1
|
Enke JS, Bundschuh RA, Claus R, Lapa C. New PET Tracers for Lymphoma. PET Clin 2024; 19:463-474. [PMID: 38969567 DOI: 10.1016/j.cpet.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
While functional imaging with [18F]Fluoro-deoxy-glucose positron emission tomography (PET)/computed tomography is a well-established imaging modality in most lymphoma entities, novel tracers addressing cell surface receptors, tumor biology, and the microenvironment are being developed. Especially, with the emergence of immuno-PET targeting surface markers of lymphoma cells, a new imaging modality of immunotherapies is evolving, which might especially aid in relapsed and refractory disease stages. This review highlights different new PET tracers in indolent and aggressive lymphoma subtypes and summarizes the current state of immuno-PET imaging in lymphoma.
Collapse
Affiliation(s)
- Johanna S Enke
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - Ralph A Bundschuh
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Rainer Claus
- Hematology and Oncology, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; Pathology, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| |
Collapse
|
2
|
Ning J, Li C, Yu P, Cui J, Xu X, Jia Y, Zuo P, Tian J, Kenner L, Xu B. Radiomic analysis will add differential diagnostic value of benign and malignant pulmonary nodules: a hybrid imaging study based on [ 18F]FDG and [ 18F]FLT PET/CT. Insights Imaging 2023; 14:197. [PMID: 37980611 PMCID: PMC10657912 DOI: 10.1186/s13244-023-01530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/25/2023] [Indexed: 11/21/2023] Open
Abstract
PURPOSE To investigate the clinical value of radiomic analysis on [18F]FDG and [18F]FLT PET on the differentiation of [18F]FDG-avid benign and malignant pulmonary nodules (PNs). METHODS Data of 113 patients with inconclusive PNs based on preoperative [18F]FDG PET/CT who underwent additional [18F]FLT PET/CT scans within a week were retrospectively analyzed in the present study. Three methods of analysis including visual analysis, radiomic analysis based on [18F]FDG PET/CT images alone, and radiomic analysis based on dual-tracer PET/CT images were evaluated for differential diagnostic value of benign and malignant PNs. RESULTS A total of 678 radiomic features were extracted from volumes of interest (VOIs) of 123 PNs. Fourteen valuable features were thereafter selected. Based on a visual analysis of [18F]FDG PET/CT images, the diagnostic accuracy, sensitivity, and specificity were 61.6%, 90%, and 28.8%, respectively. For the test set, the area under the curve (AUC), sensitivity, and specificity of the radiomic models based on [18F]FDG PET/CT plus [18F]FLT signature were equal or better than radiomics based on [18F]FDG PET/CT only (0.838 vs 0.810, 0.778 vs 0.778, 0.750 vs 0.688, respectively). CONCLUSION Radiomic analysis based on dual-tracer PET/CT images is clinically promising and feasible for the differentiation between benign and malignant PNs. CLINICAL RELEVANCE STATEMENT Radiomic analysis will add differential diagnostic value of benign and malignant pulmonary nodules: a hybrid imaging study based on [18F]FDG and [18F]FLT PET/CT. KEY POINTS • Radiomics brings new insights into the differentiation of benign and malignant pulmonary nodules beyond the naked eyes. • Dual-tracer imaging shows the biological behaviors of cancerous cells from different aspects. • Radiomics helps us get to the histological view in a non-invasive approach.
Collapse
Affiliation(s)
- Jing Ning
- Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Vienna General Hospital, Vienna, Austria
- Department of Clinical Pathology, Vienna General Hospital, Vienna, Austria
| | - Can Li
- Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Yu
- Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingjing Cui
- United Imaging Intelligence (Beijing) Co., Ltd., Beijing, China Yongteng North Road, Haidian District, Beijing, China
| | - Xiaodan Xu
- Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Jia
- Huiying Medical Technology Co., Ltd., Room C103, B2, Dongsheng Science and Technology Park, Haidian District, Beijing, China
| | - Panli Zuo
- Huiying Medical Technology Co., Ltd., Room C103, B2, Dongsheng Science and Technology Park, Haidian District, Beijing, China
| | - Jiahe Tian
- Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lukas Kenner
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria.
| | - Baixuan Xu
- Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
3
|
Gandhi R, Cawthorne C, Craggs LJL, Wright JD, Domarkas J, He P, Koch-Paszkowski J, Shires M, Scarsbrook AF, Archibald SJ, Tsoumpas C, Bailey MA. Cell proliferation detected using [ 18F]FLT PET/CT as an early marker of abdominal aortic aneurysm. J Nucl Cardiol 2021; 28:1961-1971. [PMID: 31741324 PMCID: PMC8648642 DOI: 10.1007/s12350-019-01946-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/17/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a focal aortic dilatation progressing towards rupture. Non-invasive AAA-associated cell proliferation biomarkers are not yet established. We investigated the feasibility of the cell proliferation radiotracer, fluorine-18-fluorothymidine ([18F]FLT) with positron emission tomography/computed tomography (PET/CT) in a progressive pre-clinical AAA model (angiotensin II, AngII infusion). METHODS AND RESULTS Fourteen-week-old apolipoprotein E-knockout (ApoE-/-) mice received saline or AngII via osmotic mini-pumps for 14 (n = 7 and 5, respectively) or 28 (n = 3 and 4, respectively) days and underwent 90-minute dynamic [18F]FLT PET/CT. Organs were harvested from independent cohorts for gamma counting, ultrasound scanning, and western blotting. [18F]FLT uptake was significantly greater in 14- (n = 5) and 28-day (n = 3) AAA than in saline control aortae (n = 5) (P < 0.001), which reduced between days 14 and 28. Whole-organ gamma counting confirmed greater [18F]FLT uptake in 14-day AAA (n = 9) compared to saline-infused aortae (n = 4) (P < 0.05), correlating positively with aortic volume (r = 0.71, P < 0.01). Fourteen-day AAA tissue showed increased expression of thymidine kinase-1, equilibrative nucleoside transporter (ENT)-1, ENT-2, concentrative nucleoside transporter (CNT)-1, and CNT-3 than 28-day AAA and saline control tissues (n = 3 each) (all P < 0.001). CONCLUSIONS [18F]FLT uptake is increased during the active growth phase of the AAA model compared to saline control mice and late-stage AAA.
Collapse
Affiliation(s)
- Richa Gandhi
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49c Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| | - Christopher Cawthorne
- Department of Biomedical Science, PET Research Centre, University of Hull, Hull, United Kingdom
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Lucinda J L Craggs
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49c Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom
| | - John D Wright
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49c Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom
- Experimental & PreClinical Imaging Facility (ePIC), School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Juozas Domarkas
- Department of Biomedical Science, PET Research Centre, University of Hull, Hull, United Kingdom
| | - Ping He
- Department of Biomedical Science, PET Research Centre, University of Hull, Hull, United Kingdom
| | - Joanna Koch-Paszkowski
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49c Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom
- Experimental & PreClinical Imaging Facility (ePIC), School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Michael Shires
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Andrew F Scarsbrook
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Stephen J Archibald
- Department of Biomedical Science, PET Research Centre, University of Hull, Hull, United Kingdom
| | - Charalampos Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49c Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom.
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Invicro, London, United Kingdom.
| | - Marc A Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49c Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom
- The Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds, United Kingdom
| |
Collapse
|
4
|
Hu J, Yang Z, Gao J, Hu W, Yang J, Qiu X, Zhang Y, Ma G, Kong L, Lu JJ. Volumetric parameters derived from FLT-PET performed at completion of treatment predict efficacy of Carbon-ion Radiotherapy in patients with locally recurrent Nasopharyngeal Carcinoma. J Cancer 2020; 11:7073-7080. [PMID: 33123296 PMCID: PMC7591998 DOI: 10.7150/jca.46490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the role of 3'-deoxy-3'-[18F]fluorothymidine (FLT)-PET for predicting the outcome of patients with locally recurrent nasopharyngeal carcinoma (LR-NPC) treated by carbon-ion radiotherapy (CIRT). Patients received FLT-PET/CT scan one-week prior to or after completion of CIRT were enrolled in the study. All patients were from prospective trials or treated using a standardized protocol. Time-dependent receiver operator characteristics (ROC) were used to determine the optimal cutoff values for FLT-PET parameters. Univariable and multivariable analyses of local progression-free survival (LPFS) were performed using Cox regression, to examine the prognostic value of FLT-PET parameters, including SUVmax, metabolic tumor volume (MTV) and total lesion thymidine (TLT). A total of 41 patients were enrolled. Elevated MTV and TLT were significantly associated with worse LPFS, in both univariable and multivariable analyses. ROC analysis revealed that both an MTV value higher than 8.6 and a TLT value higher than 14.9 were predictive of increased risk of developing local recurrence, the adjusted HRs were 5.59 (p=0.009) and 7.76 (p=0.002), respectively. In conclusion, FLT-PET was found to be a promising prognostic tool for LR-NPC patients and might play a role in the treatment guidance.
Collapse
Affiliation(s)
- Jiyi Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, China.,Department of Oncology, Shanghai Medical College, Fudan University, China.,Center for Biomedical Imaging, Fudan University, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, China
| | - Jing Gao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy
| | - Weixu Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy
| | - Xianxin Qiu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy
| | - Yingjian Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, China.,Department of Oncology, Shanghai Medical College, Fudan University, China.,Center for Biomedical Imaging, Fudan University, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, China
| | - Guang Ma
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, China
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy
| | - Jiade J Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy
| |
Collapse
|
5
|
Abstract
The major applications for molecular imaging with PET in clinical practice concern cancer imaging. Undoubtedly, 18F-FDG represents the backbone of nuclear oncology as it remains so far the most widely employed positron emitter compound. The acquired knowledge on cancer features, however, allowed the recognition in the last decades of multiple metabolic or pathogenic pathways within the cancer cells, which stimulated the development of novel radiopharmaceuticals. An endless list of PET tracers, substantially covering all hallmarks of cancer, has entered clinical routine or is being investigated in diagnostic trials. Some of them guard significant clinical applications, whereas others mostly bear a huge potential. This chapter summarizes a selected list of non-FDG PET tracers, described based on their introduction into and impact on clinical practice.
Collapse
|
6
|
Bashir A, Binderup T, Vestergaard MB, Broholm H, Marner L, Ziebell M, Fugleholm K, Kjær A, Law I. In vivo imaging of cell proliferation in meningioma using 3'-deoxy-3'-[ 18F]fluorothymidine PET/MRI. Eur J Nucl Med Mol Imaging 2020; 47:1496-1509. [PMID: 32047966 DOI: 10.1007/s00259-020-04704-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Positron emission tomography (PET) with 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) provides a noninvasive assessment of tumour proliferation in vivo and could be a valuable imaging modality for assessing malignancy in meningiomas. We investigated a range of static and dynamic [18F]FLT metrics by correlating the findings with cellular biomarkers of proliferation and angiogenesis. METHODS Seventeen prospectively recruited adult patients with intracranial meningiomas underwent a 60-min dynamic [18F]FLT PET following surgery. Maximum and mean standardized uptake values (SUVmax, SUVmean) with and without normalization to healthy brain tissue and blood radioactivity obtained from 40 to 60 min summed dynamic images (PET40-60) and ~ 60-min blood samples were calculated. Kinetic modelling using a two-tissue reversible compartmental model with a fractioned blood volume (VB) was performed to determine the total distribution volume (VT). Expressions of proliferation and angiogenesis with key parameters including Ki-67 index, phosphohistone-H3 (phh3), MKI67, thymidine kinase 1 (TK1), proliferating cell nuclear antigen (PCNA), Kirsten RAt Sarcoma viral oncogene homolog (KRAS), TIMP metallopeptidase inhibitor 3 (TIMP3), and vascular endothelial growth factor A (VEGFA) were determined by immunohistochemistry and/or quantitative polymerase chain reaction. RESULTS Immunohistochemistry revealed 13 World Health Organization (WHO) grade I and four WHO grade II meningiomas. SUVmax and SUVmean normalized to blood radioactivity from PET40-60 and blood sampling, and VT were able to significantly differentiate between WHO grades with the best results for maximum and mean tumour-to-whole-blood ratios (sensitivity 100%, specificity 94-95%, accuracy 99%; P = 0.003). Static [18F]FLT metrics were significantly correlated with proliferative biomarkers, especially Ki-67 index, phh3, and TK1, while no correlations were found with VEGFA or VB. Using Ki-67 index with a threshold > 4%, the majority of [18F]FLT metrics showed a high ability to identify aggressive meningiomas with SUVmean demonstrating the best performance (sensitivity 80%, specificity 81%, accuracy 80%; P = 0.024). CONCLUSION [18F]FLT PET could be a useful imaging modality for assessing cellular proliferation in meningiomas.
