1
|
Salden S, Xu Y, De Smet S, Peremans K, Dobbeleir A, De Witte S, Van Eeckhaut A, Saunders JH, Haverbeke A, Baeken C. Investigating cerebral blood flow in anxious dogs: a 99mTc-HMPAO SPECT imaging study. Res Vet Sci 2025; 190:105648. [PMID: 40245449 DOI: 10.1016/j.rvsc.2025.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/17/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025]
Abstract
Anxiety-related disorders have a significant effect on the welfare of pet dogs, often leading to behavioral problems and straining the human-animal bond. Conventional treatments sometimes prove inadequate, highlighting the need for a more objective understanding of the neurobiological pathways underlying canine anxiety disorders. Therefore, this study aimed to investigate anxiety disorders in dogs using 99mTc-HMPAO single photon emission computed tomography (SPECT), focusing on the left frontal region, subcortical region, and cerebellum. While a frequentist approach found no significant differences in brain perfusion between patient and healthy dogs, Bayesian analyses indicated underpowered results. Subsequent correlational analyses were performed and revealed significant positive associations between cerebellar perfusion and aggression, social fear, and nonsocial fear C-BARQ cluster scores (Canine Behavioral Assessment and Research Questionnaire), as well as a negative correlation between subcortical perfusion and nonsocial fear C-BARQ cluster scores in dogs with an anxiety disorder. This study supports the involvement of subcortical regions in anxious dogs and emphasizes the emerging role of the cerebellum in canine anxiety disorders. This study deepens our understanding of the neural correlates of canine anxiety and underscores the potential of nuclear neuroimaging in clinical practice. Future research into broader neural functioning is warranted for improved diagnostic and therapeutic strategies in veterinary behavioral medicine.
Collapse
Affiliation(s)
- Sofie Salden
- Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium.
| | - Yangfeng Xu
- Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefanie De Smet
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; Brain Stimulation and Cognition (BSC) Lab, Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Kathelijne Peremans
- Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Andre Dobbeleir
- Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sara De Witte
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; Department of Neurology and Bru-BRAIN, University Hospital (UZ Brussel), Brussels, Belgium; Neuroprotection & Neuromodulation Research Group (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Jimmy H Saunders
- Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Anouck Haverbeke
- Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Chris Baeken
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.
| |
Collapse
|
2
|
Amat M, Le Brech S, Manteca X. The Relationship Between Aggression and Physical Disease in Dogs. Vet Clin North Am Small Anim Pract 2024; 54:43-53. [PMID: 37714772 DOI: 10.1016/j.cvsm.2023.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Aggression is a very common behavioral problem in dogs. Although aggression can be part of the normal behavior of dogs, medical conditions can either trigger aggression as in the case of intracranial tumors or aggravate an existing aggression problem as it happens with painful conditions. Therefore, it is essential to include an assessment of physical health in the diagnostic protocol of canine aggression.
Collapse
Affiliation(s)
- Marta Amat
- School of Veterinary Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés 08193, Spain.
| | - Susana Le Brech
- School of Veterinary Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés 08193, Spain
| | - Xavier Manteca
- School of Veterinary Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés 08193, Spain
| |
Collapse
|
3
|
Devriendt N, Or M, Peremans K, Serrano G, de Rooster H. Regional cerebral blood flow in dogs with congenital extrahepatic portosystemic shunts before surgery and six months after successful closure. Res Vet Sci 2023; 165:105070. [PMID: 37925817 DOI: 10.1016/j.rvsc.2023.105070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Previous studies both in humans and dogs with chronic liver diseases have shown that regional cerebral brain flow (rCBF) is altered. The current study aimed to assess abnormalities in rCBF in dogs with congenital extrahepatic portosystemic shunts (cEHPSS), both at diagnosis and after successful surgical attenuation. Furthermore, the influence of age at diagnosis, severity of hepatic encephalopathy (HE) and type of cEHPSS on rCBF were explored as a base for future research. Single photon emission computed tomography (SPECT) with 99mtechnetium-hexamethylpropylene amine oxime tracer was performed before surgical attenuation and six months postoperatively. Twenty-four dogs with cEHPSS had SPECT at time of diagnosis and 13 dogs with a confirmed closed cEHPSS had a second SPECT six months postoperatively. At diagnosis, dogs with cEHPSS had an altered rCBF distribution compared to healthy dogs. This altered rCBF distribution seemed to be most apparent in dogs ≥ one year and in dogs with overt HE at diagnosis. Six months postoperatively, only the rCBF distribution in the subcortical region decreased compared to pre-operatively. In conclusion, all dogs with cEHPSS had altered rCBF which did not seem to normalize completely six months after successful surgical attenuation. Dogs diagnosed at an older age seemed to have more distinct abnormalities in rCBF compared to younger dogs.
Collapse
Affiliation(s)
- Nausikaa Devriendt
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Matan Or
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kathelijne Peremans
- Department of Morphology, Imaging, Orthopedics, Revalidation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Gonçalo Serrano
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
4
|
Xu Y, Peremans K, Salden S, Audenaert K, Dobbeleir A, Van Eeckhaut A, De Bundel D, Saunders JH, Baeken C. Accelerated high frequency rTMS induces time-dependent dopaminergic alterations: a DaTSCAN brain imaging study in healthy beagle dogs. Front Vet Sci 2023; 10:1154596. [PMID: 37261109 PMCID: PMC10228829 DOI: 10.3389/fvets.2023.1154596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Aim The neurobiological effects of repetitive transcranial magnetic stimulation are believed to run in part through the dopaminergic system. Accelerated high frequency rTMS (aHF-rTMS), a new form of stimuli delivery, is currently being tested for its usefulness in treating human and canine mental disorders. However, the short-and long-term neurobiological effects are still unclear, including the effects on the dopaminergic system. In aHF-rTMS, multiple sessions are delivered within 1 day instead of one session per day, not only to accelerate the time to response but also to increase clinical efficacy. To gain more insight into the neurobiology of aHF-rTMS, we investigated whether applying five sessions in 1 day has direct and/or delayed effects on the dopamine transporter (DAT), and on dopamine metabolites of cerebrospinal fluid (CSF) in beagles. Materials and methods Thirteen beagles were randomly divided into two groups: five active stimulation sessions (n = 9), and 5 sham stimulation sessions (n = 4). Using DaTSCAN, DAT binding indices (BI) were obtained at baseline, after 1 day, 1 month, and 3 months post stimulation. CSF samples were collected after each scan. Results Active aHF-rTMS significantly reduced striatal DAT BI 1 day post-active stimulation session (p < 0.01), and the effect lasted to 1 month (p < 0.01). No significant DAT BI change was found in sham group. No significant changes in dopamine metabolites of CSF were found. Conclusion Although no significant effects on CSF dopamine metabolites were observed, five sessions of active aHF-rTMS significantly decreased striatal DAT BI after 1 day and up to 1 month post stimulation, indicating immediate and delayed effects on the brain dopaminergic system. Our findings in healthy beagles further substantiate the assumption that (a)HF-rTMS affects the brain dopaminergic system and it may pave the way to apply (a)HF-rTMS treatment in behaviorally disturbed dogs.
Collapse
Affiliation(s)
- Yangfeng Xu
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kathelijne Peremans
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sofie Salden
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kurt Audenaert
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
| | - Andre Dobbeleir
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Jimmy H Saunders
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chris Baeken
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel (UZBrussel), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
5
|
Xu Y, Christiaen E, De Witte S, Chen Q, Peremans K, Saunders JH, Vanhove C, Baeken C. Network analysis reveals abnormal functional brain circuitry in anxious dogs. PLoS One 2023; 18:e0282087. [PMID: 36920933 PMCID: PMC10016658 DOI: 10.1371/journal.pone.0282087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023] Open
Abstract
Anxiety is a common disease within human psychiatric disorders and has also been described as a frequently neuropsychiatric problem in dogs. Human neuroimaging studies showed abnormal functional brain networks might be involved in anxiety. In this study, we expected similar changes in network topology are also present in dogs. We performed resting-state functional MRI on 25 healthy dogs and 13 patients. The generic Canine Behavioral Assessment & Research Questionnaire was used to evaluate anxiety symptoms. We constructed functional brain networks and used graph theory to compare the differences between two groups. No significant differences in global network topology were found. However, focusing on the anxiety circuit, global efficiency and local efficiency were significantly higher, and characteristic path length was significantly lower in the amygdala in patients. We detected higher connectivity between amygdala-hippocampus, amygdala-mesencephalon, amygdala-thalamus, frontal lobe-hippocampus, frontal lobe-thalamus, and hippocampus-thalamus, all part of the anxiety circuit. Moreover, correlations between network metrics and anxiety symptoms were significant. Altered network measures in the amygdala were correlated with stranger-directed fear and excitability; altered degree in the hippocampus was related to attachment/attention seeking, trainability, and touch sensitivity; abnormal frontal lobe function was related to chasing and familiar dog aggression; attachment/attention seeking was correlated with functional connectivity between amygdala-hippocampus and amygdala-thalamus; familiar dog aggression was related to global network topology change. These findings may shed light on the aberrant topological organization of functional brain networks underlying anxiety in dogs.
