1
|
Liu G, Wang H, Li X, Mi Y, Zhang C, Chen Y, Miao L, Long H, He J, Ge Q, Liu Y. Biodistribution and persistence of human umbilical cord-derived mesenchymal stem cells in NCG mice: a comparative study. Future Sci OA 2025; 11:2471723. [PMID: 40035430 PMCID: PMC11881841 DOI: 10.1080/20565623.2025.2471723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION This study aims to investigate the biodistribution and persistence of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in NCG mice post-intravenous injection, utilizing 89Zr-PET/CT, bioluminescence imaging, multiplex immunohistochemistry (mIHC), and quantitative polymerase chain reaction (qPCR). METHODS hUC-MSCs were labeled with 89Zr-oxine (89Zr-MSCs) or transduced with luciferase gene (Luc-MSCs). Real-time tracking of 89Zr-MSCs lasted for 14-days followed by mIHC staining of hCD73. Real-time tracking of Luc-MSCs lasted for 7-days, followed by mIHC staining of hCD73 and human Alu-based qPCR. All methods adhered to ICH and other regulatory guidelines for development of cell-based drugs. RESULTS A biodistribution and persistence pattern was observed in the order of lung > liver > kidney > >spleen, although discrepancies were noted for the liver and kidney. CONCLUSION Each method exhibited strengths and weaknesses: 89Zr-PET/CT enabled long-term tracking but encountered issues with 89Zr shedding and dead cells; bioluminescence provided specific detection but was hampered by a rapid decline in signal; mIHC identified cells but relied on antigen abundance; qPCR detected minimal cell quantities but was unable to differentiate between live and dead cells. These limitations may obscure the true fate of cells in vivo, highlighting the need for more accurate and reliable assessment techniques.
Collapse
Affiliation(s)
- Guangyang Liu
- Stem Cell Biology and Regenerative Medicine Apartment, Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Herui Wang
- Stem Cell Biology and Regenerative Medicine Apartment, Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Xin Li
- Stem Cell Biology and Regenerative Medicine Apartment, Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Yi Mi
- Stem Cell Biology and Regenerative Medicine Apartment, Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Chenliang Zhang
- Stem Cell Biology and Regenerative Medicine Apartment, Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Yaoyao Chen
- Stem Cell Biology and Regenerative Medicine Apartment, Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Li Miao
- Stem Cell Biology and Regenerative Medicine Apartment, Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Haomiao Long
- Stem Cell Biology and Regenerative Medicine Apartment, Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Jun He
- Centre for Safety Evaluation and Research of Drugs, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science, Beijing, China
| | - Qinggang Ge
- Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Yongjun Liu
- Stem Cell Biology and Regenerative Medicine Apartment, Yi-Chuang Institute of Bio-Industry, Beijing, China
| |
Collapse
|
2
|
Nyong E, Kurebayashi Y, Asiedu KO, Choyke PL, Sato N. Intracellular Protein Binding of Zr-89 Oxine Cell Labeling for PET Cell Tracking Studies. Pharmaceutics 2025; 17:518. [PMID: 40284513 PMCID: PMC12030610 DOI: 10.3390/pharmaceutics17040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/12/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: 89Zr-oxine is an ex vivo cell labeling agent that enables cells to be tracked in vivo by positron emission tomography (PET) over a period of up to two weeks. To better understand where 89Zr-oxine binds within cellular components, factors affecting labeling and intracellular distribution of 89Zr were examined. Methods: Mouse primary T cells, natural killer cells, dendritic cells, and monocytes, and cell lines EL4 (mouse lymphoma), DC2.4 (mouse dendritic cell), Kit225K6 (human T cell leukemia) and MC38 (mouse colon adenocarcinoma) were labeled with 89Zr-oxine or 111In-oxine and protein binding within the cellular compartments, the labeling thresholds, and radioactivity retention were subsequently determined. Results: Cell incorporation of 89Zr-oxine (27.8-71.8 kBq/106 cells) positively correlated with cellular size and protein mass. Most (>97%) 89Zr was protein-bound and primarily localized in the cytoplasm, membrane, and nuclear fractions (>81%) with distribution patterns varying by cell type. By contrast, 111In-oxine showed lower protein-binding activity of approximately 59-65%, with 62-65% of 111In localized in the cytoplasm. Autoradiography of electrophoresed subcellular fractionated cell samples indicated stable binding by 89Zr-oxine to proteins in all subcellular fractions but unstable protein binding by 111In. Saturation studies showed that 89Zr-oxine labeling was saturable, and further labeling reduced cellular retention. Biodistribution of dendritic cells labeled with either 89Zr-oxine or 111In-oxine indicated greater retention of 89Zr in the labeled cells in vivo than 111In. Conclusions: 89Zr-oxine stably binds many intracellular proteins and shows much higher and more stable protein binding than 111In-oxine. Intracellular protein binding of 89Zr accounts for the ability of 89Zr-oxine labeling to successfully track cells in vivo long-term on PET.
Collapse
Affiliation(s)
- Emmanuel Nyong
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (E.N.); (Y.K.); (K.O.A.); (P.L.C.)
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yutaka Kurebayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (E.N.); (Y.K.); (K.O.A.); (P.L.C.)
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kingsley O. Asiedu
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (E.N.); (Y.K.); (K.O.A.); (P.L.C.)
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (E.N.); (Y.K.); (K.O.A.); (P.L.C.)
| | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (E.N.); (Y.K.); (K.O.A.); (P.L.C.)
| |
Collapse
|
3
|
Pham TT, Chenoweth A, Patel N, Banu A, Osborn G, Blower PJ, Karagiannis SN, Ma MT. In Vivo PET Imaging of 89Zr-Labeled Natural Killer Cells and the Modulating Effects of a Therapeutic Antibody. J Nucl Med 2024; 65:1035-1042. [PMID: 38844362 PMCID: PMC11218727 DOI: 10.2967/jnumed.124.267876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 07/03/2024] Open
Abstract
Natural killer (NK) cells can kill cancer cells via antibody-dependent cell-mediated cytotoxicity (ADCC): a tumor-associated IgG antibody binds to the Fcγ receptor CD16 on NK cells via the antibody Fc region and activates the cytotoxic functions of the NK cell. Here, we used PET imaging to assess NK cell migration to human epidermal growth factor receptor 2 (HER2)-positive HCC1954 breast tumors, examining the influence of HER2-targeted trastuzumab antibody treatment on NK cell tumor accumulation. Methods: Human NK cells from healthy donors were expanded ex vivo and labeled with [89Zr]Zr-oxine. In vitro experiments compared the phenotypic markers, viability, proliferation, migration, degranulation, and ADCC behaviors of both labeled (89Zr-NK) and unlabeled NK cells. Female mice bearing orthotopic human breast HCC1954 tumors were administered 89Zr-NK cells alongside trastuzumab treatment or a sham treatment and then scanned using PET/CT imaging over 7 d. Flow cytometry and γ-counting were used to analyze the presence of 89Zr-NK cells in liver and spleen tissues. Results: 89Zr cell radiolabeling yields measured 42.2% ± 8.0%. At an average specific activity of 16.7 ± 4.7 kBq/106 cells, 89Zr-NK cells retained phenotypic and functional characteristics including CD56 and CD16 expression, viability, migration, degranulation, and ADCC capabilities. In vivo PET/CT studies indicated predominant accumulation of 89Zr-NK cells in the liver and spleen. Ex vivo analyses of liver and spleen tissues indicated that the administered human 89Zr-NK cells retained their radioactivity in vivo and that 89Zr did not transfer to cells of murine soft tissues, thus validating this 89Zr PET method for NK cell tracking. Notably, 89Zr-NK cells migrated to HER2-positive tumors, both with and without trastuzumab treatment. Trastuzumab treatment was associated with an increased 89Zr-NK cell signal at days 1 and 3 after injection. Conclusion: In vitro, 89Zr-NK cells maintained key cellular and cytotoxic functions. In vivo, 89Zr-NK cells trafficked to HER2-postive tumors, with trastuzumab treatment correlating with enhanced 89Zr-NK infiltration. This study demonstrates the feasibility of using PET to image 89Zr-NK cell infiltration into solid tumors.
Collapse
Affiliation(s)
- Truc T Pham
- Department of Imaging Chemistry and Biology, School of Bioengineering and Imaging Sciences, King's College London, London, United Kingdom;
| | - Alicia Chenoweth
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom; and
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Natasha Patel
- Department of Imaging Chemistry and Biology, School of Bioengineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Arshiya Banu
- Department of Imaging Chemistry and Biology, School of Bioengineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gabriel Osborn
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom; and
| | - Philip J Blower
- Department of Imaging Chemistry and Biology, School of Bioengineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom; and
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Michelle T Ma
- Department of Imaging Chemistry and Biology, School of Bioengineering and Imaging Sciences, King's College London, London, United Kingdom;
| |
Collapse
|
4
|
Balhara A, Gupta SK, Sudarshan K, Patra S, Chakraborty A, Chakraborty S. ZnAl 2O 4:Er 3+ Upconversion Nanophosphor for SPECT Imaging and Luminescence Modulation via Defect Engineering. ACS APPLIED BIO MATERIALS 2024; 7:2354-2366. [PMID: 38481091 DOI: 10.1021/acsabm.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
This work reports an "all-in-one" theranostic upconversion luminescence (UCL) system having potential for both diagnostic and therapeutic applications. Despite considerable efforts in designing upconversion nanoparticles (UCNPs) for multimodal imaging and tumor therapy, there are few reports investigating dual modality SPECT/optical imaging for theranostics. Especially, research focusing on in vivo biodistribution studies of intrinsically radiolabeled UCNPs after intravenous injection is of utmost importance for the potential clinical translation of such formulations. Here, we utilized the gamma emission from 169Er and 171Er radionuclides for the demonstration of radiolabeled ZnAl2O4:171/169Er3+ as a potent agent for dual-modality SPECT/optical imaging. No uptake of radio nanoformulation was detected in the skeleton after 4 h of administration, which evidenced the robust integrity of ZnAl2O4:169/171Er3+. Combining the therapeutics using the emission of β- particulates from 169Er and 171Er will be promising for the radio-theranostic application of the synthesized ZnAl2O4:169/171Er3+ nanoformulation. Cell toxicity studies of ZnAl2O4:1%Er3+ nanoparticles were examined by an MTT assay in B16F10 mouse melanoma cell lines, which demonstrated good biocompatibility. In addition, we explored the mechanism of UCL modulation via defect engineering by Bi3+ codoping in the ZnAl2O4:Er3+ upconversion nanophosphor. The UCL color tuning was successfully achieved from the red to the green region as a function of Bi3+ codoping concentrations. Further, we tried to establish a correlation of UCL tuning with the intrinsic oxygen and cation vacancy defects as a function of Bi3+ codoping concentrations with the help of electron paramagnetic resonance (EPR) and positron annihilation lifetime spectroscopy (PALS) studies. This study contributes to building a bridge between nature of defects and UC luminescence that is crucial for the design of advanced UCNPs for theranostics.