Collapse
Affiliation(s)
- Asma Bashir
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.
| | - Tina Binderup
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.,Cluster for Molecular Imaging, University of Copenhagen, Copenhagen, Denmark
| | - Mark Bitsch Vestergaard
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Helle Broholm
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.,Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Morten Ziebell
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kåre Fugleholm
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.,Cluster for Molecular Imaging, University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
7
|
Lovinfosse P, Rousseau C, Pierga JY, Bouchet F, Cochet A, Alberini JL, Girault S, Vera P, Olivier P, Uwer L, Cachin F, Scarwell B, Lemonnier J, Fourme E, Mesleard C, Martin AL, Lacœuille F, Couturier OF. Dual time point [ 18F]FLT-PET for differentiating proliferating tissues vs non-proliferating tissues. EJNMMI Res 2019; 9:109. [PMID: 31832803 PMCID: PMC6908533 DOI: 10.1186/s13550-019-0579-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/26/2019] [Indexed: 11/18/2022] Open
Abstract
Purpose For differentiating tumor from inflammation and normal tissues, fluorodeoxyglucose ([18F]FDG) dual time point PET could be helpful. Albeit [18F]FLT is more specific for tumors than [18F]FDG; we explored the role of dual time point [18F]FLT-PET for discriminating benign from malignant tissues. Methods Before any treatment, 85 womens with de novo unifocal breast cancer underwent three PET acquisitions at 33.94 ± 8.01 min (PET30), 61.45 ± 8.30 min (PET60), and 81.06 ± 12.12 min (PET80) after [18F]FLT injection. Semiquantitative analyses of [18F]FLT uptake (SUV) were carried out on tumors, liver, bone marrow (4th thoracic vertebra (T4) and humeral head), descending thoracic aorta, muscle (deltoid), and contralateral normal breast. Repeated measures ANOVA tests and Tukey’s posttests were used to compare SUVmax of each site at the three time points. Results There was a significant increase in SUVmax over time for breast lesions (5.58 ± 3.80; 5.97 ± 4.56; 6.19 ± 4.42; p < 0.0001) (m ± SD for PET30, PET60, and PET80, respectively), and bone marrow (for T4, 8.21 ± 3.17, 9.64 ± 3.66, 10.85 ± 3.63, p < 0.0001; for humeral head, 3.36 ± 1.79, 3.87 ± 1.89, 4.39 ± 2.00, p < 0.0001). A significant decrease in SUVmax over time was observed for liver (6.79 ± 2.03; 6.24 ± 1.99; 5.57 ± 1.74; p < 0.0001), muscle (0.95 ± 0.28; 0.93 ± 0.29; 0.86 ± 0.20; p < 0.027), and aorta (1.18 ± 0.34; 1.01 ± 0.32; 0.97 ± 0.30; p < 0.0001). No significant difference was observed for SUVmax in contralateral breast (0.8364 ± 0.40; 0.78 ± 0.38; 0.80 ± 0.35). Conclusion [18F]FLT-SUVmax increased between 30 and 80 min only in proliferating tissues. This could be helpful for discriminating between residual tumor and scar tissue.
Collapse
Affiliation(s)
- Pierre Lovinfosse
- Nuclear Medicine Department and Inserm UMR_S 1066 MINT, University of Angers, Angers, France
| | - Caroline Rousseau
- Nuclear Medicine Department, West Cancer Institut (ICO), René Gauducheau Centre, Saint Herblain, France
| | | | - Francis Bouchet
- Nuclear Medicine Department and Inserm UMR_S 1066 MINT, University of Angers, Angers, France
| | - Alexandre Cochet
- Nuclear Medicine Department, Georges-François Leclerc Centre, Dijon, France
| | | | - Sylvie Girault
- Nuclear Medicine Department, West Cancer Institut (ICO), Paul Papin Centre, Angers, France
| | - Pierre Vera
- Nuclear Medicine Department, Henri Becquerel Centre, Rouen, France
| | - Pierre Olivier
- Nuclear Medicine Department, University of Nancy, Nancy, France
| | - Lionel Uwer
- Nuclear Medicine Department, Institut de cancerologie de lorraine, Vandoeuvre-les-, Nancy, France
| | - Florent Cachin
- Nuclear Medicine Department, Jean Perrin Center, Clermont Ferrand, France
| | - Benoit Scarwell
- Nuclear Medicine Department, Centre Hospitalier de la Cote Basque, Bayonne, France
| | | | | | | | | | - Franck Lacœuille
- Nuclear Medicine Department and Inserm UMR_S 1066 MINT, University of Angers, Angers, France
| | | |
Collapse
|
8
|
Krys D, Hamann I, Wuest M, Wuest F. Effect of hypoxia on human equilibrative nucleoside transporters hENT1 and hENT2 in breast cancer. FASEB J 2019; 33:13837-13851. [PMID: 31601121 DOI: 10.1096/fj.201900870rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevated proliferation rates in cancer can be visualized with positron emission tomography (PET) using 3'-deoxy-3'-l-[18F]fluorothymidine ([18F]FLT). This study investigates whether [18F]FLT transport proteins are regulated through hypoxia. Expression and function of human equilibrative nucleoside transporter (hENT)-1, hENT2, and thymidine kinase 1 (TK1) were studied under normoxic and hypoxic conditions, and assessed with [18F]FLT-PET in estrogen receptor positive (ER+)-MCF7, triple-negative MDA-MB231 breast cancer (BC) cells, and MCF10A cells (human mammary epithelial cells). Functional involvement of hENT2 [18F]FLT transport was demonstrated in all cell lines. In vitro [18F]FLT uptake was higher in MDA-MB231 than in MCF7: 242 ± 9 vs. 147 ± 18% radioactivity/mg protein after 60 min under normoxia. Hypoxia showed no significant change in radiotracer uptake. Protein analysis revealed increased hENT1 (P < 0.0963) in MDA-MB231. Hypoxia did not change expression of either hENT1, hENT2, or TK1. In vitro inhibition experiments suggested involvement of hENT1, hENT2, and human concentrative nucleoside transporters during [18F]FLT uptake into all cell lines. In vivo PET imaging revealed comparable tumor uptake in MCF7 and MDA-MB231 tumors over 60 min, reaching standardized uptake values of 0.96 ± 0.05 vs. 0.89 ± 0.08 (n = 3). Higher hENT1 expression in MDA-MB231 seems to drive nucleoside transport, whereas TK1 expression in MCF7 seems responsible for comparable [18F]FLT retention in ER+ tumors. Our study demonstrates that hypoxia does not significantly affect nucleoside transport as tested with [18F]FLT in BC.-Krys, D., Hamann, I., Wuest, M., Wuest, F. Effect of hypoxia on human equilibrative nucleoside transporters hENT1 and hENT2 in breast cancer.
Collapse
Affiliation(s)
- Daniel Krys
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Ingrit Hamann
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Ashek A, Spruijt OA, Harms HJ, Lammertsma AA, Cupitt J, Dubois O, Wharton J, Dabral S, Pullamsetti SS, Huisman MC, Frings V, Boellaard R, de Man FS, Botros L, Jansen S, Vonk Noordegraaf A, Wilkins MR, Bogaard HJ, Zhao L. 3'-Deoxy-3'-[18F]Fluorothymidine Positron Emission Tomography Depicts Heterogeneous Proliferation Pathology in Idiopathic Pulmonary Arterial Hypertension Patient Lung. Circ Cardiovasc Imaging 2019; 11:e007402. [PMID: 30354494 DOI: 10.1161/circimaging.117.007402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Pulmonary vascular cell hyperproliferation is characteristic of pulmonary vascular remodeling in pulmonary arterial hypertension. A noninvasive imaging biomarker is needed to track the pathology and assess the response to novel treatments targeted at resolving the structural changes. Here, we evaluated the application of radioligand 3'-deoxy-3'-[18F]-fluorothymidine (18FLT) using positron emission tomography. METHODS AND RESULTS We performed dynamic 18FLT positron emission tomography in 8 patients with idiopathic pulmonary arterial hypertension (IPAH) and applied in-depth kinetic analysis with a reversible 2-compartment 4k model. Our results show significantly increased lung 18FLT phosphorylation (k3) in patients with IPAH compared with nonpulmonary arterial hypertension controls (0.086±0.034 versus 0.054±0.009 min-1; P<0.05). There was heterogeneity in the lung 18FLT signal both between patients with IPAH and within the lungs of each patient, compatible with histopathologic reports of lungs from patients with IPAH. Consistent with 18FLT positron emission tomographic data, TK1 (thymidine kinase 1) expression was evident in the remodeled vessels in IPAH patient lung. In addition, hyperproliferative pulmonary vascular fibroblasts isolated from patients with IPAH exhibited upregulated expression of TK1 and the thymidine transporter, ENT1 (equilibrative nucleoside transporter 1). In the monocrotaline and SuHx (Sugen hypoxia) rat pulmonary arterial hypertension models, increased lung 18FLT uptake was strongly associated with peripheral pulmonary vascular muscularization and the proliferation marker, Ki-67 score, together with prominent TK1 expression in remodeled vessels. Importantly, lung 18FLT uptake was attenuated by 2 antiproliferative treatments: dichloroacetate and the tyrosine kinase inhibitor, imatinib. CONCLUSIONS Dynamic 18FLT positron emission tomography imaging can be used to report hyperproliferation in pulmonary hypertension and merits further study to evaluate response to treatment in patients with IPAH.
Collapse
Affiliation(s)
- Ali Ashek
- Center for Pharmacology and Therapeutics, Experimental Medicine, Hammersmith Hospital, Imperial College London, United Kingdom (A.A., J.C., O.D., J.W., M.R.W., L.Z.)
| | - Onno A Spruijt
- Department of Pulmonary Medicine (O.A.S., H.J.H., F.S.d.M., L.B., S.J., A.V.N., H.J.B.)
| | - Hendrik J Harms
- Department of Pulmonary Medicine (O.A.S., H.J.H., F.S.d.M., L.B., S.J., A.V.N., H.J.B.)
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine (A.A.L., M.C.H., V.F., R.B., F.S.d.M.), VU University Medical Center, Amsterdam, the Netherlands
| | - John Cupitt
- Center for Pharmacology and Therapeutics, Experimental Medicine, Hammersmith Hospital, Imperial College London, United Kingdom (A.A., J.C., O.D., J.W., M.R.W., L.Z.)
| | - Olivier Dubois
- Center for Pharmacology and Therapeutics, Experimental Medicine, Hammersmith Hospital, Imperial College London, United Kingdom (A.A., J.C., O.D., J.W., M.R.W., L.Z.)
| | - John Wharton
- Center for Pharmacology and Therapeutics, Experimental Medicine, Hammersmith Hospital, Imperial College London, United Kingdom (A.A., J.C., O.D., J.W., M.R.W., L.Z.)
| | - Swati Dabral
- Max-Planck Institute for Heart and Lung Research, University of Giessen and Marburg Lung Center, German Center for Lung Research, Bad Nauheim (S.D., S.S.P.)
| | - Soni Savai Pullamsetti
- Max-Planck Institute for Heart and Lung Research, University of Giessen and Marburg Lung Center, German Center for Lung Research, Bad Nauheim (S.D., S.S.P.)
| | - Marc C Huisman
- Department of Radiology and Nuclear Medicine (A.A.L., M.C.H., V.F., R.B., F.S.d.M.), VU University Medical Center, Amsterdam, the Netherlands
| | - Virginie Frings
- Department of Radiology and Nuclear Medicine (A.A.L., M.C.H., V.F., R.B., F.S.d.M.), VU University Medical Center, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine (A.A.L., M.C.H., V.F., R.B., F.S.d.M.), VU University Medical Center, Amsterdam, the Netherlands
| | - Frances S de Man
- Department of Pulmonary Medicine (O.A.S., H.J.H., F.S.d.M., L.B., S.J., A.V.N., H.J.B.).,Department of Radiology and Nuclear Medicine (A.A.L., M.C.H., V.F., R.B., F.S.d.M.), VU University Medical Center, Amsterdam, the Netherlands
| | - Lisa Botros
- Department of Pulmonary Medicine (O.A.S., H.J.H., F.S.d.M., L.B., S.J., A.V.N., H.J.B.)
| | - Samara Jansen
- Department of Pulmonary Medicine (O.A.S., H.J.H., F.S.d.M., L.B., S.J., A.V.N., H.J.B.)
| | | | - Martin R Wilkins
- Center for Pharmacology and Therapeutics, Experimental Medicine, Hammersmith Hospital, Imperial College London, United Kingdom (A.A., J.C., O.D., J.W., M.R.W., L.Z.)
| | - Harm J Bogaard
- Department of Pulmonary Medicine (O.A.S., H.J.H., F.S.d.M., L.B., S.J., A.V.N., H.J.B.)
