as the standards of reference. All samples were histologically intact (Mankin score, [Formula: see text]) and biomechanically reasonably homogeneous (Young's modulus, [Formula: see text] MPa). They could be visualized in their entirety by MRI and significant decreases in sample height [[Formula: see text]: [Formula: see text] mm; [Formula: see text]: [Formula: see text] mm; [Formula: see text]: [Formula: see text] mm; [Formula: see text] (repeated-measures ANOVA)] as well as pronounced T2 signal decay indicative of tissue pressurization were found as a function of compressive loading. In conclusion, our compression device has been validated for the noninvasive response-to-loading assessment of human articular cartilage by MRI in a close-to-physiological experimental setting. Thus, in a basic research context cartilage may be functionally evaluated beyond mere static analysis and in reference to histology and biomechanics.
Collapse
Affiliation(s)
- Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Manuel Post
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Stefan Raith
- Department of Dental Materials and Biomaterials Research, Aachen University Hospital, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, Aachen University Hospital, Aachen, Germany
| | - Matthias Knobe
- Department of Orthopaedic Trauma, Aachen University Hospital, Aachen, Germany
| | - Benedikt Braun
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University Hospital, Homburg, Germany
| | - Andreas Prescher
- Institute of Molecular and Cellular Anatomy, Aachen University Hospital, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany
| | - Johannes Thüring
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Philipp Bruners
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Holger Jahr
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|