Collapse
Affiliation(s)
- Annu Balhara
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Santosh K Gupta
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Kathi Sudarshan
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sourav Patra
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Avik Chakraborty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiation Medicine Centre (Medical), Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Sudipta Chakraborty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
5
|
Xu Q, Wang X, Mu Z, Zhou Y, Ding X, Ji X, Yan J, Pan D, Chen C, Xu Y, Wang L, Wang J, Wang G, Yang M. Repurposing iron chelators for accurate positron emission tomography imaging tracking of radiometal-labeled cell transplants. MedComm (Beijing) 2024; 5:e473. [PMID: 38292327 PMCID: PMC10827001 DOI: 10.1002/mco2.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
The use of radiolabeled cells for positron emission tomography (PET) imaging tracking has been a promising approach for monitoring cell-based therapies. However, the presence of free radionuclides released from dead cells during tracking can interfere with the signal from living cells, leading to inaccurate results. In this study, the effectiveness of the iron chelators deferoxamine (DFO) and deferiprone in removing free radionuclides 89Zr and 68Ga, respectively, was demonstrated in vivo utilizing PET imaging. The use of DFO during PET imaging tracking of 89Zr-labeled mesenchymal stem cells (MSCs) significantly reduced uptake in bone while preserving uptake in major organs, resulting in more accurate and reliable tracking. Furthermore, the clearance of free 89Zr in vivo resulted in a significant reduction in radiation dose from 89Zr-labeled MSCs. Additionally, the avoidance of free radionuclide accumulation in bone allowed for more precise observation of the homing process and persistence during bone marrow transplantation. The efficacy and safety of this solution suggest this finding has potential for widespread use in imaging tracking studies involving various cells. Moreover, since this method employed iron chelator drugs in clinical use, which makes it is a good prospect for clinical translation.
Collapse
Affiliation(s)
- Qian Xu
- Department of RadiopharmaceuticalsSchool of PharmacyNanjing Medical UniversityNanjingChina
- NHC Key Laboratory of Nuclear MedicineJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Xinyu Wang
- Department of RadiopharmaceuticalsSchool of PharmacyNanjing Medical UniversityNanjingChina
- NHC Key Laboratory of Nuclear MedicineJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Ziqian Mu
- Department of RadiopharmaceuticalsSchool of PharmacyNanjing Medical UniversityNanjingChina
- NHC Key Laboratory of Nuclear MedicineJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Yixiang Zhou
- Department of RadiopharmaceuticalsSchool of PharmacyNanjing Medical UniversityNanjingChina
- NHC Key Laboratory of Nuclear MedicineJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Xiang Ding
- Department of RadiopharmaceuticalsSchool of PharmacyNanjing Medical UniversityNanjingChina
- NHC Key Laboratory of Nuclear MedicineJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Xin Ji
- NHC Key Laboratory of Nuclear MedicineJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Junjie Yan
- Department of RadiopharmaceuticalsSchool of PharmacyNanjing Medical UniversityNanjingChina
- NHC Key Laboratory of Nuclear MedicineJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Donghui Pan
- NHC Key Laboratory of Nuclear MedicineJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Chongyang Chen
- NHC Key Laboratory of Nuclear MedicineJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Yuping Xu
- Department of RadiopharmaceuticalsSchool of PharmacyNanjing Medical UniversityNanjingChina
- NHC Key Laboratory of Nuclear MedicineJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear MedicineJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Jing Wang
- Jiangsu Renocell Biotech Co., Ltd.NanjingChina
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingChina
| | - Min Yang
- Department of RadiopharmaceuticalsSchool of PharmacyNanjing Medical UniversityNanjingChina
- NHC Key Laboratory of Nuclear MedicineJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| |
Collapse
|
6
|
Kahts M, Guo H, Kommidi H, Yang Y, Sayman HB, Summers B, Ting R, Zeevaart JR, Sathekge M, Aras O. 89Zr-leukocyte labelling for cell trafficking: in vitro and preclinical investigations. EJNMMI Radiopharm Chem 2023; 8:36. [PMID: 37930454 PMCID: PMC10628102 DOI: 10.1186/s41181-023-00223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The non-invasive imaging of leukocyte trafficking to assess inflammatory areas and monitor immunotherapy is currently generating great interest. There is a need to develop more robust cell labelling and imaging approaches to track living cells. Positron emission tomography (PET), a highly sensitive molecular imaging technique, allows precise signals to be produced from radiolabelled moieties. Here, we developed a novel leukocyte labelling approach with the PET radioisotope zirconium-89 (89Zr, half-life of 78.4 h). Experiments were carried out using human leukocytes, freshly isolated from whole human blood. RESULTS The 89Zr-leukocyte labelling efficiency ranged from 46 to 87% after 30-60 min. Radioactivity concentrations of labelled cells were up to 0.28 MBq/1 million cells. Systemically administered 89Zr-labelled leukocytes produced high-contrast murine PET images at 1 h-5 days post injection. Murine biodistribution data showed that cells primarily distributed to the lung, liver, and spleen at 1 h post injection, and are then gradually trafficked to liver and spleen over 5 days. Histological analysis demonstrated that exogenously 89Zr-labelled human leukocytes were present in the lung, liver, and spleen at 1 h post injection. However, intravenously injected free [89Zr]Zr4+ ion showed retention only in the bone with no radioactivity in the lung at 5 days post injection, which implied good stability of radiolabelled leukocytes in vivo. CONCLUSIONS Our study presents a stable and generic radiolabelling technique to track leukocytes with PET imaging and shows great potential for further applications in inflammatory cell and other types of cell trafficking studies.
Collapse
Affiliation(s)
- Maryke Kahts
- Pharmaceutical Sciences Department, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, 0208, South Africa.
| | - Hua Guo
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Harikrishna Kommidi
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yanping Yang
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA
| | - Haluk Burcak Sayman
- Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University, 34303, Fatih, Istanbul, Turkey
| | - Beverley Summers
- Pharmaceutical Sciences Department, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, 0208, South Africa
| | - Richard Ting
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jan Rijn Zeevaart
- Radiochemistry, The South African Nuclear Energy Corporation, Pelindaba, Hartebeespoort, 0240, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
- DST/NWU, Preclinical Drug Development Platform, North West University, Potchefstroom, 2520, South Africa
| | - Mike Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
7
|
Astrelina TA, Brunchukov VA, Kodina GE, Bubenshchikov VB, Larenkov AA, Lunev AS, Petrosova KA, Rastorgueva AA, Kobzeva IV, Usupzhanova DY, Nikitina VA, Malsagova KA, Kulikova LI, Samoilov AS, Pustovoyt VI. Biodistribution of Mesenchymal Stromal Cells Labeled with [ 89Zr]Zr-Oxine in Local Radiation Injuries in Laboratory Animals. Molecules 2023; 28:7169. [PMID: 37894647 PMCID: PMC10609482 DOI: 10.3390/molecules28207169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Tracking the migration pathways of living cells after their introduction into a patient's body is a topical issue in the field of cell therapy. Questions related to studying the possibility of long-term intravital biodistribution of mesenchymal stromal cells in the body currently remain open. METHODS Forty-nine laboratory animals were used in the study. Modeling of local radiation injuries was carried out, and the dynamics of the distribution of mesenchymal stromal cells labeled with [89Zr]Zr-oxine in the rat body were studied. RESULTS the obtained results of the labelled cell distribution allow us to assume that this procedure could be useful for visualization of local radiation injury using positron emission tomography. However, further research is needed to confirm this assumption. CONCLUSIONS intravenous injection leads to the initial accumulation of cells in the lungs and their subsequent redistribution to the liver, spleen, and kidneys. When locally injected into tissues, mesenchymal stromal cells are not distributed systemically in significant quantities.