| | - Lan Zhao
- Center for Pharmacology and Therapeutics, Experimental Medicine, Hammersmith Hospital, Imperial College London, United Kingdom (A.A., J.C., O.D., J.W., M.R.W., L.Z.)
| |
Collapse
|
10
|
Honma Y, Terauchi T, Tateishi U, Kano D, Nagashima K, Shoji H, Iwasa S, Takashima A, Kato K, Hamaguchi T, Boku N, Shimada Y, Yamada Y. Imaging peritoneal metastasis of gastric cancer with 18F-fluorothymidine positron emission tomography/computed tomography: a proof-of-concept study. Br J Radiol 2018; 91:20180259. [PMID: 29916721 DOI: 10.1259/bjr.20180259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Peritoneal metastasis (PM) is the most frequent form of metastasis in gastric cancer (GC). The sensitivity of detecting PM by pre-operative imaging modalities is low. Utility of positron emission tomography (PET) with 18F-fluodeoxyglucose (FDG) for GC is limited, because diffuse-type tumors are not FDG-avid. 18F-fluothymidine ([F-18]FLT) is a radiotracer that reflects cellular proliferation and the utility of [F-18]FLT-PET in GC has been reported. In this proof-of-concept study, we explored the ability of [F-18]FLT-PET/CT to detect PM of GC previously identified by other imaging modalities. METHODS The key eligibility criteria were as follows; (i) histologically proven gastric adenocarcinoma; (ii) evident PM detected by CT performed within 4 weeks prior to registration; (iii) no prior treatment of PM within 4 weeks before registration. [F-18]FLT-PET/CT was performed at National Cancer Center Hospital, and [F-18]FLT-PET/CT images were evaluated independently by two radiologists. Safety assessments were carried out before and after [F-18]FLT-PET/CT. The primary end point was the detection sensitivity of PM. RESULTS A total of 19 eligible patients were analyzed, of which 15 (78.9%) had diffuse-type histology. Detection sensitivity of PM, primary lesion, and lymph node metastasis were 73.7% [maximum standardized uptake value (SUVmax): 1.697-13.21], 100% (SUVmax: 2.71-22.01), and 72.7% (SUVmax: 2.079-12.61), respectively. No patients experienced adverse events during or after [F-18]FLT-PET/CT. CONCLUSION This proof-of-concept study shows that [F-18]FLT-PET/CT is a sensitive method for detecting PM in GC, and paves the way for future studies investigating the clinical utility of this approach for the detection of clinically non-evident PM in GC. Advances in knowledge: This proof-of-concept study found that [F-18]FLT-PET/CT is a sensitive method for detecting peritoneal metastases in GC.
Collapse
Affiliation(s)
- Yoshitaka Honma
- 1 Gastrointestinal Medical Oncology Division, National Cancer Center Hospital , Tokyo , Japan
| | - Takashi Terauchi
- 2 Department of Nuclear Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research , Tokyo , Japan
| | - Ukihide Tateishi
- 3 Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University Graduate School of Medicine , Tokyo , Japan
| | - Daisuke Kano
- 3 Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University Graduate School of Medicine , Tokyo , Japan.,4 Department of Pharmacy, National Cancer Center Hospital East , Kashiwa , Japan
| | - Kengo Nagashima
- 5 Department of Global Clinical Research, Graduate School of Medicine, Chiba University , Chiba , Japan
| | - Hirokazu Shoji
- 1 Gastrointestinal Medical Oncology Division, National Cancer Center Hospital , Tokyo , Japan
| | - Satoru Iwasa
- 1 Gastrointestinal Medical Oncology Division, National Cancer Center Hospital , Tokyo , Japan
| | - Atsuo Takashima
- 1 Gastrointestinal Medical Oncology Division, National Cancer Center Hospital , Tokyo , Japan
| | - Ken Kato
- 1 Gastrointestinal Medical Oncology Division, National Cancer Center Hospital , Tokyo , Japan
| | - Tetsuya Hamaguchi
- 1 Gastrointestinal Medical Oncology Division, National Cancer Center Hospital , Tokyo , Japan
| | - Narikazu Boku
- 1 Gastrointestinal Medical Oncology Division, National Cancer Center Hospital , Tokyo , Japan
| | - Yasuhiro Shimada
- 1 Gastrointestinal Medical Oncology Division, National Cancer Center Hospital , Tokyo , Japan.,6 Department of Medical Oncology, Kochi Health Sciences Center , Kouchi , Japan
| | - Yasuhide Yamada
- 1 Gastrointestinal Medical Oncology Division, National Cancer Center Hospital , Tokyo , Japan.,7 Department of Clinical Oncology, Hamamatsu University School of Medicine , Hamamatsu , Japan.,8 Department of Oncology, National Center for Global Health and Medicine , Toyama , Japan
| |
Collapse
|
11
|
Schelhaas S, Heinzmann K, Honess DJ, Smith DM, Keen H, Heskamp S, Witney TH, Besret L, Doblas S, Griffiths JR, Aboagye EO, Jacobs AH. 3'-Deoxy-3'-[ 18F]Fluorothymidine Uptake Is Related to Thymidine Phosphorylase Expression in Various Experimental Tumor Models. Mol Imaging Biol 2018; 20:194-199. [PMID: 28971330 DOI: 10.1007/s11307-017-1125-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE We recently reported that high thymidine phosphorylase (TP) expression is accompanied by low tumor thymidine concentration and high 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) uptake in four untreated lung cancer xenografts. Here, we investigated whether this relationship also holds true for a broader range of tumor models. PROCEDURES Lysates from n = 15 different tumor models originating from n = 6 institutions were tested for TP and thymidylate synthase (TS) expression using western blots. Results were correlated to [18F]FLT accumulation in the tumors as determined by positron emission tomography (PET) measurements in the different institutions and to previously published thymidine concentrations. RESULTS Expression of TP correlated positively with [18F]FLT SUVmax (ρ = 0.549, P < 0.05). Furthermore, tumors with high TP levels possessed lower levels of thymidine (ρ = - 0.939, P < 0.001). CONCLUSIONS In a broad range of tumors, [18F]FLT uptake as measured by PET is substantially influenced by TP expression and tumor thymidine concentrations. These data strengthen the role of TP as factor confounding [18F]FLT uptake.
Collapse
Affiliation(s)
- Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Kathrin Heinzmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
| | - Davina J Honess
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Heather Keen
- PHB Imaging Group, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Timothy H Witney
- Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
- UCL Centre for Advanced Biomedical Imaging, University College London, London, UK
| | | | | | - John R Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Waldeyerstr. 15, 48149, Münster, Germany.
- Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany.
| |
Collapse
|
12
|
Early assessment of response to induction therapy in acute myeloid leukemia using 18F-FLT PET/CT. EJNMMI Res 2017; 7:75. [PMID: 28916904 PMCID: PMC5602811 DOI: 10.1186/s13550-017-0326-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/07/2017] [Indexed: 12/24/2022] Open
Abstract
Background We evaluated the suitability of 18F-fluorodeoxythymidine (18F-FLT) positron emission tomography (PET)/computed tomography (CT) for assessment of the early response to induction therapy and its value for predicting clinical outcome in patients with acute myeloid leukemia (AML). Adult patients who had histologically confirmed AML and received induction therapy were enrolled. All patients underwent 18F-FLT PET/CT after completion of induction. PET/CT images were visually and quantitatively assessed. Cases with intensely increased bone marrow uptake in more than one third of the long bones and throughout the central skeleton were interpreted as PET-positive for resistant disease (RD). PET results were compared to the clinical response and outcome. Results In visual PET analysis of 10 eligible patients (7 male, 3 female; median age 58 years), 5 patients were interpreted as being PET-positive and 5 as PET-negative. Standardized uptake values were significantly different between PET-positive and PET-negative groups. Eight of 10 patients achieved clinical complete remission (CR)/CR with incomplete blood count recovery (CRi). Five CR/CRi patients had PET-negative findings, but 3 CR patients had PET-positive findings. Both of the RD patients had PET-positive findings. During follow-up, 2 CR patients with PET-positive findings relapsed, or were strongly suspected of relapse, 4 months after consolidation. Conclusion 18F-FLT PET/CT after induction therapy showed good sensitivity and negative-predictive value for evaluating RD in patients with AML. This preliminary study suggests that 18F-FLT PET/CT may be valuable as a noninvasive tool for early assessment of the response to treatment and may provide prognostic value for survival in patients with AML.
Collapse
|
13
|
Preclinical Evaluation and Monitoring of the Therapeutic Response of a Dual Targeted Hyaluronic Acid Nanodrug. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:4972701. [PMID: 29097925 PMCID: PMC5612705 DOI: 10.1155/2017/4972701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/11/2017] [Indexed: 12/02/2022]
Abstract
Chemotherapy is a powerful cancer treatment but suffers from poor biocompatibility and a lack of tumor targeting. Here, we developed a CD44-targeted polymeric nanocomplex by encapsulating 10-hydroxycamptothecin (HCPT) into hyaluronic acid nanoparticles (HANP) for targeted cancer therapy. In vitro, the HANP/HCPT showed improved cytotoxicity to five cancer cell lines including HT29, A549, MDA-MB-231, HepG2, and MDA-MB-435 versus free HCPT. After systemic administration into MDA-MB-231 breast cancer xenograft, tumor growth was significantly inhibited 5.25 ± 0.21 times in the HANP/HCPT treated group relative to the nontreated group. In addition, the treatment response was also accessed and confirmed by 18F-fluoro-2-deoxy-D-glucose ([18F] FDG) positron emission tomography (PET). The MDA-MB-231 tumors responded to HANP/HCPT 7 days after the first treatment, which benefits treatment strategy adjustment and personalization. No apparent systemic toxic effects were seen in mice treated with HANP/HCPT. In summary, the HANPs have great promise as a targeted drug carrier for cancer chemotherapy. Our HANP platform can also deliver other hydrophobic chemotherapy agents.
Collapse
|
14
|
McHugh CI, Lawhorn-Crews JM, Modi D, Douglas KA, Jones SK, Mangner TJ, Collins JM, Shields AF. Effects of capecitabine treatment on the uptake of thymidine analogs using exploratory PET imaging agents: 18F-FAU, 18F-FMAU, and 18F-FLT. Cancer Imaging 2016; 16:34. [PMID: 27751167 PMCID: PMC5067904 DOI: 10.1186/s40644-016-0092-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/03/2016] [Indexed: 12/02/2022] Open
Abstract
Background A principal goal for the use of positron emission tomography (PET) in oncology is for real-time evaluation of tumor response to chemotherapy. Given that many contemporary anti-neoplastic agents function by impairing cellular proliferation, it is of interest to develop imaging modalities to monitor these pathways. Here we examined the effect of capecitabine on the uptake of thymidine analogs used with PET: 3’-deoxy-3’-[18F]fluorothymidine (18F-FLT), 1-(2’-deoxy-2’-[18F]fluoro-β-D-arabinofuranosyl) thymidine (18F-FMAU), and 1-(2’-deoxy-2’-[18F]fluoro-β-D-arabinofuranosyl) uracil (18F-FAU) in patients with advanced cancer. Methods Fifteen patients were imaged, five with each imaging agent. Patients had been previously diagnosed with breast, colorectal, gastric, and esophageal cancers and had not received therapy for at least 4 weeks prior to the first scan, and had not been treated with any prior fluoropyrimidines. Subjects were imaged within a week before the start of capecitabine and on the second day of treatment, after the third dose of capecitabine. Tracer uptake was quantified by mean standard uptake value (SUVmean) and using kinetic analysis. Results Patients imaged with 18F-FLT showed variable changes in retention and two patients exhibited an increase in SUVmean of 172.3 and 89.9 %, while the other patients had changes ranging from +19.4 to -25.4 %. The average change in 18F-FMAU retention was 0.2 % (range -24.4 to 23.1) and 18F-FAU was -10.2 % (range -40.3 to 19.2). Observed changes correlated strongly with SUVmax but not kinetic measurements. Conclusions This pilot study demonstrates that patients treated with capecitabine can produce a marked increase in 18F-FLT retention in some patients, which will require further study to determine if this flare is predictive of therapeutic response. 18F-FAU and 18F-FMAU showed little change, on average, after treatment. Electronic supplementary material The online version of this article (doi:10.1186/s40644-016-0092-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher I McHugh
- Cancer Biology Graduate Program, Wayne State University, Detroit, MI, 48201, USA
| | - Jawana M Lawhorn-Crews
- Karmanos Cancer Institute and Oncology, Wayne State University, 4100 John R., HW04HO, Detroit, MI, 48201, USA
| | - Dipenkumar Modi
- Karmanos Cancer Institute and Oncology, Wayne State University, 4100 John R., HW04HO, Detroit, MI, 48201, USA
| | - Kirk A Douglas
- Karmanos Cancer Institute and Oncology, Wayne State University, 4100 John R., HW04HO, Detroit, MI, 48201, USA
| | - Steven K Jones
- Cancer Biology Graduate Program, Wayne State University, Detroit, MI, 48201, USA
| | | | | | - Anthony F Shields
- Karmanos Cancer Institute and Oncology, Wayne State University, 4100 John R., HW04HO, Detroit, MI, 48201, USA.
| |
Collapse
|
15
|
Hureaux J, Couturier O, Lacœuille F, Bouchet F, Chouaïd C, Saulnier P, Urban T. [Can positron emission tomography assessment of response to treatment help to individualize use of erlotinib in non-small cell lung cancer?]. Rev Mal Respir 2016; 33:817-823. [PMID: 27257103 DOI: 10.1016/j.rmr.2016.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/08/2016] [Indexed: 11/30/2022]
Abstract
Erlotinib can be prescribed in the treatment of locally advanced or metastatic non-small lung cancer cell (NSCLC) after failure of at least one prior chemotherapy regimen on the basis of the BR-21 study. Several publications have recently questioned these results. The metabolic imaging of solid tumours by positron emission tomography is a research field that could help customize the treatment of NSCLC and so complement the treatment approaches allowed by genetic analyses. This strategy is part of an innovative "early metabolic look" approach. The primary objective of this study is to determine if metabolic progression observed between the 7th and 14th day after initiation of treatment with erlotinib by 3'-Deoxy-3'-[18F]-Fluorothymidine PET in patients with EGFR naive NSCLC is predictive for morphological progression after 6 to 8 weeks of treatment. A health economic analysis will be conducted. This study is particularly innovative because it begins the exploration of the era of metabolic evaluation of therapeutic response in NSCLC.