Collapse
Affiliation(s)
- Yangfeng Xu
- Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Emma Christiaen
- Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Sara De Witte
- Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Qinyuan Chen
- Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Kathelijne Peremans
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Jimmy H. Saunders
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Chris Baeken
- Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Psychiatry, Faculty of Medicine and Pharmacy, Vrije University Brussels, Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
6
|
González-Martínez Á, Muñiz de Miguel S, Graña N, Costas X, Diéguez FJ. Serotonin and Dopamine Blood Levels in ADHD-Like Dogs. Animals (Basel) 2023; 13:ani13061037. [PMID: 36978578 PMCID: PMC10044280 DOI: 10.3390/ani13061037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
As with humans, dogs can suffer from attention deficit hyperactivity disorder-like (ADHD-like) behaviors naturally and exhibit high levels of hyperactivity/impulsivity and attention deficit problems, making the domestic dog a potential animal model for ADHD. ADHD has a very complex pathophysiology in which many neurotransmitters are involved, such as serotonin and dopamine. The aim of the study was to evaluate serum serotonin and dopamine levels in dogs with ADHD-like symptomatology. Fifty-eight dogs were studied, of which, thirty-six were classified as ADHD-like after physical and behavioral assessments. Additionally, the dogs’ owners performed a series of scientifically validated questionnaires which included C-BARQ, the Dog Impulsivity Assessment Scale, and the Dog-ADHD rating scale. Serum from every animal was collected after the behavioral assessments and analyzed with commercial ELISA tests for serotonin and dopamine determination. Kruskal–Wallis tests and Lasso regressions were applied to assess the relationships between both neurotransmitters and the ADHD-like behaviors (as assessed by clinical evaluation and through the different questionnaires). The dogs clinically classified as ADHD-like showed lower serotonin and dopamine concentrations. Further, serotonin and dopamine levels were also linked to aggression, hyperactivity, and impulsivity. Decreased serotonin concentrations were also related to fear, attachment, and touch sensitivity. Finally, it must be noted that our data suggested a strong relationship between serotonin and dopamine and ADHD-like behaviors.
Collapse
Affiliation(s)
| | | | - Noemi Graña
- Lar do Belelle, Canine Center, 15509 Fene, Spain
| | - Xiana Costas
- Etoloxía, Behavior Medicine Service, 36312 Pontevedra, Spain
| | - Francisco Javier Diéguez
- Anatomy, Animal Production and Clinical Veterinary Sciences Department, Santiago de Compostela University, 27002 Lugo, Spain
| |
Collapse
|
7
|
Stephens-Lewis D, Johnson A, Turley N, Naydorf-Hannis R, Scurlock-Evans L, Schenke KC. Understanding Canine 'Reactivity': Species-Specific Behaviour or Human Inconvenience? J APPL ANIM WELF SCI 2022:1-15. [PMID: 36420968 DOI: 10.1080/10888705.2022.2147007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dogs are often referred to as "human's best friend," with many households in the United Kingdom and worldwide including a dog. Yet, whilst research highlights the myriad of human health benefits associated with canine companionship, many dogs are relinquished, or euthanized, for purported behavioral problems. A key behavior often cited in these situations is Reactivity, despite a lack of consensus in the literature (or in the lay population) as to exactly what is encompassed within this term. Resultantly, this paper reports on an online survey to investigate how the term Reactivity is understood by humans. Following the completion of a thematic analysis, six sub-themes were developed, forming three overarching theme clusters, namely; Canine Characteristics, The Importance of Human Perception and Human Capability. In sum, this research highlights the complex, nuanced and, sometimes, contradictory nature of understanding around the label of Reactivity, encompassing both canine and human factors. As such, conclusions include the proposal of a preliminary Perceived Reactivity Framework to conceptualize this seemingly multi-faceted concept.
Collapse
Affiliation(s)
- Danielle Stephens-Lewis
- School of Natural and Social Sciences, University of Gloucestershire, Francis Close Hall, GL50 4AZ, Cheltenham, UK
| | - Amber Johnson
- School of Natural and Social Sciences, University of Gloucestershire, Francis Close Hall, GL50 4AZ, Cheltenham, UK
| | - Nia Turley
- School of Natural and Social Sciences, University of Gloucestershire, Francis Close Hall, GL50 4AZ, Cheltenham, UK
| | - Rebecca Naydorf-Hannis
- School of Natural and Social Sciences, University of Gloucestershire, Francis Close Hall, GL50 4AZ, Cheltenham, UK
| | - Laura Scurlock-Evans
- School of Psychology, University of Worcester, Henwick Grove St Johns, WR2 6AJ, Worcester, UK
| | - Kimberley Caroline Schenke
- School of Natural and Social Sciences, University of Gloucestershire, Francis Close Hall, GL50 4AZ, Cheltenham, UK
| |
Collapse
|
8
|
Hammond A, Rowland T, Mills DS, Pilot M. Comparison of behavioural tendencies between "dangerous dogs" and other domestic dog breeds - Evolutionary context and practical implications. Evol Appl 2022; 15:1806-1819. [PMID: 36426126 PMCID: PMC9679229 DOI: 10.1111/eva.13479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/20/2022] Open
Abstract
Aggressive behaviour by dogs is a considerable social problem, but the ability to predict which individuals may have increased aggressive tendencies is very limited, restricting the development of efficient preventive measures. There is a common perception that certain breeds are more likely to exhibit aggressive behaviour, which has contributed to the introduction of breed-specific legislation. The rationale for such legislation explicitly assumes high heritability of this trait while also implying relatively little variation within breeds; these assumptions are largely untested. We compared behavioural tendencies between 8 breeds that are subject to legislation in at least one country and 17 breeds that are not subject to legislation using two validated psychometric tools: the Dog Impulsivity Assessment Scale (DIAS), which scores elements of impulsivity, including a tendency for aggressive behaviour, and Positive and Negative Activation Scale (PANAS), which scores sensitivity to positive and negative stimuli (which may trigger aggressive responses). We found that the two groups of breeds do not differ significantly in the specific DIAS factor relating to aggressive behaviour, "Aggression Threshold and Response to Novelty", or any other DIAS and PANAS factors. We found large variations in all behavioural tendencies measured by both psychometric scales within both groups and within each breed studied. Taken together, our findings indicate that breed alone is not a reliable predictor of individual behavioural tendencies, including those related to aggression, and therefore breed-specific legislation is unlikely to be an effective instrument for reducing risk.
Collapse
Affiliation(s)
- Alexa Hammond
- School of Life SciencesUniversity of LincolnLincolnUK
| | | | | | - Małgorzata Pilot
- School of Life SciencesUniversity of LincolnLincolnUK
- Museum and Institute of ZoologyPolish Academy of SciencesGdańskPoland
- Faculty of BiologyUniversity of GdańskGdańskPoland
| |
Collapse
|
9
|
Xu Y, Peremans K, Courtyn J, Audenaert K, Dobbeleir A, D'Asseler Y, Achten E, Saunders J, Baeken C. The Impact of Accelerated HF-rTMS on Canine Brain Metabolism: An [18F]-FDG PET Study in Healthy Beagles. Front Vet Sci 2022; 9:800158. [PMID: 35280129 PMCID: PMC8907524 DOI: 10.3389/fvets.2022.800158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) has been proven to be a useful tool for the treatment of several severe neuropsychiatric disorders. Accelerated (a)rTMS protocols may have the potential to result in faster clinical improvements, but the effects of such accelerated paradigms on brain function remain to be elucidated. Objectives This sham-controlled arTMS study aimed to evaluate the immediate and delayed effects of accelerated high frequency rTMS (aHF-rTMS) on glucose metabolism in healthy beagle dogs when applied over the left frontal cortex. Methods Twenty-four dogs were randomly divided into four unequal groups: five active (n = 8)/ sham (n = 4) stimulation sessions (five sessions in 1 day), 20 active (n = 8)/ sham (n = 4) stimulation sessions (five sessions/ day for 4 days), respectively. [18F] FDG PET scans were obtained at baseline, 24 h poststimulation, after 1 and 3 months post the last stimulation session. We explicitly focused on four predefined regions of interest (left/right prefrontal cortex and left/right hippocampus). Results One day of active aHF-rTMS- and not sham- significantly increased glucose metabolism 24 h post-active stimulation in the left frontal cortex only. Four days of active aHF-rTMS only resulted in a nearly significant metabolic decrease in the left hippocampus after 1 month. Conclusions Like in human psychiatric disorders, active aHF-rTMS in healthy beagles modifies glucose metabolism, although differently immediately or after 1 month post stimulation. aHF-rTMS may be also a valid option to treat mentally disordered dogs.
Collapse
Affiliation(s)
- Yangfeng Xu
- Ghent Experimental Psychiatry (GHEP) Laboratory, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- *Correspondence: Yangfeng Xu
| | - Kathelijne Peremans
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan Courtyn
- Department of Radiology and Nuclear Medicine, Medical Molecular Imaging and Therapy, Ghent University Hospital, Ghent, Belgium
| | - Kurt Audenaert
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Andre Dobbeleir
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yves D'Asseler
- Department of Radiology and Nuclear Medicine, Medical Molecular Imaging and Therapy, Ghent University Hospital, Ghent, Belgium
| | - Eric Achten
- Department of Radiology and Nuclear Medicine, Medical Molecular Imaging and Therapy, Ghent University Hospital, Ghent, Belgium
| | - Jimmy Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chris Baeken
- Ghent Experimental Psychiatry (GHEP) Laboratory, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Psychiatry, Faculty of Medicine and Pharmacy, Vrije University Brussels, Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
10
|
Sulkama S, Puurunen J, Salonen M, Mikkola S, Hakanen E, Araujo C, Lohi H. Canine hyperactivity, impulsivity, and inattention share similar demographic risk factors and behavioural comorbidities with human ADHD. Transl Psychiatry 2021; 11:501. [PMID: 34599148 PMCID: PMC8486809 DOI: 10.1038/s41398-021-01626-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder impairing the quality of life of the affected individuals. The domestic dog can spontaneously manifest high hyperactivity/impulsivity and inattention which are components of human ADHD. Therefore, a better understanding of demographic, environmental and behavioural factors influencing canine hyperactivity/impulsivity and inattention could benefit both humans and dogs. We collected comprehensive behavioural survey data from over 11,000 Finnish pet dogs and quantified their level of hyperactivity/impulsivity and inattention. We performed generalised linear model analyses to identify factors associated with these behavioural traits. Our results indicated that high levels of hyperactivity/impulsivity and inattention were more common in dogs that are young, male and spend more time alone at home. Additionally, we showed several breed differences suggesting a substantial genetic basis for these traits. Furthermore, hyperactivity/impulsivity and inattention had strong comorbidities with compulsive behaviour, aggressiveness and fearfulness. Multiple of these associations have also been identified in humans, strengthening the role of the dog as an animal model for ADHD.