Collapse
Affiliation(s)
- Tatiana A. Astrelina
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Vitaliy A. Brunchukov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Galina E. Kodina
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Viktor B. Bubenshchikov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Anton A. Larenkov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Aleksandr S. Lunev
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Kristina A. Petrosova
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Anna A. Rastorgueva
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Irina V. Kobzeva
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Daria Y. Usupzhanova
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Victoria A. Nikitina
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | | | - Ludmila I. Kulikova
- Institute of Biomedical Chemistry, Biobanking Group, 119121 Moscow, Russia;
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 119991 Pushchino, Russia
| | - Alexander S. Samoilov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Vasiliy I. Pustovoyt
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| |
Collapse
|
8
|
Kheyrolahzadeh K, Tohidkia MR, Tarighatnia A, Shahabi P, Nader ND, Aghanejad A. Theranostic chimeric antigen receptor (CAR)-T cells: Insight into recent trends and challenges in solid tumors. Life Sci 2023; 328:121917. [PMID: 37422069 DOI: 10.1016/j.lfs.2023.121917] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/15/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Cell therapy has reached significant milestones in various life-threatening diseases, including cancer. Cell therapy using fluorescent and radiolabeled chimeric antigen receptor (CAR)-T cell is a successful strategy for diagnosing or treating malignancies. Since cell therapy approaches have different results in cancers, the success of hematological cancers has yet to transfer to solid tumor therapy, leading to more casualties. Therefore, there are many areas for improvement in the cell therapy platform. Understanding the therapeutic barriers associated with solid cancers through cell tracking and molecular imaging may provide a platform for effectively delivering CAR-T cells into solid tumors. This review describes CAR-T cells' role in treating solid and non-solid tumors and recent advances. Furthermore, we discuss the main obstacles, mechanism of action, novel strategies and solutions to overcome the challenges from molecular imaging and cell tracking perspectives.
Collapse
Affiliation(s)
- Keyvan Kheyrolahzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighatnia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Mulgaonkar A, Udayakumar D, Yang Y, Harris S, Öz OK, Ramakrishnan Geethakumari P, Sun X. Current and potential roles of immuno-PET/-SPECT in CAR T-cell therapy. Front Med (Lausanne) 2023; 10:1199146. [PMID: 37441689 PMCID: PMC10333708 DOI: 10.3389/fmed.2023.1199146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have evolved as breakthrough treatment options for the management of hematological malignancies and are also being developed as therapeutics for solid tumors. However, despite the impressive patient responses from CD19-directed CAR T-cell therapies, ~ 40%-60% of these patients' cancers eventually relapse, with variable prognosis. Such relapses may occur due to a combination of molecular resistance mechanisms, including antigen loss or mutations, T-cell exhaustion, and progression of the immunosuppressive tumor microenvironment. This class of therapeutics is also associated with certain unique toxicities, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other "on-target, off-tumor" toxicities, as well as anaphylactic effects. Furthermore, manufacturing limitations and challenges associated with solid tumor infiltration have delayed extensive applications. The molecular imaging modalities of immunological positron emission tomography and single-photon emission computed tomography (immuno-PET/-SPECT) offer a target-specific and highly sensitive, quantitative, non-invasive platform for longitudinal detection of dynamic variations in target antigen expression in the body. Leveraging these imaging strategies as guidance tools for use with CAR T-cell therapies may enable the timely identification of resistance mechanisms and/or toxic events when they occur, permitting effective therapeutic interventions. In addition, the utilization of these approaches in tracking the CAR T-cell pharmacokinetics during product development and optimization may help to assess their efficacy and accordingly to predict treatment outcomes. In this review, we focus on current challenges and potential opportunities in the application of immuno-PET/-SPECT imaging strategies to address the challenges encountered with CAR T-cell therapies.
Collapse
Affiliation(s)
- Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Durga Udayakumar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yaxing Yang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Praveen Ramakrishnan Geethakumari
- Section of Hematologic Malignancies/Transplant and Cell Therapy, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
10
|
Polyak A, Képes Z, Trencsényi G. Implant Imaging: Perspectives of Nuclear Imaging in Implant, Biomaterial, and Stem Cell Research. Bioengineering (Basel) 2023; 10:bioengineering10050521. [PMID: 37237591 DOI: 10.3390/bioengineering10050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Until now, very few efforts have been made to specifically trace, monitor, and visualize implantations, artificial organs, and bioengineered scaffolds for tissue engineering in vivo. While mainly X-Ray, CT, and MRI methods have been used for this purpose, the applications of more sensitive, quantitative, specific, radiotracer-based nuclear imaging techniques remain a challenge. As the need for biomaterials increases, so does the need for research tools to evaluate host responses. PET (positron emission tomography) and SPECT (single photon emission computer tomography) techniques are promising tools for the clinical translation of such regenerative medicine and tissue engineering efforts. These tracer-based methods offer unique and inevitable support, providing specific, quantitative, visual, non-invasive feedback on implanted biomaterials, devices, or transplanted cells. PET and SPECT can improve and accelerate these studies through biocompatibility, inertivity, and immune-response evaluations over long investigational periods at high sensitivities with low limits of detection. The wide range of radiopharmaceuticals, the newly developed specific bacteria, and the inflammation of specific or fibrosis-specific tracers as well as labeled individual nanomaterials can represent new, valuable tools for implant research. This review aims to summarize the opportunities of nuclear-imaging-supported implant research, including bone, fibrosis, bacteria, nanoparticle, and cell imaging, as well as the latest cutting-edge pretargeting methods.
Collapse
Affiliation(s)
- Andras Polyak
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
11
|
Melendez-Alafort L, Ferro-Flores G, De Nardo L, Ocampo-García B, Bolzati C. Zirconium immune-complexes for PET molecular imaging: Current status and prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Jacob J, Volpe A, Peng Q, Lechler RI, Smyth LA, Lombardi G, Fruhwirth GO. Radiolabelling of Polyclonally Expanded Human Regulatory T Cells (Treg) with 89Zr-oxine for Medium-Term In Vivo Cell Tracking. Molecules 2023; 28:1482. [PMID: 36771148 PMCID: PMC9920634 DOI: 10.3390/molecules28031482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Regulatory T cells (Tregs) are a promising candidate cell therapy to treat autoimmune diseases and aid the longevity of transplanted solid organs. Despite increasing numbers of clinical trials using human Treg therapy, important questions pertaining to their in vivo fate, distribution, and function remain unanswered. Treg accumulation in relevant tissues was found to be crucial for Treg therapy efficacy, but existing blood-borne biomarkers are unlikely to accurately reflect the tissue state. Non-invasive Treg tracking by whole-body imaging is a promising alternative and can be achieved by direct radiolabelling of Tregs and following the radiolabelled cells with positron emission tomography (PET). Our goal was to evaluate the radiolabelling of polyclonal Tregs with 89Zr to permit their in vivo tracking by PET/CT for longer than one week with current preclinical PET instrumentation. We used [89Zr]Zr(oxinate)4 as the cell-labelling agent and achieved successful radiolabelling efficiency of human Tregs spanning 0.1-11.1 Bq 89Zr/Treg cell, which would be compatible with PET tracking beyond one week. We characterized the 89Zr-Tregs, assessing their phenotypes, and found that they were not tolerating these intracellular 89Zr amounts, as they failed to survive or expand in a 89Zr-dose-dependent manner. Even at 0.1 Bq 89Zr per Treg cell, while 89Zr-Tregs remained functional as determined by a five-day-long effector T cell suppression assay, they failed to expand beyond day 3 in vitro. Moreover, PET imaging revealed signs of 89Zr-Treg death after adoptive transfer in vivo. In summary, 89Zr labelling of Tregs at intracellular radioisotope amounts compatible with cell tracking over several weeks did not achieve the desired outcomes, as 89Zr-Tregs failed to expand and survive. Consequently, we conclude that indirect Treg labelling is likely to be the most effective alternative method to satisfy the requirements of this cell tracking scenario.
Collapse
Affiliation(s)
- Jacinta Jacob
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, Guy’s Hospital, Tower Wing, 5th Floor, Great Maze Pond, London SE1 9RT, UK
| | - Alessia Volpe
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Campus, New Hunt’s House, 2nd Floor, Great Maze Pond, London SE1 1UL, UK
| | - Qi Peng
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, Guy’s Hospital, Tower Wing, 5th Floor, Great Maze Pond, London SE1 9RT, UK
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Campus, New Hunt’s House, 2nd Floor, Great Maze Pond, London SE1 1UL, UK
| | - Robert I. Lechler
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, Guy’s Hospital, Tower Wing, 5th Floor, Great Maze Pond, London SE1 9RT, UK
| | - Lesley A. Smyth
- School of Health, Sport and Bioscience, Stratford Campus, University of East London, London E15 4LZ, UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, Guy’s Hospital, Tower Wing, 5th Floor, Great Maze Pond, London SE1 9RT, UK
| | - Gilbert O. Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Campus, New Hunt’s House, 2nd Floor, Great Maze Pond, London SE1 1UL, UK
| |
Collapse
|
13
|
Rhee JY, Ghannam JY, Choi BD, Gerstner ER. Labeling T Cells to Track Immune Response to Immunotherapy in Glioblastoma. Tomography 2023; 9:274-284. [PMID: 36828374 PMCID: PMC9959194 DOI: 10.3390/tomography9010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
While the advent of immunotherapy has revolutionized cancer treatment, its use in the treatment of glioblastoma (GBM) has been less successful. Most studies using immunotherapy in GBM have been negative and the reasons for this are still being studied. In clinical practice, interpreting response to immunotherapy has been challenging, particularly when trying to differentiate between treatment-related changes (i.e., pseudoprogression) or true tumor progression. T cell tagging is one promising technique to noninvasively monitor treatment efficacy by assessing the migration, expansion, and engagement of T cells and their ability to target tumor cells at the tumor site.