Collapse
Affiliation(s)
- J Hureaux
- Département de pneumologie, allergologie et oncologie, LUNAM université, centre hospitalier universitaire, 4, rue Larrey, 49933 Angers cedex 9, France.
| | - O Couturier
- Service de médecine nucléaire, LUNAM université, centre hospitalier universitaire, 4, rue Larrey, 49933 Angers cedex 9, France
| | - F Lacœuille
- Service de médecine nucléaire, LUNAM université, centre hospitalier universitaire, 4, rue Larrey, 49933 Angers cedex 9, France
| | - F Bouchet
- Service de médecine nucléaire, LUNAM université, centre hospitalier universitaire, 4, rue Larrey, 49933 Angers cedex 9, France
| | - C Chouaïd
- Service de pneumologie, centre interhospitalier de Créteil, 94000 Créteil, France
| | - P Saulnier
- DRCI - cellule de méthodologie et de biostatistiques, centre hospitalier universitaire, 4, rue Larrey, 49933 Angers cedex 9, France
| | - T Urban
- Département de pneumologie, allergologie et oncologie, LUNAM université, centre hospitalier universitaire, 4, rue Larrey, 49933 Angers cedex 9, France
| | | |
Collapse
|
16
|
Automated and efficient radiosynthesis of [(18)F]FLT using a low amount of precursor. Nucl Med Biol 2016; 43:520-7. [PMID: 27314451 DOI: 10.1016/j.nucmedbio.2016.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/02/2016] [Accepted: 05/19/2016] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Since 1991 until now, many radiosyntheses of [(18)F]FLT have been published. Most of them suffer from side reactions and/or difficult purification related to the large amount of precursor necessary for the labeling step. A fully automated synthesis using only commercial and unmodified materials with a reduced amount of precursor would be desirable. METHODS We first explored the possibility to elute efficiently [(18)F]fluorine from commercial and unmodified cartridges with various amount of base. Based on these results, 10mg and 5mg of precursors were used for the fluorination step. The best conditions were transposed in an automated process for a one pot two steps synthesis of labeled FLT. RESULTS Using commercial and non-treated carbonate form of QMA cartridges, we were able to elute quantitatively the [(18)F]fluorine with a very low amount of base (0.59mg) and, with only 5mg of precursor, to perform an efficient fluorination reaction with up to 94% incorporation of [(18)F]fluorine. The synthesis was fully automated and radiochemical yields of 54% (decay corrected) were obtained within a synthesis time of 52minutes. CONCLUSION We demonstrate that a fully automated and efficient radiosynthesis of [(18)F]FLT is feasible with only 5mg of precursor. Compare to the present state of the art, our method provides high yields of pure [(18)F]FLT and is broadly adaptable to other synthesis automates.
Collapse
|
17
|
Abstract
This article provides an overview of the key considerations for the development and application of molecular imaging agents for brain tumors and the major classes of PET tracers that have been used for imaging brain tumors in humans. The mechanisms of uptake, biological implications, primary applications, and limitations of PET tracers in neuro-oncology are reviewed. The available data indicate that several of these classes of tracers, including radiolabeled amino acids, have imaging properties superior to those of (18)F-fluorodeoxyglucose, and can complement contrast-enhanced magnetic resonance imaging in the evaluation of brain tumors.
Collapse
|
18
|
Szyszko TA, Yip C, Szlosarek P, Goh V, Cook GJR. The role of new PET tracers for lung cancer. Lung Cancer 2016; 94:7-14. [PMID: 26973200 DOI: 10.1016/j.lungcan.2016.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/17/2016] [Indexed: 01/04/2023]
Abstract
18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET/CT) is established for characterising indeterminate pulmonary nodules and staging lung cancer where there is curative intent. Whilst a sensitive technique, specificity for characterising lung cancer is limited. There is recognition that evaluation of other aspects of abnormal cancer biology in addition to glucose metabolism may be more helpful in characterising tumours and predicting response to novel targeted cancer therapeutics. Therefore, efforts have been made to develop and evaluate new radiopharmaceuticals in order to improve the sensitivity and specificity of PET imaging in lung cancer with regards to characterisation, treatment stratification and therapeutic monitoring. 18F-fluorothymidine (18F-FLT) is a marker of cellular proliferation. It shows a lower accumulation in tumours than 18F-FDG as it only accumulates in the cells that are in the S phase of growth and demonstrates a low sensitivity for nodal staging. Its main role is in evaluating treatment response. Methionine is an essential amino acid. 11C-methionine is more specific and sensitive than 18F-FDG in differentiating benign and malignant thoracic nodules. 18Ffluoromisonidazole (18F-FMISO) is used for imaging tumour hypoxia. Tumour response to treatment is significantly related to the level of tumour oxygenation. Angiogenesis is the process by which new blood vessels are formed in tumours and is involved in tumour growth and metastatic tumour spread and is a therapeutic target. Most clinical studies have focused on targeted integrin PET imaging of which αvβ3 integrin is the most extensively investigated. It is upregulated on activated endothelial cells in association with tumour angiogenesis. Neuroendocrine tumour tracers, particularly 68Ga-DOTA-peptides, have an established role in imaging of carcinoid tumours. Whilst most of these tracers have predominantly been used in the research environment, they offer exciting opportunities for improving staging, characterisation, stratification and response assessment in an era of increased personalised therapy in lung cancer.
Collapse
Affiliation(s)
- Teresa A Szyszko
- King's College London and Guy's & St. Thomas' PET Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, London SE1 7EH, UK; Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Connie Yip
- King's College London and Guy's & St. Thomas' PET Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, London SE1 7EH, UK; Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK; Department of Radiation Oncology, National Cancer Centre Singapore 169610, Singapore
| | - Peter Szlosarek
- Lung and Mesothelioma Unit, Department of Medical Oncology, KGV Basement, St. Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Vicky Goh
- Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK; Radiology Department, Guys & St. Thomas' NHS Trust, London SE1 7EH, UK
| | - Gary J R Cook
- King's College London and Guy's & St. Thomas' PET Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, London SE1 7EH, UK; Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| |
Collapse
|
19
|
Lamarca A, Asselin MC, Manoharan P, McNamara MG, Trigonis I, Hubner R, Saleem A, Valle JW. 18F-FLT PET imaging of cellular proliferation in pancreatic cancer. Crit Rev Oncol Hematol 2016; 99:158-69. [PMID: 26778585 DOI: 10.1016/j.critrevonc.2015.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/19/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is known for its poor prognosis. Since the development of computerized tomography, magnetic resonance and endoscopic ultrasound, novel imaging techniques have struggled to get established in the management of patients diagnosed with pancreatic adenocarcinoma for several reasons. Thus, imaging assessment of pancreatic cancer remains a field with scope for further improvement. In contrast to cross-sectional anatomical imaging methods, molecular imaging modalities such as positron emission tomography (PET) can provide information on tumour function. Particularly, tumour proliferation may be assessed by measurement of intracellular thymidine kinase 1 (TK1) activity level using thymidine analogues radiolabelled with a positron emitter for use with PET. This approach, has been widely explored with [(18)F]-fluoro-3'-deoxy-3'-L-fluorothymidine ((18)F-FLT) PET. This manuscript reviews the rationale and physiology behind (18)F-FLT PET imaging, with special focus on pancreatic cancer and other gastrointestinal malignancies. Potential benefit and challenges of this imaging technique for diagnosis, staging and assessment of treatment response in abdominal malignancies are discussed.
Collapse
Affiliation(s)
- Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Marie-Claude Asselin
- University of Manchester Wolfson Molecular Imaging Centre (WMIC), Manchester, United Kingdom
| | - Prakash Manoharan
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mairéad G McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; University of Manchester, Institute of Cancer Sciences, Manchester Academic Health Science Centre, Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Ioannis Trigonis
- University of Manchester Wolfson Molecular Imaging Centre (WMIC), Manchester, United Kingdom
| | - Richard Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Azeem Saleem
- University of Manchester Wolfson Molecular Imaging Centre (WMIC), Manchester, United Kingdom; Imanova Centre for Imaging Sciences, Imperial College Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; University of Manchester, Institute of Cancer Sciences, Manchester Academic Health Science Centre, Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
20
|
Huang YC, Huang HL, Yeh CN, Lin KJ, Yu CS. Investigation of brain tumors using (18)F-fluorobutyl ethacrynic amide and its metabolite with positron emission tomography. Onco Targets Ther 2015; 8:1877-85. [PMID: 26244025 PMCID: PMC4521672 DOI: 10.2147/ott.s78404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To date, imaging of malignant glioma remains challenging. In positron emission tomography-related diagnostic imaging, differential tumor uptake of 3′-deoxy-3′-[18F] fluorothymidine ([18F]FLT) has been shown to reflect the levels of cell proliferation and DNA synthesis. However, additional biomarkers for tumors are urgently required. Aberrant levels of glutathione transferase (GST) activity have been hypothesized to constitute such a novel diagnostic marker. Here, a C6 rat glioma tumor model was used to assess the ability of the positron emission tomography tracers, [18F]FLT and 18F-fluorobutyl ethacrynic amide ([18F]FBuEA), to indicate reactive oxygen species-induced stress responses as well as detoxification-related processes in tumors. Using a GST activity assay, we were able to demonstrate that FBuEA is more readily catalyzed by GST-π than by GST-α. Furthermore, we showed that FBuEA-GS, a metabolite of FBuEA, elicits greater cytotoxicity in tumor cells than in normal fibroblast cells. Finally, in vitro and in vivo investigation of radiotracer distribution of [18F]FBuEA and [18F] FBuEA-GS revealed preferential accumulation in C6 glioma tumor cells over normal fibroblast cells for [18F]FBuEA-GS but not for [18F]FBuEA.