Collapse
Affiliation(s)
- Sini Sulkama
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, Helsinki, Finland
| | - Jenni Puurunen
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, Helsinki, Finland
| | - Milla Salonen
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, Helsinki, Finland
| | - Salla Mikkola
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, Helsinki, Finland
| | - Emma Hakanen
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, Helsinki, Finland
| | - César Araujo
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland. .,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland. .,Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
11
|
Objective Video-Based Assessment of ADHD-Like Canine Behavior Using Machine Learning. Animals (Basel) 2021; 11:ani11102806. [PMID: 34679828 PMCID: PMC8532741 DOI: 10.3390/ani11102806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary This paper applies machine learning techniques to propose an objective video-based method for assessing the degree of canine ADHD-like behavior in veterinary consultation room. The method is evaluated using clinical data of dog patients in a veterinary clinic, as well as in a focus group of experts. Abstract Canine ADHD-like behavior is a behavioral problem that often compromises dogs’ well-being, as well as the quality of life of their owners; early diagnosis and clinical intervention are often critical for successful treatment, which usually involves medication and/or behavioral modification. Diagnosis mainly relies on owner reports and some assessment scales, which are subject to subjectivity. This study is the first to propose an objective method for automated assessment of ADHD-like behavior based on video taken in a consultation room. We trained a machine learning classifier to differentiate between dogs clinically treated in the context of ADHD-like behavior and health control group with 81% accuracy; we then used its output to score the degree of exhibited ADHD-like behavior. In a preliminary evaluation in clinical context, in 8 out of 11 patients receiving medical treatment to treat excessive ADHD-like behavior, H-score was reduced. We further discuss the potential applications of the provided artifacts in clinical settings, based on feedback on H-score received from a focus group of four behavior experts.
Collapse
|
12
|
Baeken C, Xu Y, Wu GR, Dockx R, Peremans K, De Raedt R. Hostility in medication-resistant major depression and comorbid generalized anxiety disorder is related to increased hippocampal-amygdala 5-HT 2A receptor density. Eur Arch Psychiatry Clin Neurosci 2021; 271:1369-1378. [PMID: 33904978 PMCID: PMC8429407 DOI: 10.1007/s00406-021-01243-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/24/2021] [Indexed: 11/03/2022]
Abstract
Major depressive disorder (MDD) and generalized anxiety disorder (GAD) are severe and difficult-to-treat psychiatric illnesses with high rates of comorbidity. Although both disorders are treated with serotonergic based psychotropic agents, little is known on the influence of the serotonergic neurotransmitter system on the occurrence of comorbid GAD when clinically depressed. To investigate this poorly understood clinical question, we examined the involvement of frontolimbic post-synaptic 5-HT2A receptors in 20 medication-resistant depressed (MRD) patients with half of them diagnosed with comorbid GAD with 123I-5-I-R91150 SPECT. To explore whether 5-HT2A receptor-binding indices (BI) associated with comorbid GAD could be related to distinct psychopathological symptoms, all were assessed with the symptom Checklist-90-Revised (SCL-90-R). MRD patients with comorbid GAD displayed significantly higher 5-HT2A receptor BI in the hippocampal-amygdala complex, compared to MRD patients without GAD. Correlation analyses revealed that the 5-HT2A receptor BI in these areas were significantly related to the SCL-90-R subscale hostility (HOS), especially for those MRD patients with comorbid GAD. Comorbid MRD-GAD may be characterized with increased hippocampal-amygdala 5-HT2A receptor BI which could represent enhanced levels in hostility in such kinds of patients. Adapted psychotherapeutic interventions may be warranted.
Collapse
Affiliation(s)
- Chris Baeken
- grid.5342.00000 0001 2069 7798Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium ,grid.8767.e0000 0001 2290 8069Department of Psychiatry, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZBrussel), Laarbeeklaan 101, 1090 Brussels, Belgium ,grid.6852.90000 0004 0398 8763Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Yanfeng Xu
- grid.5342.00000 0001 2069 7798Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.
| | - Robrecht Dockx
- grid.5342.00000 0001 2069 7798Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kathelijne Peremans
- grid.5342.00000 0001 2069 7798Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Rudi De Raedt
- grid.5342.00000 0001 2069 7798Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Huaijantug S, Theeraphun W, Suwanna N, Thongpraparn T, Chanachai R, Aumarm W. Localization of cerebral hypoperfusion in dogs with refractory and non-refractory epilepsy using [99mTc] ethyl cysteinate dimer and single photon emission computed tomography. J Vet Med Sci 2020; 82:553-558. [PMID: 32188799 PMCID: PMC7273607 DOI: 10.1292/jvms.19-0372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To evaluate the localization of functional deficit area in epileptogenic zones of the brain in seven refractory and seven non-refractory epilepsy dogs using technetium 99m labeled with
ethyl cysteinate dimer and interictal single photon emission computed tomography [99mTc-ECD SPECT] co-registration with Magnetic Resonance Imaging (MRI). Regions showing perfusion
deficits in the SPECT images were analyzed by using the standard semiquantitative evaluation method to compare the level of cortical perfusion to the maximum number of counts within the
cerebellum (max C), considered the area of reference. This study showed that SPECT imaging revealed abnormalities in several regions of the brain in both epilepsy groups. The refractory
epilepsy dogs showed more frequency area of hypoperfusion in temporal lobe than non-refractory group with not statistically significance (P=0.28). The result suggests the
lesion in temporal might be relevance with refractory epilepsy in canine patients.
Collapse
Affiliation(s)
- Somkiat Huaijantug
- Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Jatujak, Bangkok, 10900, Thailand.,Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Wuttiwong Theeraphun
- Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Jatujak, Bangkok, 10900, Thailand
| | - Nirut Suwanna
- Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Jatujak, Bangkok, 10900, Thailand
| | - Thanapong Thongpraparn
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Rujaporn Chanachai
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Waraporn Aumarm
- Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Jatujak, Bangkok, 10900, Thailand
| |
Collapse
|
14
|
Pauwelyn G, Vlerick L, Dockx R, Verhoeven J, Dobbeleir A, Bosmans T, Peremans K, Vanhove C, Polis I, De Vos F. Kinetic analysis of [ 18F] altanserin bolus injection in the canine brain using PET imaging. BMC Vet Res 2019; 15:415. [PMID: 31752848 PMCID: PMC6873736 DOI: 10.1186/s12917-019-2165-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Currently, [18F] altanserin is the most frequently used PET-radioligand for serotonin2A (5-HT2A) receptor imaging in the human brain but has never been validated in dogs. In vivo imaging of this receptor in the canine brain could improve diagnosis and therapy of several behavioural disorders in dogs. Furthermore, since dogs are considered as a valuable animal model for human psychiatric disorders, the ability to image this receptor in dogs could help to increase our understanding of the pathophysiology of these diseases. Therefore, five healthy laboratory beagles underwent a 90-min dynamic PET scan with arterial blood sampling after [18F] altanserin bolus injection. Compartmental modelling using metabolite corrected arterial input functions was compared with reference tissue modelling with the cerebellum as reference region. RESULTS The distribution of [18F] altanserin in the canine brain corresponded well to the distribution of 5-HT2A receptors in human and rodent studies. The kinetics could be best described by a 2-Tissue compartment (2-TC) model. All reference tissue models were highly correlated with the 2-TC model, indicating compartmental modelling can be replaced by reference tissue models to avoid arterial blood sampling. CONCLUSIONS This study demonstrates that [18F] altanserin PET is a reliable tool to visualize and quantify the 5-HT2A receptor in the canine brain.
