1
|
Sigaut S, Tardivon C, Jacquens A, Bottlaender M, Gervais P, Habert MO, Monsel A, Roquilly A, Boutonnet M, Galanaud D, Cras A, Boucher-Pillet H, Florence AM, Cavalier I, Menasche P, Degos V, Couffignal C. Effects of intravascular administration of mesenchymal stromal cells derived from Wharton's Jelly of the umbilical cord on systemic immunomodulation and neuroinflammation after traumatic brain injury (TRAUMACELL): study protocol for a multicentre randomised controlled trial. BMJ Open 2024; 14:e091441. [PMID: 39740941 PMCID: PMC11749534 DOI: 10.1136/bmjopen-2024-091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Treatments for TBI patients are limited and none has been shown to provide prolonged and long-term neuroprotective or neurorestorative effects. A growing body of evidence suggests a link between TBI-induced neuro-inflammation and neurodegenerative post-traumatic disorders. Consequently, new therapies triggering immunomodulation and promoting neurological recovery are the subject of major research efforts. We hypothesise that repeated intravenous treatment with mesenchymal stromal cells derived from Wharton's Jelly of the umbilical cord-derived mesenchymal stromal cells ((WJ-UC-MSC) may be associated with a significant decrease of post-TBI neuroinflammation and improvement of neurological status. METHODS AND ANALYSIS The TRAUMACELL trial is a prospective, national multicentre, phase III, superiority, double-arm comparative randomised (1:1) double-blinded clinical trial. Among patients aged between 18-50, with a severe TBI defined by a Glasgow score less than 12 (within the first 48 hours) with brain traumatic lesion on CT Scan and needing intracranial pressure monitoring, with no other significant organ trauma (abbreviated injury scale<2) and unresponsive to verbal commands after 5 days of sedation discontinuation, 68 will be randomly allocated to receive either WJ-UC-MSC solution or placebo, with three intravenous injections 1 week apart. The primary outcome is the [18F]-DPA-714 signal intensity in corpus callosum measured by dynamic positron emission tomography (PET)-MRI at 6 months after the last injection, blinded to the randomisation arm, to evaluate the post-traumatic neuro-inflammation. ETHICS AND DISSEMINATION The TRAUMACELL trial has been approved by an independent ethics committee (CPP SUD EST II) and French Medicines Agency (2023-504415-33-00) for all study centres. Participant recruitment will be starting in September 2024. Results will be published in international peer-reviewed medical journals. TRIAL REGISTRATION NUMBER NCT06146062, first posted 24 November 2023 PROTOCOL VERSION IDENTIFIER: TRAUMACELL-V.2.0_20240102.
Collapse
Affiliation(s)
- Stéphanie Sigaut
- Anesthesiology and Intensive Care, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, Île-de-France, France
- NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, INSERM, Paris, Île-de-France, France
| | - Coralie Tardivon
- Hôpital Bichat, DMU PRISME, Biostatistics Department and Clinical Trial Units, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Alice Jacquens
- NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, INSERM, Paris, Île-de-France, France
- Department of Neuroanesthesiology and Neurointensive Care, Pitié Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Michel Bottlaender
- CEA, INSERM, CNRS, BioMaps, Service Hospitalier Frédéric Joliot, Université Paris-Saclay Faculté des Sciences d'Orsay, Orsay, Île-de-France, France
- CEA, Neurospin, UNIACT, Université Paris-Saclay, Gif-sur-Yvette, Île-de-France, France
| | - Philippe Gervais
- CEA, INSERM, CNRS, BioMaps, Service Hospitalier Frédéric Joliot, Paris-Saclay University Faculty of Science Orsay, Orsay, Île-de-France, France
| | - Marie-Odile Habert
- Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, Assistance Publique-Hopitaux de Paris, Paris, Île-de-France, France
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne University, Paris, Île-de-France, France
| | - Antoine Monsel
- Hôpital Pitié-Salpêtrière, Multidisciplinary Intensive Care Unit, Department of Anaesthesia and Critical Care, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
- UMRS_959, Immunology-Immunopathology-Immunotherapy (I3), INSERM, Paris, Île-de-France, France
| | - Antoine Roquilly
- SAR, CHU Nantes, Nantes, France
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Université de Nantes, Nantes, Pays de la Loire, France
| | - Mathieu Boutonnet
- Federation of Anaesthesiology, Intensive Care Unit, Burns and Operating Theatre, Hopital d'Instruction des Armees Percy, Clamart, France
| | - Damien Galanaud
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne University, Paris, Île-de-France, France
- Hôpital de la Pitié-Salpêtrière, Neuroradiology Department, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Audrey Cras
- Hôpital Saint-Louis, MEARY Center for Cell and Gene Therapy, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Hélène Boucher-Pillet
- Hôpital Saint-Louis, MEARY Center for Cell and Gene Therapy, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Aline-Marie Florence
- Hôpital Bichat, DMU PRISME, Biostatistics Department and Clinical Trial Units, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Ines Cavalier
- Hôpital Bichat, DMU PRISME, Biostatistics Department and Clinical Trial Units, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Philippe Menasche
- Cardiovascular Surgery, Hopital Europeen Georges Pompidou, Paris, France
| | - Vincent Degos
- NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, INSERM, Paris, Île-de-France, France
- Anesthésie et Neuro-Réanimation chirurgicale Babinski, Assistance Publique Hôpitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Camille Couffignal
- Unité de recherche Clinique, Hôpital Bichat-Claude-Bernard, Paris, Île-de-France, France
| |
Collapse
|
2
|
Meng H, He L, Chunyu H, Zhou Q, Wang J, Qu Q, Hai W, Zhang Y, Li B, Zhang M, Chen S. 18F-DPA714 PET/MRI as a potential imaging tool for detecting possible antibody-negative autoimmune encephalitis: a prospective study. J Neurol 2024; 271:7592-7604. [PMID: 39294471 DOI: 10.1007/s00415-024-12690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND OBJECTIVES Conventional magnetic resonance imaging (MRI) used for detecting possible antibody-negative autoimmune encephalitis (AIE) often fails to meet the diagnostic requirements of this disease. Positron emission tomography (PET) with a translocator protein radioligand can help visualize microglia distribution density in inflammation-related diseases, thereby offering potentially incremental value to conventional MRI for the in vivo assessment of possible antibody-negative AIE. METHODS In this prospective study, 15 participants diagnosed with possible antibody-negative AIE and 10 healthy controls were enrolled (ClinicalTrials.gov: NCT05293405, dated March 15, 2022). All participants underwent hybrid 18F-DPA714 PET/MRI and evaluation for modified Rankin scale (mRS) score, clinical assessment scale for AIE (CASE), and appropriate antibodies. A positive finding was defined as the intensity of 18F-DPA714 uptake that was above a threshold of mean standardized uptake value ratio (SUVR) + two standard deviations of SUVR within the corresponding brain regions of healthy controls. RESULTS The positive detection rate of 18F-DPA714 PET for possible antibody-negative AIE was significantly higher than that of brain MRI (10/15 [67%] vs. 3/15 [20%]; P = 0.039). In addition, both the intensity and extent of 18F-DPA714 uptake were significantly associated with the CASE score (P = 0.002 and 0.001). Meanwhile, SUVR levels in the cerebellar region were significantly higher in patients with ataxia than in those without ataxia (P = 0.006). Furthermore, 18F-DPA714 uptake decreased in 5/10 [50%] patients who underwent follow-up PET/MRI, which mirrored their symptom relief. CONCLUSION 18F-DPA714 PET demonstrated its potentially incremental value to conventional MRI for detecting possible antibody-negative AIE.
Collapse
Affiliation(s)
- Huanyu Meng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lu He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Hangxing Chunyu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qinming Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jin Wang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Qu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi, China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi, China.
| | - Sheng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Department of Neurology, Xinrui Hospital, Wuxi, China.
| |
Collapse
|
3
|
Chen P, Ding N, Pan D, Chen X, Li S, Luo Y, Chen Z, Xu Y, Zhu X, Wang K, Zou W. PET imaging for the early evaluation of ocular inflammation in diabetic rats by using [ 18F]-DPA-714. Exp Eye Res 2024; 245:109986. [PMID: 38945519 DOI: 10.1016/j.exer.2024.109986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Ocular complications of diabetes mellitus (DM) are the leading cause of vision loss. Ocular inflammation often occurs in the early stage of DM; however, there are no proven quantitative methods to evaluate the inflammatory status of eyes in DM. The 18 kDa translocator protein (TSPO) is an evolutionarily conserved cholesterol binding protein localized in the outer mitochondrial membrane. It is a biomarker of activated microglia/macrophages; however, its role in ocular inflammation is unclear. In this study, fluorine-18-DPA-714 ([18F]-DPA-714) was evaluated as a specific TSPO probe by cell uptake, cell binding assays and micro positron emission tomography (microPET) imaging in both in vitro and in vivo models. Primary microglia/macrophages (PMs) extracted from the cornea, retina, choroid or sclera of neonatal rats with or without high glucose (50 mM) treatment were used as the in vitro model. Sprague-Dawley (SD) rats that received an intraperitoneal administration of streptozotocin (STZ, 60 mg/kg once) were used as the in vivo model. Increased cell uptake and high binding affinity of [18F]-DPA-714 were observed in primary PMs under hyperglycemic stress. These findings were consistent with cellular morphological changes, cell activation, and TSPO up-regulation. [18F]-DPA-714 PET imaging and biodistribution in the eyes of DM rats revealed that inflammation initiates in microglia/macrophages in the early stages (3 weeks and 6 weeks), corresponding with up-regulated TSPO levels. Thus, [18F]-DPA-714 microPET imaging may be an effective approach for the early evaluation of ocular inflammation in DM.
Collapse
Affiliation(s)
- Peng Chen
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Jintan Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu, China
| | - Nannan Ding
- Department of Ophthalmology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China; Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China
| | - Donghui Pan
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuelian Chen
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, PuNan Branch of Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - ShiYi Li
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, Jiangsu, China
| | - Yidan Luo
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China
| | - Ziqing Chen
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yuping Xu
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue Zhu
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wenjun Zou
- Department of Ophthalmology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China; Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
4
|
Sarton B, Tauber C, Fridman E, Péran P, Riu B, Vinour H, David A, Geeraerts T, Bounes F, Minville V, Delmas C, Salabert AS, Albucher JF, Bataille B, Olivot JM, Cariou A, Naccache L, Payoux P, Schiff N, Silva S. Neuroimmune activation is associated with neurological outcome in anoxic and traumatic coma. Brain 2024; 147:1321-1330. [PMID: 38412555 PMCID: PMC10994537 DOI: 10.1093/brain/awae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/29/2024] Open
Abstract
The pathophysiological underpinnings of critically disrupted brain connectomes resulting in coma are poorly understood. Inflammation is potentially an important but still undervalued factor. Here, we present a first-in-human prospective study using the 18-kDa translocator protein (TSPO) radioligand 18F-DPA714 for PET imaging to allow in vivo neuroimmune activation quantification in patients with coma (n = 17) following either anoxia or traumatic brain injuries in comparison with age- and sex-matched controls. Our findings yielded novel evidence of an early inflammatory component predominantly located within key cortical and subcortical brain structures that are putatively implicated in consciousness emergence and maintenance after severe brain injury (i.e. mesocircuit and frontoparietal networks). We observed that traumatic and anoxic patients with coma have distinct neuroimmune activation profiles, both in terms of intensity and spatial distribution. Finally, we demonstrated that both the total amount and specific distribution of PET-measurable neuroinflammation within the brain mesocircuit were associated with the patient's recovery potential. We suggest that our results can be developed for use both as a new neuroprognostication tool and as a promising biometric to guide future clinical trials targeting glial activity very early after severe brain injury.
Collapse
Affiliation(s)
- Benjamine Sarton
- Critical Care Unit, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
- Toulouse NeuroImaging Center, Toulouse University, Inserm 1214, UPS, F-31300 Toulouse, France
| | - Clovis Tauber
- Imaging and Brain laboratory, UMRS Inserm U930, Université de Tours, F-37000 Tours, France
| | - Estéban Fridman
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Patrice Péran
- Toulouse NeuroImaging Center, Toulouse University, Inserm 1214, UPS, F-31300 Toulouse, France
| | - Beatrice Riu
- Critical Care Unit, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
| | - Hélène Vinour
- Critical Care Unit, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
| | - Adrian David
- Critical Care Unit, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
| | - Thomas Geeraerts
- Neurocritical Care Unit, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
| | - Fanny Bounes
- Critical Care Unit, University Teaching Hospital of Rangueil, F-31400 Toulouse Cedex 9, France
| | - Vincent Minville
- Critical Care Unit, University Teaching Hospital of Rangueil, F-31400 Toulouse Cedex 9, France
| | - Clément Delmas
- Cardiology Department, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
| | - Anne-Sophie Salabert
- Toulouse NeuroImaging Center, Toulouse University, Inserm 1214, UPS, F-31300 Toulouse, France
| | - Jean François Albucher
- Neurology Department, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
| | - Benoit Bataille
- Critical Care Unit, Hôtel Dieu Hospital, F-11100 Narbonne, France
| | - Jean Marc Olivot
- Neurology Department, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
| | - Alain Cariou
- Critical Care Unit, APHP, Cochin Hospital, F-75014 Paris, France
| | - Lionel Naccache
- Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013 Paris, France
| | - Pierre Payoux
- Toulouse NeuroImaging Center, Toulouse University, Inserm 1214, UPS, F-31300 Toulouse, France
| | - Nicholas Schiff
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stein Silva
- Critical Care Unit, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
- Toulouse NeuroImaging Center, Toulouse University, Inserm 1214, UPS, F-31300 Toulouse, France
| |
Collapse
|
5
|
Zhang M, Meng H, Zhou Q, Chunyu H, He L, Meng H, Wang H, Wang Y, Sun C, Xi Y, Hai W, Huang Q, Li B, Chen S. Microglial Activation Imaging Using 18F-DPA-714 PET/MRI for Detecting Autoimmune Encephalitis. Radiology 2024; 310:e230397. [PMID: 38441089 DOI: 10.1148/radiol.230397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Background Translocator protein (TSPO) PET has been used to visualize microglial activation in neuroinflammation and is a potential imaging tool for detecting autoimmune encephalitis (AIE). Purpose To compare the detection rate between TSPO radioligand fluorine 18 (18F) DPA-714 PET and conventional MRI and assess the relationship between 18F-DPA-714 uptake and clinical features in participants with AIE. Materials and Methods Healthy volunteers and patients with AIE were enrolled in this prospective study between December 2021 and April 2023. All participants underwent hybrid brain 18F-DPA-714 PET/MRI and antibody testing. Modified Rankin scale scoring and AIE-related symptoms were assessed in participants with AIE. Positive findings were defined as intensity of 18F-DPA-714 uptake above a threshold of the mean standardized uptake value ratio (SUVR) plus 2 SD inside the corresponding brain regions of healthy controls. The McNemar test was used to compare the positive detection rate between the two imaging modalities; the independent samples t test was used to compare continuous variables; and correlation with Bonferroni correction was used to assess the relationship between 18F-DPA-714 uptake and clinical features. Results A total of 25 participants with AIE (mean age, 39.24 years ± 19.03 [SD]) and 10 healthy controls (mean age, 28.70 years ± 5.14) were included. The positive detection rate of AIE was 72% (18 of 25) using 18F-DPA-714 PET compared to 44% (11 of 25) using conventional MRI, but the difference was not statistically significant (P = .065). Participants experiencing seizures exhibited significantly higher mean SUVR in the entire cortical region than those without seizures (1.23 ± 0.21 vs 1.15 ± 0.18; P = .003). Of the 13 participants with AIE who underwent follow-up PET/MRI, 11 (85%) demonstrated reduced uptake of 18F-DPA-714 accompanied by relief of symptoms after immunosuppressive treatment. Conclusion 18F-DPA-714 PET has potential value in supplementing MRI for AIE detection. Clinical trial registration no. NCT05293405 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Zaharchuk in this issue.