Collapse
Affiliation(s)
- John Y. Rhee
- Department of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Department of Neuro-Oncology, Dana Farber Cancer Institute, Brigham and Women’s Cancer Center, Boston, MA 02215, USA
| | - Jack Y. Ghannam
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Bryan D. Choi
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Elizabeth R. Gerstner
- Department of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| |
Collapse
|
14
|
Pruller J, Pham TT, Blower JE, Charoenphun P, Volpe A, Sunassee K, Mullen GED, Blower PJ, Smith RAG, Ma MT. An indium-111-labelled membrane-targeted peptide for cell tracking with radionuclide imaging. RSC Chem Biol 2023; 4:65-73. [PMID: 36685254 PMCID: PMC9811519 DOI: 10.1039/d2cb00164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Cell labelling agents that enable longitudinal in vivo tracking of administered cells will support the clinical development of cell-based therapies. Radionuclide imaging with gamma and positron-emitting radioisotopes can provide quantitative and longitudinal mapping of cells in vivo. To make this widely accessible and adaptable to a range of cell types, new, versatile and simple methods for directly radiolabelling cells are required. We have developed [111In]In-DTPA-CTP, the first example of a radiolabelled peptide that binds to the extracellular membrane of cells, for tracking cell distribution in vivo using Single Photon Emission Computed Tomography (SPECT). [111In]In-DTPA-CTP consists of (i) myristoyl groups for insertion into the phospholipid bilayer, (ii) positively charged lysine residues for electrostatic association with negatively charged phospholipid groups at the cell surface and (iii) a diethylenetriamine pentaacetate derivative that coordinates the γ-emitting radiometal, [111In]In3+. [111In]In-DTPA-CTP binds to 5T33 murine myeloma cells, enabling qualitative SPECT tracking of myeloma cells' accumulation in lungs immediately after intravenous administration. This is the first report of a radiolabelled cell-membrane binding peptide for use in cell tracking.
Collapse
Affiliation(s)
- Johanna Pruller
- Randall Division of Cell and Molecular Biophysics, King's College London UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Truc Thuy Pham
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Julia E Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Putthiporn Charoenphun
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University Bangkok Thailand
| | - Alessia Volpe
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Kavitha Sunassee
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Gregory E D Mullen
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Richard A G Smith
- MRC Centre for Transplantation, King's College London, Guy's Hospital London UK
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| |
Collapse
|
15
|
Gawne PJ, Pinto SMA, Nielsen KM, Keeling GP, Pereira MM, T M de Rosales R. Microwave-assisted synthesis of [ 52Mn]Mn-porphyrins: Applications in cell and liposome radiolabelling. Nucl Med Biol 2022; 114-115:6-17. [PMID: 36088876 PMCID: PMC10236072 DOI: 10.1016/j.nucmedbio.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Manganese porphyrins have several therapeutic/imaging applications, including their use as radioprotectants (in clinical trials) and as paramagnetic MRI contrast agents. The affinity of porphyrins for lipid bilayers also makes them candidates for cell/liposome labelling. We hypothesised that metalation with the positron emission tomography (PET) radionuclide 52Mn (t1/2 = 5.6 d) would allow long-term in vivo biodistribution studies of Mn-porphyrins, as well as a method to label and track cells/liposomes, but methods for fast and efficient radiolabelling are lacking. RESULTS Several porphyrins were produced and radiolabelled by addition to neutralised [52Mn]MnCl2 and heating using a microwave (MW) synthesiser, and compared with non-MW heating. MW radiosynthesis allowed >95 % radiochemical yields (RCY) in just 1 h. Conversely, non-MW heating at 70 °C for 1 h resulted in low RCY (0-25 % RCY) and most porphyrins did not reach radiolabelling completion after 24 h. Formation of the 52Mn-complexes were confirmed with radio-HPLC by comparison with their non-radioactive 55Mn counterparts. Following this, several [52Mn]Mn-porphyrins were used to radiolabel liposomes resulting in 75-86 % labelling efficiency (LE). Two lead [52Mn]Mn-porphyrins were taken forward to label MDA-MB-231 cancer cells in vitro, achieving ca. 11 % LE. After 24 h, 32-45 % of the [52Mn]Mn-porphyrins was retained in cells. CONCLUSIONS In contrast to standard methods, MW heating allows the fast synthesis of [52Mn]Mn-porphyrins with >95 % radiochemical yields that avoid purification. [52Mn]Mn-porphyrins also show promising cell/liposome labelling properties. Our reported technique can potentially be exploited for the in vivo imaging of Mn-porphyrin therapeutics, as well as for the accurate in vivo quantification of Mn-porphyrin MRI agents.
Collapse
Affiliation(s)
- Peter J Gawne
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Sara M A Pinto
- Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Karin M Nielsen
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - George P Keeling
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Mariette M Pereira
- Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Rafael T M de Rosales
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK.
| |
Collapse
|
16
|
Evaluation of different 89Zr-labeled synthons for direct labeling and tracking of white blood cells and stem cells in healthy athymic mice. Sci Rep 2022; 12:15646. [PMID: 36123386 PMCID: PMC9485227 DOI: 10.1038/s41598-022-19953-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/07/2022] [Indexed: 11/11/2022] Open
Abstract
Cell based therapies are evolving as an effective new approach to treat various diseases. To understand the safety, efficacy, and mechanism of action of cell-based therapies, it is imperative to follow their biodistribution noninvasively. Positron-emission-tomography (PET)-based non-invasive imaging of cell trafficking offers such a potential. Herein, we evaluated and compared three different ready-to-use direct cell radiolabeling synthons, [89Zr]Zr-DFO-Bn-NCS, [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA for PET imaging-based trafficking of white blood cells (WBCs) and stem cells (SCs) up to 7 days in athymic nude mice. We compared the degree of 89Zr complexation and percentage of cell radiolabeling efficiencies with each. All three synthons, [89Zr]Zr-DFO-Bn-NCS, [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA, were successfully prepared, and used for radiolabeling of WBCs and SCs. The highest cell radiolabeling yield was found for [89Zr]Zr-DFO-Bn-NCS, followed by [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA. In terms of biodistribution, WBCs radiolabeled with [89Zr]Zr-DFO-Bn-NCS or [89Zr]Zr-Hy3ADA5-NCS, were primarily accumulated in liver and spleen, whereas SCs radiolabeled with [89Zr]Zr-DFO-Bn-NCS or [89Zr]Zr-Hy3ADA5-NCS were found in lung, liver and spleen. A high bone uptake was observed for both WBCs and SCs radiolabeled with [89Zr]Zr-Hy3ADA5-SA, suggesting in-vivo instability of [89Zr]Zr-Hy3ADA5-SA synthon. This study offers an appropriate selection of ready-to-use radiolabeling synthons for noninvasive trafficking of WBCs, SCs and other cell-based therapies.
Collapse
|
17
|
Trastuzumab-conjugated oxine-based ligand for [ 89Zr]Zr 4+ immunoPET. J Inorg Biochem 2022; 235:111936. [PMID: 35878576 DOI: 10.1016/j.jinorgbio.2022.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022]
Abstract
A new, bifunctional chelating ligand for immuno-Positron Emission Tomography (PET) was designed, synthesized, and conjugated to Trastuzumab for a proof-of-concept study with 89Zr. H4neunox was synthesized from the tris(2-aminoethyl)amine backbone, decorated with 8-hydroxyquinoline moieties, and utilizes a primary amine for functionalization. A maleimide moiety extends the chelator to create H4neunox-mal for antibody conjugation via maleimide-thiol click chemistry. Preliminary 89Zr radiolabeling of H4neunox indicated quantitative radiolabeling at 1 × 10-5 M, but improved inertness towards human serum (96% intact at 7 d) and Fe3+ (92% intact at 24 h) compared to the previously synthesized H5decaox. The chelator was successfully conjugated to the monoclonal antibody, Trastuzumab, and used in preliminary radiolabeling reactions (37 °C, 2 h) with 89Zr. Radiochemical assessments of the new H4neunox-Trastuzumab conjugate include 89Zr radiolabeling, spin filter purification, cell-binding immunoreactivity, and in vivo PET imaging and biodistribution in SKOV-3 tumour bearing nude mice, performed in comparison with the desferrioxamine B analog, DFO-Trastuzumab. The [89Zr]Zr(neunox-Trastuzumab) showed lowered inertness towards serum (76% intact at 24 h) as well as demetallation in vivo through bone uptake (21% ID/g) in PET imaging and biodistribution studies when compared to [89Zr]Zr(DFO-Trastuzumab). Although the combination of the chelator and antibody had detrimental effects on their intended purposes, nonetheless, the primary amine platform of H4neunox developed here provides an oxine-based bifunctional ligand for further derivatizations with other targeting vectors.