Collapse
Affiliation(s)
- Ying-Cheng Huang
- Department of Neurosurgery, Chang-Gung Memorial Hospital at Linkou, Chang Gung University, Hsinchu, Taiwan
| | - Ho-Lien Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsinghua University, Hsinchu, Taiwan
| | - Chun-Nan Yeh
- Department of Surgery, Chang Gung University, Hsinchu, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine, Chang-Gung Memorial Hospital at Linkou, Chang Gung University, Hsinchu, Taiwan
| | - Chung-Shan Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsinghua University, Hsinchu, Taiwan ; Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu, Taiwan
| |
Collapse
|
21
|
Deng SM, Zhang W, Zhang B, Chen YY, Li JH, Wu YW. Correlation between the Uptake of 18F-Fluorodeoxyglucose (18F-FDG) and the Expression of Proliferation-Associated Antigen Ki-67 in Cancer Patients: A Meta-Analysis. PLoS One 2015; 10:e0129028. [PMID: 26038827 PMCID: PMC4454667 DOI: 10.1371/journal.pone.0129028] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/04/2015] [Indexed: 12/22/2022] Open
Abstract
Objective To study the correlation between 18F-FDG uptake and cell proliferation in cancer patients by meta-analysis of published articles. Methods We searched PubMed (MEDLINE included), EMBASE, and Cochrane Database of Systematic Review, and selected research articles on the relationship between 18F-FDG uptake and Ki-67 expression (published between August 1, 1994-August 1, 2014), according to the literature inclusion and exclusion criteria. The publishing language was limited to English. The quality of included articles was evaluated according to the Quality Assessment of Diagnosis Accuracy Studies-2 (QUADAS-2). The correlation coefficient (r) was extracted from the included articles and processed by Fisher's r-to-z transformation. The combined correlation coefficient (r) and the 95% confidence interval (CI) were calculated with STATA 11.0 software under a random-effects model. Begg's test was used to analyze the existence of publication bias and draw funnel plot, and the sources of heterogeneity were explored by sensitivity and subgroup analyses. Results According to the inclusion and exclusion criteria, 79 articles were finally included, including 81 studies involving a total of 3242 patients. All the studies had a combined r of 0.44 (95% CI, 0.41-0.46), but with a significant heterogeneity (I2 = 80.9%, P<0.01). Subgroup analysis for different tumor types indicated that most subgroups showed a reduced heterogeneity. Malignant melanoma (n = 1) had the minimum correlation coefficient (-0.22) between 18F-FDG uptake and Ki-67 expression, while the thymic epithelial tumors (TETs; n = 2) showed the maximum correlation coefficient of 0.81. The analytical results confirmed that correlation between 18F-FDG uptake and Ki-67 expression was extremely significant in TETs, significant in gastrointestinal stromal tumors (GISTs), moderate in patients with lung, breast, bone and soft tissue, pancreatic, oral, thoracic, and uterine and ovarian cancers, average in brain, esophageal and colorectal cancers, and poor in head and neck, thyroid, gastric and malignant melanoma tumors. Subgroup analysis indicated that positron emission tomography (PET) or PET/CT imaging technology or Ki-67 and standardized uptake value (SUV) measurement technology did not significantly affect the results of r values, and Begg's test showed no significant publication bias. Conclusion In cancer patients, 18F-FDG uptake showed a moderate positive correlation with tumor cell proliferation. Different tumor types exhibited varied degree of correlation, and the correlation was significant in TETs and GSTs. However, our results need further validation by clinical trials with a large sample of different tumor types.
Collapse
Affiliation(s)
- Sheng-ming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Wei Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
- * E-mail:
| | - Yin-yin Chen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ji-hui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-wei Wu
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
22
|
Lee HJ, Oh SJ, Lee EJ, Chung JH, Kim Y, Ryu JS, Kim SY, Lee SJ, Moon DH, Kim TW. Positron emission tomography imaging of human colon cancer xenografts in mice with [18F]fluorothymidine after TAS-102 treatment. Cancer Chemother Pharmacol 2015; 75:1005-13. [PMID: 25776904 DOI: 10.1007/s00280-015-2718-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 02/27/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE TAS-102 is an orally administered anticancer agent composed of α,α,α-trifluorothymidine (FTD) and thymidine phosphorylase inhibitor (TPI). This study assessed 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) uptake after TAS-102 administration. METHODS The human colorectal carcinoma cell lines HCT116, HT29, HCT8 and SW620 were exposed to FTD for 2 h, further incubated for 0, 2 and 24 h, and assayed for [(3)H]FLT uptake, nucleoside transport, thymidine kinase 1 (TK1) expression and TK1 activity. Static and 2-h dynamic [(18)F]FLT positron emission tomography (PET) was performed in mice bearing HT29 or SW620 tumours orally administered with vehicle or TAS-102. RESULTS FTD decreased the viability of all cell lines, whereas increased [(3)H]FLT uptake (P < 0.05). Increased nucleoside transport and/or TK1 expression were observed 24 h after FTD, but not in 0-2 h. Static [(18)F]FLT PET in mice bearing HT29 tumours showed accumulation of [(18)F]FLT in tumours 1 h (day 1) after TAS-102. Two-hour dynamic PET in mice bearing SW620 tumours showed increased influx constant and volume of distribution of phosphorylated [(18)F]FLT on days 1 and 8 (P < 0.05) after TAS-102 with decreased dephosphorylation on day 1 (P < 0.001). Ex vivo studies showed that SW620 tumours after TAS-102 had higher TK1 expression than those with vehicle on days 8 and 15. CONCLUSION TAS-102 administration induces an increase in [(18)F]FLT uptake. Mechanisms may involve decreased dephosphorylation of [(18)F]FLT phosphate early after TAS-102 administration. Increased TK1 expression and/or nucleoside transporter may be related to increased [(18)F]FLT uptake at a later time. [(18)F]FLT PET has a potential to assess the pharmacodynamics of TAS-102 in cancer patients.
Collapse
Affiliation(s)
- Haeng Jung Lee
- Institute for Innovative Cancer Research, Asan Institute for Life Science, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Nakajo M, Nakajo M, Kajiya Y, Goto Y, Jinguji M, Tanaka S, Fukukura Y, Tani A, Higashi M. Correlations of (18)F-fluorothymidine uptake with pathological tumour size, Ki-67 and thymidine kinase 1 expressions in primary and metastatic lymph node colorectal cancer foci. Eur Radiol 2014; 24:3199-209. [PMID: 25120206 DOI: 10.1007/s00330-014-3379-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/04/2014] [Accepted: 07/29/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To examine correlations of (18)F-fluorothymidine (FLT) uptake with pathological tumour size and immunohistochemical Ki-67, and thymidine kinase 1 (TK-1) expressions in primary and metastatic node colorectal cancer foci. METHODS Thirty primary cancers (PCs) and 37 metastatic nodes (MNs) were included. FLT uptake was assessed by visual scores (non-visible: 0-1 and visible: 2-4), standardized uptake value (SUV), and correlated with size, Ki-67, and TK-1. SUV was measured in visible lesions. FLT heterogeneity was assessed by visual scores (no heterogeneous uptake: 0 and heterogeneous uptake: 1-4). RESULTS Forty-two lesions were visible. The visible group showed significantly higher values than the non-visible group in size, Ki-67, and TK-1 (each p < 0.05). Size correlated significantly with visual score (PC; ρ = 0.74 and MN; ρ = 0.63), SUVmax (PC; ρ = 0.49, and MN; ρ = 0.76), and SUVmean (PC; ρ = 0.40 and MN; ρ = 0.76) (each p < 0.05). Visual score correlated significantly with size (ρ = 0.86), Ki-67max (ρ = 0.35), Ki-67mean (ρ = 0.38), TK-1max (ρ = 0.35) and TK-1mean (ρ = 0.25) (each p < 0.05). No significant correlations were found between FLT uptake and Ki-67 or TK-1 in 42 visible lesions (each p > 0.05). Heterogeneous FLT uptake was noted in 73 % (22/30) of PCs. CONCLUSION FLT uptake correlated with size. Heterogeneous FLT distribution in colorectal cancers may be one of the causes of weak or lack of FLT uptake/Ki-67 or TK-1 correlation. KEY POINTS FLT uptake correlated well with tumour size in colorectal cancer. Weak or lack of FLT uptake/Ki-67 and TK-1 correlations were observed. Immunohistochemical Ki-67 and TK-1 expressions are not always correlated with FLT uptake.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sala R, Nguyen QD, Patel CBK, Mann D, Steinke JHG, Vilar R, Aboagye EO. Phosphorylation status of thymidine kinase 1 following antiproliferative drug treatment mediates 3'-deoxy-3'-[18F]-fluorothymidine cellular retention. PLoS One 2014; 9:e101366. [PMID: 25003822 PMCID: PMC4086825 DOI: 10.1371/journal.pone.0101366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/05/2014] [Indexed: 12/29/2022] Open
Abstract
Background 3′-Deoxy-3′-[18F]-fluorothymidine ([18F]FLT) is being investigated as a Positron Emission Tomography (PET) proliferation biomarker. The mechanism of cellular [18F]FLT retention has been assigned primarily to alteration of the strict transcriptionally regulated S-phase expression of thymidine kinase 1 (TK1). This, however, does not explain how anticancer agents acting primarily through G2/M arrest affect [18F]FLT uptake. We investigated alternative mechanisms of [18F]FLT cellular retention involving post-translational modification of TK1 during mitosis. Methods [18F]FLT cellular retention was assessed in cell lines having different TK1 expression. Drug-induced phosphorylation of TK1 protein was evaluated by MnCl2-phos-tag gel electrophoresis and correlated with [18F]FLT cellular retention. We further elaborated the amino acid residues involved in TK1 phosphorylation by transient transfection of FLAG-pCMV2 plasmids encoding wild type or mutant variants of TK1 into TK1 negative cells. Results Baseline [18F]FLT cellular retention and TK1 protein expression were associated. S-phase and G2/M phase arrest caused greater than two-fold reduction in [18F]FLT cellular retention in colon cancer HCT116 cells (p<0.001). G2/M cell cycle arrest increased TK1 phosphorylation as measured by induction of at least one phosphorylated form of the protein on MnCl2-phos-tag gels. Changes in [18F]FLT cellular retention reflected TK1 phosphorylation and not expression of total protein, in keeping with the impact of phosphorylation on enzyme catalytic activity. Both Ser13 and Ser231 were shown to be involved in the TK1 phosphorylation-modulated [18F]FLT cellular retention; although the data suggested involvement of other amino-acid residues. Conclusion We have defined a regulatory role of TK1 phosphorylation in mediating [18F]FLT cellular retention and hence reporting of antiproliferative activity, with implications especially for drugs that induce a G2/M cell cycle arrest.
Collapse
Affiliation(s)
- Roberta Sala
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Quang-Dé Nguyen
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Chirag B. K. Patel
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London, United Kingdom
| | - David Mann
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Joachim H. G. Steinke
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London, United Kingdom
| | - Ramon Vilar
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London, United Kingdom
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Schelhaas S, Wachsmuth L, Viel T, Honess DJ, Heinzmann K, Smith DM, Hermann S, Wagner S, Kuhlmann MT, Müller-Tidow C, Kopka K, Schober O, Schäfers M, Schneider R, Aboagye EO, Griffiths J, Faber C, Jacobs AH. Variability of Proliferation and Diffusion in Different Lung Cancer Models as Measured by 3'-Deoxy-3'-¹⁸F-Fluorothymidine PET and Diffusion-Weighted MR Imaging. J Nucl Med 2014; 55:983-8. [PMID: 24777288 DOI: 10.2967/jnumed.113.133348] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/15/2014] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Molecular imaging allows the noninvasive assessment of cancer progression and response to therapy. The aim of this study was to investigate molecular and cellular determinants of 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) PET and diffusion-weighted (DW) MR imaging in lung carcinoma xenografts. METHODS Four lung cancer cell lines (A549, HTB56, EBC1, and H1975) were subcutaneously implanted in nude mice, and growth was followed by caliper measurements. Glucose uptake and tumor proliferation were determined by (18)F-FDG and (18)F-FLT PET, respectively. T2-weighted MR imaging was performed, and the apparent diffusion coefficient (ADC) was determined by DW MR imaging as an indicator of cell death. Imaging findings were correlated to histology with markers for tumor proliferation (Ki67, 5-bromo-2'-deoxyuridine [BrdU]) and cell death (caspase-3, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling). The expression of human equilibrative nucleoside transporter 1 (hENT1), thymidine kinase 1 (TK1), thymidylate synthase, and thymidine phosphorylase (TP) were analyzed by Western blot and immunohistochemistry. Thymidine levels were determined by liquid chromatography-mass spectrometry. RESULTS Xenografts varied with respect to in vivo growth rates. MR imaging and PET revealed intratumoral heterogeneities, which were confirmed by histology. (18)F-FLT uptake differed significantly between tumor lines, with A549 and H1975 demonstrating the highest radiotracer accumulation (A549, 8.5 ± 3.2; HTB56, 4.4 ± 0.7; EBC1, 4.4 ± 1.2; and H1975, 12.1 ± 3.5 maximal percentage injected dose per milliliter). In contrast, differences in (18)F-FDG uptake were only marginal. No clear relationship between (18)F-FLT accumulation and immunohistochemical markers for tumor proliferation (Ki67, BrdU) as well as hENT1, TK1, or TS expression was detected. However, TP was highly expressed in A549 and H1975 xenografts, which was accompanied by low tumor thymidine concentrations, suggesting that tumor thymidine levels influence (18)F-FLT uptake in the tumor models investigated. MR imaging revealed higher ADC values within proliferative regions of H1975 and A549 tumors than in HTB56 and EBC1. These ADC values were negatively correlated with cell density but not directly related to cell death. CONCLUSION A direct relationship of (18)F-FLT with proliferation or ADC with cell death might be complicated by the interplay of multiple processes at the cellular and physiologic levels in untreated tumors. This issue must be considered when using these imaging modalities in preclinical or clinical settings.