Collapse
Affiliation(s)
- Glenn Pauwelyn
- Laboratory of Radiopharmacy, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Lise Vlerick
- Small animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Robrecht Dockx
- Small animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Department of Psychiatry and Medical Psychology, Ghent University, Ghent, Belgium
| | - Jeroen Verhoeven
- Laboratory of Radiopharmacy, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Andre Dobbeleir
- Small animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tim Bosmans
- Small animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kathelijne Peremans
- Small animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Christian Vanhove
- Institute Biomedical Technology - Medisip - Infinity, Ghent University, Ghent, Belgium
| | - Ingeborgh Polis
- Small animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip De Vos
- Laboratory of Radiopharmacy, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
15
|
Pauwelyn G, Vlerick L, Dockx R, Verhoeven J, Dobbeleir A, Peremans K, Goethals I, Bosmans T, Vanhove C, De Vos F, Polis I. PET quantification of [18F]MPPF in the canine brain using blood input and reference tissue modelling. PLoS One 2019; 14:e0218237. [PMID: 31185062 PMCID: PMC6559658 DOI: 10.1371/journal.pone.0218237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/30/2019] [Indexed: 12/04/2022] Open
Abstract
Numerous studies have shown that the serotonin1A (5-HT1A) receptor is implicated in the pathophysiology and treatment of several psychiatric and neurological disorders. Furthermore, functional imaging studies in a variety of species have demonstrated that 4-(2´-Methoxyphenyl)-1-[2´-(N-2´´-pyridinyl)-p- [18F]fluorobenzamidoethylpiperazine ([18F]MPPF) is a valid and useful PET tracer to visualize the 5HT1A receptor. However, to our knowledge, [18F]MPPF has never been demonstrated in the canine brain. The ability to image the 5HT1A receptor with PET in dogs could improve diagnosis and therapy in both canine and human behavioural and neuropsychiatric disorders. To examine the potential use of [18F]MPPF in dogs, five healthy adult laboratory beagles underwent a 60-minutes dynamic PET scan with [18F]MPPF while arterial blood samples were taken. For each region of interest, total distribution volume (VT) and corresponding binding potential (BPND) were calculated using the 1-tissue compartment model (1-TC), 2-Tissue compartment model (2-TC) and Logan plot. The preferred model was chosen based on the goodness-of-fit, calculated with the Akaike information criterium (AIC). Subsequently, the BPND values of the preferred compartment model were compared with the estimated BPND values using three reference tissue models (RTMs): the 2-step simplified reference tissue model (SRTM2), the 2-parameter multilinear reference tissue model (MRTM2) and the Logan reference tissue model. According to the lower AIC values of the 2-TC model compared to the 1-TC in all ROIs, the 2-TC model showed a better fit. Calculating BPND using reference tissue modelling demonstrated high correlation with the BPND obtained by metabolite corrected plasma input 2-TC. This first-in-dog study indicates the results of a bolus injection with [18F]MPPF in dogs are consistent with the observations presented in the literature for other animal species and humans. Furthermore, for future experiments, compartmental modelling using invasive blood sampling could be replaced by RTMs, using the cerebellum as reference region.
Collapse
Affiliation(s)
- Glenn Pauwelyn
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Lise Vlerick
- Small Animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Robrecht Dockx
- Small Animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, Ghent, Belgium
| | | | - Andre Dobbeleir
- Small Animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kathelijne Peremans
- Small Animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tim Bosmans
- Small Animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Christian Vanhove
- Institute Biomedical Technology–Medisip–Infinity, Ghent University, Ghent, Belgium
| | - Filip De Vos
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Ingeborgh Polis
- Small Animal Departments, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
16
|
Vlerick L, Peremans K, Dockx R, Audenaert K, Baeken C, Saunders JH, Polis I. The long-term effects of single and repeated subanaesthetic ketamine administration on regional cerebral blood flow in healthy dogs measured with 99mTc-HMPAO SPECT. Psychiatry Res Neuroimaging 2019; 285:18-24. [PMID: 30716686 DOI: 10.1016/j.pscychresns.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Subanaesthetic ketamine has recently been established as an effective and rapid treatment for major depressive disorder showing antidepressant effects for up to 1 week on average. The use of repeated ketamine infusions has been put forward to augment and to prolong the antidepressant response and increase the remission rates. The underlying neurobiological mechanisms responsible for ketamine's antidepressant effects remain unclear. Nevertheless, it has been shown, both in dogs and humans, that ketamine can alter neuronal perfusion and therefore neuronal function in brain regions involved in psychiatric and behavioural disorders. Consequently, the aim of the current placebo controlled study was to assess the long-term effects on cerebral perfusion of single and repeated subanaesthetic ketamine infusions in dogs. Twelve healthy, laboratory dogs were scanned at six different time points following single and repeated ketamine administration, using Single Photon Emission Computed Tomography with the radiotracer 99mTc-hexamethylpropylene amine oxime. We hypothesised that repeated infusions could lead to more prolonged perfusion alterations in brain regions critical for behaviour regulation. We found that repeated subanaesthetic ketamine administration did not result in more prolonged cerebral perfusion alterations compared to a single ketamine administration.
Collapse
Affiliation(s)
- Lise Vlerick
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, East Flanders, Belgium.
| | - Kathelijne Peremans
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, East Flanders, Belgium
| | - Robrecht Dockx
- Ghent Experimental Psychiatry (GHEP) lab, Department of Psychiatry and Medical Psychology, Ghent University, Ghent, East Flanders, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
| | - Kurt Audenaert
- Ghent Experimental Psychiatry (GHEP) lab, Department of Psychiatry and Medical Psychology, Ghent University, Ghent, East Flanders, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
| | - Chris Baeken
- Ghent Experimental Psychiatry (GHEP) lab, Department of Psychiatry and Medical Psychology, Ghent University, Ghent, East Flanders, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
| | - Jimmy H Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, East Flanders, Belgium
| | - Ingeborgh Polis
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, East Flanders, Belgium
| |
Collapse
|
17
|
Vlerick L, Peremans K, Dockx R, Audenaert K, Baeken C, De Spiegeleer B, Saunders J, Polis I. The influence of subanaesthetic ketamine on regional cerebral blood flow in healthy dogs measured with 99mTc-HMPAO SPECT. PLoS One 2018; 13:e0209316. [PMID: 30562399 PMCID: PMC6298672 DOI: 10.1371/journal.pone.0209316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Subanaesthetic ketamine has recently been proven to be a highly effective and fast acting alternative treatment for several psychiatric disorders. The mechanisms responsible for ketamine's antidepressant effects remain unclear, but a possible explanation could be that ketamine interacts with regional cerebral blood flow (rCBF). Therefore, the effects of two subanaesthetic ketamine doses on rCBF were evaluated. Twelve dogs were randomly assigned to one of the three treatment conditions (condition saline, condition 0.5 mg/kg ketamine or condition 2 mg/kg ketamine) and received in total five saline or ketamine infusions, with one week interval. Single Photon Emission Computed Tomography (SPECT) scans with the radiotracer 99mTc-hexamethylpropylene amine oxime were performed before the start of the infusions (baseline) and 24 hours after the first (single) and last (multiple) infusion. After a wash out period of 3 months, the animals were again assigned to one of the three treatment conditions described above and the infusion/scan protocol was repeated. During the infusions, cardiovascular parameters were evaluated every ten minutes. A one-way repeated measure ANOVA was set up to assess perfusion index for each ketamine dose for the left frontal cortex (alpha = 0.05). The remaining 11 brain regions were post hoc assessed. Perfusion index was significantly increased in the left frontal cortex and in the thalamus 24 hours after single and multiple ketamine infusions compared to baseline in the 2 mg/kg condition. No clinically relevant cardiovascular effects were observed during the ketamine infusions. This study shows that subanaesthetic ketamine can increase neuronal perfusion and therefore alter neuronal function in brain regions involved in depression and anxiety disorders. These perfusion increases may possibly contribute to ketamine's beneficial effects in these psychiatric disorders.
Collapse
Affiliation(s)
- Lise Vlerick
- Department of Small Animal, Faculty of Veterinary Medicine, Ghent University, Merelbeke, East Flanders, Belgium
| | - Kathelijne Peremans
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, East Flanders, Belgium
| | - Robrecht Dockx
- Ghent Experimental Psychiatry (GHEP) lab, Department of Psychiatry and Medical Psychology, Ghent University, Ghent, East Flanders, Belgium
| | - Kurt Audenaert
- Ghent Experimental Psychiatry (GHEP) lab, Department of Psychiatry and Medical Psychology, Ghent University, Ghent, East Flanders, Belgium
| | - Chris Baeken
- Ghent Experimental Psychiatry (GHEP) lab, Department of Psychiatry and Medical Psychology, Ghent University, Ghent, East Flanders, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, East Flanders, Belgium
| | - Jimmy Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, East Flanders, Belgium
| | - Ingeborgh Polis
- Department of Small Animal, Faculty of Veterinary Medicine, Ghent University, Merelbeke, East Flanders, Belgium
| |
Collapse
|
18
|
Hrovat A, De Keuster T, Kooistra HS, Duchateau L, Oyama MA, Peremans K, Daminet S. Behavior in dogs with spontaneous hypothyroidism during treatment with levothyroxine. J Vet Intern Med 2018; 33:64-71. [PMID: 30499213 PMCID: PMC6335523 DOI: 10.1111/jvim.15342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 10/15/2018] [Indexed: 11/27/2022] Open
Abstract
Background Thyroid hormone supplementation anecdotally has been described as a valid treatment option for dogs with aggression‐related problems. However, prospective, controlled, and blinded trials evaluating behavior and neurohormonal status in hypothyroid dogs during treatment with levothyroxine are lacking. Objective Levothyroxine supplementation will have a significant influence on the behavior and neurohormonal status of dogs with spontaneous hypothyroidism. Animals Twenty client‐owned dogs diagnosed with spontaneous hypothyroidism. Methods This prospective study was to evaluate the behavior of dogs, which was screened at initial presentation, and after 6 weeks, and 6 months of treatment with levothyroxine (starting dosage 10 μg/kg PO q12h) using the standardized Canine Behavioral Assessment and Research Questionnaire (C‐BARQ). At each time period, circulating serotonin and prolactin (PRL) concentrations were evaluated using a commercially validated ELISA kit and heterologous radioimmunoassay, respectively. Results After 6 weeks of thyroid hormone supplementation, C‐BARQ scores demonstrated a significant increase in activity of hypothyroid dogs (P < .01). No significant change in any of the behavioral signs was observed after 6 months of treatment. No significant difference in circulating concentrations of serotonin (P > .99 and P = .46) and PRL (P = .99 and P = .37) were noted between the 6‐week and 6‐month periods compared with baseline. Conclusions and Clinical Importance The results of this study indicate increased activity of hypothyroid dogs after 6 weeks of thyroid hormone supplementation. None of the hypothyroid dogs in this cohort showed a significant change in any of the evaluated behavioral signs and neurohormonal status after 6 months of thyroid hormone supplementation.