Collapse
|
18
|
Visualizing γδ T cells by very late antigen-4-targeted positron emission tomography. Eur J Nucl Med Mol Imaging 2022; 49:4156-4170. [DOI: 10.1007/s00259-022-05886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
|
19
|
Wang S, Wang Y, Xu B, Qin T, Lv Y, Yan H, Shao Y, Fang Y, Zheng S, Qiu Y. Biodistribution of 89Zr-oxine-labeled human bone marrow-derived mesenchymal stem cells by micro-PET/computed tomography imaging in Sprague-Dawley rats. Nucl Med Commun 2022; 43:834-846. [PMID: 35438673 PMCID: PMC9177155 DOI: 10.1097/mnm.0000000000001562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To develop a method for labeling human bone marrow mesenchymal stem cells (hMSCs) with 89Zr-oxine to characterize the biodistribution characteristics of hMSCs in normal Sprague-Dawley (SD) rats in real-time by micro-PET-computed tomography (micro-PET/CT) imaging. METHODS 89Zr-oxine complex was synthesized from 89Zr-oxalate and 8-hydroxyquinoline (oxine). After hMSCs were labeled with the 89Zr-oxine complex, the radioactivity retention, viability, proliferation, apoptosis, differentiation, morphology, and phenotype of labeled cells were assessed. The biodistribution of 89Zr-oxine-labeled hMSCs in SD rats was tracked in real-time by micro-PET/CT imaging. RESULTS The cell labeling efficiency was 52.6 ± 0.01%, and 89Zr-oxine was stably retained in cells (66.7 ± 0.9% retention on 7 days after labeling). Compared with the unlabeled hMSCs, 89Zr-oxine labeling did not affect the biological characteristics of cells. Following intravenous administration in SD rats, labeled hMSCs mainly accumulated in the liver (7.35 ± 1.41% ID/g 10 days after labeling, n = 6) and spleen (8.48 ± 1.20% ID/g 10 days after labeling, n = 6), whereas intravenously injected 89Zr-oxalate mainly accumulated in the bone (4.47 ± 0.35% ID/g 10 days after labeling, n = 3). CONCLUSION 89Zr-oxine labeling and micro-PET/CT imaging provide a useful and non-invasive method of assessing the biodistribution of cell therapy products in SD rats. The platform provides a foundation for us to further understand the mechanism of action and migration dynamics of cell therapy products.
Collapse
Affiliation(s)
- Shuzhe Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
- Toxicology Department of China Academy of Pharmaceutical Industry Shanghai InnoStar Biotechnology Co. Ltd, Shanghai
| | - Yan Wang
- Toxicology Department of China Academy of Pharmaceutical Industry Shanghai InnoStar Biotechnology Co. Ltd, Shanghai
| | - Bohua Xu
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Tian Qin
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Yupeng Lv
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Heng Yan
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Yifei Shao
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Yangyang Fang
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Shaoqiu Zheng
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
- Jiangxi University of Traditional Chinese Medicine, Nanchang
- Yangtze Delta Advanced Research Institute, Yangtze Delta Pharmaceutical College Nantong, Jiangsu, China
| | - Yunliang Qiu
- Toxicology Department of China Academy of Pharmaceutical Industry Shanghai InnoStar Biotechnology Co. Ltd, Shanghai
| |
Collapse
|
20
|
Gawne P, Man F, Blower PJ, T. M. de Rosales R. Direct Cell Radiolabeling for in Vivo Cell Tracking with PET and SPECT Imaging. Chem Rev 2022; 122:10266-10318. [PMID: 35549242 PMCID: PMC9185691 DOI: 10.1021/acs.chemrev.1c00767] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 02/07/2023]
Abstract
The arrival of cell-based therapies is a revolution in medicine. However, its safe clinical application in a rational manner depends on reliable, clinically applicable methods for determining the fate and trafficking of therapeutic cells in vivo using medical imaging techniques─known as in vivo cell tracking. Radionuclide imaging using single photon emission computed tomography (SPECT) or positron emission tomography (PET) has several advantages over other imaging modalities for cell tracking because of its high sensitivity (requiring low amounts of probe per cell for imaging) and whole-body quantitative imaging capability using clinically available scanners. For cell tracking with radionuclides, ex vivo direct cell radiolabeling, that is, radiolabeling cells before their administration, is the simplest and most robust method, allowing labeling of any cell type without the need for genetic modification. This Review covers the development and application of direct cell radiolabeling probes utilizing a variety of chemical approaches: organic and inorganic/coordination (radio)chemistry, nanomaterials, and biochemistry. We describe the key early developments and the most recent advances in the field, identifying advantages and disadvantages of the different approaches and informing future development and choice of methods for clinical and preclinical application.
Collapse
Affiliation(s)
- Peter
J. Gawne
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Francis Man
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
- Institute
of Pharmaceutical Science, School of Cancer
and Pharmaceutical Sciences, King’s College London, London, SE1 9NH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| |
Collapse
|
21
|
Hegi-Johnson F, Rudd S, Hicks RJ, De Ruysscher D, Trapani JA, John T, Donnelly P, Blyth B, Hanna G, Everitt S, Roselt P, MacManus MP. Imaging immunity in patients with cancer using positron emission tomography. NPJ Precis Oncol 2022; 6:24. [PMID: 35393508 PMCID: PMC8989882 DOI: 10.1038/s41698-022-00263-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors and related molecules can achieve tumour regression, and even prolonged survival, for a subset of cancer patients with an otherwise dire prognosis. However, it remains unclear why some patients respond to immunotherapy and others do not. PET imaging has the potential to characterise the spatial and temporal heterogeneity of both immunotherapy target molecules and the tumor immune microenvironment, suggesting a tantalising vision of personally-adapted immunomodulatory treatment regimens. Personalised combinations of immunotherapy with local therapies and other systemic therapies, would be informed by immune imaging and subsequently modified in accordance with therapeutically induced immune environmental changes. An ideal PET imaging biomarker would facilitate the choice of initial therapy and would permit sequential imaging in time-frames that could provide actionable information to guide subsequent therapy. Such imaging should provide either prognostic or predictive measures of responsiveness relevant to key immunotherapy types but, most importantly, guide key decisions on initiation, continuation, change or cessation of treatment to reduce the cost and morbidity of treatment while enhancing survival outcomes. We survey the current literature, focusing on clinically relevant immune checkpoint immunotherapies, for which novel PET tracers are being developed, and discuss what steps are needed to make this vision a reality.
Collapse
Affiliation(s)
- Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stacey Rudd
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Rodney J Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joseph A Trapani
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Thomas John
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paul Donnelly
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin Blyth
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah Everitt
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Roselt
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael P MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
22
|
Sato N, Choyke PL. Whole-Body Imaging to Assess Cell-Based Immunotherapy: Preclinical Studies with an Update on Clinical Translation. Mol Imaging Biol 2022; 24:235-248. [PMID: 34816284 PMCID: PMC8983636 DOI: 10.1007/s11307-021-01669-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
In the past decades, immunotherapies against cancers made impressive progress. Immunotherapy includes a broad range of interventions that can be separated into two major groups: cell-based immunotherapies, such as adoptive T cell therapies and stem cell therapies, and immunomodulatory molecular therapies such as checkpoint inhibitors and cytokine therapies. Genetic engineering techniques that transduce T cells with a cancer-antigen-specific T cell receptor or chimeric antigen receptor have expanded to other cell types, and further modulation of the cells to enhance cancer targeting properties has been explored. Because cell-based immunotherapies rely on cells migrating to target organs or tissues, there is a growing interest in imaging technologies that non-invasively monitor transferred cells in vivo. Here, we review whole-body imaging methods to assess cell-based immunotherapy using a variety of examples. Following a review of preclinically used cell tracking technologies, we consider the status of their clinical translation.
Collapse
Affiliation(s)
- Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10/Rm. B3B406, 10 Center Dr, Bethesda, MD, 20892, USA.
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10/Rm. B3B69F, 10 Center Dr, Bethesda, MD, 20892, USA
| |
Collapse
|
23
|
Katal S, Eibschutz LS, Saboury B, Gholamrezanezhad A, Alavi A. Advantages and Applications of Total-Body PET Scanning. Diagnostics (Basel) 2022; 12:diagnostics12020426. [PMID: 35204517 PMCID: PMC8871405 DOI: 10.3390/diagnostics12020426] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have focused on the development of total-body PET scanning in a variety of fields such as clinical oncology, cardiology, personalized medicine, drug development and toxicology, and inflammatory/infectious disease. Given its ultrahigh detection sensitivity, enhanced temporal resolution, and long scan range (1940 mm), total-body PET scanning can not only image faster than traditional techniques with less administered radioactivity but also perform total-body dynamic acquisition at a longer delayed time point. These unique characteristics create several opportunities to improve image quality and can provide a deeper understanding regarding disease detection, diagnosis, staging/restaging, response to treatment, and prognostication. By reviewing the advantages of total-body PET scanning and discussing the potential clinical applications for this innovative technology, we can address specific issues encountered in routine clinical practice and ultimately improve patient care.
Collapse
Affiliation(s)
- Sanaz Katal
- Independent Researcher, Melbourne 3000, Australia;
| | - Liesl S. Eibschutz
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA; (L.S.E.); (A.G.)
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA; (L.S.E.); (A.G.)
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
24
|
Sočan A. Radiolabeling of red blood cells and platelets and quality controls. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Sato N, Szajek LP, Choyke PL. Tracking of NK Cells by Positron Emission Tomography Using 89Zr-Oxine Ex Vivo Cell Labeling. Methods Mol Biol 2022; 2463:153-161. [PMID: 35344173 DOI: 10.1007/978-1-0716-2160-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A 89Zr-oxine ex vivo cell labeling method for tracking various cells by positron emission tomography (PET) imaging has recently been developed. 89Zr-oxine is synthesized from oxine and 89Zr-chloride, which was converted from 89Zr-oxalate, with neutralization. To track migration of natural killer (NK) cells in vivo in real time by PET imaging, NK cells are labeled with 89Zr-oxine ex vivo and infused to a recipient. The labeling is performed by mixing 89Zr-oxine solution to NK cell suspension at room temperature, followed by washing. Care should be taken to label the cells at optimal radioactivity doses that maintain their viability and functionality. 89Zr-oxine labeled NK cells can be tracked for their migration and distribution by PET/computed tomography imaging for at least 7 days. Of note, this protocol is applicable to other types of cells.