Collapse
Affiliation(s)
- Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Thomas Viel
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Davina J Honess
- Cancer Research United Kingdom Cambridge Institute, Cambridge, United Kingdom
| | - Kathrin Heinzmann
- Cancer Research United Kingdom Cambridge Institute, Cambridge, United Kingdom
| | | | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Michael T Kuhlmann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Carsten Müller-Tidow
- Department of Hematology and Oncology, University Hospital of Münster, Münster, Germany
| | - Klaus Kopka
- Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Otmar Schober
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | | | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, London, United Kingdom; and
| | - John Griffiths
- Cancer Research United Kingdom Cambridge Institute, Cambridge, United Kingdom
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany
| |
Collapse
|
27
|
Herrmann K, Buck AK. Proliferation imaging with ¹⁸F-fluorothymidine PET/computed tomography: physiologic uptake, variants, and pitfalls. PET Clin 2014; 9:331-8. [PMID: 25030396 DOI: 10.1016/j.cpet.2014.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For noninvasive in vivo imaging of proliferation, 18F-FLT PET/CT remains a promising tool, owing to its correlation with proliferation indexes in many tumor entities. Future clinical applications will focus on monitoring response to cancer therapy, whereas tumor detection will be limited to organs with high physiologic 18F-FDG uptake. Use and interpretation of 18F-FLT requires knowledge of the physiologic tracer distribution and how it will be affected by anticancer treatment. Further studies are needed to determine the optimal timing of 18F-FLT PET/CT imaging in the course of cancer therapies or at the conclusion of therapy.
Collapse
Affiliation(s)
- Ken Herrmann
- Department of Nuclear Medicine, Universitätsklinikum Würzburg, Oberdürrbacher Str. 6, Würzburg 97080, Germany.
| | - Andreas K Buck
- Department of Nuclear Medicine, Universitätsklinikum Würzburg, Oberdürrbacher Str. 6, Würzburg 97080, Germany
| |
Collapse
|
28
|
Thymidine phosphorylase influences [18F]fluorothymidine uptake in cancer cells and patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2014; 41:1327-35. [DOI: 10.1007/s00259-014-2712-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/20/2014] [Indexed: 01/09/2023]
|
29
|
Wondergem MJ, Herrmann K, Syrbu S, Zijlstra JM, Hoetjes N, Hoekstra OS, Cillessen SA, Moesbergen LM, Buck AK, Vose JM, Juweid ME. 18 F-fluorothymidine uptake in follicular lymphoma and error-prone DNA repair. EJNMMI Res 2014; 4:3. [PMID: 24397937 PMCID: PMC3895783 DOI: 10.1186/2191-219x-4-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/18/2013] [Indexed: 11/23/2022] Open
Abstract
Background We observed a disproportional 18 F-fluorothymidine (F-FLT) uptake in follicular lymphoma (FL) relative to its low cell proliferation. We tested the hypothesis that the ‘excess’ uptake of 18 F-FLT in FL is related to error-prone DNA repair and investigated whether this also contributes to 18 F-FLT uptake in diffuse large B cell lymphoma (DLBCL). Methods We performed immunohistochemical stainings to assess the pure DNA replication marker MIB-1 as well as markers of both DNA replication and repair like PCNA, TK-1 and RPA1 on lymph node biopsies of 27 FLs and 35 DLBCLs. In 7 FL and 15 DLBCL patients, 18 F-FLT-PET had been performed. Results 18 F-FLT uptake was lower in FL than in DLBCL (median SUVmax 5.7 vs. 8.9, p = 0,004), but the ratio of 18 F-FLT-SUVmax to percentage of MIB-1 positive cells was significantly higher in FL compared with DLBCL (p = 0.001). The median percentage of MIB-1 positive cells was 10% (range, 10% to 20%) in FL and 70% (40% to 80%) in DLBCL. In contrast, the median percentages of PCNA, TK-1 and RPA1 positive cells were 90% (range, 80 to 100), 90% (80 to 100) and 100% (80 to 100) in FL versus 90% (60 to 100), 90% (60 to 100) and 100% (80 to 100) in DLBCL, respectively. Conclusions This is the first demonstration of a striking discordance between 18 F-FLT uptake in FL and tumour cell proliferation. High expression of DNA replication and repair markers compared with the pure proliferation marker MIB-1 in FL suggests that this discordance might be due to error-prone DNA repair. While DNA repair-related 18 F-FLT uptake considerably contributes to 18 F-FLT uptake in FL, its contribution to 18 F-FLT uptake in highly proliferative DLBCL is small. This apparently high contribution of DNA repair to the 18 F-FLT signal in FL may hamper studies where 18 F-FLT is used to assess response to cytostatic therapy or to distinguish between FL and transformed lymphoma.
Collapse
Affiliation(s)
- Marielle J Wondergem
- Department of Haematology, VU University Medical Center (VUMC), De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Imaging of treatment response to the combination of carboplatin and paclitaxel in human ovarian cancer xenograft tumors in mice using FDG and FLT PET. PLoS One 2013; 8:e85126. [PMID: 24386456 PMCID: PMC3873431 DOI: 10.1371/journal.pone.0085126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/21/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction A combination of carboplatin and paclitaxel is often used as first line chemotherapy for treatment of ovarian cancer. Therefore the use of imaging biomarkers early after initiation of treatment to determine treatment sensitivity would be valuable in order to identify responders from non-responders. In this study we describe the non-invasive PET imaging of glucose uptake and cell proliferation using 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and 3’-deoxy-3’-[18F]fluorothymidine (FLT) for early assessment of treatment response in a pre-clinical mouse model of human ovarian cancer treated with carboplatin and paclitaxel. Methods Invivo uptake of FLT and FDG in human ovarian cancer xenografts in mice (A2780) was determined before treatment with carboplatin and paclitaxel (CaP) and repeatedday 1, 4 and 8 after treatment start. Tracer uptake was quantified using small animal PET/CT. Tracer uptake was compared with gene expression of Ki67, TK1, GLUT1, HK1 and HK2. Results Tumors in the CaP group was significantly smaller than in the control group (p=0.03) on day 8. On day 4 FDG SUVmax ratio was significantly lower in the CaP group compared to the control group (105±4% vs 138±9%; p=0.002) and on day 8 the FDG SUVmax ratio was lower in the CaP compared to the control group (125±13% vs 167±13%; p=0.05). On day 1 the uptake of FLT SUVmax ratio was 89±9% in the CaP group and 109±6% in the control group; however the difference was not statistically significant (p=0.08). Conclusions Our data suggest that both FDG and FLT PET may be used for the assessment of anti-tumor effects of a combination of carboplatin and paclitaxel in the treatment of ovarian cancer. FLT provides an early and transient signal and FDG a later and more prolonged response. This underscores the importance of optimal timing between treatment and FLT or FDG imaging since treatment response may otherwise be overlooked.
Collapse
|
31
|
Lee H, Kim SK, Kim YI, Kim TS, Kang SH, Park WS, Yun T, Eom HS. Early Determination of Prognosis by Interim 3′-Deoxy-3′-18F-Fluorothymidine PET in Patients with Non-Hodgkin Lymphoma. J Nucl Med 2013; 55:216-22. [DOI: 10.2967/jnumed.113.124172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
32
|
Aurora kinases in cancer: an opportunity for targeted therapy. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
33
|
Matthews PM, Coatney R, Alsaid H, Jucker B, Ashworth S, Parker C, Changani K. Technologies: preclinical imaging for drug development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 10:e343-e350. [PMID: 24050130 DOI: 10.1016/j.ddtec.2012.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Preclinical imaging with magnetic resonance imaging (MRI), computerised tomography (CT), ultrasound (US), positron emission tomography (PET) or single-photon emission computed tomography (SPECT) enable non-invasive measures of tissue structure, function or metabolism in vivo. The technologies can add value to preclinical studies by enabling dynamic pharmacological observations on the same animal and because of possibilities for relatively direct clinical translation. Potential benefits from the application of preclinical imaging should be considered routinely in drug development.
Collapse
|
34
|
Hong YS, Kim HO, Kim KP, Lee JL, Kim HJ, Lee SJ, Lee SJ, Oh SJ, Kim JS, Ryu JS, Moon DH, Kim TW. 3'-Deoxy-3'-18F-fluorothymidine PET for the early prediction of response to leucovorin, 5-fluorouracil, and oxaliplatin therapy in patients with metastatic colorectal cancer. J Nucl Med 2013; 54:1209-16. [PMID: 23804324 DOI: 10.2967/jnumed.112.117010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The aim of this study was to evaluate 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) PET for early prediction of the standard anatomic response and survival outcomes in patients with metastatic colorectal cancer (mCRC) receiving leucovorin, 5-fluorouracil (5-FU), and oxaliplatin (FOLFOX). METHODS The main eligibility criteria included histologically confirmed mCRC, ≥ 1 extrahepatic measurable lesions, and no prior chemotherapy in a metastatic setting. Chemotherapy consisted of leucovorin on day 1, followed by the continuous infusion of 5-FU on days 1 and 2, and oxaliplatin on day 3. In the second and subsequent cycles of chemotherapy, oxaliplatin was administered simultaneously with leucovorin on day 1. (18)F-FLT PET scans were obtained 3 times during the first cycle of chemotherapy: before chemotherapy, 24 h after infusion of 5-FU (day 2), and 48 h after completion of chemotherapy (day 5). The maximum standardized uptake value (SUVMAX) of (18)F-FLT was measured. Treatment responses were assessed by CT after 3 cycles of FOLFOX. RESULTS Eighteen patients were included in the study. The response rate after 3 cycles of FOLFOX was 27.8% (5/18). The SUVMAX was increased in responders (P = 0.043) and nonresponders (P < 0.001) on day 2 and was decreased, compared with baseline values, on day 5 in responders only (P = 0.043). Receiver-operating-characteristic curve analysis indicated that the use of a threshold of an SUVMAX increase on day 2 of ≤ 45.8% resulted in a sensitivity of 100%, specificity of 69.2%, and relative risk of 2.250 (P = 0.029) for the diagnosis of responders. Use of a threshold of an SUVMAX decrease on day 5 of ≥ 10.6% resulted in a sensitivity of 100%, specificity of 76.9%, and relative risk of 2.667 (P = 0.007). Patients with low (18)F-FLT flare tended to have longer survivals than patients with high flare (2-y overall survival rate, 77.8% vs. 44.4%; P = 0.051). CONCLUSION The (18)F-FLT flare observed during 5-FU infusion was associated with poor treatment response in patients with mCRC. The degree of (18)F-FLT flare might be used to predict the outcome of patients who receive infusional 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Managing lymphoma with non-FDG radiotracers: current clinical and preclinical applications. BIOMED RESEARCH INTERNATIONAL 2013; 2013:626910. [PMID: 23841079 PMCID: PMC3690206 DOI: 10.1155/2013/626910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/27/2013] [Indexed: 11/18/2022]
Abstract
Nuclear medicine imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) have played a prominent role in lymphoma management. PET with [(18)F]Fluoro-2-deoxy-D-glucose (FDG) is the most commonly used tool for lymphoma imaging. However, FDG-PET has several limitations that give the false positive or false negative diagnosis of lymphoma. Therefore, development of new radiotracers with higher sensitivity, specificity, and different uptake mechanism is in great demand in the management of lymphoma. This paper reviews non-FDG radiopharmaceuticals that have been applied for PET and SPECT imaging in patients with different types of lymphoma, with attention to diagnosis, staging, therapy response assessment, and surveillance for disease relapse. In addition, we introduce three radiolabeled anti-CD20 antibodies for radioimmunotherapy, which is another important arm for lymphoma treatment and management. Finally, the relatively promising radiotracers that are currently under preclinical development are also discussed in this paper.
Collapse
|
36
|
Jensen MM, Erichsen KD, Johnbeck CB, Björkling F, Madsen J, Jensen PB, Sehested M, Højgaard L, Kjær A. [18F]FDG and [18F]FLT positron emission tomography imaging following treatment with belinostat in human ovary cancer xenografts in mice. BMC Cancer 2013; 13:168. [PMID: 23548101 PMCID: PMC3621527 DOI: 10.1186/1471-2407-13-168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 03/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Belinostat is a histone deacetylase inhibitor with anti-tumor effect in several pre-clinical tumor models and clinical trials. The aim of the study was to evaluate changes in cell proliferation and glucose uptake by use of 3'-deoxy-3'-[(18)F]fluorothymidine ([18F]FLT) and 2-deoxy-2-[(18)F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) following treatment with belinostat in ovarian cancer in vivo models. METHODS In vivo uptake of [18F]FLT and [18F]FDG in human ovary cancer xenografts in mice (A2780) were studied after treatment with belinostat. Mice were divided in 2 groups receiving either belinostat (40 mg/kg ip twice daily Day 0-4 and 6-10) or vehicle. Baseline [18F]FLT or [18F]FDG scans were made before treatment (Day 0) and repeated at Day 3, 6 and 10. Tracer uptake was quantified using small animal PET/CT. RESULTS Tumors in the belinostat group had volumes that were 462 ± 62% (640 mm(3)) at Day 10 relative to baseline which was significantly different (P = 0.011) from the control group 769 ± 74% (926 mm(3)). [18F]FLT SUVmax increased from baseline to Day 10 (+30 ± 9%; P = 0.048) in the control group. No increase was observed in the treatment group. [18F]FDG SUVmean was significantly different in the treatment group compared to the control group (P = 0.0023) at Day 10. Within treatment groups [18F]FDG uptake and to a lesser extent [18F]FLT uptake at Day 3 were significantly correlated with tumor growth at Day 10. CONCLUSIONS [18F]FDG uptake early following treatment initiation predicted tumor sizes at Day 10, suggesting that [18F]FDG may be a valuable biomarker for non-invasive assessment of anti-tumor activity of belinostat.