Collapse
Affiliation(s)
- Min Zhang
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Huanyu Meng
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Qinming Zhou
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Hangxing Chunyu
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Lu He
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Hongping Meng
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Hanzhong Wang
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Yue Wang
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Chenwei Sun
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Yun Xi
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Wangxi Hai
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Qiu Huang
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Biao Li
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Sheng Chen
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| |
Collapse
|
6
|
Gold L, Barci E, Brendel M, Orth M, Cheng J, Kirchleitner SV, Bartos LM, Pötter D, Kirchner MA, Unterrainer LM, Kaiser L, Ziegler S, Weidner L, Riemenschneider MJ, Unterrainer M, Belka C, Tonn JC, Bartenstein P, Niyazi M, von Baumgarten L, Kälin RE, Glass R, Lauber K, Albert NL, Holzgreve A. The Traumatic Inoculation Process Affects TSPO Radioligand Uptake in Experimental Orthotopic Glioblastoma. Biomedicines 2024; 12:188. [PMID: 38255293 PMCID: PMC10813339 DOI: 10.3390/biomedicines12010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The translocator protein (TSPO) has been proven to have great potential as a target for the positron emission tomography (PET) imaging of glioblastoma. However, there is an ongoing debate about the potential various sources of the TSPO PET signal. This work investigates the impact of the inoculation-driven immune response on the PET signal in experimental orthotopic glioblastoma. METHODS Serial [18F]GE-180 and O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) PET scans were performed at day 7/8 and day 14/15 after the inoculation of GL261 mouse glioblastoma cells (n = 24) or saline (sham, n = 6) into the right striatum of immunocompetent C57BL/6 mice. An additional n = 25 sham mice underwent [18F]GE-180 PET and/or autoradiography (ARG) at days 7, 14, 21, 28, 35, 50 and 90 in order to monitor potential reactive processes that were solely related to the inoculation procedure. In vivo imaging results were directly compared to tissue-based analyses including ARG and immunohistochemistry. RESULTS We found that the inoculation process represents an immunogenic event, which significantly contributes to TSPO radioligand uptake. [18F]GE-180 uptake in GL261-bearing mice surpassed [18F]FET uptake both in the extent and the intensity, e.g., mean target-to-background ratio (TBRmean) in PET at day 7/8: 1.22 for [18F]GE-180 vs. 1.04 for [18F]FET, p < 0.001. Sham mice showed increased [18F]GE-180 uptake at the inoculation channel, which, however, continuously decreased over time (e.g., TBRmean in PET: 1.20 at day 7 vs. 1.09 at day 35, p = 0.04). At the inoculation channel, the percentage of TSPO/IBA1 co-staining decreased, whereas TSPO/GFAP (glial fibrillary acidic protein) co-staining increased over time (p < 0.001). CONCLUSION We identify the inoculation-driven immune response to be a relevant contributor to the PET signal and add a new aspect to consider for planning PET imaging studies in orthotopic glioblastoma models.
Collapse
Affiliation(s)
- Lukas Gold
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| | - Enio Barci
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
- Neurosurgical Research, Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
- Munich Cluster for Systems Neurology (SyNergy), LMU Munich, 81377 Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Jiying Cheng
- Neurosurgical Research, Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Sabrina V. Kirchleitner
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistr 15, 81377 Munich, Germany
| | - Laura M. Bartos
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| | - Dennis Pötter
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| | - Maximilian A. Kirchner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| | - Lena M. Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| | - Lena Kaiser
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| | - Sibylle Ziegler
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| | - Lorraine Weidner
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany
| | | | - Marcus Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
- DIE RADIOLOGIE, 80331 Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 81377 Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistr 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
- Munich Cluster for Systems Neurology (SyNergy), LMU Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 81377 Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistr 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 81377 Munich, Germany
| | - Roland E. Kälin
- Neurosurgical Research, Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Rainer Glass
- Neurosurgical Research, Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Nathalie L. Albert
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 81377 Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| |
Collapse
|
7
|
Wang X, Chen C, Yan J, Xu Y, Pan D, Wang L, Yang M. Druggability of Targets for Diagnostic Radiopharmaceuticals. ACS Pharmacol Transl Sci 2023; 6:1107-1119. [PMID: 37588760 PMCID: PMC10425999 DOI: 10.1021/acsptsci.3c00081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 08/18/2023]
Abstract
Targets play an indispensable and pivotal role in the development of radiopharmaceuticals. However, the initial stages of drug discovery projects are often plagued by frequent failures due to inadequate information on druggability and suboptimal target selection. In this context, we aim to present a comprehensive review of the factors that influence target druggability for diagnostic radiopharmaceuticals. Specifically, we explore the crucial determinants of target specificity, abundance, localization, and positivity rate and their respective implications. Through a detailed analysis of existing protein targets, we elucidate the significance of each factor. By carefully considering and balancing these factors during the selection of targets, more efficacious and targeted radiopharmaceuticals are expected to be designed for the diagnosis of a wide range of diseases in the future.
Collapse
Affiliation(s)
- Xinyu Wang
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Chongyang Chen
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
| | - Junjie Yan
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Yuping Xu
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Donghui Pan
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
| | - Lizhen Wang
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
| | - Min Yang
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
8
|
Ye P, Bi L, Yang M, Qiu Y, Huang G, Liu Y, Hou Y, Li Z, Tong HHY, Cui M, Jin H. Activated Microglia in the Early Stage of a Rat Model of Parkinson's Disease: Revealed by PET-MRI Imaging by [ 18F]DPA-714 Targeting TSPO. ACS Chem Neurosci 2023. [PMID: 37146429 DOI: 10.1021/acschemneuro.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
In the past decades, translocator protein (TSPO) has been considered as an in vivo biomarker to measure the presence of neuroinflammatory reactions. In this study, expression of TSPO was quantified via [18F]DPA-714 positron emission tomography-magnetic resonance imaging (PET-MRI) imaging to investigate the effects of microglial activation associated with motor behavioral impairments in the 6-hydroxydopamine (6-OHDA)-treated rodent model of Parkinson's disease (PD). [18F]FDG PET-MRI (for non-specific inflammation), [18F]D6-FP-(+)-DTBZ PET-MRI (for damaged dopaminergic neurons), post-PET immunofluorescence, and Pearson's correlation analyses were also performed. The time course of the striatal [18F]DPA-714 binding ratio elevated in 6-OHDA-treated rats during 1-3 weeks post-treatment, with the peak TSPO binding in the 1st week. No differences between bilateral striatum in [18F]FDG PET imaging were found. Moreover, an obvious correlation between [18F]DPA-714 SUVRR/L and rotation numbers was found (r = 0.434, *p = 0.049). No correlation between [18F]FDG SUVRR/L and rotation behavior was found. [18F]DPA-714 appeared to be a potential PET tracer for imaging the microglia-mediated neuroinflammation in the early stage of PD.
Collapse
Affiliation(s)
- Peizhen Ye
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Min Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yifan Qiu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Guolong Huang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yongshan Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yuyi Hou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Zhijun Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Henry Hoi Yee Tong
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao SAR 999078, China
| | - Mengchao Cui
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
9
|
Ye P, Bi L, Yang M, Qiu Y, Huang G, Liu Y, Hou Y, Li Z, Yee Tong HH, Cui M, Jin H. Activated Microglia in the Early Stage of a Rat Model of Parkinson's Disease: Revealed by PET-MRI Imaging by [ 18F]DPA-714 Targeting TSPO. ACS Chem Neurosci 2023. [PMID: 37134001 DOI: 10.1021/acschemneuro.3c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
In the past decades, translocator protein (TSPO) has been considered as an in vivo biomarker to measure the presence of neuroinflammatory reactions. In this study, expression of TSPO was quantified via [18F]DPA-714 positron emission tomography-magnetic resonance imaging (PET-MRI) to investigate the effects of microglial activation associated with motor behavioral impairments in the 6-hydroxydopamine (6-OHDA)-treated rodent model of Parkinson's disease (PD). [18F]FDG PET-MRI (for non-specific inflammation), [18F]D6-FP-(+)-DTBZ PET-MRI (for damaged dopaminergic (DA) neurons), post-PET immunofluorescence, and Pearson's correlation analyses were also performed. The time course of striatal [18F]DPA-714 binding ratio was elevated in 6-OHDA-treated rats during 1-3 weeks post-treatments, with peak TSPO binding in the 1st week. No difference between the bilateral striatum in [18F]FDG PET imaging were found. Moreover, an obvious correlation between [18F]DPA-714 SUVRR/L and rotation numbers was found (r = 0.434, *p = 0.049). No correlation between [18F]FDG SUVRR/L and rotation behavior was found. [18F]DPA-714 appeared to be a potential PET tracer for imaging the microglia-mediated neuroinflammation in the early stage of PD.
Collapse
Affiliation(s)
- Peizhen Ye
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Min Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Yifan Qiu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Guolong Huang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Yongshan Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Yuyi Hou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Zhijun Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Henry Hoi Yee Tong
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao SAR 999078, China
| | - Mengchao Cui
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| |
Collapse
|
10
|
Yan B, Tang S, Zhang Y, Xiao X. The Role of Glia Underlying Acupuncture Analgesia in Animal Pain Models: A Systematic Review and Meta-Analysis. PAIN MEDICINE 2023; 24:11-24. [PMID: 35916732 DOI: 10.1093/pm/pnac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/10/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND As a traditional Chinese therapy, acupuncture is proposed worldwide as a treatment for pain and other health problems, but findings on acupuncture analgesia have been inconsistent because of its variable modalities of therapeutic intervention. OBJECTIVE This study aimed to evaluate the existing animal studies for evidence on acupuncture and its effect on glia in association with a reduction in pain conditions. METHODS Literature searches were performed in four English- and Chinese-language databases (Web of Science, PubMed, EMBASE, and CNKI) on October 8, 2021. Included studies reported the pain outcome (e.g., paw withdrawal latency, paw withdrawal threshold) and glia outcome (e.g., glial marker GFPA, Iba1, and OX42) in pain-induced animals during acupuncture treatment. RESULTS Fifty-two preclinical studies were included in the meta-analysis. A single acupuncture treatment in rodents had an analgesic effect, which was more effective in inflammatory pain than in neuropathic pain in the early phase of treatment. The analgesic efficacy became more curative after repeated acupuncture. Furthermore, acupuncture treatment could effectively inhibit the activity of astrocytes and microglia in both inflammatory pain and neuropathic pain in a time-course pattern. CONCLUSIONS Acupuncture treatment improves analgesic effect in rodent pain conditions under the possible mechanism of glial inhibition. Therefore, these results provide an opportunity to evaluate the effectiveness of acupuncture analgesia and neuroinflammation in animal models to research further neurobiological mechanisms and to inform the design of future clinical trials. STUDY REGISTRATION PROSPERO (ID: CRD42020196011).
Collapse
Affiliation(s)
- Bing Yan
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shengyu Tang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yuqiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Martinez-Orengo N, Tahmazian S, Lai J, Wang Z, Sinharay S, Schreiber-Stainthorp W, Basuli F, Maric D, Reid W, Shah S, Hammoud DA. Assessing organ-level immunoreactivity in a rat model of sepsis using TSPO PET imaging. Front Immunol 2022; 13:1010263. [PMID: 36439175 PMCID: PMC9685400 DOI: 10.3389/fimmu.2022.1010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
There is current need for new approaches to assess/measure organ-level immunoreactivity and ensuing dysfunction in systemic inflammatory response syndrome (SIRS) and sepsis, in order to protect or recover organ function. Using a rat model of systemic sterile inflammatory shock (intravenous LPS administration), we performed PET imaging with a translocator protein (TSPO) tracer, [18F]DPA-714, as a biomarker for reactive immunoreactive changes in the brain and peripheral organs. In vivo dynamic PET/CT scans showed increased [18F]DPA-714 binding in the brain, lungs, liver and bone marrow, 4 hours after LPS injection. Post-LPS mean standard uptake values (SUVmean) at equilibrium were significantly higher in those organs compared to baseline. Changes in spleen [18F]DPA-714 binding were variable but generally decreased after LPS. SUVmean values in all organs, except the spleen, positively correlated with several serum cytokines/chemokines. In vitro measures of TSPO expression and immunofluorescent staining validated the imaging results. Noninvasive molecular imaging with [18F]DPA-714 PET in a rat model of systemic sterile inflammatory shock, along with in vitro measures of TSPO expression, showed brain, liver and lung inflammation, spleen monocytic efflux/lymphocytic activation and suggested increased bone marrow hematopoiesis. TSPO PET imaging can potentially be used to quantify SIRS and sepsis-associated organ-level immunoreactivity and assess the effectiveness of therapeutic and preventative approaches for associated organ failures, in vivo.