Collapse
Affiliation(s)
- Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lawrence P Szajek
- PET Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Kamiyama Y, Naritomi Y, Moriya Y, Yamamoto S, Kitahashi T, Maekawa T, Yahata M, Hanada T, Uchiyama A, Noumaru A, Koga Y, Higuchi T, Ito M, Komatsu H, Miyoshi S, Kimura S, Umeda N, Fujita E, Tanaka N, Sugita T, Takayama S, Kurogi A, Yasuda S, Sato Y. Biodistribution studies for cell therapy products: Current status and issues. Regen Ther 2021; 18:202-216. [PMID: 34307798 PMCID: PMC8282960 DOI: 10.1016/j.reth.2021.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Information on the biodistribution (BD) of cell therapy products (CTPs) is essential for prediction and assessment of their efficacy and toxicity profiles in non-clinical and clinical studies. To conduct BD studies, it is necessary to understand regulatory requirements, implementation status, and analytical methods. This review aimed at surveying international and Japanese trends concerning the BD study for CTPs and the following subjects were investigated, which were considered particularly important: 1) comparison of guidelines to understand the regulatory status of BD studies in a global setting; 2) case studies of the BD study using databases to understand its current status in cell therapy; 3) case studies on quantitative polymerase chain reaction (qPCR) used primarily in non-clinical BD studies for CTPs; and 4) survey of imaging methods used for non-clinical and clinical BD studies. The results in this review will be a useful resource for implementing BD studies.
Collapse
Affiliation(s)
- Yoshiteru Kamiyama
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Yoichi Naritomi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Yuu Moriya
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Syunsuke Yamamoto
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Tsukasa Kitahashi
- Bioscience & Engineering Laboratory, FUJIFILM Corp., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa, Japan
| | - Toshihiko Maekawa
- Bioscience & Engineering Laboratory, FUJIFILM Corp., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa, Japan
| | - Masahiro Yahata
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, Japan
| | - Takeshi Hanada
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo.Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Asako Uchiyama
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Kagoshima, Japan
| | - Akari Noumaru
- Kumamoto Laboratories, LSIM Safety Institute Corporation, 1285 Kurisaki-machi, Uto, Kumamoto, Japan
| | - Yoshiyuki Koga
- Kumamoto Laboratories, LSIM Safety Institute Corporation, 1285 Kurisaki-machi, Uto, Kumamoto, Japan
| | - Tomoaki Higuchi
- Non-clinical Development, Axcelead Drug Discovery Partners, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Masahiko Ito
- Tsukuba Research Institute, BoZo Research Center Inc., 8 Okubo, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Komatsu
- Science BD Department, CMIC Pharma Science Co., Ltd., 1-1-1 Shibaura, Minato-ku, Tokyo, Japan
| | - Sosuke Miyoshi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Sadaaki Kimura
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Umeda
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Eriko Fujita
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Naoko Tanaka
- Evaluation Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa, Japan
| | - Taku Sugita
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Satoru Takayama
- Cell Therapy Technology, Healthcare R&D Center, Asahi Kasei Corporation, 2-1 Samejima, Fuji-Shi, Shizuoka, Japan
| | - Akihiko Kurogi
- Regenerative Medicine Research & Planning Division, ROHTO Pharmaceutical Co., Ltd., Osaka, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| |
Collapse
|
27
|
Friberger I, Jussing E, Han J, Goos JACM, Siikanen J, Kaipe H, Lambert M, Harris RA, Samén E, Carlsten M, Holmin S, Tran TA. Optimisation of the Synthesis and Cell Labelling Conditions for [ 89Zr]Zr-oxine and [ 89Zr]Zr-DFO-NCS: a Direct In Vitro Comparison in Cell Types with Distinct Therapeutic Applications. Mol Imaging Biol 2021; 23:952-962. [PMID: 34231103 PMCID: PMC8578071 DOI: 10.1007/s11307-021-01622-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND There is a need to better characterise cell-based therapies in preclinical models to help facilitate their translation to humans. Long-term high-resolution tracking of the cells in vivo is often impossible due to unreliable methods. Radiolabelling of cells has the advantage of being able to reveal cellular kinetics in vivo over time. This study aimed to optimise the synthesis of the radiotracers [89Zr]Zr-oxine (8-hydroxyquinoline) and [89Zr]Zr-DFO-NCS (p-SCN-Bn-Deferoxamine) and to perform a direct comparison of the cell labelling efficiency using these radiotracers. PROCEDURES Several parameters, such as buffers, pH, labelling time and temperature, were investigated to optimise the synthesis of [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS in order to reach a radiochemical conversion (RCC) of >95 % without purification. Radio-instant thin-layer chromatography (iTLC) and radio high-performance liquid chromatography (radio-HPLC) were used to determine the RCC. Cells were labelled with [89Zr]Zr-oxine or [89Zr]Zr-DFO-NCS. The cellular retention of 89Zr and the labelling impact was determined by analysing the cellular functions, such as viability, proliferation, phagocytotic ability and phenotypic immunostaining. RESULTS The optimised synthesis of [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS resulted in straightforward protocols not requiring additional purification. [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS were synthesised with an average RCC of 98.4 % (n = 16) and 98.0 % (n = 13), respectively. Cell labelling efficiencies were 63.9 % (n = 35) and 70.2 % (n = 30), respectively. 89Zr labelling neither significantly affected the cell viability (cell viability loss was in the range of 1-8 % compared to its corresponding non-labelled cells, P value > 0.05) nor the cells' proliferation rate. The phenotype of human decidual stromal cells (hDSC) and phagocytic function of rat bone-marrow-derived macrophages (rMac) was somewhat affected by radiolabelling. CONCLUSIONS Our study demonstrates that [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS are equally effective in cell labelling. However, [89Zr]Zr-oxine was superior to [89Zr]Zr-DFO-NCS with regard to long-term stability, cellular retention, minimal variation between cell types and cell labelling efficiency.
Collapse
Affiliation(s)
- Ida Friberger
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Emma Jussing
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Jinming Han
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jeroen A C M Goos
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan Siikanen
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mélanie Lambert
- Department of Medicine in Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Samén
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlsten
- Department of Medicine in Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Cell Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Thuy A Tran
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
28
|
Abstract
8-Hydroxyquinoline (8-HQ, oxine) is a small, monoprotic, bicyclic aromatic compound and its relative donor group orientation imparts impressive bidentate metal chelating abilities that have been exploited in a vast array of applications over decades. 8-HQ and its derivatives have been explored in medicinal applications including anti-neurodegeneration, anticancer properties, and antimicrobial activities. One long established use of 8-HQ in medicinal inorganic chemistry is the coordination of radioactive isotopes of metal ions in nuclear medicine. The metal-oxine complex with the single photon emission computed tomography (SPECT) imaging isotope [111In]In3+ was developed in the 1970s and 1980s to radiolabel leukocytes for inflammation and infection imaging. The [111In][In(oxine)3] complex functions as an ionophore: a moderately stable lipophilic complex to enter cells; however, inside the cell environment [111In]In3+ undergoes exchange and remains localized. As new developments have progressed towards radiopharmaceuticals capable of both imaging and therapy (theranostics), 8-HQ has been re-explored in recent years to investigate its potential to chelate larger radiometal ions with longer half-lives and different indications. Further, metal-oxine complexes have been used to study liposomes and other nanomaterials by tracking these nanomedicines in vivo. Expanding 8-HQ to multidentate ligands for highly thermodynamically stable and kinetically inert complexes has increased the possibilities of this small molecule in nuclear medicine. This article outlines the historic use of metal-oxine complexes in inorganic radiopharmaceutical chemistry, with a focus on recent advances highlighting the possibilities of developing higher denticity, targeted bifunctional chelators with 8-HQ.
Collapse
Affiliation(s)
- Lily Southcott
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada.,Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
29
|
In Vivo PET Imaging of Monocytes Labeled with [ 89Zr]Zr-PLGA-NH 2 Nanoparticles in Tumor and Staphylococcus aureus Infection Models. Cancers (Basel) 2021; 13:cancers13205069. [PMID: 34680219 PMCID: PMC8533969 DOI: 10.3390/cancers13205069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
The exponential growth of research on cell-based therapy is in major need of reliable and sensitive tracking of a small number of therapeutic cells to improve our understanding of the in vivo cell-targeting properties. 111In-labeled poly(lactic-co-glycolic acid) with a primary amine endcap nanoparticles ([111In]In-PLGA-NH2 NPs) were previously used for cell labeling and in vivo tracking, using SPECT/CT imaging. However, to detect a low number of cells, a higher sensitivity of PET is preferred. Therefore, we developed 89Zr-labeled NPs for ex vivo cell labeling and in vivo cell tracking, using PET/MRI. We intrinsically and efficiently labeled PLGA-NH2 NPs with [89Zr]ZrCl4. In vitro, [89Zr]Zr-PLGA-NH2 NPs retained the radionuclide over a period of 2 weeks in PBS and human serum. THP-1 (human monocyte cell line) cells could be labeled with the NPs and retained the radionuclide over a period of 2 days, with no negative effect on cell viability (specific activity 279 ± 10 kBq/106 cells). PET/MRI imaging could detect low numbers of [89Zr]Zr-THP-1 cells (10,000 and 100,000 cells) injected subcutaneously in Matrigel. Last, in vivo tracking of the [89Zr]Zr-THP-1 cells upon intravenous injection showed specific accumulation in local intramuscular Staphylococcus aureus infection and infiltration into MDA-MB-231 tumors. In conclusion, we showed that [89Zr]Zr-PLGA-NH2 NPs can be used for immune-cell labeling and subsequent in vivo tracking of a small number of cells in different disease models.