Collapse
Affiliation(s)
- Alenka Hrovat
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Tiny De Keuster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans S Kooistra
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Luc Duchateau
- Biometrics Research Group, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mark A Oyama
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathelijne Peremans
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sylvie Daminet
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
19
|
Dockx R, Baeken C, Duprat R, De Vos F, Saunders JH, Polis I, Audenaert K, Peremans K. Changes in canine cerebral perfusion after accelerated high frequency repetitive transcranial magnetic stimulation (HF-rTMS): A proof of concept study. Vet J 2018; 234:66-71. [PMID: 29680396 DOI: 10.1016/j.tvjl.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a treatment for several neuropsychiatric disorders in human beings, but the neurobiological effects of rTMS in dogs have not been investigated to date. A proof of concept study was designed to evaluate the effect of rTMS on cerebral perfusion, measured with single photon emission computed tomography (SPECT), in dogs. An accelerated high frequency (aHF)-rTMS (20Hz) protocol was applied to the canine left frontal cortex. To accurately target this area, eight dogs underwent a 3 Tesla magnetic resonance imaging (MRI) scan before stimulation. The left frontal cortex was subjected to five consecutive aHF-rTMS sessions with a figure-of-eight coil designed for human beings at an intensity of 110% of the motor threshold. The dogs underwent 99mTc-d,1 hexamethylpropylene amine oxime (HMPAO) SPECT scans 1 week prior to and 1day after the stimulations. Perfusion indices (PIs) were determined semi-quantitatively; aHF-rTMS resulted in significantly increased PIs in the left frontal cortex and the subcortical region, whereas no significant differences were noted for the other regions. Behaviour was not influenced by the stimulation sessions. As has been observed in human beings, aHF-rTMS applied to the left frontal cortex alters regional cerebral perfusion in dogs.
Collapse
Affiliation(s)
- R Dockx
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Laboratory, Faculty of Medicine and Health, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - C Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Laboratory, Faculty of Medicine and Health, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - R Duprat
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Laboratory, Faculty of Medicine and Health, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - F De Vos
- Laboratory of Radiopharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - J H Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - I Polis
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - K Audenaert
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Laboratory, Faculty of Medicine and Health, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - K Peremans
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
20
|
Dockx R, Peremans K, Duprat R, Vlerick L, Van Laeken N, Saunders JH, Polis I, De Vos F, Baeken C. Accurate external localization of the left frontal cortex in dogs by using pointer based frameless neuronavigation. PeerJ 2017; 5:e3425. [PMID: 28713649 PMCID: PMC5507169 DOI: 10.7717/peerj.3425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In humans, non-stereotactic frameless neuronavigation systems are used as a topographical tool for non-invasive brain stimulation methods such as Transcranial Magnetic Stimulation (TMS). TMS studies in dogs may provide treatment modalities for several neuropsychological disorders in dogs. Nevertheless, an accurate non-invasive localization of a stimulation target has not yet been performed in this species. HYPOTHESIS This study was primarily put forward to externally locate the left frontal cortex in 18 healthy dogs by means of a human non-stereotactic neuronavigation system. Secondly, the accuracy of the external localization was assessed. ANIMALS A total of 18 healthy dogs, drawn at random from the research colony present at the faculty of Veterinary Medicine (Ghent University), were used. METHODS Two sets of coordinates (X, Y, Z and X″, Y″, Z″) were compared on each dog their tomographical dataset. RESULTS The non-stereotactic neuronavigation system was able to externally locate the frontal cortex in dogs with accuracy comparable with human studies. CONCLUSION AND CLINICAL IMPORTANCE This result indicates that a non-stereotactic neuronavigation system can accurately externally locate the left frontal cortex and paves the way to use guided non-invasive brain stimulation methods as an alternative treatment procedure for neurological and behavioral disorders in dogs. This technique could, in analogy with human guided non-invasive brain stimulation, provide a better treatment outcome for dogs suffering from anxiety disorders when compared to its non-guided alternative.
Collapse
Affiliation(s)
- Robrecht Dockx
- Department of Psychiatry and Medical Psychology, Ghent University, Ghent, East-Flanders, Belgium.,Faculty of Veterinary Medicine, Ghent University, Merelbeke, East-Flanders, Belgium
| | - Kathelijne Peremans
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, East-Flanders, Belgium
| | - Romain Duprat
- Department of Psychiatry and Medical Psychology, Ghent University, Ghent, East-Flanders, Belgium
| | - Lise Vlerick
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, East-Flanders, Belgium
| | - Nick Van Laeken
- Faculty of Pharmaceutical Sciences, Ghent University, Ghent, East-Flanders, Belgium
| | - Jimmy H Saunders
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, East-Flanders, Belgium
| | - Ingeborgh Polis
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, East-Flanders, Belgium
| | - Filip De Vos
- Faculty of Pharmaceutical Sciences, Ghent University, Ghent, East-Flanders, Belgium
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent University, Ghent, East-Flanders, Belgium
| |
Collapse
|
21
|
Taylor O, Audenaert K, Baeken C, Saunders J, Peremans K. Nuclear medicine for the investigation of canine behavioral disorders. J Vet Behav 2016. [DOI: 10.1016/j.jveb.2016.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Cook PF, Spivak M, Berns G. Neurobehavioral evidence for individual differences in canine cognitive control: an awake fMRI study. Anim Cogn 2016; 19:867-78. [DOI: 10.1007/s10071-016-0983-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022]
|
23
|
Fadel FR, Driscoll P, Pilot M, Wright H, Zulch H, Mills D. Differences in Trait Impulsivity Indicate Diversification of Dog Breeds into Working and Show Lines. Sci Rep 2016; 6:22162. [PMID: 26963916 PMCID: PMC4785826 DOI: 10.1038/srep22162] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/05/2016] [Indexed: 11/15/2022] Open
Abstract
Impulsiveness describes the inability to inhibit behaviour in the presence of salient cues. Trait-level impulsivity exists on a continuum and individual differences can be adaptive in different contexts. While breed related differences in behavioural tendency in the domestic dog (Canis familiaris) are well established, the phenomenon within lines of a breed which have been selected more recently is not well studied, although it may challenge the popular notion of breed-typical behaviour. We describe differences in impulsivity between and within two dog breeds with working and show lines selected for different levels of impulsivity: Border Collies (herding work) and Labrador Retrievers (gun work). Recent show line selection might have lessened differences in impulsivity between breeds. We tested this hypothesis on a dataset of 1161 individuals assessed using a validated psychometric tool (Dog Impulsivity Assessment Scale - DIAS). Collies were more impulsive on average, consistent with the original purpose of breed selection. Regarding line, working Collies differed from working Labradors, but show lines from the two breeds were not significantly different. Altered or relaxed artificial selection for behavioural traits when appearance rather than behaviour become the primary focus for breeders may reduce average differences in impulsivity between breeds in show lines.
Collapse
Affiliation(s)
- Fernanda Ruiz Fadel
- University of Lincoln, School of Life Sciences, Joseph Banks Laboratories, Lincoln, LN6 7DL, UK
| | - Patricia Driscoll
- University of Lincoln, School of Life Sciences, Joseph Banks Laboratories, Lincoln, LN6 7DL, UK
| | - Malgorzata Pilot
- University of Lincoln, School of Life Sciences, Joseph Banks Laboratories, Lincoln, LN6 7DL, UK
| | - Hannah Wright
- University of Lincoln, School of Life Sciences, Joseph Banks Laboratories, Lincoln, LN6 7DL, UK
| | - Helen Zulch
- University of Lincoln, School of Life Sciences, Joseph Banks Laboratories, Lincoln, LN6 7DL, UK
| | - Daniel Mills
- University of Lincoln, School of Life Sciences, Joseph Banks Laboratories, Lincoln, LN6 7DL, UK
| |
Collapse
|
24
|
Van Laeken N, Taylor O, Polis I, Neyt S, Kersemans K, Dobbeleir A, Saunders J, Goethals I, Peremans K, De Vos F. In Vivo Evaluation of Blood Based and Reference Tissue Based PET Quantifications of [11C]DASB in the Canine Brain. PLoS One 2016; 11:e0148943. [PMID: 26859850 PMCID: PMC4747581 DOI: 10.1371/journal.pone.0148943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/23/2016] [Indexed: 11/19/2022] Open
Abstract
This first-in-dog study evaluates the use of the PET-radioligand [11C]DASB to image the density and availability of the serotonin transporter (SERT) in the canine brain. Imaging the serotonergic system could improve diagnosis and therapy of multiple canine behavioural disorders. Furthermore, as many similarities are reported between several human neuropsychiatric conditions and naturally occurring canine behavioural disorders, making this tracer available for use in dogs also provide researchers an interesting non-primate animal model to investigate human disorders. Five adult beagles underwent a 90 minutes dynamic PET scan and arterial whole blood was sampled throughout the scan. For each ROI, the distribution volume (VT), obtained via the one- and two- tissue compartment model (1-TC, 2-TC) and the Logan Plot, was calculated and the goodness-of-fit was evaluated by the Akaike Information Criterion (AIC). For the preferred compartmental model BPND values were estimated and compared with those derived by four reference tissue models: 4-parameter RTM, SRTM2, MRTM2 and the Logan reference tissue model. The 2-TC model indicated in 61% of the ROIs a better fit compared to the 1-TC model. The Logan plot produced almost identical VT values and can be used as an alternative. Compared with the 2-TC model, all investigated reference tissue models showed high correlations but small underestimations of the BPND-parameter. The highest correlation was achieved with the Logan reference tissue model (Y = 0.9266 x + 0.0257; R2 = 0.9722). Therefore, this model can be put forward as a non-invasive standard model for future PET-experiments with [11C]DASB in dogs.