Collapse
Affiliation(s)
- Mette Munk Jensen
- Cluster for Molecular Imaging, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 12.3.11, Copenhagen N 2200, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
O'Brien PJ, Lee M, Spilker ME, Zhang CC, Yan Z, Nichols TC, Li W, Johnson CH, Patti GJ, Siuzdak G. Monitoring metabolic responses to chemotherapy in single cells and tumors using nanostructure-initiator mass spectrometry (NIMS) imaging. Cancer Metab 2013; 1:4. [PMID: 24280026 PMCID: PMC3834492 DOI: 10.1186/2049-3002-1-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/15/2012] [Indexed: 02/03/2023] Open
Abstract
Background Tissue imaging of treatment-induced metabolic changes is useful for optimizing cancer therapies, but commonly used methods require trade-offs between assay sensitivity and spatial resolution. Nanostructure-Initiator Mass Spectrometry imaging (NIMS) permits quantitative co-localization of drugs and treatment response biomarkers in cells and tissues with relatively high resolution. The present feasibility studies use NIMS to monitor phosphorylation of 3′-deoxy-3′-fluorothymidine (FLT) to FLT-MP in lymphoma cells and solid tumors as an indicator of drug exposure and pharmacodynamic responses. Methods NIMS analytical sensitivity and spatial resolution were examined in cultured Burkitt’s lymphoma cells treated briefly with Rapamycin or FLT. Sample aliquots were dispersed on NIMS surfaces for single cell imaging and metabolic profiling, or extracted in parallel for LC-MS/MS analysis. Docetaxel-induced changes in FLT metabolism were also monitored in tissues and tissue extracts from mice bearing drug-sensitive tumor xenografts. To correct for variations in FLT disposition, the ratio of FLT-MP to FLT was used as a measure of TK1 thymidine kinase activity in NIMS images. TK1 and tumor-specific luciferase were measured in adjacent tissue sections using immuno-fluorescence microscopy. Results NIMS and LC-MS/MS yielded consistent results. FLT, FLT-MP, and Rapamycin were readily detected at the single cell level using NIMS. Rapid changes in endogenous metabolism were detected in drug-treated cells, and rapid accumulation of FLT-MP was seen in most, but not all imaged cells. FLT-MP accumulation in xenograft tumors was shown to be sensitive to Docetaxel treatment, and TK1 immunoreactivity co-localized with tumor-specific antigens in xenograft tumors, supporting a role for xenograft-derived TK1 activity in tumor FLT metabolism. Conclusions NIMS is suitable for monitoring drug exposure and metabolite biotransformation with essentially single cell resolution, and provides new spatial and functional dimensions to studies of cancer metabolism without the need for radiotracers or tissue extraction. These findings should prove useful for in vitro and pre-clinical studies of cancer metabolism, and aid the optimization of metabolism-based cancer therapies and diagnostics.
Collapse
Affiliation(s)
- Peter J O'Brien
- Pfizer Worldwide Research and Development, La Jolla Laboratories, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jensen MM, Erichsen KD, Johnbeck CB, Björkling F, Madsen J, Bzorek M, Jensen PB, Højgaard L, Sehested M, Kjær A. [18F]FLT and [18F]FDG PET for non-invasive treatment monitoring of the nicotinamide phosphoribosyltransferase inhibitor APO866 in human xenografts. PLoS One 2013; 8:e53410. [PMID: 23308217 PMCID: PMC3537726 DOI: 10.1371/journal.pone.0053410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/30/2012] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION APO866 is a new anti-tumor compound inhibiting nicotinamide phosphoribosyltransferase (NAMPT). APO866 has an anti-tumor effect in several pre-clinical tumor models and is currently in several clinical phase II studies. 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) is a tracer used to assess cell proliferation in vivo. The aim of this study was non-invasively to study effect of APO866 treatment on [18F]FLT and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake. METHODS In vivo uptake of [18F]FLT and [18F]FDG in human ovary cancer xenografts in mice (A2780) was studied at various time points after APO866 treatment. Baseline [18F]FLT or [18F]FDG scans were made before treatment and repeated after 24 hours, 48 hours and 7 days. Tumor volume was followed with computed tomography (CT). Tracer uptake was quantified using small animal PET/CT. One hour after iv injection of tracer, static PET scans were performed. Imaging results were compared with Ki67 immunohistochemistry. RESULTS Tumors treated with APO866 had volumes that were 114% (24 h), 128% (48 h) and 130% (Day 7) relative to baseline volumes at Day 0. In the control group tumor volumes were 118% (24 h), 145% (48 h) and 339% (Day 7) relative to baseline volumes Day 0. Tumor volume between the treatment and control group was significantly different at Day 7 (P = 0.001). Compared to baseline, [18F]FLT SUVmax was significantly different at 24 h (P<0.001), 48 h (P<0.001) and Day 7 (P<0.001) in the APO866 group. Compared to baseline, [18F]FDG SUVmax was significantly different at Day 7 (P = 0.005) in the APO866 group. CONCLUSIONS APO866 treatment caused a significant decrease in [18F]FLT uptake 24 and 48 hours after treatment initiation. The early reductions in tumor cell proliferation preceded decrease in tumor volume. The results show the possibility to use [18F]FLT and [18F]FDG to image treatment effect early following treatment with APO866 in future clinical studies.
Collapse
Affiliation(s)
- Mette Munk Jensen
- Cluster for Molecular Imaging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The major application for PET imaging in clinical practice is represented by cancer imaging and (18)F-FDG is the most widely employed positron emitter compound. However, some diseases cannot be properly evaluated with this tracer and thus there is the necessity to develop more specific compounds. The last decades were a continuous factory for new radiopharmaceuticals leading to an endless list of PET tracers; however, just some of them guard diagnostic relevance in routine medical practice. This chapter describes a selected list of non-FDG PET tracers, basing on their introduction into and impact on clinical practice.
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine Unit, Humanitas Cancer Center, Rozzano, MI, Italy
| | | |
Collapse
|
40
|
Munk Jensen M, Erichsen KD, Björkling F, Madsen J, Jensen PB, Sehested M, Højgaard L, Kjær A. [18F]FLT PET for non-invasive assessment of tumor sensitivity to chemotherapy: studies with experimental chemotherapy TP202377 in human cancer xenografts in mice. PLoS One 2012; 7:e50618. [PMID: 23226334 PMCID: PMC3511543 DOI: 10.1371/journal.pone.0050618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/23/2012] [Indexed: 01/05/2023] Open
Abstract
Aim 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) is a tracer used to assess cell proliferation in vivo. The aim of the study was to use [18F]FLT positron emission tomography (PET) to study non-invasively early anti-proliferative effects of the experimental chemotherapeutic agent TP202377 in both sensitive and resistant tumors. Methods Xenografts in mice from 3 human cancer cell lines were used: the TP202377 sensitive A2780 ovary cancer cell line (n = 8–16 tumors/group), the induced resistant A2780/Top216 cell line (n = 8–12 tumors/group) and the natural resistant SW620 colon cancer cell line (n = 10 tumors/group). In vivo uptake of [18F]FLT was studied at baseline and repeated 6 hours, Day 1, and Day 6 after TP202377 treatment (40 mg/kg i.v.) was initiated. Tracer uptake was quantified using small animal PET/CT. Results TP202377 (40 mg/kg at 0 hours) caused growth inhibition at Day 6 in the sensitive A2780 tumor model compared to the control group (P<0.001). In the A2780 tumor model TP202377 treatment caused significant decrease in uptake of [18F]FLT at 6 hours (-46%; P<0.001) and Day 1 (-44%; P<0.001) after treatment start compared to baseline uptake. At Day 6 uptake was comparable to baseline. Treatment with TP202377 did not influence tumor growth or [18F]FLT uptake in the resistant A2780/Top216 and SW620 tumor models. In all control groups uptake of [18F]FLT did not change. Ki67 gene expression paralleled [18F]FLT uptake. Conclusion Treatment of A2780 xenografts in mice with TP202377 (single dose i.v.) caused a significant decrease in cell proliferation assessed by [18F]FLT PET after 6 hours. Inhibition persisted at Day 1; however, cell proliferation had returned to baseline at Day 6. In the resistant A2780/Top216 and SW620 tumor models uptake of [18F]FLT did not change after treatment. With [18F]FLT PET it was possible to distinguish non-invasively between sensitive and resistant tumors already 6 hours after treatment initiation.
Collapse
Affiliation(s)
- Mette Munk Jensen
- Cluster for Molecular Imaging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Evaluation of 3'-deoxy-3'-[18F]-fluorothymidine (18F-FLT) kinetics correlated with thymidine kinase-1 expression and cell proliferation in newly diagnosed gliomas. Eur J Nucl Med Mol Imaging 2012; 40:175-85. [PMID: 23229746 DOI: 10.1007/s00259-012-2275-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE The thymidine analog 3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) has been developed as a positron emission tomography (PET) tracer to assess the proliferation activity of tumors in vivo. The present study investigated the relationship between the kinetic parameters of (18)F-FLT in vivo and thymidine kinase-1 (TK-1) expression and cell proliferation rate in vitro, and blood-brain barrier (BBB) breakdown in human brain gliomas. METHODS A total of 21 patients with newly diagnosed gliomas were examined by (18)F-FLT PET kinetic analysis. Maximum standardized uptake value (SUVmax) and tumor-to-normal (T/N) ratio of (18)F-FLT in the tumor and (18)F-FLT kinetic parameters in the corresponding contralateral region were determined. The expression levels of TK-1 protein and mRNA were determined by immunohistochemistry (IHC) and real-time polymerase chain reaction (PCR), respectively, using surgical specimens. The cell proliferation rate of the tumor was determined in terms of the Ki-67 labeling index. BBB breakdown was evaluated on MR images with contrast enhancement. RESULTS (18)F-FLT SUVmax and T/N ratio were significantly correlated with the influx rate constant (K (1); P = 0.001 and P < 0.001, respectively), but not with the phosphorylation rate constant (k (3)). IHC and real-time PCR studies demonstrated a significant correlation between K (1) and TK-1 mRNA expression (P = 0.001), but not between k (3) and TK-1 protein and mRNA expression. Linear regression analysis revealed a significant correlation between K (1) and the Ki-67 index (P = 0.003), but not between k (3) and the Ki-67 index. TK-1 mRNA expression was significantly correlated with the Ki-67 index (P = 0.009). (18)F-FLT SUVmax and T/N ratio were significantly correlated with BBB breakdown evaluated by contrast enhancement in MR images (P = 0.003 and P = 0.011, respectively). CONCLUSION These results indicate that (18)F-FLT uptake in the tumor is significantly related to transport through the disrupted BBB, but not through phosphorylation activity. Although the tissue TK-1 expression reflects tumor proliferation activity, the phosphorylation rate constant k (3) determined by (18)F-FLT PET kinetic analysis does not accurately reflect TK-1 expression in the tissue and should not be used as a surrogate biomarker of cell proliferation activity in human brain gliomas.