Collapse
|
30
|
Kiraga Ł, Kucharzewska P, Paisey S, Cheda Ł, Domańska A, Rogulski Z, Rygiel TP, Boffi A, Król M. Nuclear imaging for immune cell tracking in vivo – Comparison of various cell labeling methods and their application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Helfer BM, Ponomarev V, Patrick PS, Blower PJ, Feitel A, Fruhwirth GO, Jackman S, Pereira Mouriès L, Park MVDZ, Srinivas M, Stuckey DJ, Thu MS, van den Hoorn T, Herberts CA, Shingleton WD. Options for imaging cellular therapeutics in vivo: a multi-stakeholder perspective. Cytotherapy 2021; 23:757-773. [PMID: 33832818 PMCID: PMC9344904 DOI: 10.1016/j.jcyt.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Cell-based therapies have been making great advances toward clinical reality. Despite the increase in trial activity, few therapies have successfully navigated late-phase clinical trials and received market authorization. One possible explanation for this is that additional tools and technologies to enable their development have only recently become available. To support the safety evaluation of cell therapies, the Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee, a multisector collaborative committee, polled the attendees of the 2017 International Society for Cell & Gene Therapy conference in London, UK, to understand the gaps and needs that cell therapy developers have encountered regarding safety evaluations in vivo. The goal of the survey was to collect information to inform stakeholders of areas of interest that can help ensure the safe use of cellular therapeutics in the clinic. This review is a response to the cellular imaging interests of those respondents. The authors offer a brief overview of available technologies and then highlight the areas of interest from the survey by describing how imaging technologies can meet those needs. The areas of interest include imaging of cells over time, sensitivity of imaging modalities, ability to quantify cells, imaging cellular survival and differentiation and safety concerns around adding imaging agents to cellular therapy protocols. The Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee believes that the ability to understand therapeutic cell fate is vital for determining and understanding cell therapy efficacy and safety and offers this review to aid in those needs. An aim of this article is to share the available imaging technologies with the cell therapy community to demonstrate how these technologies can accomplish unmet needs throughout the translational process and strengthen the understanding of cellular therapeutics.
Collapse
Affiliation(s)
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - P Stephen Patrick
- Department of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alexandra Feitel
- Formerly, Health and Environmental Sciences Institute, US Environmental Protection Agency, Washington, DC, USA
| | - Gilbert O Fruhwirth
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shawna Jackman
- Charles River Laboratories, Shrewsbury, Massachusetts, USA
| | | | - Margriet V D Z Park
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, the Netherlands; Cenya Imaging BV, Amsterdam, the Netherlands
| | - Daniel J Stuckey
- Department of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Mya S Thu
- Visicell Medical Inc, La Jolla, California, USA
| | | | | | | |
Collapse
|
32
|
Lechermann LM, Lau D, Attili B, Aloj L, Gallagher FA. In Vivo Cell Tracking Using PET: Opportunities and Challenges for Clinical Translation in Oncology. Cancers (Basel) 2021; 13:4042. [PMID: 34439195 PMCID: PMC8392745 DOI: 10.3390/cancers13164042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cell therapy is a rapidly evolving field involving a wide spectrum of therapeutic cells for personalised medicine in cancer. In vivo imaging and tracking of cells can provide useful information for improving the accuracy, efficacy, and safety of cell therapies. This review focuses on radiopharmaceuticals for the non-invasive detection and tracking of therapeutic cells using positron emission tomography (PET). A range of approaches for imaging therapeutic cells is discussed: Direct ex vivo labelling of cells, in vivo indirect labelling of cells by utilising gene reporters, and detection of specific antigens expressed on the target cells using antibody-based radiopharmaceuticals (immuno-PET). This review examines the evaluation of PET imaging methods for therapeutic cell tracking in preclinical cancer models, their role in the translation into patients, first-in-human studies, as well as the translational challenges involved and how they can be overcome.
Collapse
Affiliation(s)
- Laura M. Lechermann
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Doreen Lau
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Bala Attili
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
- Department of Nuclear Medicine, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Ferdia A. Gallagher
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| |
Collapse
|
33
|
Spatio-temporal biodistribution of 89Zr-oxine labeled huLym-1-A-BB3z-CAR T-cells by PET imaging in a preclinical tumor model. Sci Rep 2021; 11:15077. [PMID: 34302002 PMCID: PMC8302724 DOI: 10.1038/s41598-021-94490-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022] Open
Abstract
Quantitative in vivo monitoring of cell biodistribution offers assessment of treatment efficacy in real-time and can provide guidance for further optimization of chimeric antigen receptor (CAR) modified cell therapy. We evaluated the utility of a non-invasive, serial 89Zr-oxine PET imaging to assess optimal dosing for huLym-1-A-BB3z-CAR T-cell directed to Lym-1-positive Raji lymphoma xenograft in NOD Scid-IL2Rgammanull (NSG) mice. In vitro experiments showed no detrimental effects in cell health and function following 89Zr-oxine labeling. In vivo experiments employed simultaneous PET/MRI of Raji-bearing NSG mice on day 0 (3 h), 1, 2, and 5 after intravenous administration of low (1.87 ± 0.04 × 106 cells), middle (7.14 ± 0.45 × 106 cells), or high (16.83 ± 0.41 × 106 cells) cell dose. Biodistribution (%ID/g) in regions of interests defined over T1-weighted MRI, such as blood, bone, brain, liver, lungs, spleen, and tumor, were analyzed from PET images. Escalating doses of CAR T-cells resulted in dose-dependent %ID/g biodistributions in all regions. Middle and High dose groups showed significantly higher tumor %ID/g compared to Low dose group on day 2. Tumor-to-blood ratios showed the enhanced extravascular tumor uptake by day 2 in the Low dose group, while the Middle dose showed significant tumor accumulation starting on day 1 up to day 5. From these data obtained over time, it is apparent that intravenously administered CAR T-cells become trapped in the lung for 3–5 h and then migrate to the liver and spleen for up to 2–3 days. This surprising biodistribution data may be responsible for the inactivation of these cells before targeting solid tumors. Ex vivo biodistributions confirmed in vivo PET-derived biodistributions. According to these studies, we conclude that in vivo serial PET imaging with 89Zr-oxine labeled CAR T-cells provides real-time monitoring of biodistributions crucial for interpreting efficacy and guiding treatment in patient care.
Collapse
|
34
|
Polyak A, Bankstahl JP, Besecke KFW, Hozsa C, Triebert W, Pannem RR, Manstein F, Borcholte T, Furch M, Zweigerdt R, Gieseler RK, Bengel FM, Ross TL. Simplified 89Zr-Labeling Protocol of Oxine (8-Hydroxyquinoline) Enabling Prolonged Tracking of Liposome-Based Nanomedicines and Cells. Pharmaceutics 2021; 13:1097. [PMID: 34371788 PMCID: PMC8309181 DOI: 10.3390/pharmaceutics13071097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 01/11/2023] Open
Abstract
In this work, a method for the preparation of the highly lipophilic labeling synthon [89Zr]Zr(oxinate)4 was optimized for the radiolabeling of liposomes and human induced pluripotent stem cells (hiPSCs). The aim was to establish a robust and reliable labeling protocol for enabling up to one week positron emission tomography (PET) tracing of lipid-based nanomedicines and transplanted or injected cells, respectively. [89Zr]Zr(oxinate)4 was prepared from oxine (8-hydroxyquinoline) and [89Zr]Zr(OH)2(C2O4). Earlier introduced liquid-liquid extraction methods were simplified by the optimization of buffering, pH, temperature and reaction times. For quality control, thin-layer chromatography (TLC), size-exclusion chromatography (SEC) and centrifugation were employed. Subsequently, the 89Zr-complex was incorporated into liposome formulations. PET/CT imaging of 89Zr-labeled liposomes was performed in healthy mice. Cell labeling was accomplished in PBS using suspensions of 3 × 106 hiPSCs, each. [89Zr]Zr(oxinate)4 was synthesized in very high radiochemical yields of 98.7% (96.8% ± 2.8%). Similarly, high internalization rates (≥90%) of [89Zr]Zr(oxinate)4 into liposomes were obtained over an 18 h incubation period. MicroPET and biodistribution studies confirmed the labeled nanocarriers' in vivo stability. Human iPSCs incorporated the labeling agent within 30 min with ~50% efficiency. Prolonged PET imaging is an ideal tool in the development of lipid-based nanocarriers for drug delivery and cell therapies. To this end, a reliable and reproducible 89Zr radiolabeling method was developed and tested successfully in a model liposome system and in hiPSCs alike.
Collapse
Affiliation(s)
- Andras Polyak
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.P.B.); (F.M.B.); (T.L.R.)
| | - Jens P. Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.P.B.); (F.M.B.); (T.L.R.)
| | - Karen F. W. Besecke
- Rodos Biotarget GmbH, Medical Park Hannover, 30625 Hannover, Germany; (K.F.W.B.); (C.H.); (R.R.P.); (T.B.); (M.F.); (R.K.G.)
- SolMic BioTech GmbH, 40225 Düsseldorf, Germany
| | - Constantin Hozsa
- Rodos Biotarget GmbH, Medical Park Hannover, 30625 Hannover, Germany; (K.F.W.B.); (C.H.); (R.R.P.); (T.B.); (M.F.); (R.K.G.)
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), 30625 Hannover, Germany; (W.T.); (F.M.); (R.Z.)
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
| | - Rajeswara Rao Pannem
- Rodos Biotarget GmbH, Medical Park Hannover, 30625 Hannover, Germany; (K.F.W.B.); (C.H.); (R.R.P.); (T.B.); (M.F.); (R.K.G.)