Collapse
Affiliation(s)
- Nick Van Laeken
- Department of Radiopharmacy, Ghent University, Ghent, Belgium
- * E-mail:
| | - Olivia Taylor
- Department of Medical Imaging and Small Animal Orthopedics, Ghent University, Ghent, Belgium
| | - Ingeborgh Polis
- Department of Medicine and Clinical Biology of Small Animals, Ghent University, Ghent, Belgium
| | - Sara Neyt
- Department of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Ken Kersemans
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Andre Dobbeleir
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jimmy Saunders
- Department of Medical Imaging and Small Animal Orthopedics, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kathelijne Peremans
- Department of Medical Imaging and Small Animal Orthopedics, Ghent University, Ghent, Belgium
| | - Filip De Vos
- Department of Radiopharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Taylor O, Van Laeken N, De Vos F, Polis I, Bosmans T, Goethals I, Achten R, Dobbeleir A, Vandermeulen E, Baeken C, Saunders J, Peremans K. In vivo quantification of the [(11)C]DASB binding in the normal canine brain using positron emission tomography. BMC Vet Res 2015; 11:308. [PMID: 26704517 PMCID: PMC4690221 DOI: 10.1186/s12917-015-0622-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/18/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND [(11)C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile ([(11)C]DASB) is currently the mostly used radiotracer for positron emission tomography (PET) quantitative studies of the serotonin transporter (SERT) in the human brain but has never been validated in dogs. The first objective was therefore to evaluate normal [(11)C]DASB distribution in different brain regions of healthy dogs using PET. The second objective was to provide less invasive and more convenient alternative methods to the arterial sampling-based kinetic analysis. RESULTS A dynamic acquisition of the brain was performed during 90 min. The PET images were coregistered with the magnetic resonance images taken prior to the study in order to manually drawn 20 regions of interest (ROIs). The highest radioactivity concentration of [(11)C]DASB was observed in the hypothalamus, raphe nuclei and thalamus and lowest levels in the parietal cortex, occipital cortex and cerebellum. The regional radioactivity in those 20 ROIs was quantified using the multilinear reference tissue model 2 (MRTM2) and a semi-quantitative method. The values showed least variability between 40 and 60 min and this time interval was set as the optimal time interval for [(11)C]DASB quantification in the canine brain. The correlation (R(2)) between the MRTM2 and the semi-quantitative method using the data between 40 and 60 min was 99.3% (two-tailed p-value < 0.01). CONCLUSIONS The reference tissue models and semi-quantitative method provide a more convenient alternative to invasive arterial sampling models in the evaluation of the SERT of the normal canine brain. The optimal time interval for static scanning is set at 40 to 60 min after tracer injection.
Collapse
Affiliation(s)
- Olivia Taylor
- Department of Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Nick Van Laeken
- Laboratory of Radiopharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Filip De Vos
- Laboratory of Radiopharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Ingeborgh Polis
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Tim Bosmans
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Rik Achten
- Department of Radiology, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Andre Dobbeleir
- Department of Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
- Department of Nuclear Medicine, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Eva Vandermeulen
- Department of Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Jimmy Saunders
- Department of Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Kathelijne Peremans
- Department of Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
26
|
Waelbers T, Polis I, Vermeire S, Dobbeleir A, Eersels J, De Spiegeleer B, Audenaert K, Peremans K. Effect of ketamine on the regional cerebral blood flow and binding index of the 5-HT2A receptor radioligand 123I-R91150 in the canine brain. J Vet Behav 2015. [DOI: 10.1016/j.jveb.2015.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Visser AK, Ettrup A, Klein AB, van Waarde A, Bosker FJ, Meerlo P, Knudsen GM, de Boer SF. Similar serotonin-2A receptor binding in rats with different coping styles or levels of aggression. Synapse 2015; 69:226-32. [DOI: 10.1002/syn.21810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Anniek K.D. Visser
- Department of Nuclear Medicine and Molecular Imaging; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Anders Ettrup
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen; Copenhagen Denmark
| | - Anders B. Klein
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen; Copenhagen Denmark
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Fokko J. Bosker
- Department of General Psychiatry, University Center of Psychiatry, University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Peter Meerlo
- Department of Behavioral Physiology; Center for Behavior and Neurosciences, University of Groningen; Groningen The Netherlands
| | - Gitte M. Knudsen
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen; Copenhagen Denmark
| | - Sietse F. de Boer
- Department of Behavioral Physiology; Center for Behavior and Neurosciences, University of Groningen; Groningen The Netherlands
| |
Collapse
|
28
|
Rayment DJ, De Groef B, Peters RA, Marston LC. Applied personality assessment in domestic dogs: Limitations and caveats. Appl Anim Behav Sci 2015. [DOI: 10.1016/j.applanim.2014.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
The effect of morphine on regional cerebral blood flow measured by 99mTc-ECD SPECT in dogs. PLoS One 2014; 9:e109680. [PMID: 25295733 PMCID: PMC4190363 DOI: 10.1371/journal.pone.0109680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/05/2014] [Indexed: 11/19/2022] Open
Abstract
To gain insights into the working mechanism of morphine, regional cerebral blood flow (rCBF) patterns after morphine administration were assessed in dogs. In a randomized cross-over experimental study, rCBF was estimated with 99mTc-Ethylcysteinate Dimer single photon emission computed tomography in 8 dogs at baseline, at 30 minutes and at 120 minutes after a single bolus of morphine. Perfusion indices (PI) in the frontal, parietal, temporal and occipital cortex and in the subcortical and cerebellar region were calculated. PI was significantly decreased 30 min after morphine compared to baseline in the right frontal cortex. The left parietal cortex and subcortical region showed a significantly increased PI 30 min after morphine compared to baseline. No significant differences were noted for the other regions or at other time points. In conclusion, a single bolus of morphine generated a changing rCBF pattern at different time points.
Collapse
|
30
|
Abstract
Veterinarians have gained increasing access to positron emission tomography (PET and PET/CT) imaging facilities, allowing them to use this powerful molecular imaging technique for clinical and research applications. SPECT is currently being used more in Europe than in the United States and has been shown to be useful in veterinary oncology and in the evaluation of orthopedic diseases. SPECT brain perfusion and receptor imaging is used to investigate behavioral disorders in animals that have interesting similarities to human psychiatric disorders. This article provides an overview of the potential applications of PET and SPECT. The use of commercially available and investigational PET radiopharmaceuticals in the management of veterinary disease has been discussed. To date, most of the work in this field has utilized the commercially available PET tracer, (18)F-fluorodeoxyglucose for oncologic imaging. Normal biodistribution studies in several companion animal species (cats, dogs, and birds) have been published to assist in lesion detection and interpretation for veterinary radiologists and clinicians. Studies evaluating other (18)F-labeled tracers for research applications are underway at several institutions and companion animal models of human diseases are being increasingly recognized for their value in biomarker and therapy development. Although PET and SPECT technologies are in their infancy for clinical veterinary medicine, increasing access to and interest in these applications and other molecular imaging techniques has led to a greater knowledge and collective body of expertise for veterinarians worldwide. Initiation and fostering of physician-veterinarian collaborations are key components to the forward movement of this field.
Collapse
Affiliation(s)
- Amy K LeBlanc
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Veterinary Teaching Hospital, Knoxville, TN.