Collapse
Affiliation(s)
- Neysha Martinez-Orengo
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sarine Tahmazian
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jianhao Lai
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Zeping Wang
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sanhita Sinharay
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - William Schreiber-Stainthorp
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - William Reid
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Dima A. Hammoud,
| |
Collapse
|
12
|
Kaneko KI, Irie S, Mawatari A, Igesaka A, Hu D, Nakaoka T, Hayashinaka E, Wada Y, Doi H, Watanabe Y, Cui Y. [ 18F]DPA-714 PET imaging for the quantitative evaluation of early spatiotemporal changes of neuroinflammation in rat brain following status epilepticus. Eur J Nucl Med Mol Imaging 2022; 49:2265-2275. [PMID: 35157105 DOI: 10.1007/s00259-022-05719-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/06/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Most antiepileptic drug therapies are symptomatic and adversely suppress normal brain function by nonspecific inhibition of neuronal activity. In recent times, growing evidence has suggested that neuroinflammation triggered by epileptic seizures might be involved in the pathogenesis of epilepsy. Although the potential effectiveness of anti-inflammatory treatment for curing epilepsy has been extensively discussed, the limited quantitative data regarding spatiotemporal characteristics of neuroinflammation after epileptic seizures makes it difficult to be realized. We quantitatively analyzed the spatiotemporal changes in neuroinflammation in the early phase after status epilepticus in rats, using translocator protein (TSPO) positron emission tomography (PET) imaging, which has been widely used for the quantitative evaluation of neuroinflammation in several animal models of CNS disease. METHODS The second-generation TSPO PET probe, [18F]DPA-714, was used for brain-wide quantitative analysis of neuroinflammation in the brains of rats, when the status epilepticus was induced by subcutaneous injection of kainic acid (KA, 15 mg/kg) into those rats. A series of [18F]DPA-714 PET scans were performed at 1, 3, 7, and 15 days after status epilepticus, and the corresponding histological changes, including activation of microglia and astrocytes, were confirmed by immunohistochemistry. RESULTS Apparent accumulation of [18F]DPA-714 was observed in several KA-induced epileptogenic regions, such as the amygdala, piriform cortex, ventral hippocampus, mediodorsal thalamus, and cortical regions 3 days after status epilepticus, and was reversibly displaced by unlabeled PK11195 (1 mg/kg). Consecutive [18F]DPA-714 PET scans revealed that accumulation of [18F]DPA-714 was focused in the KA-induced epileptogenic regions from 3 days after status epilepticus and was further maintained in the amygdala and piriform cortex until 7 days after status epilepticus. Immunohistochemical analysis revealed that activated microglia but not reactive astrocytes were correlated with [18F]DPA-714 accumulation in the KA-induced epileptogenic regions for at least 1 week after status epilepticus. CONCLUSIONS These results indicate that the early spatiotemporal characteristics of neuroinflammation quantitatively evaluated by [18F]DPA-714 PET imaging provide valuable evidence for developing new anti-inflammatory therapies for epilepsy. The predominant activation of microglia around epileptogenic regions in the early phase after status epilepticus could be a crucial therapeutic target for curing epilepsy.
Collapse
Affiliation(s)
- Ken-Ichi Kaneko
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Satsuki Irie
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Aya Mawatari
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Ami Igesaka
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Di Hu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Takayoshi Nakaoka
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Emi Hayashinaka
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
13
|
Holzgreve A, Pötter D, Brendel M, Orth M, Weidner L, Gold L, Kirchner MA, Bartos LM, Unterrainer LM, Unterrainer M, Steiger K, von Baumgarten L, Niyazi M, Belka C, Bartenstein P, Riemenschneider MJ, Lauber K, Albert NL. Longitudinal [ 18F]GE-180 PET Imaging Facilitates In Vivo Monitoring of TSPO Expression in the GL261 Glioblastoma Mouse Model. Biomedicines 2022; 10:biomedicines10040738. [PMID: 35453488 PMCID: PMC9030822 DOI: 10.3390/biomedicines10040738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is increasingly recognized as an interesting target for the imaging of glioblastoma (GBM). Here, we investigated TSPO PET imaging and autoradiography in the frequently used GL261 glioblastoma mouse model and aimed to generate insights into the temporal evolution of TSPO radioligand uptake in glioblastoma in a preclinical setting. We performed a longitudinal [18F]GE-180 PET imaging study from day 4 to 14 post inoculation in the orthotopic syngeneic GL261 GBM mouse model (n = 21 GBM mice, n = 3 sham mice). Contrast-enhanced computed tomography (CT) was performed at the day of the final PET scan (±1 day). [18F]GE-180 autoradiography was performed on day 7, 11 and 14 (ex vivo: n = 13 GBM mice, n = 1 sham mouse; in vitro: n = 21 GBM mice; n = 2 sham mice). Brain sections were also used for hematoxylin and eosin (H&E) staining and TSPO immunohistochemistry. [18F]GE-180 uptake in PET was elevated at the site of inoculation in GBM mice as compared to sham mice at day 11 and later (at day 14, TBRmax +27% compared to sham mice, p = 0.001). In GBM mice, [18F]GE-180 uptake continuously increased over time, e.g., at day 11, mean TBRmax +16% compared to day 4, p = 0.011. [18F]GE-180 uptake as depicted by PET was in all mice co-localized with contrast-enhancement in CT and tissue-based findings. [18F]GE-180 ex vivo and in vitro autoradiography showed highly congruent tracer distribution (r = 0.99, n = 13, p < 0.001). In conclusion, [18F]GE-180 PET imaging facilitates non-invasive in vivo monitoring of TSPO expression in the GL261 GBM mouse model. [18F]GE-180 in vitro autoradiography is a convenient surrogate for ex vivo autoradiography, allowing for straightforward identification of suitable models and scan time-points on previously generated tissue sections.
Collapse
Affiliation(s)
- Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Dennis Pötter
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (M.O.); (M.N.); (C.B.); (K.L.)
| | - Lorraine Weidner
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany; (L.W.); (M.J.R.)
| | - Lukas Gold
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Maximilian A. Kirchner
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Laura M. Bartos
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Lena M. Unterrainer
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Katja Steiger
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Louisa von Baumgarten
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
- Department of Neurosurgery, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (M.O.); (M.N.); (C.B.); (K.L.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (M.O.); (M.N.); (C.B.); (K.L.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Markus J. Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany; (L.W.); (M.J.R.)
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (M.O.); (M.N.); (C.B.); (K.L.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
- Correspondence:
| |
Collapse
|
14
|
Korneva EA, Dmitrienko EV, Miyamura S, Noda M, Akimoto N. Protective effects of Derinat, a nucleotide-based drug, on experimental traumatic brain injury, and its cellular mechanisms. MEDICAL IMMUNOLOGY (RUSSIA) 2021; 23:1367-1382. [DOI: 10.15789/1563-0625-peo-2392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Traumatic brain injury is the most common cause of death and disability in young people including sport athletes and soldiers, people under 45 years of age in the industrialized countries, representing a growing health problem in developing countries, as well as in aging communities. Treatment of the latter is a serious challenge for modern medicine. This type of injury leads to many kinds of disorders and, quite often, to disability. These issue require development of new methods for brain trauma treatment. The new approach to brain trauma treatment was studied in murine experiments. In particular, sodium salt of deoxyribonucleic acid (DNA) was used. This preparation is a drug known as a mixture of peptides with immunomodulatory effect which is widely used for different kinds of therapy. Derinat, a sodium salt of DNA, isolated from the caviar of Russian sturgeon, is a proven immunomodulator for treatment of diseases associatd with reactive oxygen species (ROS), including brain ischemia-reperfusion (IR) injury. Here we show that treatment with Derinat exert neuroprotective, anti-oxidative, and anti-inflammatory effects in experimental model of traumatic brain injury (TBI) in rats. Intraperitoneal injection of Derinat several times over 3 days after TBI showed less pronounced damage of the injured brain area. Immunohistochemical study showed that the Derinat-induced morphological changes of microglia in cerebral cortex and hippocampus 7 days after TBI. TBI-induced accumulation of 8-oxoguanine (8-oxoG), the marker of oxidative damage, was significantly attenuated by Derinat administration, both on 7th and 14th day after TBI. To investigate cellular mechanism of anti-inflammatory effects, the primary cultures of murine microglia supplied with ATP (50 M and 1 mM), as a substance released at injured site, were used to mimic the in vitro inflammatory response. Derinate treatment caused an increase of glial levels of mRNAs encoding neurotrophic factor (GDNF) and nerve growth factor (NGF) in the presence of ATP, whereas tissue plasminogen activator (tPA) mRNA was inhibited by ATP with or without Derinat. Interleukin-6 (IL-6) mRNA expression was not affected by ATP but was increased by Derinat. Both mRNA and protein levels of ATP-induced TNFα production were significantly inhibited by Derinat. These results partially contribute to understanding mechanisms of immunomodulatory effects of DNA preparations in traumatic brain injury.
Collapse
Affiliation(s)
| | | | | | - M. Noda
- Graduate School of Pharmaceutical Sciences
| | - N. Akimoto
- Graduate School of Pharmaceutical Sciences
| |
Collapse
|
15
|
Oh SJ, Ahn H, Jung KH, Han SJ, Nam KR, Kang KJ, Park JA, Lee KC, Lee YJ, Choi JY. Evaluation of the Neuroprotective Effect of Microglial Depletion by CSF-1R Inhibition in a Parkinson's Animal Model. Mol Imaging Biol 2021; 22:1031-1042. [PMID: 32086763 DOI: 10.1007/s11307-020-01485-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Neuroinflammation in Parkinson's disease (PD) is known to play a pivotal role in progression to neuronal degeneration. It has been reported that colony-stimulation factor 1 receptor (CSF-1R) inhibition can effectively deplete microglia. However, its therapeutic efficacy in PD is unclear still now. PROCEDURES To elucidate this issue, we examined the contribution of microglial depletion to PD by behavioral testing, positron emission tomography (PET) imaging, and immunoassays in sham, PD, and microglial depletion PD model (PLX3397 was administered to PD groups, with n = 6 in each group). RESULTS The microglial depletion in PD model showed improved sensory motor function and depressive-like behavior. NeuroPET revealed that PLX3397 treatment resulted in partial recovery of striatal neuro-inflammatory functions (binding values of [18F]DPA-174 for PD, 1.47 ± 0.12, p < 0.01 vs. for PLX3397 in PD: 1.33 ± 0.26) and the dopaminergic (binding values of 18F-FP-CIT for PD, 1.32 ± 0.07 vs. for PLX3397 in PD: 1.54 ± 0.10, p < 0.01) and glutamatergic systems (binding values of [18F]FPEB for PD: 9.22 ± 0.54 vs. for PLX3397 Tx in PD: 9.83 ± 0.96, p > 0.05). Western blotting for microglia showed similar changes. CONCLUSION Microglial depletion has inflammation-related therapeutic effects, which have beneficial effects on motor and nonmotor symptoms of PD.
Collapse
Affiliation(s)
- Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea
| | - Heesu Ahn
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea.,Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, South Korea
| | - Ki-Hye Jung
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea.,Medical Device-Bio Research Institute, Korea Testing and Research Institute, Gwacheon, Gyeonggi-do, South Korea
| | - Sang Jin Han
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea
| | - Kyung Jun Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea.
| |
Collapse
|
16
|
Nikam RM, Yue X, Kandula VV, Paudyal B, Langhans SA, Averill LW, Choudhary AK. Unravelling neuroinflammation in abusive head trauma with radiotracer imaging. Pediatr Radiol 2021; 51:966-970. [PMID: 33999238 DOI: 10.1007/s00247-021-04995-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 01/07/2023]
Abstract
Abusive head trauma (AHT) is a leading cause of mortality and morbidity in child abuse, with a mortality rate of approximately 25%. In survivors, the prognosis remains dismal, with high prevalence of cerebral palsy, epilepsy and neuropsychiatric disorders. Early and accurate diagnosis of AHT is challenging, both clinically and radiologically, with up to one-third of cases missed on initial examination. Moreover, most of the management in AHT is supportive, reflective of the lack of clear understanding of specific pathogenic mechanisms underlying secondary insult, with approaches targeted toward decreasing intracranial hypertension and reducing cerebral metabolism, cell death and excitotoxicity. Multiple studies have elucidated the role of pro- and anti-inflammatory cytokines and chemokines with upregulation/recruitment of microglia/macrophages, oligodendrocytes and astrocytes in severe traumatic brain injury (TBI). In addition, recent studies in animal models of AHT have demonstrated significant upregulation of microglia, with a potential role of inflammatory cascade contributing to secondary insult. Despite the histological and biochemical evidence, there is a significant dearth of specific imaging approaches to identify this neuroinflammation in AHT. The primary motivation for development of such imaging approaches stems from the need to therapeutically target neuroinflammation and establish its utility in monitoring and prognostication. In the present paper, we discuss the available data suggesting the potential role of neuroinflammation in AHT and role of radiotracer imaging in aiding diagnosis and patient management.
Collapse
Affiliation(s)
- Rahul M Nikam
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA. .,Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
| | - Xuyi Yue
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Vinay V Kandula
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | - Bishnuhari Paudyal
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Sigrid A Langhans
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Lauren W Averill
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | - Arabinda K Choudhary
- Department of Radiology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| |
Collapse
|
17
|
Foray C, Valtorta S, Barca C, Winkeler A, Roll W, Müther M, Wagner S, Gardner ML, Hermann S, Schäfers M, Grauer OM, Moresco RM, Zinnhardt B, Jacobs AH. Imaging temozolomide-induced changes in the myeloid glioma microenvironment. Theranostics 2021; 11:2020-2033. [PMID: 33500706 PMCID: PMC7797694 DOI: 10.7150/thno.47269] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022] Open
Abstract
Rationale: The heterogeneous nature of gliomas makes the development and application of novel treatments challenging. In particular, infiltrating myeloid cells play a role in tumor progression and therapy resistance. Hence, a detailed understanding of the dynamic interplay of tumor cells and immune cells in vivo is necessary. To investigate the complex interaction between tumor progression and therapy-induced changes in the myeloid immune component of the tumor microenvironment, we used a combination of [18F]FET (amino acid metabolism) and [18F]DPA-714 (TSPO, GAMMs, tumor cells, astrocytes, endothelial cells) PET/MRI together with immune-phenotyping. The aim of the study was to monitor temozolomide (TMZ) treatment response and therapy-induced changes in the inflammatory tumor microenvironment (TME). Methods: Eighteen NMRInu/nu mice orthotopically implanted with Gli36dEGFR cells underwent MRI and PET/CT scans before and after treatment with TMZ or DMSO (vehicle). Tumor-to-background (striatum) uptake ratios were calculated and areas of unique tracer uptake (FET vs. DPA) were determined using an atlas-based volumetric approach. Results: TMZ therapy significantly modified the spatial distribution and uptake of both tracers. [18F]FET uptake was significantly reduced after therapy (-53 ± 84%) accompanied by a significant decrease of tumor volume (-17 ± 6%). In contrast, a significant increase (61 ± 33%) of [18F]DPA-714 uptake was detected by TSPO imaging in specific areas of the tumor. Immunohistochemistry (IHC) validated the reduction in tumor volumes and further revealed the presence of reactive TSPO-expressing glioma-associated microglia/macrophages (GAMMs) in the TME. Conclusion: We confirm the efficiency of [18F]FET-PET for monitoring TMZ-treatment response and demonstrate that in vivo TSPO-PET performed with [18F]DPA-714 can be used to identify specific reactive areas of myeloid cell infiltration in the TME.