Collapse
|
42
|
Paquette M, Tremblay S, Bénard F, Lecomte R. Quantitative hormone therapy follow-up in an ER+/ERαKD mouse tumor model using FDG and [11C]-methionine PET imaging. EJNMMI Res 2012; 2:61. [PMID: 23140372 PMCID: PMC3508933 DOI: 10.1186/2191-219x-2-61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/12/2012] [Indexed: 01/10/2023] Open
Abstract
Background The estrogen receptor α (ERα) is known to play an important role in the modulation of tumor response to hormone therapy. In this work, the effect of different hormone therapies on tumors having different ERα expression levels was followed up in vivo in a mouse model by PET imaging using 2-deoxy-2-[18F]fluoro-d-glucose (FDG) and [11C]-methionine ([11C]-MET). A new model of MC7-L1 ERα-knockdown (ERαKD) tumor cell lines was designed as a negative estrogen receptor control to follow up the effects of changes in ERα expression on the early metabolic tumor response to different hormone therapies. Methods MC7-L1 (ER+) and MC7-L1 ERα-knockdown cell lines were implanted subcutaneously in Balb/c mice and allowed to grow up to 4 mm in diameter. Animals were separated into 4 groups (n = 4 or 5) and treated with a pure antiestrogen (fulvestrant), an aromatase inhibitor (letrozole), a selective estrogen receptor modulator (tamoxifen), or not treated (control). Tumor metabolic activity was assessed by PET imaging with FDG and [11C]-MET at days 0 (before treatment), 7, and 14 after the treatment. Tumor uptake of each radiotracer in %ID/g was measured for each tumor at each time point and compared to tumor growth. Quantitative PCR (qPCR) was performed to verify the expression of breast cancer-related genes (ERα, ErbB2, progesterone receptor (PR), and BRCA1) in each tumor cell lines. Results While both ER+ and ERαKD tumors had similar uptake of both radiotracers without treatment, higher uptake values were generally seen in ERαKD tumors after 7 and 14 days of treatment, indicating that ERαKD tumors behave in a similar fashion as hormone-unresponsive tumors. Furthermore, the ERα-specific downregulation induced a slight PR expression decrease and overexpression of BRCA1 and ErbB2. Conclusion The results indicate that the proposed ER+/ERαKD tumor-bearing mouse model is suitable to test pure antiestrogen and aromatase inhibitor therapies in vivo in a preclinical setting and could help to elucidate the impact of ERα levels on tumor response to hormone therapy.
Collapse
Affiliation(s)
- Michel Paquette
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine & Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue N,, Sherbrooke, Québec, J1H 5N4, Canada.
| | | | | | | |
Collapse
|
43
|
Graf N, Herrmann K, Numberger B, Zwisler D, Aichler M, Feuchtinger A, Schuster T, Wester HJ, Senekowitsch-Schmidtke R, Peschel C, Schwaiger M, Keller U, Dechow T, Buck AK. [18F]FLT is superior to [18F]FDG for predicting early response to antiproliferative treatment in high-grade lymphoma in a dose-dependent manner. Eur J Nucl Med Mol Imaging 2012; 40:34-43. [DOI: 10.1007/s00259-012-2255-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/17/2012] [Indexed: 12/31/2022]
|
44
|
Lu C, Jiang Q, Tan C, Tang J, Zhang J. Preparation and preliminary biological evaluation of novel (99m)Tc-labelled thymidine analogs as tumor imaging agents. Molecules 2012; 17:8518-32. [PMID: 22801365 PMCID: PMC6269068 DOI: 10.3390/molecules17078518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/27/2012] [Accepted: 07/05/2012] [Indexed: 11/16/2022] Open
Abstract
Two kinds of novel thymidine derivatives, N-thymidine-yl-N′-methyl-N′-{N′′-[2-sulfanyl-(ethylamino)acetyl]-2-aminoethylsulfanyl-1-hexanamide}-ethanediamine (TMHEA) and N-thymidine-yl-N′-methyl-N′-{N′′-[2-sulfanyl-(ethylamino)acetyl]-2-aminoethylsulfanyl-1-hexanamide}-hexanediamine (TMHHA) were prepared and successfully labeled with (99m)Tc in high labeling yields. The in vitro stability and in vivo biodistribution of (99m)Tc-TMHEA and (99m)Tc-TMHHA were investigated and compared. The biodistribution studies indicate that the radiotracer (99m)Tc-TMHEA displays selective tumor uptake, suggesting it is a potential tumor imaging agent.
Collapse
Affiliation(s)
- Chunxiong Lu
- Key Laboratory of Nuclear Medicine, Ministry of Health-Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | | | | | | | | |
Collapse
|
45
|
Comparison of 3'-deoxy-3'-[18F]fluorothymidine PET and O-(2-[18F]fluoroethyl)-L-tyrosine PET in patients with newly diagnosed glioma. Nucl Med Biol 2012; 39:977-81. [PMID: 22483845 DOI: 10.1016/j.nucmedbio.2012.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/07/2012] [Accepted: 02/21/2012] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of this prospective study was to clarify the value of FLT PET and FET PET for the noninvasive grading and prognosis of newly diagnosed gliomas. MATERIALS AND METHODS Twenty patients with newly diagnosed gliomas were investigated with FLT and FET PET before surgery. FLT and FET uptakes were assessed by the maximum standardized uptake (SUVmax) of tumor, and the ratio to uptake in the normal brain parenchyma (TNR). All tumors were graded by WHO system. RESULTS FLT PET detected all 17 high-grade gliomas (HGG) and did not detect all 3 low-grade gliomas (LGG). FET PET detected all 20 HGG and LGG regardless of grading. The average FLT SUVmax in HGG and LGG was 1.51 ± 0.72 and 0.30 ± 0.07, and the average FLT TNR in HGG and LGG was 5.52 ± 3.09 and 1.12 ± 0.14, respectively. The differences of FLT SUVmax and TNR between HGG and LGG were statistically significant (p=0.0069, p=0.0070). The average FET SUVmax in HGG and LGG was 2.68 ± 0.86 and 1.36 ± 0.15, and the average FET TNR in HGG and LGG was 2.31 ± 0.73 and 1.27 ± 0.12, respectively. The differences of FET SUVmax and TNR between HGG and LGG were statistically significant (p=0.0129, p=0.0095). CONCLUSIONS FET PET has higher sensitivity in detection of gliomas rather than FLT PET, but it seems that FLT PET is better than FET PET for noninvasive grading and predicting prognosis of newly diagnosed gliomas, considering high contrast of FLT and overlap of FET uptakes between HGG and LGG.
Collapse
|
46
|
Soloviev D, Lewis D, Honess D, Aboagye E. [(18)F]FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur J Cancer 2012; 48:416-24. [PMID: 22209266 DOI: 10.1016/j.ejca.2011.11.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 11/27/2011] [Indexed: 01/13/2023]
Abstract
The paradigm of drug development is shifting towards early use of imaging biomarkers as surrogate end-points in clinical trials. Quantitative Imaging in Cancer: Connecting Cellular Processes (QuIC-ConCePT) is an initiative to qualify complementary imaging biomarkers (IB) of proliferation, cell death and tumour heterogeneity as possible tools in early phase clinical trials to help pharmaceutical developers in 'go, no-go' decisions early in the process of drug development. One of the IBs is [(18)F]3'-deoxy-3'-fluorothymidine with Positron Emission Tomography (FLT-PET). We review results of recent clinical trials using FLT-PET for monitoring tumour response to drug treatment and discuss the potential and the possible pitfalls of using this IB as a surrogate end-point in early phase clinical trials for assessing tumour response to drug treatment. From first human trial results it seems that the degree of FLT accumulation in tumours is governed not only by the tumour proliferation rate but also by other factors. Nevertheless FLT-PET could potentially be used as a negative predictor of tumour response to chemotherapy, and hence evaluation of this IB is granted in multi-centre clinical trials.
Collapse
Affiliation(s)
- Dmitry Soloviev
- Cancer Research UK, Cambridge Research Institute, Cambridge CB2 0RE, UK.
| | | | | | | |
Collapse
|
47
|
Sharma R, Aboagye E. Development of radiotracers for oncology--the interface with pharmacology. Br J Pharmacol 2012; 163:1565-85. [PMID: 21175573 DOI: 10.1111/j.1476-5381.2010.01160.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is an increasing role for positron emission tomography (PET) in oncology, particularly as a component of early phase clinical trials. As a non-invasive functional imaging modality, PET can be used to assess both pharmacokinetics and pharmacodynamics of novel therapeutics by utilizing radiolabelled compounds. These studies can provide crucial information early in the drug development process that may influence the further development of novel therapeutics. PET imaging probes can also be used as early biomarkers of clinical response and to predict clinical outcome prior to the administration of therapeutic agents. We discuss the role of PET imaging particularly as applied to phase 0 studies and discuss the regulations involved in the development and synthesis of novel radioligands. The review also discusses currently available tracers and their role in the assessment of pharmacokinetics and pharmacodynamics as applied to oncology.
Collapse
Affiliation(s)
- Rohini Sharma
- Comprehensive Cancer Imaging Centre, Imperial College London Hammersmith Campus, Du Cane Road, London, UK
| | | |
Collapse
|
48
|
Study of [18F]FLT and [123I]IaraU for cellular imaging in HSV1 tk-transfected murine fibrosarcoma cells: evaluation of the tracer uptake using 5-fluoro, 5-iodo and 5-iodovinyl arabinosyl uridines as competitive probes. Nucl Med Biol 2011; 39:371-6. [PMID: 22130503 DOI: 10.1016/j.nucmedbio.2011.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 09/08/2011] [Accepted: 09/15/2011] [Indexed: 11/21/2022]
Abstract
As one of the most intensively studied probes for imaging of the cellular proliferation, [(18)F]FLT was investigated whether the targeting specificity of thymidine kinase 1 (TK1) dependency could be enhanced through a synergistic effect mediated by herpes simplex type 1 virus (HSV1) tk gene in terms of the TK1 or TK2 expression. 5-[(123)I]Iodo arabinosyl uridine ([(123)I]IaraU) was prepared in a radiochemical yield of 8% and specific activity of 21 GBq/μmol, respectively. Inhibition of the cellular uptake of these two tracers was compared by using the arabinosyl uridine analogs such as 5-iodo, 5-fluoro and 5-(E)-iodovinyl arabinosyl uridine along with 2'-fluoro-5-iodo arabinosyl uridine (FIAU). Due to potential instability of the iodo group, accumulation index of 1.6 for [(123)I]IaraU by HSV1-TK vs. control cells could virtually be achieved at 1.5 h, but dropped to 0.2 compared to 2.0 for [(18)F]FLT at 5 h. The results from competitive inhibition by these nucleosides against the accumulation of [(18)F]FLT implied that FLT exerted a mixed TK1- and TK2-dependent inhibition with HSV1-tk gene transfection because of the shifting of thymidine kinase status. Taken together, the combination of [(18)F]FLT and HSV1-TK provides a synergistic imaging potency.
Collapse
|
49
|
Lu CX, Wang ZW, Jiang QF, Tang J, Tan C, Zhang JK. Synthesis and preliminary biological evaluation of a technetium-99m labeled thymidine analog. CHINESE CHEM LETT 2011. [DOI: 10.1016/j.cclet.2011.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Contractor KB, Kenny LM, Stebbing J, Rosso L, Ahmad R, Jacob J, Challapalli A, Turkheimer F, Al-Nahhas A, Sharma R, Coombes RC, Aboagye EO. [18F]-3'Deoxy-3'-fluorothymidine positron emission tomography and breast cancer response to docetaxel. Clin Cancer Res 2011; 17:7664-72. [PMID: 22028493 DOI: 10.1158/1078-0432.ccr-11-0783] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To establish biomarkers indicating clinical response to taxanes, we determined whether early changes in [(18)F]-3'deoxy-3'-fluorothymidine positron emission tomography (FLT-PET) can predict benefit from docetaxel therapy in breast cancer. EXPERIMENTAL DESIGN This was a prospective unblinded study in 20 patients with American Joint Committee on Cancer (AJCC) stage II-IV breast cancer unresponsive to first-line chemotherapy or progressing on previous therapy. Individuals underwent a baseline dynamic FLT-PET scan followed by a scan 2 weeks after initiating the first or second cycle of docetaxel. PET variables were compared with anatomic response midtherapy (after 3 cycles). RESULTS Average and maximum tumor standardized uptake values at 60 minutes (SUV(60,av) and SUV(60,max)) normalized to body surface area ranged between 1.7 and 17.0 and 5.6 and 26.9 × 10(-5) m(2)/mL, respectively. Docetaxel treatment resulted in a significant decrease in FLT uptake (P = 0.0003 for SUV(60,av) and P = 0.0002 for SUV(60,max)). Reduction in tumor SUV(60,av) was associated with target lesion size changes midtherapy (Pearson R for SUV(60,av) = 0.64; P = 0.004) and predicted midtherapy target lesion response (0.85 sensitivity and 0.80 specificity). Decreases in SUV(60,av) in responders were due, at least in part, to reduced net intracellular trapping of FLT (rate constant, K(i)). Docetaxel significantly reduced K(i) by 51.1% (±28.4%, P = 0.0009). CONCLUSION Changes in tumor proliferation assessed by FLT-PET early after initiating docetaxel chemotherapy can predict lesion response midtherapy with good sensitivity warranting prospective trials to assess the ability to stop therapy in the event of non-FLT-PET response.
Collapse
Affiliation(s)
- Kaiyumars B Contractor
- Departments of Surgery and Cancer, Neuroscience, and Nuclear Medicine, Imperial College London and Imperial College Healthcare NHS Trust, Hammersmith and Charing Cross Hospitals, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|