| | | |
Collapse
|
31
|
Viitmaa R, Haaparanta-Solin M, Snellman M, Cizinauskas S, Orro T, Kuusela E, Johansson J, Viljanen T, Jokinen TS, Bergamasco L, Metsähonkala L. CEREBRAL GLUCOSE UTILIZATION MEASURED WITH HIGH RESOLUTION POSITRON EMISSION TOMOGRAPHY IN EPILEPTIC FINNISH SPITZ DOGS AND HEALTHY DOGS. Vet Radiol Ultrasound 2014; 55:453-61. [DOI: 10.1111/vru.12147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/24/2013] [Indexed: 12/28/2022] Open
Affiliation(s)
- Ranno Viitmaa
- Department of Equine and Small Animal Medicine; University of Helsinki; Helsinki Finland
- Institute of Veterinary Medicine and Animal Sciences; Estonian University of Life Sciences; Tartu Estonia
| | | | - Marjatta Snellman
- Department of Equine and Small Animal Medicine; University of Helsinki; Helsinki Finland
| | | | - Toomas Orro
- Institute of Veterinary Medicine and Animal Sciences; Estonian University of Life Sciences; Tartu Estonia
| | - Erja Kuusela
- Department of Equine and Small Animal Medicine; University of Helsinki; Helsinki Finland
| | | | | | - Tarja S. Jokinen
- Department of Equine and Small Animal Medicine; University of Helsinki; Helsinki Finland
| | - Luciana Bergamasco
- Department of Veterinary Morphophysiology; University of Turin; Turin Italy
| | - Liisa Metsähonkala
- The Epilepsy Unit; Hospital for Children and Adolescents; Helsinki University Central Hospital; Helsinki Finland
| |
Collapse
|
32
|
Waelbers T, Polis I, Vermeire S, Dobbeleir A, Eersels J, De Spiegeleer B, Audenaert K, Slegers G, Peremans K. 5-HT2A receptors in the feline brain: 123I-5-I-R91150 kinetics and the influence of ketamine measured with micro-SPECT. J Nucl Med 2013; 54:1428-33. [PMID: 23819924 DOI: 10.2967/jnumed.112.114637] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Subanesthetic doses of ketamine can be used as a rapid-acting antidepressant in patients with treatment-resistant depression. Therefore, the brain kinetics of (123)I-5-I-R91150 (4-amino-N-[1-[3-(4-fluorophenyl)propyl]-4-methylpiperidin-4-yl]-5-iodo-2-methoxybenzamide) and the influence of ketamine on the postsynaptic serotonin-2A receptor (5-hydroxytryptamine-2A, or 5-HT2A) status were investigated in cats using micro-SPECT. METHODS This study was conducted on 6 cats using the radioligand (123)I-5-I-R91150, a 5-HT2A receptor antagonist, as the imaging probe. Anesthesia was induced and maintained with a continuous-rate infusion of propofol (8.4 ± 1.2 mg kg(-1) followed by 0.22 mg kg(-1) min(-1)) 75 min after tracer administration, and acquisition of the first image began 15 min after induction of anesthesia. After this first acquisition, propofol (0.22 mg kg(-1) min(-1)) was combined with ketamine (5 mg kg(-1) followed by 0.023 mg kg(-1) min(-1)), and the second acquisition began 15 min later. Semiquantification, with the cerebellum as a reference region, was performed to calculate the 5-HT2A receptor binding indices (parameter for available receptor density) in the frontal and temporal cortices. The binding indices were analyzed with Wilcoxon signed ranks statistics. RESULTS The addition of ketamine to the propofol continuous-rate infusion resulted in decreased binding indices in the right frontal cortex (1.25 ± 0.22 vs. 1.45 ± 0.16; P = 0.028), left frontal cortex (1.34 ± 0.15 vs. 1.49 ± 0.10; P = 0.028), right temporal cortex (1.30 ± 0.17 vs. 1.45 ± 0.09; P = 0.046), and left temporal cortex (1.41 ± 0.20 vs. 1.52 ± 0.20; P = 0.046). CONCLUSION This study showed that cats can be used as an animal model for studying alterations of the 5-HT2A receptor status with (123)I-5-I-R91150 micro-SPECT. Furthermore, an interaction between ketamine and the 5-HT2A receptors resulting in decreased binding of (123)I-5-I-R91150 in the frontal and temporal cortices was demonstrated. Whether the decreased radioligand binding resulted from a direct competition between ketamine and (123)I-5-I-R91150 or from a decreased affinity of the 5-HT2A receptor caused by ketamine remains to be elucidated.
Collapse
Affiliation(s)
- Tim Waelbers
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Adriaens A, Polis I, Waelbers T, Vandermeulen E, Dobbeleir A, De Spiegeleer B, Peremans K. NORMAL REGIONAL DISTRIBUTION OF CEREBRAL BLOOD FLOW IN DOGS: COMPARISON BETWEEN 99m
Tc-ETHYLCYSTEINATE DIMER AND 99m
Tc- HEXAMETHYLPROPYLENE AMINE OXIME SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY. Vet Radiol Ultrasound 2013; 54:403-407. [DOI: 10.1111/vru.12028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/08/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Antita Adriaens
- Faculty of Veterinary Medicine, Department of Small Animal Medicine; Ghent University; Merelbeke Belgium
| | - Ingeborgh Polis
- Faculty of Veterinary Medicine, Department of Small Animal Medicine; Ghent University; Merelbeke Belgium
| | - Tim Waelbers
- Faculty of Veterinary Medicine, Department of Small Animal Medicine; Ghent University; Merelbeke Belgium
| | - Eva Vandermeulen
- Faculty of Veterinary Medicine; Department of Medical Imaging and Small Animal Orthopedics; Ghent University; Merelbeke Belgium
| | - André Dobbeleir
- Faculty of Veterinary Medicine; Department of Medical Imaging and Small Animal Orthopedics; Ghent University; Merelbeke Belgium
- Department of Nuclear Medicine; Ghent University Hospital; Ghent Belgium
| | - Bart De Spiegeleer
- Drug Quality & Registration (DruQuaR) group; Faculty of Pharmaceutical Sciences; Ghent University; Ghent Belgium
| | - Kathelijne Peremans
- Faculty of Veterinary Medicine; Department of Medical Imaging and Small Animal Orthopedics; Ghent University; Merelbeke Belgium
| |
Collapse
|
34
|
Waelbers T, Peremans K, Vermeire S, Dobbeleir A, Boer VO, de Leeuw H, Vente MAD, Piron K, Hesta M, Polis I. Regional brain perfusion in 12 cats measured with technetium-99m-ethyl cysteinate dimer pinhole single photon emission computed tomography (SPECT). J Feline Med Surg 2013; 15:105-10. [PMID: 23064995 PMCID: PMC10816665 DOI: 10.1177/1098612x12461642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
With the use of perfusion tracers, in vivo examination of the regional cerebral blood flow in cats can be performed with single photon emission computed tomography (SPECT). Reliable perfusion data of normal, healthy cats are necessary for future clinical studies or other research use. Therefore, this dataset of the regional perfusion pattern of the normal feline brain was created. Twelve cats were used in this study. Technetium-99m-ethyl cysteinate dimer ((99m)Tc-ECD) was injected intravenously and the acquisition, using a triple head gamma camera equipped with three multi-pinhole collimators (pinhole SPECT), was started 40 mins after tracer administration under general anaesthesia. Nineteen regions of interest were defined using 7T magnetic resonance images of the feline brain and a topographical atlas. Regional counts were normalised to the counts of two reference regions: the total brain and the cerebellum. The highest tracer uptake was noticed in the subcortical structures, and the lowest in the frontal cortex and the cerebellum. Also left-right asymmetry in the temporal cortex and a rostrocaudal gradient of 5% were observed.
Collapse
Affiliation(s)
- Tim Waelbers
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kathelijne Peremans
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Simon Vermeire
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - André Dobbeleir
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - VO Boer
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hendrik de Leeuw
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten AD Vente
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Koen Piron
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Myriam Hesta
- Laboratory of Animal Nutrition, Genetics, Breeding and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ingeborgh Polis
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
35
|
Amat M, Le Brech S, Camps T, Torrente C, Mariotti VM, Ruiz JL, Manteca X. Differences in serotonin serum concentration between aggressive English cocker spaniels and aggressive dogs of other breeds. J Vet Behav 2013. [DOI: 10.1016/j.jveb.2012.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
León M, Rosado B, García-Belenguer S, Chacón G, Villegas A, Palacio J. Assessment of serotonin in serum, plasma, and platelets of aggressive dogs. J Vet Behav 2012. [DOI: 10.1016/j.jveb.2012.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Adriaens AM, Polis IE, Vermeire ST, Waelbers T, Duchateau L, Sys SU, Van Dorpe S, Eersels JL, De Spiegeleer B, Peremans K. The influence of morphine on cerebral 5-HT2A availability in dogs: a SPECT study. J Nucl Med 2012; 53:1969-73. [PMID: 23090214 DOI: 10.2967/jnumed.112.103796] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The opioid and serotonergic systems are closely involved in pain processing and mood disorders. The aim of this study was to assess the influence of systemic morphine on cerebral serotonin 2A receptor (5-HT(2A)) binding in dogs using SPECT with the 5-HT(2A) radioligand (123)I-5I-R91150. METHODS 5-HT(2A) binding was estimated with and without morphine pretreatment in 8 dogs. The 5-HT(2A) binding indices in the frontal, parietal, temporal, and occipital cortex and in the subcortical region were obtained by semiquantification. RESULTS A significantly decreased 5-HT(2A) binding index was found in the morphine group for the right (morphine, 1.41 ± 0.06; control, 1.52 ± 0.10) and left (morphine, 1.44 ± 0.08; control, 1.55 ± 0.11) frontal cortices, with P = 0.012 and P = 0.040, respectively. No significant differences were noted for the other regions. CONCLUSION Morphine decreased the frontocortical 5-HT(2A) availability, confirming an interaction between the 5-HTergic and the opioid systems. Whether this interaction is caused by decreased receptor density due to direct internalization or is the result of indirect actions, such as increased endogenous serotonin release, remains to be elucidated.