Collapse
|
18
|
Thau-Zuchman O, Svendsen L, Dyall SC, Paredes-Esquivel U, Rhodes M, Priestley JV, Feichtinger RG, Kofler B, Lotstra S, Verkuyl JM, Hageman RJ, Broersen LM, van Wijk N, Silva JP, Tremoleda JL, Michael-Titus AT. A new ketogenic formulation improves functional outcome and reduces tissue loss following traumatic brain injury in adult mice. Theranostics 2021; 11:346-360. [PMID: 33391479 PMCID: PMC7681084 DOI: 10.7150/thno.48995] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Traumatic brain injury (TBI) leads to neurological impairment, with no satisfactory treatments available. Classical ketogenic diets (KD), which reduce reliance on carbohydrates and provide ketones as fuel, have neuroprotective potential, but their high fat content reduces compliance, and experimental evidence suggests they protect juvenile brain against TBI, but not adult brain, which would strongly limit their applicability in TBI. Methods: We designed a new-KD with a fat to carbohydrate plus protein ratio of 2:1, containing medium chain triglycerides (MCT), docosahexaenoic acid (DHA), low glycaemic index carbohydrates, fibres and the ketogenic amino acid leucine, and evaluated its neuroprotective potential in adult TBI. Adult male C57BL6 mice were injured by controlled cortical impact (CCI) and assessed for 70 days, during which they received a control diet or the new-KD. Results: The new-KD, that markedly increased plasma Beta-hydroxybutyrate (β-HB), significantly attenuated sensorimotor deficits and corrected spatial memory deficit. The lesion size, perilesional inflammation and oxidation were markedly reduced. Oligodendrocyte loss appeared to be significantly reduced. TBI activated the mTOR pathway and the new-KD enhanced this increase and increased histone acetylation and methylation. Conclusion: The behavioural improvement and tissue protection provide proof of principle that this new formulation has therapeutic potential in adult TBI.
Collapse
|
19
|
Eyolfson E, Khan A, Mychasiuk R, Lohman AW. Microglia dynamics in adolescent traumatic brain injury. J Neuroinflammation 2020; 17:326. [PMID: 33121516 PMCID: PMC7597018 DOI: 10.1186/s12974-020-01994-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Repetitive, mild traumatic brain injuries (RmTBIs) are increasingly common in adolescents and encompass one of the largest neurological health concerns in the world. Adolescence is a critical period for brain development where RmTBIs can substantially impact neurodevelopmental trajectories and life-long neurological health. Our current understanding of RmTBI pathophysiology suggests key roles for neuroinflammation in negatively regulating neural health and function. Microglia, the brain’s resident immune population, play important roles in brain development by regulating neuronal number, and synapse formation and elimination. In response to injury, microglia activate to inflammatory phenotypes that may detract from these normal homeostatic, physiological, and developmental roles. To date, however, little is known regarding the impact of RmTBIs on microglia function during adolescent brain development. This review details key concepts surrounding RmTBI pathophysiology, adolescent brain development, and microglia dynamics in the developing brain and in response to injury, in an effort to formulate a hypothesis on how the intersection of these processes may modify long-term trajectories.
Collapse
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada
| | - Asher Khan
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada.,Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Alexander W Lohman
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada. .,Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
20
|
Hu W, Pan D, Wang Y, Bao W, Zuo C, Guan Y, Hua F, Yang M, Zhao J. PET Imaging for Dynamically Monitoring Neuroinflammation in APP/PS1 Mouse Model Using [ 18F]DPA714. Front Neurosci 2020; 14:810. [PMID: 33132817 PMCID: PMC7550671 DOI: 10.3389/fnins.2020.00810] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Abstract
Background: In the pathogenesis of Alzheimer's disease (AD), microglia play an increasingly important role. Molecular imaging of neuroinflammatory targeting microglia activation and the high expression of 18-kDa translocator protein (TSPO) has become a hot topic of research in recent years. Dynamic monitoring neuroinflammation is crucial for discovering the best time point of anti-inflammatory therapy. Motivated by this, Positron emission tomography (PET) imaging in an APP/PS1 mouse model of AD, using 18F-labeled DPA-714 to monitor microglia activation and neuroinflammation, were performed in this paper. Methods: We prepared [18F]DPA714 and tested the biological characteristics of the molecular probe in normal mice. To obtain a higher radiochemical yield, we improved the [18F]-fluorination conditions in the precursor dosage, reaction temperature, and synthesis time. We performed [18F]DPA714 PET scanning on APP/PS1 mice at 6-7, 9-10, 12-13, and 15-16 months of age, respectively. The same experiments were conducted in Wild-type (Wt) mice as a control. Referring to the [18F]DPA714 concentrated situation in the brain, we performed blocking experiments with PK11195 (1 mg/kg) in 12-13-months-old APP/PS1 mice to confirm the specificity of [18F]DPA714 for TSPO in the APP/PS1 mice. Reconstructed brain PET images, fused with the Magnetic Resonance Imaging (MRI) template atlas, and the volumes of interests (VOIs) of the hippocampus and cortex were determined. The distribution of [18F]DPA714 in the brain tissues of 15-16-months-old APP/PS1 and Wt mice were studied by immunofluorescence staining. Results: Through the reaction of 18F, with 2 mg precursor dissolved in 300 ul acetonitrile at 105°C for 10 min, we obtained the optimal radiochemical yield of 42.3 ± 5.1% (non-decay correction). Quantitative analysis of brain PET images showed that the [18F]DPA714 uptake in the cortex and hippocampus of 12-13-months-old APP/PS1 mice was higher than that of the control mice of the same age (cortex/muscle: 2.77 ± 0.13 vs. 1.93 ± 0.32, p = 0.0014; hippocampus/muscle: 3.33 ± 0.10 vs. 2.10 ± 0.35, p = 0.0008). The same significant difference was found between 15- and 16-months-old APP/PS1 mice (cortex/muscle: 2.64 ± 0.14 vs. 1.86 ± 0.52, p=0.0159; hippocampus/muscle: 2.89 ± 0.53 vs. 1.77 ± 0.48, p = 0.0050). Immunofluorescence staining showed that the activation of microglia and the level of TSPO expression in the cortex and hippocampus of APP/PS1 mice were significantly higher than Wt mice. Conclusion: [18F]DPA714, a molecular probe for targeting TSPO, showed great potential in monitoring microglia activation and neuroinflammation, which can be helpful in discovering the best time point for anti-inflammatory therapy in AD.
Collapse
Affiliation(s)
- Wei Hu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.,Department of Nuclear Medicine, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Ministry of Health, Wuxi, China
| | - Yalin Wang
- State Key Lab of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Bao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengchun Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Yang
- Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Ministry of Health, Wuxi, China
| | - Jun Zhao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.,Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Nutma E, Stephenson JA, Gorter RP, de Bruin J, Boucherie DM, Donat CK, Breur M, van der Valk P, Matthews PM, Owen DR, Amor S. A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis. Brain 2020; 142:3440-3455. [PMID: 31578541 PMCID: PMC6821167 DOI: 10.1093/brain/awz287] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is increasingly used to study brain and spinal cord inflammation in degenerative diseases of the CNS such as multiple sclerosis. The enhanced TSPO PET signal that arises during disease is widely considered to reflect activated pathogenic microglia, although quantitative neuropathological data to support this interpretation have not been available. With the increasing interest in the role of chronic microglial activation in multiple sclerosis, characterising the cellular neuropathology associated with TSPO expression is of clear importance for understanding the cellular and pathological processes on which TSPO PET imaging is reporting. Here we have studied the cellular expression of TSPO and specific binding of two TSPO targeting radioligands (3H-PK11195 and 3H-PBR28) in tissue sections from 42 multiple sclerosis cases and 12 age-matched controls. Markers of homeostatic and reactive microglia, astrocytes, and lymphocytes were used to investigate the phenotypes of cells expressing TSPO. There was an approximate 20-fold increase in cells double positive for TSPO and HLA-DR in active lesions and in the rim of chronic active lesion, relative to normal appearing white matter. TSPO was uniformly expressed across myeloid cells irrespective of their phenotype, rather than being preferentially associated with pro-inflammatory microglia or macrophages. TSPO+ astrocytes were increased up to 7-fold compared to normal-appearing white matter across all lesion subtypes and accounted for 25% of the TSPO+ cells in these lesions. To relate TSPO protein expression to ligand binding, specific binding of the TSPO ligands 3H-PK11195 and 3H-PBR28 was determined in the same lesions. TSPO radioligand binding was increased up to seven times for 3H-PBR28 and up to two times for 3H-PK11195 in active lesions and the centre of chronic active lesions and a strong correlation was found between the radioligand binding signal for both tracers and the number of TSPO+ cells across all of the tissues examined. In summary, in multiple sclerosis, TSPO expression arises from microglia of different phenotypes, rather than being restricted to microglia which express classical pro-inflammatory markers. While the majority of cells expressing TSPO in active lesions or chronic active rims are microglia/macrophages, our findings also emphasize the significant contribution of activated astrocytes, as well as smaller contributions from endothelial cells. These observations establish a quantitative framework for interpretation of TSPO in multiple sclerosis and highlight the need for neuropathological characterization of TSPO expression for the interpretation of TSPO PET in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Jodie A Stephenson
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Rianne P Gorter
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Joy de Bruin
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | | | | | - Marjolein Breur
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Paul van der Valk
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, UK.,UK Dementia Research Institute, Imperial College London, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, UK
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
22
|
Dimitrova-Shumkovska J, Krstanoski L, Veenman L. Diagnostic and Therapeutic Potential of TSPO Studies Regarding Neurodegenerative Diseases, Psychiatric Disorders, Alcohol Use Disorders, Traumatic Brain Injury, and Stroke: An Update. Cells 2020; 9:cells9040870. [PMID: 32252470 PMCID: PMC7226777 DOI: 10.3390/cells9040870] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation and cell death are among the common symptoms of many central nervous system diseases and injuries. Neuroinflammation and programmed cell death of the various cell types in the brain appear to be part of these disorders, and characteristic for each cell type, including neurons and glia cells. Concerning the effects of 18-kDa translocator protein (TSPO) on glial activation, as well as being associated with neuronal cell death, as a response mechanism to oxidative stress, the changes of its expression assayed with the aid of TSPO-specific positron emission tomography (PET) tracers' uptake could also offer evidence for following the pathogenesis of these disorders. This could potentially increase the number of diagnostic tests to accurately establish the stadium and development of the disease in question. Nonetheless, the differences in results regarding TSPO PET signals of first and second generations of tracers measured in patients with neurological disorders versus healthy controls indicate that we still have to understand more regarding TSPO characteristics. Expanding on investigations regarding the neuroprotective and healing effects of TSPO ligands could also contribute to a better understanding of the therapeutic potential of TSPO activity for brain damage due to brain injury and disease. Studies so far have directed attention to the effects on neurons and glia, and processes, such as death, inflammation, and regeneration. It is definitely worthwhile to drive such studies forward. From recent research it also appears that TSPO ligands, such as PK11195, Etifoxine, Emapunil, and 2-Cl-MGV-1, demonstrate the potential of targeting TSPO for treatments of brain diseases and disorders.
Collapse
Affiliation(s)
- Jasmina Dimitrova-Shumkovska
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova 3, P.O. Box 162, 1000 Skopje, Republic of North Macedonia;
- Correspondence: (J.D.-S.); (L.V.)
| | - Ljupcho Krstanoski
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova 3, P.O. Box 162, 1000 Skopje, Republic of North Macedonia;
| | - Leo Veenman
- Technion-Israel Institute of Technology, Faculty of Medicine, Rappaport Institute of Medical Research, 1 Efron Street, P.O. Box 9697, Haifa 31096, Israel
- Correspondence: (J.D.-S.); (L.V.)
| |
Collapse
|
23
|
Wang L, Yao S, Tang R, Zhu H, Zhang L, Gong J, Chen Q, Collier TL, Xu H, Liang SH. A concisely automated synthesis of TSPO radiotracer [ 18 F]FDPA based on spirocyclic iodonium ylide method and validation for human use. J Labelled Comp Radiopharm 2020; 63:119-128. [PMID: 31895476 DOI: 10.1002/jlcr.3824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
Abstract
Fluorine-18 labeled N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ([18 F]FDPA) is a potent and selective radiotracer for positron-emission tomography (PET) imaging of the translocator protein 18 kDa (TSPO). Our previous in vitro and in vivo evaluations have proven that this tracer is promising for further human translation. Our study addresses the need to streamline the automatic synthesis of this radiotracer to make it more accessible for widespread clinical evaluation and application. Here, we successfully demonstrate a one-step radiolabeling of [18 F]FDPA based on a novel spirocyclic iodonium ylide (SCIDY) precursor using tetra-n-butyl ammonium methanesulfonate (TBAOMs), which has demonstrated the highest radiochemical yields and molar activity from readily available [18 F]fluoride ion. The nucleophilic radiofluorination was completed on a GE TRACERlab FX2 N synthesis module, and the formulated [18 F]FDPA was obtained in nondecay corrected (n.d.c) radiochemical yields of 15.6 ± 4.2%, with molar activities of 529.2 ± 22.5 GBq/μmol (14.3 ± 0.6 Ci/μmol) at the end of synthesis (60 minutes, n = 3) and validated for human use. This methodology facilitates efficient synthesis of [18 F]FDPA in a commercially available synthesis module, which would be broadly applicable for routine production and widespread clinical PET imaging studies.
Collapse
Affiliation(s)
- Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Shaobo Yao
- Department of PET/CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruikun Tang
- Department of Radiopharmaceuticals Quality Control, Guangzhou Atom Hightech Radiopharmaceutical Co. Ltd, Guangzhou, China
| | - Honghao Zhu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lingling Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jian Gong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiusong Chen
- Department of PET/CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, China
| | - Thomas Lee Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts
- Advion Inc., New York, USA
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Yamagishi S, Iga Y, Nakamura M, Takizawa C, Fukumoto D, Kakiuchi T, Nishiyama S, Ohba H, Tsukada H, Sato K, Ouchi Y. Upregulation of cannabinoid receptor type 2, but not TSPO, in senescence-accelerated neuroinflammation in mice: a positron emission tomography study. J Neuroinflammation 2019; 16:208. [PMID: 31707986 PMCID: PMC6842455 DOI: 10.1186/s12974-019-1604-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microglial cells are activated in response to changes in brain homeostasis during aging, dementia, and stroke. Type 2 endocannabinoid receptors (CB2) and translocator protein 18 kD (TSPO) are considered to reflect distinct aspects of microglia-related neuroinflammatory responses in the brain. CB2 activation is considered to relate to the neuroprotective responses that may occur predominantly in the early stage of brain disorders such as Alzheimer's disease, while an increase in TSPO expression tends to occur later during neuroinflammation, in a proinflammatory fashion. However, this information was deduced from studies with different animal samples under different experimental settings. In this study, we aimed to examine the early microglial status in the inflammation occurring in the brains of senescence-accelerated mouse prone 10 (SAMP10) mice, using positron emission tomography (PET) with CB2 and TSPO tracers, together with immunohistochemistry. METHODS Five- and 15-week-old SAMP10 mice that undergo neurodegeneration after 7 months of age were used. The binding levels of the TSPO tracer (R)-[11C]PK11195 and CB2 tracer [11C]NE40 were measured using PET in combination with immunohistochemistry for CB2 and TSPO. To our knowledge, this is the first study to report PET data for CB2 and TSPO at the early stage of cognitive impairment in an animal model. RESULTS The standard uptake value ratios (SUVRs) of [11C]NE40 binding were significantly higher than those of (R)-[11C]PK11195 binding in the cerebral cortical region at 15 weeks of age. At 5 weeks of age, the [11C]NE40 SUVR tended to be higher than the (R)-[11C]PK11195 SUVR. The (R)-[11C]PK11195 SUVR did not significantly differ between 5- and 15-week-old mice. Consistently, immunostaining analysis confirmed the upregulation of CB2, but not TSPO. CONCLUSIONS The use of the CB2 tracer [11C]NE40 and/or an immunohistochemical approach allows evaluation of the role of microglia in acute neuroinflammatory processes in the early stage of neurodegeneration. The present results provide in vivo evidence of different responses of two types of microglia to senescence-accelerated neuroinflammation, implying the perturbation of microglial balance by aging. Specific treatment for CB2-positive microglia might help ameliorate senescence-related neuroinflammation and the following neurodegeneration.
Collapse
Affiliation(s)
- Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Yurika Iga
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Masato Nakamura
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Chika Takizawa
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Dai Fukumoto
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Kohji Sato
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
25
|
Wu CY, Chen YY, Lin JJ, Li JP, Chen JK, Hsieh TC, Kao CH. Development of a novel radioligand for imaging 18-kD translocator protein (TSPO) in a rat model of Parkinson's disease. BMC Med Imaging 2019; 19:78. [PMID: 31533645 PMCID: PMC6751751 DOI: 10.1186/s12880-019-0375-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/18/2019] [Indexed: 01/24/2023] Open
Abstract
Purpose The inflammation reaction in the brain may stimulate damage repair or possibly lead to secondary brain injury. It is often associated with activated microglia, which would overexpress 18-kDa translocator protein (TSPO). In this study, we successfully developed a new TSPO radioligand, [18F]-2-(4-fluoro-2-(p-tolyloxy)phenyl)-1,2-dihydroisoquinolin-3(4H)-one ([18F]FTPQ), and evaluate its potential to noninvasively detect brain changes in a rat model of Parkinson’s disease (PD). Procedures The precursor (8) for [18F]FTPQ preparation was synthesized via six steps. Radiofluorination was carried out in the presence of a copper catalyst, and the crude product was purified by high-performance liquid chromatography (HPLC) to give the desired [18F]FTPQ. The rat model of PD was established by the injection of 6-OHDA into the right hemisphere of male 8-week-old Sprague-Dawley rats. MicroPET/CT imaging and immunohistochemistry (IHC) were performed to characterize the biological properties of [18F]FTPQ. Results The overall chemical yield for the precursor (8) was around 14% after multi-step synthesis. The radiofluorination efficiency of [18F]FTPQ was 60 ± 5%. After HPLC purification, the radiochemical purity was higher than 98%. The overall radiochemical yield was approximately 19%. The microPET/CT images demonstrated apparent striatum accumulation in the brains of PD rats at the first 30 min after intravenous injection of [18F]FTPQ. Besides, longitudinal imaging found the uptake of [18F]FTPQ in the brain may reflect the severity of PD. The radioactivity accumulated in the ipsilateral hemisphere of PD rats at 1, 2, and 3 weeks after 6-OHDA administration was 1.84 ± 0.26, 3.43 ± 0.45, and 5.58 ± 0.72%ID/mL, respectively. IHC revealed that an accumulation of microglia/macrophages and astrocytes in the 6-OHDA-injected hemisphere. Conclusions In this study, we have successfully synthesized [18F]FTPQ with acceptable radiochemical yield and demonstrated the feasibility of [18F]FTPQ as a TSPO radioligand for the noninvasive monitoring the disease progression of PD. Electronic supplementary material The online version of this article (10.1186/s12880-019-0375-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Science, China Medical University, No.91, Hsueh-Shih Road, Taichung, Taiwan, 40402.,Master Program for Biomedical Engineering, China Medical University, No.91, Hsueh-Shih Road, Taichung, Taiwan, 40402
| | - Yang-Yi Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, Taiwan, 11221
| | - Jia-Jia Lin
- Department of Biomedical Imaging and Radiological Science, China Medical University, No.91, Hsueh-Shih Road, Taichung, Taiwan, 40402
| | - Jui-Ping Li
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, Taiwan, 35053
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, Taiwan, 35053
| | - Te-Chun Hsieh
- Department of Biomedical Imaging and Radiological Science, China Medical University, No.91, Hsueh-Shih Road, Taichung, Taiwan, 40402. .,Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung, Taiwan, 40402.
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung, Taiwan, 40402. .,Department of Nuclear Medicine and PET Center, and Center of Augmented Intelligence in Healthcare, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City, Taiwan, 40447. .,Department of Bioinformatics and Medical Engineering, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, Taiwan, 41354.
| |
Collapse
|
26
|
Yasmin A, Pitkänen A, Jokivarsi K, Poutiainen P, Gröhn O, Immonen R. MRS Reveals Chronic Inflammation in T2w MRI-Negative Perilesional Cortex - A 6-Months Multimodal Imaging Follow-Up Study. Front Neurosci 2019; 13:863. [PMID: 31474824 PMCID: PMC6707062 DOI: 10.3389/fnins.2019.00863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Sustained inflammation in the injured cortex is a promising therapeutic target for disease-modification after traumatic brain injury (TBI). However, its extent and dynamics of expansion are incompletely understood which challenges the timing and placement of therapeutics to lesioned area. Our aim was to characterize the evolution of chronic inflammation during lesion expansion in lateral fluid-percussion injury (FPI) rat model with focus on the MRI-negative perilesional cortex. T2-weighted MR imaging (T2w MRI) and localized magnetic resonance spectroscopy (MRS) were performed at 1, 3, and 6 months post-injury. End-point histology, including Nissl for neuronal death, GFAP for astrogliosis, and Prussian Blue for iron were used to assess perilesional histopathology. An additional animal cohort was imaged with a positron emission tomography (PET) using translocator protein 18 kDa (TSPO) radiotracer [18F]-FEPPA. T2w MRI assessed lesion growth and detected chronic inflammation along the lesion border while rest of the ipsilateral cortex was MRI-negative (MRI-). Instead, myo-inositol that is an inflammatory MRS marker for gliosis, glutathione for oxidative stress, and choline for membrane turnover were elevated throughout the 6-months follow-up in the MRI- perilesional cortex (all p < 0.05). MRS markers revealed chronically sustained inflammation across the ipsilateral cortex but did not indicate the upcoming lesion expansion. Instead, the rostral expansion of the cortical lesion was systematically preceded by a hyperintense band in T2w images months earlier. Histologic analysis of the hyperintensity indicated scattered astrocytes, incomplete glial scar, and intracellularly packed and free iron. Yet, the band was negative in [18F]-FEPPA-PET. [18F]-FEPPA also showed no cortical TSPO expression within the MRS voxel in MRI- perilesional cortex or anywhere along glial scar when assessed at 2 months post-injury. However, [18F]-FEPPA showed a robust signal increase, indicating reactive microgliosis in the ipsilateral thalamus at 2 months post-TBI. We present evidence that MRS reveals chronic posttraumatic inflammation in MRI-negative perilesional cortex. The mismatch in MRS, MRI, and PET measures may allow non-invasive endophenotyping of beneficial and detrimental inflammatory processes to aid targeting and timing of anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Amna Yasmin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kimmo Jokivarsi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pekka Poutiainen
- Center of Diagnostic Imaging, Department of Cyclotron and Radiopharmacy, Kuopio University Hospital, Kuopio, Finland
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Immonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
27
|
Crabbé M, Van der Perren A, Bollaerts I, Kounelis S, Baekelandt V, Bormans G, Casteels C, Moons L, Van Laere K. Increased P2X7 Receptor Binding Is Associated With Neuroinflammation in Acute but Not Chronic Rodent Models for Parkinson's Disease. Front Neurosci 2019; 13:799. [PMID: 31417352 PMCID: PMC6684733 DOI: 10.3389/fnins.2019.00799] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022] Open
Abstract
The purinergic P2X7 receptor is a key mediator in (neuro)inflammation, a process that is associated with neurodegeneration and excitotoxicity in Parkinson’s disease (PD). Recently, P2X7 imaging has become possible with [11C]JNJ-(54173)717. We investigated P2X7 availability, in comparison with availability of the translocator protein (TSPO), in two well-characterized rat models of PD using in vitro autoradiography at multiple time points throughout the disease progression. Rats received either a unilateral injection with 6-hydroxydopamine (6-OHDA) in the striatum, or with recombinant adeno-associated viral vector overexpressing human A53T alpha-synuclein (α-SYN) in the substantia nigra. Transverse cryosections were incubated with [11C]JNJ-717 for P2X7 or [18F]DPA-714 for TSPO. [11C]JNJ-717 binding ratios were transiently elevated in the striatum of 6-OHDA rats at day 14–28 post-injection, with peak P2X7 binding at day 14. This largely coincided with the time course of striatal [18F]DPA-714 binding which was elevated at day 7–21, with peak TSPO binding at day 7. Increased P2X7 availability co-localized with microglial, but not astrocyte or neuronal markers. In the chronic α-SYN model, no significant differences were found in P2X7 binding, although in vitro TSPO overexpression was reported previously. This first study showed an increased P2X7 availability in the acute PD model in a time window corresponding with elevated TSPO binding and motor behavior changes. In contrast, the dynamics of TSPO and P2X7 were divergent in the chronic α-SYN model where no P2X7 changes were detectable. Overall, extended P2X7 phenotyping is warranted prior to implementation of P2X7 imaging for monitoring of neuroinflammation.
Collapse
Affiliation(s)
- Melissa Crabbé
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospital Leuven, KU Leuven, Leuven, Belgium.,Molecular Small Animal Imaging Center, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Anke Van der Perren
- Laboratory for Neurobiology and Gene therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Ilse Bollaerts
- Laboratory of Neuronal Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium
| | - Savannah Kounelis
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospital Leuven, KU Leuven, Leuven, Belgium.,Molecular Small Animal Imaging Center, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Molecular Small Animal Imaging Center, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Cindy Casteels
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospital Leuven, KU Leuven, Leuven, Belgium.,Molecular Small Animal Imaging Center, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neuronal Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospital Leuven, KU Leuven, Leuven, Belgium.,Molecular Small Animal Imaging Center, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Agoston DV, Vink R, Helmy A, Risling M, Nelson D, Prins M. How to Translate Time: The Temporal Aspects of Rodent and Human Pathobiological Processes in Traumatic Brain Injury. J Neurotrauma 2019; 36:1724-1737. [PMID: 30628544 PMCID: PMC7643768 DOI: 10.1089/neu.2018.6261] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) triggers multiple pathobiological responses with differing onsets, magnitudes, and durations. Identifying the therapeutic window of individual pathologies is critical for successful pharmacological treatment. Dozens of experimental pharmacotherapies have been successfully tested in rodent models, yet all of them (to date) have failed in clinical trials. The differing time scales of rodent and human biological and pathological processes may have contributed to these failures. We compared rodent versus human time scales of TBI-induced changes in cerebral glucose metabolism, inflammatory processes, axonal integrity, and water homeostasis based on published data. We found that the trajectories of these pathologies run on different timescales in the two species, and it appears that there is no universal "conversion rate" between rodent and human pathophysiological processes. For example, the inflammatory process appears to have an abbreviated time scale in rodents versus humans relative to cerebral glucose metabolism or axonal pathologies. Limitations toward determining conversion rates for various pathobiological processes include the use of differing outcome measures in experimental and clinical TBI studies and the rarity of longitudinal studies. In order to better translate time and close the translational gap, we suggest 1) using clinically relevant outcome measures, primarily in vivo imaging and blood-based proteomics, in experimental TBI studies and 2) collecting data at multiple post-injury time points with a frequency exceeding the expected information content by two or three times. Combined with a big data approach, we believe these measures will facilitate the translation of promising experimental treatments into clinical use.