Collapse
Affiliation(s)
- Antita M Adriaens
- Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Waelbers T, Peremans K, Vermeire S, Piron K, Polis I. Regional distribution of technetium-99m-ECD in the canine brain: Optimal injection–acquisition interval in adult beagles. J Vet Behav 2012. [DOI: 10.1016/j.jveb.2012.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Waelbers T, Peremans K, Vermeire S, Piron K, Doom M, Boer V, de Leeuw H, Vente M, Dobbeleir A, Gielen I, Audenaert K, Polis I. Effects of medetomidine and ketamine on the regional cerebral blood flow in cats: A SPECT study. Vet J 2012; 192:81-8. [DOI: 10.1016/j.tvjl.2011.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 04/15/2011] [Accepted: 04/22/2011] [Indexed: 10/18/2022]
|
40
|
Camps T, Amat M, Mariotti VM, Le Brech S, Manteca X. Pain-related aggression in dogs: 12 clinical cases. J Vet Behav 2012. [DOI: 10.1016/j.jveb.2011.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Serotonin 2A receptor, serotonin transporter and dopamine transporter alterations in dogs with compulsive behaviour as a promising model for human obsessive-compulsive disorder. Psychiatry Res 2012; 201:78-87. [PMID: 22285716 DOI: 10.1016/j.pscychresns.2011.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 06/05/2011] [Accepted: 06/11/2011] [Indexed: 02/08/2023]
Abstract
Neuro-imaging studies have shown altered, yet often inconsistent, serotonergic and dopaminergic neurotransmission in patients with obsessive-compulsive disorder (OCD). We investigated both serotonergic and dopaminergic neurotransmission in 9 drug-naïve dogs with compulsive behaviour, as a potential model for human OCD. Single photon emission computed tomography was used with (123)I-R91150 and (123)I-FP-CIT, in combination with (99m)Tc-ECD brain perfusion co-registration, to measure the serotonin (5-HT) 2A receptor, dopamine transporter (DAT) and serotonin transporter (SERT) availability. Fifteen normally behaving dogs were used as reference group. Significantly lower 5-HT2A receptor radioligand availability in frontal and temporal cortices (bilateral) was observed. Further, in 78% of the compulsive dogs abnormal DAT ratios in left and right striatum were demonstrated. Interestingly, both increased and decreased DAT ratios were observed. Finally, significantly lower subcortical perfusion and (hypo)thalamic SERT availability were observed in the compulsive dogs. This study provides evidence for imbalanced serotonergic and dopaminergic pathways in the pathophysiology of compulsions in dogs. The similarities with the altered neurotransmission in human OCD provide construct validity for this non-induced, natural canine model, suggesting its usefulness for future investigations of the pathophysiology of human OCD as well as the effectiveness of psychopharmacological interventions.
Collapse
|
42
|
Vermeire S, Audenaert K, De Meester R, Vandermeulen E, Waelbers T, De Spiegeleer B, Eersels J, Dobbeleir A, Peremans K. Neuro-imaging the serotonin 2A receptor as a valid biomarker for canine behavioural disorders. Res Vet Sci 2011; 91:465-72. [DOI: 10.1016/j.rvsc.2010.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 09/07/2010] [Accepted: 09/28/2010] [Indexed: 12/28/2022]
|
43
|
Behavioural and physiological correlates of impulsivity in the domestic dog (Canis familiaris). Physiol Behav 2011; 105:676-82. [PMID: 21986321 DOI: 10.1016/j.physbeh.2011.09.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/02/2011] [Accepted: 09/26/2011] [Indexed: 11/22/2022]
Abstract
Impulsivity is a trait related to inhibitory control which is expressed in a range of behaviours. Impulsive individuals show a decreased ability to tolerate delay of reinforcement, and more impulsive behaviour has been linked to decreased levels of serotonin and dopamine in a number of species. In domestic dogs, impulsivity is implicated in problem behaviours that result from a lack of self control, but currently there are no published studies that assess behavioural and physiological measures of impulsivity in relation to this trait. Impulsivity scores were calculated for 41 dogs using an owner-report assessment, the Dog Impulsivity Assessment Scale (DIAS). Twenty-three of these subjects completed an operant choice task based on a delayed reward paradigm, to assess their tolerance to delay of reinforcement. High Pressure Liquid Chromatography (HPLC) with Fluorometric Detection was used to detect levels of the metabolites of serotonin (5-HIAA) and dopamine (HVA) in the urine of 17 of the subjects. Higher impulsivity scores were found to be significantly correlated with more impulsive behaviour (reduced tolerance to delay of reinforcement) in the behaviour tests and lower levels of urinary 5-HIAA and 5-HIAA/HVA ratio. The results demonstrate convergent validity between impulsivity (as assessed by the DIAS) and behavioural and physiological parameters.
Collapse
|
44
|
Waelbers T, Peremans K, Vermeire S, Duchateau L, Dobbeleir A, Audenaert K, Polis I. The effect of medetomidine on the regional cerebral blood flow in dogs measured using Technetium-99m-Ethyl Cysteinate Dimer SPECT. Res Vet Sci 2011; 91:138-143. [DOI: 10.1016/j.rvsc.2010.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/01/2010] [Accepted: 08/02/2010] [Indexed: 11/28/2022]
|
45
|
Vermeire S, Audenaert K, Vandermeulen E, Waelbers T, De Spiegeleer B, van Bree H, Peremans K. Single photon emission computed tomography (SPECT) imaging of the dopamine transporter in healthy dogs. Vet J 2011; 188:356-8. [DOI: 10.1016/j.tvjl.2010.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/29/2010] [Accepted: 05/16/2010] [Indexed: 10/19/2022]
|
46
|
Poletto R, Cheng HW, Meisel RL, Richert BT, Marchant JN. Gene expression of serotonin and dopamine receptors and monoamine oxidase-A in the brain of dominant and subordinate pubertal domestic pigs (Sus scrofa) fed a β-adrenoreceptor agonist. Brain Res 2011; 1381:11-20. [PMID: 21094150 DOI: 10.1016/j.brainres.2010.11.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 10/25/2010] [Accepted: 11/08/2010] [Indexed: 11/30/2022]
Abstract
Aggression is a major source of social stress with negative effects on health and well-being, yet limited information is known about the molecular mechanisms mediating aggressive behavior in swine. Ractopamine (RAC) is a β-adrenoreceptor agonist that enhances growth but increases aggressive behaviors in female pigs. Thus, the effects of RAC, sex, and social rank on the mRNA abundance of genes encoding serotonin and dopamine receptors, and monoamine oxidase (MAO)-A in brains of sub-adult pigs were evaluated. Top dominant and bottom subordinate pigs (16/sex) in pens of 4 pigs were determined, and fed either the control or RAC diets. At day 31, their raphe nuclei (RN), amygdala (AMY), frontal cortex (FC), and hypothalamus (HYP) were dissected; relative mRNA abundance for 5-HT₁(B), 5-HT₂(A), 5-HT₂(B), and D₁ receptors, and MAO-A was determined by Q-RT-PCR and data subjected to multivariate linear mixed model analysis and Tukey post-hoc test. Expression of 5-HT₁(B) and MAO-A was suppressed in the AMY of female pigs; 5-HT₂(B) expression was also suppressed in the RN, FC and HYP of females and RN of dominant pigs (P < 0.05). Expression of 5-HT₂(A) was more up-regulated in RN of females compared to males (P < 0.05). Expression of D₁ varied in RN and FC mostly as a function of RAC feeding and its interaction with sex and social rank (P < 0.05). While RAC feeding is related to changes in expression of the D1 receptor mRNA, suppression in expression of serotonergic genes detected in the brain of pigs, especially in females independent of social rank, may be mediating the inter-individual offensive aggression.
Collapse
Affiliation(s)
- Rosangela Poletto
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
47
|
Wrubel KM, Moon-Fanelli AA, Maranda LS, Dodman NH. Interdog household aggression: 38 cases (2006–2007). J Am Vet Med Assoc 2011; 238:731-40. [DOI: 10.2460/javma.238.6.731] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Blood concentrations of serotonin, cortisol and dehydroepiandrosterone in aggressive dogs. Appl Anim Behav Sci 2010. [DOI: 10.1016/j.applanim.2010.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Qanbari S, Pimentel ECG, Tetens J, Thaller G, Lichtner P, Sharifi AR, Simianer H. A genome-wide scan for signatures of recent selection in Holstein cattle. Anim Genet 2010; 41:377-89. [PMID: 20096028 DOI: 10.1111/j.1365-2052.2009.02016.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The data from the newly available 50 K SNP chip was used for tagging the genome-wide footprints of positive selection in Holstein-Friesian cattle. For this purpose, we employed the recently described Extended Haplotype Homozygosity test, which detects selection by measuring the characteristics of haplotypes within a single population. To assess formally the significance of these results, we compared the combination of frequency and the Relative Extended Haplotype Homozygosity value of each core haplotype with equally frequent haplotypes across the genome. A subset of the putative regions showing the highest significance in the genome-wide EHH tests was mapped. We annotated genes to identify possible influence they have in beneficial traits by using the Gene Ontology database. A panel of genes, including FABP3, CLPN3, SPERT, HTR2A5, ABCE1, BMP4 and PTGER2, was detected, which overlapped with the most extreme P-values. This panel comprises some interesting candidate genes and QTL, representing a broad range of economically important traits such as milk yield and composition, as well as reproductive and behavioural traits. We also report high values of linkage disequilibrium and a slower decay of haplotype homozygosity for some candidate regions harbouring major genes related to dairy quality. The results of this study provide a genome-wide map of selection footprints in the Holstein genome, and can be used to better understand the mechanisms of selection in dairy cattle breeding.
Collapse
Affiliation(s)
- S Qanbari
- Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August University, 37075 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Vermeire S, Audenaert K, Dobbeleir A, De Meester R, Vandermeulen E, Waelbers T, Peremans K. Regional Cerebral Blood Flow Changes in Dogs with Anxiety Disorders, Measured with SPECT. Brain Imaging Behav 2009. [DOI: 10.1007/s11682-009-9076-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|