Collapse
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland
| | - Robert Vink
- Division of Health Science, University of South Australia, Adelaide, Australia
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David Nelson
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Mayumi Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
29
|
Crabbé M, Van der Perren A, Kounelis S, Lavreys T, Bormans G, Baekelandt V, Casteels C, Van Laere K. Temporal changes in neuroinflammation and brain glucose metabolism in a rat model of viral vector-induced α-synucleinopathy. Exp Neurol 2019; 320:112964. [PMID: 31136763 DOI: 10.1016/j.expneurol.2019.112964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 02/04/2023]
Abstract
Rat models based on viral vector-mediated overexpression of α-synuclein are regarded as highly valuable models that closely mimic cardinal features of human Parkinson's disease (PD) such as L-DOPA-dependent motor impairment, dopaminergic neurodegeneration and α-synuclein inclusions. To date, the downstream effects of dopaminergic cell loss on brain glucose metabolism, including the neuroinflammation component, have not been phenotyped in detail for this model. Cerebral glucose metabolism was monitored throughout different stages of the disease using in vivo 2-[18F]-fluoro-2-deoxy-d-glucose ([18F]FDG) positron emission tomography (PET) and was combined with in vitro [18F]DPA-714 autoradiography to assess concomitant inflammation. Rats were unilaterally injected with recombinant adeno-associated viral vector serotype 2/7 (rAAV2/7) encoding either A53T α-synuclein or eGFP. Brain [18F]FDG microPET was performed at baseline, 1, 2, 3, 4, 6, and 9 weeks post-surgery, in combination with behavioral tests. As a second experiment, [18F]DPA-714 autoradiography was executed across the same timeline. Voxel-based analysis of relative [18F]FDG uptake showed a dynamic pattern of PD-related metabolic changes throughout the disease progression (weeks 2-9). Glucose hypermetabolism covering a large bilateral area reaching from the insular, motor- and somatosensory cortex to the striatum was observed at week 2. At week 4, hypermetabolism presented in a cluster covering the ipsilateral nigra-thalamic region, whereas hypometabolism was noted in the ipsilateral striatum at week 6. Elevated [18F]FDG uptake was seen in a cluster extending across the contralateral striatum, motor- and somatosensory cortex at week 9. Increased [18F]FDG in the region of the substantia nigra was associated with increased [18F]DPA-714 binding, and correlated significantly with motor symptoms. These findings point to disease-associated metabolic and neuroinflammatory changes taking place in the primary area of dopaminergic neurodegeneration but also closely interconnected motor and somatosensory brain regions.
Collapse
Affiliation(s)
- Melissa Crabbé
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, University Hospitals Leuven, Leuven, Belgium; MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium.
| | - Anke Van der Perren
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Savannah Kounelis
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, University Hospitals Leuven, Leuven, Belgium; MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium
| | - Thomas Lavreys
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, University Hospitals Leuven, Leuven, Belgium; MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium; Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Cindy Casteels
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, University Hospitals Leuven, Leuven, Belgium; MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, University Hospitals Leuven, Leuven, Belgium; MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Kallinen A, Boyd R, Lane S, Bhalla R, Mardon K, Stimson DHR, Werry EL, Fulton R, Connor M, Kassiou M. Synthesis and in vitro evaluation of fluorine-18 benzimidazole sulfones as CB2 PET-radioligands. Org Biomol Chem 2019; 17:5086-5098. [PMID: 31070218 DOI: 10.1039/c9ob00656g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cannabinoid type 2 receptor (CB2) is up-regulated on activated microglial cells and can potentially be used as a biomarker for PET-imaging of neuroinflammation. In this study the synthesis and pharmacological evaluation of novel fluorinated pyridyl and ethyl sulfone analogues of 2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1-(2-methylpentyl)-1H-benzo[d]imidazole (rac-1a) are described. In general, the ligands showed low nanomolar potency (CB2 EC50 < 10 nM) and excellent selectivity over the CB1 subtype (>10 000×). Selected ligands 1d, 1e, 1g and 3l showing high CB2 binding affinity (Ki < 10 nM) were radiolabelled with fluorine-18 from chloropyridyl and alkyl tosylate precursors with good to high isolated radioactive yields (25-44%, non-decay corrected, at the end of synthesis). CB2-specific binding of the radioligand candidates [18F]-1d and [18F]-3l was assessed on rat spleen cryosections using in vitro autoradiography. The results warrant further in vivo evaluation of the tracer candidates as prospective CB2 PET-imaging agents.
Collapse
Affiliation(s)
- Annukka Kallinen
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| | - Rochelle Boyd
- Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Samuel Lane
- Faculty of Health Sciences, The University of Sydney, NSW 2050, Australia
| | - Rajiv Bhalla
- The Centre for Advanced Imaging, The University of Queensland, QLD 4072, Australia
| | - Karine Mardon
- The Centre for Advanced Imaging, The University of Queensland, QLD 4072, Australia
| | - Damion H R Stimson
- The Centre for Advanced Imaging, The University of Queensland, QLD 4072, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| | - Roger Fulton
- Faculty of Health Sciences, The University of Sydney, NSW 2050, Australia
| | - Mark Connor
- Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
31
|
Hosomi S, Koyama Y, Watabe T, Ohnishi M, Ogura H, Yamashita T, Shimazu T. Myeloid-Derived Suppressor Cells Infiltrate the Brain and Suppress Neuroinflammation in a Mouse Model of Focal Traumatic Brain Injury. Neuroscience 2019; 406:457-466. [PMID: 30880103 DOI: 10.1016/j.neuroscience.2019.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/22/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) have strong immunosuppressive characteristics, which allow them to limit inflammation and facilitate wound healing and recovery. Although MDSCs are a newly-determined cell type that is gaining attention in the immunology field, their neuroimmunological characteristics remain unstudied. In this study, we explored the suppressive role of MDSCs in cerebral inflammatory reactions after focal traumatic brain injury (TBI) using in vivo imaging. Through morphological, functional, and phenotypic analyses we determined that CD11b+/Gr-1+ cells infiltrating the contusion area are MDSCs. MDSCs are among the first responders to tissue injury, responding even prior to microglial activation. Positron emission tomography imaging of translocator protein results suggest that infiltrating MDSCs suppress neuronal inflammation and interact with resident immune cells, like microglia, following focal TBI.
Collapse
Affiliation(s)
- Sanae Hosomi
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | - Yoshihisa Koyama
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | - Tadashi Watabe
- Positron Emission Tomography Molecular Imaging Center, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | - Mitsuo Ohnishi
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | - Takeshi Shimazu
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
32
|
Luo LF, Weng JF, Cen M, Dong XQ, Yu WH, Du Q, Yang DB, Zheng YK, Hu W, Yu L, Luo SD. Prognostic significance of serum translocator protein in patients with traumatic brain injury. Clin Chim Acta 2019; 488:25-30. [DOI: 10.1016/j.cca.2018.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/28/2018] [Accepted: 10/28/2018] [Indexed: 10/28/2022]
|
33
|
Imaging biomarkers of epileptogenecity after traumatic brain injury - Preclinical frontiers. Neurobiol Dis 2018; 123:75-85. [PMID: 30321600 DOI: 10.1016/j.nbd.2018.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Posttraumatic epilepsy (PTE) is a major neurodegenerative disease accounting for 20% of symptomatic epilepsy cases. A long latent phase offers a potential window for prophylactic treatment strategies to prevent epilepsy onset, provided that the patients at risk can be identified. Some promising imaging biomarker candidates for posttraumatic epileptogenesis have been identified, but more are required to provide the specificity and sensitivity for accurate prediction. Experimental models and preclinical longitudinal, multimodal imaging studies allow follow-up of complex cascade of events initiated by traumatic brain injury, as well as monitoring of treatment effects. Preclinical imaging data from the posttraumatic brain are rich in information, yet examination of their specific relevance to epilepsy is lacking. Accumulating evidence from ongoing preclinical studies in TBI support insight into processes involved in epileptogenesis, e.g. inflammation and changes in functional and structural brain-wide connectivity. These efforts are likely to produce both new biomarkers and treatment targets for PTE.
Collapse
|
34
|
Missault S, Anckaerts C, Blockx I, Deleye S, Van Dam D, Barriche N, De Pauw G, Aertgeerts S, Valkenburg F, De Deyn PP, Verhaeghe J, Wyffels L, Van der Linden A, Staelens S, Verhoye M, Dedeurwaerdere S. Neuroimaging of Subacute Brain Inflammation and Microstructural Changes Predicts Long-Term Functional Outcome after Experimental Traumatic Brain Injury. J Neurotrauma 2018; 36:768-788. [PMID: 30032713 DOI: 10.1089/neu.2018.5704] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is currently a lack of prognostic biomarkers to predict the different sequelae following traumatic brain injury (TBI). The present study investigated the hypothesis that subacute neuroinflammation and microstructural changes correlate with chronic TBI deficits. Rats were subjected to controlled cortical impact (CCI) injury, sham surgery, or skin incision (naïve). CCI-injured (n = 18) and sham-operated rats (n = 6) underwent positron emission tomography (PET) imaging with the translocator protein 18 kDa (TSPO) radioligand [18F]PBR111 and diffusion tensor imaging (DTI) in the subacute phase (≤3 weeks post-injury) to quantify inflammation and microstructural alterations. CCI-injured, sham-operated, and naïve rats (n = 8) underwent behavioral testing in the chronic phase (5.5-10 months post-injury): open field and sucrose preference tests, two one-week video-electroencephalogram (vEEG) monitoring periods, pentylenetetrazole (PTZ) seizure susceptibility tests, and a Morris water maze (MWM) test. In vivo imaging revealed pronounced neuroinflammation, decreased fractional anisotropy, and increased diffusivity in perilesional cortex and ipsilesional hippocampus of CCI-injured rats. Behavioral analysis revealed disinhibition, anhedonia, increased seizure susceptibility, and impaired learning in CCI-injured rats. Subacute TSPO expression and changes in DTI metrics significantly correlated with several chronic deficits (Pearson's |r| = 0.50-0.90). Certain specific PET and DTI parameters had good sensitivity and specificity (area under the receiver operator characteristic [ROC] curve = 0.85-1.00) to distinguish between TBI animals with and without particular behavioral deficits. Depending on the investigated behavioral deficit, PET or DTI data alone, or the combination, could very well predict the variability in functional outcome data (adjusted R2 = 0.54-1.00). Taken together, both TSPO PET and DTI seem promising prognostic biomarkers to predict different chronic TBI sequelae.
Collapse
Affiliation(s)
- Stephan Missault
- 1 Experimental Laboratory of Translational Neuroscience and Otolaryngology, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium .,2 Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Cynthia Anckaerts
- 2 Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Ines Blockx
- 2 Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Steven Deleye
- 3 Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Debby Van Dam
- 4 Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG) , Groningen, The Netherlands
| | - Nora Barriche
- 1 Experimental Laboratory of Translational Neuroscience and Otolaryngology, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Glenn De Pauw
- 1 Experimental Laboratory of Translational Neuroscience and Otolaryngology, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Stephanie Aertgeerts
- 1 Experimental Laboratory of Translational Neuroscience and Otolaryngology, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Femke Valkenburg
- 4 Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG) , Groningen, The Netherlands
| | - Peter Paul De Deyn
- 4 Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG) , Groningen, The Netherlands
| | - Jeroen Verhaeghe
- 3 Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Leonie Wyffels
- 3 Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium .,5 Department of Nuclear Medicine, University Hospital Antwerp , Edegem, Belgium
| | - Annemie Van der Linden
- 2 Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Steven Staelens
- 3 Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Marleen Verhoye
- 2 Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Stefanie Dedeurwaerdere
- 6 Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| |
Collapse
|
35
|
Hosomi S, Watabe T, Mori Y, Koyama Y, Adachi S, Hoshi N, Ohnishi M, Ogura H, Yoshioka Y, Hatazawa J, Yamashita T, Shimazu T. Inflammatory projections after focal brain injury trigger neuronal network disruption: An 18F-DPA714 PET study in mice. NEUROIMAGE-CLINICAL 2018; 20:946-954. [PMID: 30312938 PMCID: PMC6178196 DOI: 10.1016/j.nicl.2018.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/05/2018] [Accepted: 09/28/2018] [Indexed: 11/12/2022]
Abstract
Due to the heterogeneous pathology of traumatic brain injury (TBI), the exact mechanism of how initial brain damage leads to chronic inflammation and its effects on the whole brain remain unclear. Here, we report on long-term neuroinflammation, remote from the initial injury site, even after subsiding of the original inflammatory response, in a focal TBI mouse model. The use of translocator protein-positron emission tomography in conjunction with specialised magnetic resonance imaging modalities enabled us to visualize “previously undetected areas” of spreading inflammation after focal cortical injury. These clinically available modalities further revealed the pathophysiology of thalamic neuronal degeneration occurring as resident microglia sense damage to corticothalamic neuronal tracts and become activated. The resulting microglial activation plays a major role in prolonged inflammatory processes, which are deleterious to the thalamic network. In light of the association of this mechanism with neuronal tracts, we propose it can be termed “brain injury related inflammatory projection”. Our findings on multiple spatial and temporal scales provide insight into the chronic inflammation present in neurodegenerative diseases after TBI. TSPO-PET tomography enables the assessment of longitudinal neuronal inflammation Inflammatory responses at the cortical injury site diminish after about 1 week The ipsilateral thalamus exhibits remote neuroinflammation for up to 14 weeks Microglial activation is associated with remote chronic degeneration Inflammation expands to remote sites via damaged cortico-thalamic projections
Collapse
Affiliation(s)
- Sanae Hosomi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan.
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan; Medical Imaging Centre for Translational Research, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Yuki Mori
- Centre for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, 1-4 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Yoshihisa Koyama
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Soichiro Adachi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 5-2 Kusunoki-cho 7, Chuo-ku, Kobe-shi, Hyougo 650-0017, Japan
| | - Namiko Hoshi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 5-2 Kusunoki-cho 7, Chuo-ku, Kobe-shi, Hyougo 650-0017, Japan
| | - Mitsuo Ohnishi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Yoshichika Yoshioka
- Centre for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, 1-4 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan; Medical Imaging Centre for Translational Research, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Takeshi Shimazu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
36
|
TSPO in diverse CNS pathologies and psychiatric disease: A critical review and a way forward. Pharmacol Ther 2018; 194:44-58. [PMID: 30189290 DOI: 10.1016/j.pharmthera.2018.09.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of Translocator Protein 18 kDa (TSPO) as a clinical neuroimaging biomarker of brain injury and neuroinflammation has increased exponentially in the last decade. There has been a furious pace in the development of new radiotracers for TSPO positron emission tomography (PET) imaging and its use has now been extensively described in many neurological and mental disorders. This fast pace of research and the ever-increasing number of new laboratories entering the field often times lack an appreciation of the historical perspective of the field and introduce dogmatic, but unproven facts, related to the underlying neurobiology of the TSPO response to brain injury and neuroinflammation. Paradoxically, while in neurodegenerative disorders and in all types of CNS pathologies brain TSPO levels increase, a new observation in psychiatric disorders such as schizophrenia is decreased brain levels of TSPO measured by PET. The neurobiological bases for this new finding is currently not known, but rigorous experimental design using multiple experimental approaches and careful interpretation of results is critically important to provide the methodological and/or biological underpinnings to this new observation. This review provides a perspective of the early history of validating TSPO as a biomarker of brain injury and neuroinflammation and a critical analysis of controversial topics in the literature related to the cellular sources of the TSPO response. The latter is important in order to provide the correct interpretation of PET studies in neurodegenerative and psychiatric disorders. Furthermore, this review proposes some yet to be explored explanations to new findings in psychiatric disorders and new approaches to quantitatively assess the glial sources of the TSPO response in order to move the field forward.
Collapse
|
37
|
Thau-Zuchman O, Gomes RN, Dyall SC, Davies M, Priestley JV, Groenendijk M, De Wilde MC, Tremoleda JL, Michael-Titus AT. Brain Phospholipid Precursors Administered Post-Injury Reduce Tissue Damage and Improve Neurological Outcome in Experimental Traumatic Brain Injury. J Neurotrauma 2018; 36:25-42. [PMID: 29768974 PMCID: PMC6306688 DOI: 10.1089/neu.2017.5579] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) leads to cellular loss, destabilization of membranes, disruption of synapses and altered brain connectivity, and increased risk of neurodegenerative disease. A significant and long-lasting decrease in phospholipids (PLs), essential membrane constituents, has recently been reported in plasma and brain tissue, in human and experimental TBI. We hypothesized that supporting PL synthesis post-injury could improve outcome post-TBI. We tested this hypothesis using a multi-nutrient combination designed to support the biosynthesis of PLs and available for clinical use. The multi-nutrient, Fortasyn® Connect (FC), contains polyunsaturated omega-3 fatty acids, choline, uridine, vitamins, cofactors required for PL biosynthesis, and has been shown to have significant beneficial effects in early Alzheimer's disease. Male C57BL/6 mice received a controlled cortical impact injury and then were fed a control diet or a diet enriched with FC for 70 days. FC led to a significantly improved sensorimotor outcome and cognition, reduced lesion size and oligodendrocyte loss, and it restored myelin. It reversed the loss of the synaptic protein synaptophysin and decreased levels of the axon growth inhibitor, Nogo-A, thus creating a permissive environment. It decreased microglia activation and the rise in ß-amyloid precursor protein and restored the depressed neurogenesis. The effects of this medical multi-nutrient suggest that support of PL biosynthesis post-TBI, a new treatment paradigm, has significant therapeutic potential in this neurological condition for which there is no satisfactory treatment. The multi-nutrient tested has been used in dementia patients and is safe and well tolerated, which would enable rapid clinical exploration in TBI.
Collapse
Affiliation(s)
- Orli Thau-Zuchman
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rita N Gomes
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Simon C Dyall
- 3 Bournemouth University, Royal London House, Bournemouth, United Kingdom
| | - Meirion Davies
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - John V Priestley
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Martine Groenendijk
- 2 Nutricia Research-Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Martijn C De Wilde
- 2 Nutricia Research-Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Jordi L Tremoleda
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Adina T Michael-Titus
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
38
|
Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 2018; 21:137-151. [PMID: 29764704 PMCID: PMC6034172 DOI: 10.1016/j.cjtee.2018.02.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
39
|
Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury. Brain Imaging Behav 2018; 11:591-610. [PMID: 28194558 DOI: 10.1007/s11682-017-9684-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality's advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.
Collapse
|
40
|
Wang YL, Han QQ, Gong WQ, Pan DH, Wang LZ, Hu W, Yang M, Li B, Yu J, Liu Q. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J Neuroinflammation 2018; 15:21. [PMID: 29343269 PMCID: PMC5773028 DOI: 10.1186/s12974-018-1054-3] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Depression is a heterogeneous disorder, with the exact neuronal mechanisms causing the disease yet to be discovered. Recent work suggests it is accompanied by neuro-inflammation, characterized, in particular, by microglial activation. However, microglial activation and its involvement in neuro-inflammation and stress-related depressive disorders are far from understood. METHODS We utilized multiple detection methods to detect the neuro-inflammation in the hippocampus of rats after exposure to chronic mild stress (CMS). Male Sprague Dawley (SD) rats were subjected to chronic mild stressors for 12 weeks. Microglial activation and hippocampal neuro-inflammation were detected by using a combinatory approach of in vivo [18F] DPA-714 positron emission computed tomography (PET) imaging, ionized calcium-binding adapter molecule 1 and translocator protein (TSPO) immunohistochemistry, and detection of NOD-like receptor protein 3 (NLRP3) inflammasome and some inflammatory mediators. Then, the rats were treated with minocycline during the last 4 weeks to observe its effect on hippocampal neuro-inflammation and depressive-like behavior induced by chronic mild stress. RESULTS The results show that 12 weeks of chronic mild stress induced remarkable depressive- and anxiety-like behavior, simultaneously causing hippocampal microglial activation detected by PET, immunofluorescence staining, and western blotting. Likewise, activation of NLRP3 inflammasome and upregulation of inflammatory mediators, such as interleukin-1β (IL-1β), IL-6, and IL-18, were also observed in the hippocampus after exposure to chronic stress. Interestingly, the anti-inflammatory mediators, such as IL-4 and IL-10, were also increased in the hippocampus following chronic mild stress, which may hint that chronic stress activates different types of microglia, which produce pro-inflammatory cytokines or anti-inflammatory cytokines. Furthermore, chronic minocycline treatment alleviated the depressive-like behavior induced by chronic stress and significantly inhibited microglial activation. Similarly, the activation of NLRP3 inflammasome and the increase of inflammatory mediators were not exhibited or significantly less marked in the minocycline treatment group. CONCLUSION These results together indicate that microglial activation mediates the chronic mild stress-induced depressive- and anxiety-like behavior and hippocampal neuro-inflammation.
Collapse
Affiliation(s)
- Ya-Lin Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiu-Qin Han
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wen-Qing Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Dong-Hui Pan
- Molecular Imaging Center, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Li-Zheng Wang
- Molecular Imaging Center, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Wei Hu
- Molecular Imaging Center, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Min Yang
- Molecular Imaging Center, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Bing Li
- Center Laboratories, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China.
| |
Collapse
|
41
|
McNeela AM, Bernick C, Hines RM, Hines DJ. TSPO regulation in reactive gliotic diseases. J Neurosci Res 2018; 96:978-988. [PMID: 29315754 DOI: 10.1002/jnr.24212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
The brain is the most metabolically active organ in the body. This high metabolic demand is apparent in that 60% of the brain is comprised of mitochondria-enriched cells. A disruption of the brain's ability to meet this immense metabolic demand is central to the pathogenesis of a multitude of neurological disorders, which range from depression to Alzheimer's disease. Central to these pathologies are glial signaling and energy metabolism cascades regulating apoptosis and inflammation. Thus, diseases causing inflammation and disruption of metabolism can be correlated with glial reactivity. Acutely, reactive gliosis provides a mechanism for limiting the progression of a disease. Following chronic activation, the ability of reactive gliosis to limit disease progression decreases and, in some cases, transitions into a harmful state. The necessity for a noninvasive biomarker of disease in the brain has linked reactive gliosis with an upregulation of translocator protein (TSPO). TSPO is an 18kDa protein that is both a therapeutic target for multiple acute and chronic neuroinflammatory diseases and the leading biomarker for Alzheimer's disease. Although a central function of TSPO is not well known, the protein was named for its ability to translocate cholesterol. Increased TSPO expression is an indicator of disrupted metabolic activity and increased reactive oxygen production. The changes in TSPO expression levels both temporally and spatially relate to the pathogenesis of stroke, Alzheimer's disease, traumatic brain injury, and depression. Therefore, research into the basic function and potential therapeutics targeting TSPO will have broad implications for many diseases of the brain.
Collapse
Affiliation(s)
- Adam M McNeela
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV
| | - Rochelle M Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV
| | - Dustin J Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV
| |
Collapse
|
42
|
Effect of Cigarette Smoking on a Marker for Neuroinflammation: A [ 11C]DAA1106 Positron Emission Tomography Study. Neuropsychopharmacology 2017; 42:1630-1639. [PMID: 28262740 PMCID: PMC5518907 DOI: 10.1038/npp.2017.48] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/01/2017] [Accepted: 02/23/2017] [Indexed: 01/21/2023]
Abstract
In the brain, microglia continuously scan the surrounding extracellular space in order to respond to damage or infection by becoming activated and participating in neuroinflammation. When activated, microglia increase the expression of translocator protein (TSPO) 18 kDa, thereby making the TSPO expression a marker for neuroinflammation. We used the radiotracer [11C]DAA1106 (a ligand for TSPO) and positron emission tomography (PET) to determine the effect of smoking on availability of this marker for neuroinflammation. Forty-five participants (30 smokers and 15 non-smokers) completed the study and had usable data. Participants underwent a dynamic PET scanning session with bolus injection of [11C]DAA1106 (with smokers in the satiated state) and blood draws during PET scanning to determine TSPO affinity genotype and plasma nicotine levels. Whole-brain standardized uptake values (SUVs) were determined, and analysis of variance was performed, with group (smoker vs non-smoker) and genotype as factors, thereby controlling for genotype. Smokers and non-smokers differed in whole-brain SUVs (P=0.006) owing to smokers having 16.8% lower values than non-smokers. The groups did not differ in injected radiotracer dose or body weight, which were used to calculate SUV. An inverse association was found between whole-brain SUV and reported cigarettes per day (P<0.05), but no significant relationship was found for plasma nicotine. Thus, smokers have less [11C]DAA1106 binding globally than non-smokers, indicating less microglial activation. Study findings are consistent with much prior research demonstrating that smokers have impaired inflammatory functioning compared with non-smokers and that constituents of tobacco smoke other than nicotine affect inflammatory processes.
Collapse
|
43
|
Donat CK, Scott G, Gentleman SM, Sastre M. Microglial Activation in Traumatic Brain Injury. Front Aging Neurosci 2017; 9:208. [PMID: 28701948 PMCID: PMC5487478 DOI: 10.3389/fnagi.2017.00208] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
Microglia have a variety of functions in the brain, including synaptic pruning, CNS repair and mediating the immune response against peripheral infection. Microglia rapidly become activated in response to CNS damage. Depending on the nature of the stimulus, microglia can take a number of activation states, which correspond to altered microglia morphology, gene expression and function. It has been reported that early microglia activation following traumatic brain injury (TBI) may contribute to the restoration of homeostasis in the brain. On the other hand, if they remain chronically activated, such cells display a classically activated phenotype, releasing pro-inflammatory molecules, resulting in further tissue damage and contributing potentially to neurodegeneration. However, new evidence suggests that this classification is over-simplistic and the balance of activation states can vary at different points. In this article, we review the role of microglia in TBI, analyzing their distribution, morphology and functional phenotype over time in animal models and in humans. Animal studies have allowed genetic and pharmacological manipulations of microglia activation, in order to define their role. In addition, we describe investigations on the in vivo imaging of microglia using translocator protein (TSPO) PET and autoradiography, showing that microglial activation can occur in regions far remote from sites of focal injuries, in humans and animal models of TBI. Finally, we outline some novel potential therapeutic approaches that prime microglia/macrophages toward the beneficial restorative microglial phenotype after TBI.
Collapse
Affiliation(s)
| | | | | | - Magdalena Sastre
- Division of Brain Sciences, Department of Medicine, Imperial College LondonLondon, United Kingdom
| |
Collapse
|
44
|
Hosoya T, Fukumoto D, Kakiuchi T, Nishiyama S, Yamamoto S, Ohba H, Tsukada H, Ueki T, Sato K, Ouchi Y. In vivo TSPO and cannabinoid receptor type 2 availability early in post-stroke neuroinflammation in rats: a positron emission tomography study. J Neuroinflammation 2017; 14:69. [PMID: 28356120 PMCID: PMC5372312 DOI: 10.1186/s12974-017-0851-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/23/2017] [Indexed: 01/08/2023] Open
Abstract
Background Upregulated levels of 18-kDa translocator proteins (TSPO) and type 2 endocannabinoid receptors (CB2) are considered to reflect different aspects of microglia-related neuroinflammatory responses in the brain. Relative to the increase in the TSPO expression that occurs slightly later during neuroinflammation in a proinflammatory fashion, CB2 activation is considered to relate to the neuroprotective responses that occurs predominantly at an early stage of brain disorders. These findings, however, were deduced from studies with different animal samples under different experimental settings. Here, we aimed to examined the differences in TSPO binding and CB2 availability at an early stage of stroke in the same animal using positron emission tomography (PET). Methods We used a total of eight Sprague-Dawley rats that underwent photothrombotic stroke surgery. The binding levels of a TSPO tracer [11C](R)PK11195 and a CB2 tracer [11C]NE40 were measured at 24 h after the surgery in the same animal using PET in combination with immunohistochemistry for CB2 and several other markers. A morphological inspection was also performed with X-ray computed tomography for small animals. Results The levels of [11C]NE40 binding potential (BPND) were significantly higher in the cerebral cortical region on the lesion side than those on the non-lesion side, whereas no difference was found in the levels of [11C](R)PK11195 BPND between hemispheres. The tracer influx index (R1) data were all reduced on the lesion side irrespective of tracers. This increase in [11C]NE40 BPND was concomitant with an elevation in CB2 expression mainly within the microglia in the peri-infarct area, as shown by immunohistochemical examinations with Iba-1, CD11b/c+, and NG2+ staining. Conclusions The present results provide in vivo evidence of different responses of microglia occurring in the acute state of stroke. The use of the CB2 tracer [11C]NE40 allows us to evaluate the roles played by the neuroprotective aspect of microglia in acute neuroinflammatory processes. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0851-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teruyo Hosoya
- Department of Neuroanatomy and Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Dai Fukumoto
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Shigeyuki Yamamoto
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Takatoshi Ueki
- Department of Neuroanatomy and Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Kohji Sato
- Department of Neuroanatomy and Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
45
|
Evaluation of TSPO PET imaging, a marker of glial activation, to study the neuroimmune footprints of morphine exposure and withdrawal. Drug Alcohol Depend 2017; 170:43-50. [PMID: 27875800 DOI: 10.1016/j.drugalcdep.2016.10.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Accepted: 10/29/2016] [Indexed: 12/13/2022]
Abstract
INTRODUCTION A growing area of research suggests that neuroimmunity may impact the pharmacology of opioids. Microglia is a key component of the brain immunity. Preclinical and clinical studies have demonstrated that microglial modulators may improve morphine-induced analgesia and prevent the development of tolerance and dependence. Positron emission tomography (PET) using translocator protein 18kDa (TSPO) radioligand is a clinically validated strategy for the non-invasive detection of microglial activation. We hypothesized that TSPO PET imaging may be used to study the neuroimmune component of opioid tolerance and withdrawal. METHODS Healthy rats (n=6 in each group) received either saline or escalating doses of morphine (10-40mg/kg) on five days to achieve tolerance and a withdrawal syndrome after morphine discontinuation. MicroPET imaging with [18F]DPA-714 was performed 60h after morphine withdrawal. Kinetic modeling was performed to estimate [18F]DPA-714 volume of distribution (VT) in several brain regions using dynamic PET images and corresponding metabolite-corrected input functions. Immunohistochemistry (IHC) experiments on striatal brain slices were performed to assess the expression of glial markers (Iba1, GFAP and CD68) during 14days after morphine discontinuation. RESULTS The baseline binding of [18F]DPA-714 to the brain (VT=0.086±0.009mLcm-3) was not increased by morphine exposure and withdrawal (VT=0.079±0.010mLcm-3) indicating the absence of TSPO overexpression, even at the regional level. Accordingly, expression of glial markers did not increase after morphine discontinuation. CONCLUSIONS Morphine tolerance and withdrawal did not detectably activate microglia and had no impact on [18F]DPA-714 brain kinetics in vivo.
Collapse
|
46
|
Simon-O'Brien E, Gauthier D, Riban V, Verleye M. Etifoxine improves sensorimotor deficits and reduces glial activation, neuronal degeneration, and neuroinflammation in a rat model of traumatic brain injury. J Neuroinflammation 2016; 13:203. [PMID: 27565146 PMCID: PMC5002207 DOI: 10.1186/s12974-016-0687-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Background Traumatic brain injury (TBI) results in important neurological impairments which occur through a cascade of deleterious physiological events over time. There are currently no effective treatments to prevent these consequences. TBI is followed not only by an inflammatory response but also by a profound reorganization of the GABAergic system and a dysregulation of translocator protein 18 kDa (TSPO). Etifoxine is an anxiolytic compound that belongs to the benzoxazine family. It potentiates GABAergic neurotransmission, either through a positive allosteric effect or indirectly, involving the activation of TSPO that leads to an increase in neurosteroids synthesis. In several models of peripheral nerve injury, etifoxine has been demonstrated to display potent regenerative and anti-inflammatory properties and to promote functional recovery. Prior study also showed etifoxine efficacy in reducing brain edema in rats. In light of these positive results, we used a rat model of TBI to explore etifoxine treatment effects in a central nervous system injury, from functional outcomes to the underlying mechanisms. Methods Male Sprague-Dawley rats received contusion (n = 18) or sham (n = 19) injuries centered laterally to bregma over the left sensorimotor cortex. They were treated with etifoxine (50 mg/kg, i.p.) or its vehicle 30 min following injury and every day during 7 days. Rats underwent behavioral testing to assess sensorimotor function. In another experiment, injured rats (n = 10) or sham rats (n = 10) received etifoxine (EFX) (50 mg/kg, i.p.) or its vehicle 30 min post-surgery. Brains were then dissected for analysis of neuroinflammation markers, glial activation, and neuronal degeneration. Results Brain-injured rats exhibited significant sensorimotor function deficits compared to sham-injured rats in the bilateral tactile adhesive removal test, the beam walking test, and the limb-use asymmetry test. After 2 days of etifoxine treatment, behavioral impairments were significantly reduced. Etifoxine treatment reduced pro-inflammatory cytokines levels without affecting anti-inflammatory cytokines levels in injured rats, reduced macrophages and glial activation, and reduced neuronal degeneration. Conclusions Our results showed that post-injury treatment with etifoxine improved functional recovery and reduced neuroinflammation in a rat model of TBI. These findings suggest that etifoxine may have a therapeutic potential in the treatment of TBI.
Collapse
Affiliation(s)
| | - Delphine Gauthier
- Pharmacology Department, Biocodex, Chemin d'Armancourt, 60200, Compiègne, France
| | - Véronique Riban
- Pharmacology Department, Biocodex, Chemin d'Armancourt, 60200, Compiègne, France
| | - Marc Verleye
- Pharmacology Department, Biocodex, Chemin d'Armancourt, 60200, Compiègne, France
| |
Collapse
|
47
|
Israel I, Ohsiek A, Al-Momani E, Albert-Weissenberger C, Stetter C, Mencl S, Buck AK, Kleinschnitz C, Samnick S, Sirén AL. Combined [(18)F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice. J Neuroinflammation 2016; 13:140. [PMID: 27266706 PMCID: PMC4897946 DOI: 10.1186/s12974-016-0604-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/30/2016] [Indexed: 11/27/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of death and disability. Neuroinflammation contributes to acute damage after TBI and modulates long-term evolution of degenerative and regenerative responses to injury. The aim of the present study was to evaluate the relationship of microglia activation to trauma severity, brain energy metabolism, and cellular reactions to injury in a mouse closed head injury model using combined in vivo PET imaging, ex vivo autoradiography, and immunohistochemistry. Methods A weight-drop closed head injury model was used to produce a mixed diffuse and focal TBI or a purely diffuse mild TBI (mTBI) in C57BL6 mice. Lesion severity was determined by evaluating histological damage and functional outcome using a standardized neuroscore (NSS), gliosis, and axonal injury by immunohistochemistry. Repeated intra-individual in vivo μPET imaging with the specific 18-kDa translocator protein (TSPO) radioligand [18F]DPA-714 was performed on day 1, 7, and 16 and [18F]FDG-μPET imaging for energy metabolism on days 2–5 after trauma using freshly synthesized radiotracers. Immediately after [18F]DPA-714-μPET imaging on days 7 and 16, cellular identity of the [18F]DPA-714 uptake was confirmed by exposing freshly cut cryosections to film autoradiography and successive immunostaining with antibodies against the microglia/macrophage marker IBA-1. Results Functional outcome correlated with focal brain lesions, gliosis, and axonal injury. [18F]DPA-714-μPET showed increased radiotracer uptake in focal brain lesions on days 7 and 16 after TBI and correlated with reduced cerebral [18F]FDG uptake on days 2–5, with functional outcome and number of IBA-1 positive cells on day 7. In autoradiography, [18F]DPA-714 uptake co-localized with areas of IBA1-positive staining and correlated strongly with both NSS and the number of IBA1-positive cells, gliosis, and axonal injury. After mTBI, numbers of IBA-1 positive cells with microglial morphology increased in both brain hemispheres; however, uptake of [18F]DPA-714 was not increased in autoradiography or in μPET imaging. Conclusions [18F]DPA-714 uptake in μPET/autoradiography correlates with trauma severity, brain metabolic deficits, and microglia activation after closed head TBI.
Collapse
Affiliation(s)
- Ina Israel
- Department of Nuclear Medicine, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Andrea Ohsiek
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Ehab Al-Momani
- Department of Nuclear Medicine, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Christiane Albert-Weissenberger
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080, Würzburg, Germany.,Department of Neurology, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Christian Stetter
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Stine Mencl
- Department of Neurology, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Würzburg, 97080, Würzburg, Germany.,Department of Neurology, University Hospital Essen, 45147, Essen, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Anna-Leena Sirén
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
48
|
Thomas C, Vercouillie J, Doméné A, Tauber C, Kassiou M, Guilloteau D, Destrieux C, Sérrière S, Chalon S. Detection of Neuroinflammation in a Rat Model of Subarachnoid Hemorrhage Using [18F]DPA-714 PET Imaging. Mol Imaging 2016; 15:15/0/1536012116639189. [PMID: 27118758 PMCID: PMC5470081 DOI: 10.1177/1536012116639189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/16/2015] [Indexed: 01/30/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) can lead to delayed cerebral ischemia, which increases the rate of morbidity and mortality. The detection of microglial activation may serve as a biomarker for the identification of patients at risk of this deleterious consequence. We assessed this hypothesis in a rat model of SAH in which the exploration of neuroinflammation related to microglial activation was correlated with the degree of bleeding. We used the rat filament model and evaluated (at 48 hours postsurgery) the intensity of neuroinflammation using positron emission tomography (PET) imaging with the 18-kDa translocator protein (TSPO) tracer [18F]DPA-714, quantitative autoradiography with [3H]PK-11195, and SAH grade by postmortem brain picture. High SAH grades were strongly and positively correlated with in vivo PET imaging of TSPO in the cortex and striatum. In addition, a positive correlation was found in the cortex in TSPO, with densities determined by imaging and autoradiographic approaches. Qualitative immunofluorescence studies indicated that overexpression of TSPO was linked to astrocytic/microglial activation. In this model, PET imaging of TSPO using [18F]DPA-714 appeared to be a relevant index of the degree of bleeding, indicating that this imaging method could be used in human patients to improve the management of patients with SAH.
Collapse
Affiliation(s)
- Clément Thomas
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France CHRU de Tours, Tours, France
| | | | - Aurélie Doméné
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Clovis Tauber
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Michael Kassiou
- Faculty of Health Sciences, School of Chemistry, University of Sydney, Sydney, Australia
| | - Denis Guilloteau
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France CHRU de Tours, Tours, France
| | - Christophe Destrieux
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France CHRU de Tours, Tours, France
| | - Sophie Sérrière
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Sylvie Chalon
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| |
Collapse
|
49
|
Vállez García D, Otte A, Dierckx RAJO, Doorduin J. Three Month Follow-Up of Rat Mild Traumatic Brain Injury: A Combined [ 18F]FDG and [ 11C]PK11195 Positron Emission Study. J Neurotrauma 2016; 33:1855-1865. [PMID: 26756169 DOI: 10.1089/neu.2015.4230] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common cause of head trauma. The time course of functional pathology is not well defined, however. The purpose of this study was to evaluate the consequences of mTBI in rats over a period of 3 months by determining the presence of neuroinflammation ([11C]PK11195) and changes in brain metabolism ([18F]FDG) with positron emission tomography (PET) imaging. Male Sprague-Dawley rats were divided in mTBI (n = 8) and sham (n = 8) groups. In vivo PET imaging and behavioral tests (open field, object recognition, and Y-maze) were performed at different time points after induction of the trauma. Differences between groups in PET images were explored using volume-of-interest and voxel-based analysis. mTBI did not result in death, skull fracture, or suppression of reflexes. Weight gain was reduced (p = 0.003) in the mTBI group compared with the sham-treated group. No statistical differences were found in the behavioral tests at any time point. Volume-of-interest analysis showed neuroinflammation limited to the subacute phase (day 12) involving amygdala, globus pallidus, hypothalamus, pons, septum, striatum, and thalamus (p < 0.03, d > 1.2). Alterations in glucose metabolism were detected over the 3 month period, with increased uptake in the medulla (p < 0.04, d ≥ 1.2), and decreased uptake in the globus pallidus, striatum, and thalamus (p < 0.04, d ≤ 1.2). Similar findings were observed in the voxel-based analysis (p < 0.05 at corrected cluster level). As a consequence of the mTBI, and in the absence of apparent behavioral alterations, relative brain glucose metabolism was found altered in several brain regions, which mostly correspond with those presenting neuroinflammation in the subacute stage.
Collapse
Affiliation(s)
- David Vállez García
- 1 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| | - Andreas Otte
- 2 Division of Biomedical Engineering, Department of Electrical Engineering and Information Technology, Offenburg University , Offenburg, Germany
| | - Rudi A J O Dierckx
- 1 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| | - Janine Doorduin
- 1 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| |
Collapse
|
50
|
In Vivo Detection of Age- and Disease-Related Increases in Neuroinflammation by 18F-GE180 TSPO MicroPET Imaging in Wild-Type and Alzheimer's Transgenic Mice. J Neurosci 2016; 35:15716-30. [PMID: 26609163 DOI: 10.1523/jneurosci.0996-15.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Alzheimer's disease (AD) is the most common cause of dementia. Neuroinflammation appears to play an important role in AD pathogenesis. Ligands of the 18 kDa translocator protein (TSPO), a marker for activated microglia, have been used as positron emission tomography (PET) tracers to reflect neuroinflammation in humans and mouse models. Here, we used the novel TSPO-targeted PET tracer (18)F-GE180 (flutriciclamide) to investigate differences in neuroinflammation between young and old WT and APP/PS1dE9 transgenic (Tg) mice. In vivo PET scans revealed an overt age-dependent elevation in whole-brain uptake of (18)F-GE180 in both WT and Tg mice, and a significant increase in whole-brain uptake of (18)F-GE180 (peak-uptake and retention) in old Tg mice compared with young Tg mice and all WT mice. Similarly, the (18)F-GE180 binding potential in hippocampus was highest to lowest in old Tg > old WT > young Tg > young WT mice using MRI coregistration. Ex vivo PET and autoradiography analysis further confirmed our in vivo PET results: enhanced uptake and specific binding (SUV75%) of (18)F-GE180 in hippocampus and cortex was highest in old Tg mice followed by old WT, young Tg, and finally young WT mice. (18)F-GE180 specificity was confirmed by an in vivo cold tracer competition study. We also examined (18)F-GE180 metabolites in 4-month-old WT mice and found that, although total radioactivity declined over 2 h, of the remaining radioactivity, ∼90% was due to parent (18)F-GE180. In conclusion, (18)F-GE180 PET scans may be useful for longitudinal monitoring of neuroinflammation during AD progression and treatment. SIGNIFICANCE STATEMENT Microglial activation, a player in Alzheimer's disease (AD) pathogenesis, is thought to reflect neuroinflammation. Using in vivo microPET imaging with a novel TSPO radioligand, (18)F-GE180, we detected significantly enhanced neuroinflammation during normal aging in WT mice and in response to AD-associated pathology in APP/PS1dE9 Tg mice, an AD mouse model. Increased uptake and specific binding of (18)F-GE180 in whole brain and hippocampus were confirmed by ex vivo PET and autoradiography. The binding specificity and stability of (18)F-GE180 was further confirmed by a cold tracer competition study and a metabolite study, respectively. Therefore, (18)F-GE180 PET imaging may be useful for longitudinal monitoring of neuroinflammation during AD progression and treatment and may also be useful for other neurodegenerative diseases.
Collapse
|