- Bioloving GmbH & Co KG, 69126 Heidelberg, Germany
| | - Felix Manstein
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), 30625 Hannover, Germany; (W.T.); (F.M.); (R.Z.)
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Borcholte
- Rodos Biotarget GmbH, Medical Park Hannover, 30625 Hannover, Germany; (K.F.W.B.); (C.H.); (R.R.P.); (T.B.); (M.F.); (R.K.G.)
| | - Marcus Furch
- Rodos Biotarget GmbH, Medical Park Hannover, 30625 Hannover, Germany; (K.F.W.B.); (C.H.); (R.R.P.); (T.B.); (M.F.); (R.K.G.)
- SolMic BioTech GmbH, 40225 Düsseldorf, Germany
- Bioloving GmbH & Co KG, 69126 Heidelberg, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), 30625 Hannover, Germany; (W.T.); (F.M.); (R.Z.)
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
| | - Robert K. Gieseler
- Rodos Biotarget GmbH, Medical Park Hannover, 30625 Hannover, Germany; (K.F.W.B.); (C.H.); (R.R.P.); (T.B.); (M.F.); (R.K.G.)
- Department of Internal Medicine, and Laboratory of Immunology & Molecular Biology, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44801 Bochum, Germany
| | - Frank M. Bengel
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.P.B.); (F.M.B.); (T.L.R.)
| | - Tobias L. Ross
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.P.B.); (F.M.B.); (T.L.R.)
| |
Collapse
|
35
|
Wu Q, Wang Y, Wang X, Liang N, Liu J, Pan D, Xu Y, Wang L, Yan J, Wang G, Miao L, Yang M. Pharmacokinetic and pharmacodynamic studies of CD19 CAR T cell in human leukaemic xenograft models with dual-modality imaging. J Cell Mol Med 2021; 25:7451-7461. [PMID: 34245101 PMCID: PMC8335694 DOI: 10.1111/jcmm.16776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, chimeric antigen receptor T (CAR T)-cell therapy has shown great potential in treating haematologic disease, but no breakthrough has been achieved in solid tumours. In order to clarify the antitumour mechanism of CAR T cell in solid tumours, the pharmacokinetic (PK) and pharmacodynamic (PD) investigations of CD19 CAR T cell were performed in human leukaemic xenograft mouse models. For PK investigation, we radiolabelled CD19 CAR T cell with 89 Zr and used PET imaging in the CD19-positive and the CD19-negative K562-luc animal models. For PD evaluation, optical imaging, tumour volume measurement and DNA copy-number detection were performed. Unfortunately, the qPCR results of the DNA copy number in the blood were below the detection limit. The tumour-specific uptake was higher in the CD19-positive model than in the CD19-negative model, and this was consistent with the PD results. The preliminary PK and PD studies of CD19 CAR T cell in solid tumours are instructive. Considering the less efficiency of CAR T-cell therapy of solid tumours with the limited number of CAR T cells entering the interior of solid tumours, this study is suggestive for the subsequent CAR T-cell design and evaluation of solid tumour therapy.
Collapse
Affiliation(s)
- Qiong Wu
- First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Yan Wang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Ningxia Liang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jingjing Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Liyan Miao
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Min Yang
- First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
36
|
Bubenshchikov VB, Larenkov AA, Kodina GE. Preparation of 89Zr Solutions for Radiopharmaceuticals Synthesis. RADIOCHEMISTRY 2021. [DOI: 10.1134/s1066362221030152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
37
|
Massicano AVF, Bartels JL, Jeffers CD, Crenshaw BK, Houson H, Mueller C, Younger JW, Knapp P, McConathy JE, Lapi SE. Production of [ 89 Zr]Oxinate 4 and cell radiolabeling for human use. J Labelled Comp Radiopharm 2021; 64:209-216. [PMID: 33326139 DOI: 10.1002/jlcr.3901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/11/2023]
Abstract
[89 Zr]Oxinate4 is a Positron Emission Tomography (PET) tracer for cell radiolabeling that can enable imaging techniques to help better understand cell trafficking in various diseases. Although several groups have synthetized this compound for use in preclinical studies, there is no available data regarding the production of [89 Zr]Oxinate4 for human use. In this report, we describe the detailed production of [89 Zr]Oxinate4 under USP <823> and autologous leukocyte radiolabeling under USP <797>. The final product presented high radiochemical purity and stability at 24 h post synthesis (>99%) and passed in all quality control assays required for clinical use. [89 Zr]Oxinate4 did not compromise the white blood cells viability and did not show considerable cellular efflux up to 3 h post labeling. The translation of this technique into human use can provide insight into several disease mechanisms since [89 Zr]Oxinate4 has the potential to label any cell subset of interest.
Collapse
Affiliation(s)
- Adriana V F Massicano
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Bartels
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Charlotte D Jeffers
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bryant K Crenshaw
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hailey Houson
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christina Mueller
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jarred W Younger
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul Knapp
- Nuclear and Precision Health Solutions, Cardinal Health, Dublin, Ohio, USA
| | - Jonathan E McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
38
|
Shao F, Long Y, Ji H, Jiang D, Lei P, Lan X. Radionuclide-based molecular imaging allows CAR-T cellular visualization and therapeutic monitoring. Am J Cancer Res 2021; 11:6800-6817. [PMID: 34093854 PMCID: PMC8171102 DOI: 10.7150/thno.56989] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy is a new and effective form of adoptive cell therapy that is rapidly entering the mainstream for the treatment of CD19-positive hematological cancers because of its impressive effect and durable responses. Huge challenges remain in achieving similar success in patients with solid tumors. The current methods of monitoring CAR-T, including morphological imaging (CT and MRI), blood tests, and biopsy, have limitations to assess whether CAR-T cells are homing to tumor sites and infiltrating into tumor bed, or to assess the survival, proliferation, and persistence of CAR-T cells in solid tumors associated with an immunosuppressive microenvironment. Radionuclide-based molecular imaging affords improved CAR-T cellular visualization and therapeutic monitoring through either a direct cellular radiolabeling approach or a reporter gene imaging strategy, and endogenous cell imaging is beneficial to reflect functional information and immune status of T cells. Focusing on the dynamic monitoring and precise assessment of CAR-T therapy, this review summarizes the current applications of radionuclide-based noninvasive imaging in CAR-T cells visualization and monitoring and presents current challenges and strategic choices.
Collapse
|
39
|
Xiao Z, Puré E. Imaging of T-cell Responses in the Context of Cancer Immunotherapy. Cancer Immunol Res 2021; 9:490-502. [PMID: 33941536 DOI: 10.1158/2326-6066.cir-20-0678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/18/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022]
Abstract
Immunotherapy, which promotes the induction of cytotoxic T lymphocytes and enhances their infiltration into and function within tumors, is a rapidly expanding and evolving approach to treating cancer. However, many of the critical denominators for inducing effective anticancer immune responses remain unknown. Efforts are underway to develop comprehensive ex vivo assessments of the immune landscape of patients prior to and during response to immunotherapy. An important complementary approach to these efforts involves the development of noninvasive imaging approaches to detect immune targets, assess delivery of immune-based therapeutics, and evaluate responses to immunotherapy. Herein, we review the merits and limitations of various noninvasive imaging modalities (MRI, PET, and single-photon emission tomography) and discuss candidate targets for cellular and molecular imaging for visualization of T-cell responses at various stages along the cancer-immunity cycle in the context of immunotherapy. We also discuss the potential use of these imaging strategies in monitoring treatment responses and predicting prognosis for patients treated with immunotherapy.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
40
|
Wang XY, Wang Y, Wu Q, Liu JJ, Liu Y, Pan DH, Qi W, Wang LZ, Yan JJ, Xu YP, Wang GJ, Miao LY, Yu L, Yang M. Feasibility study of 68Ga-labeled CAR T cells for in vivo tracking using micro-positron emission tomography imaging. Acta Pharmacol Sin 2021; 42:824-831. [PMID: 32901086 DOI: 10.1038/s41401-020-00511-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
Clinical tracking of chimeric antigen receptor (CAR) T cells in vivo by positron emission tomography (PET) imaging is an area of intense interest. But the long-lived positron emitter-labeled CAR T cells stay in the liver and spleen for days or even weeks. Thus, the excessive absorbed effective dose becomes a major biosafety issue leading it difficult for clinical translation. In this study we used 68Ga, a commercially available short-lived positron emitter, to label CAR T cells for noninvasive cell tracking in vivo. CAR T cells could be tracked in vivo by 68Ga-PET imaging for at least 6 h. We showed a significant correlation between the distribution of 89Zr and 68Ga-labeled CAR T cells in the same tissues (lungs, liver, and spleen). The distribution and homing behavior of CAR T cells at the early period is highly correlated with the long-term fate of CAR T cells in vivo. And the effective absorbed dose of 68Ga-labeled CAR T cells is only one twenty-fourth of 89Zr-labeled CAR T cells, which was safe for clinical translation. We conclude the feasibility of 68Ga instead of 89Zr directly labeling CAR T cells for noninvasive tracking of the cells in vivo at an early stage based on PET imaging. This method provides a potential solution to the emerging need for safe and practical PET tracer for cell tracking clinically.
Collapse
|
41
|
Witney TH, Blower PJ. The chemical tool-kit for molecular imaging with radionuclides in the age of targeted and immune therapy. Cancer Imaging 2021; 21:18. [PMID: 33516256 PMCID: PMC7847158 DOI: 10.1186/s40644-021-00385-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023] Open
Abstract
Nuclear medicine has evolved over the last half-century from a functional imaging modality using a handful of radiopharmaceuticals, many of unknown structure and mechanism of action, into a modern speciality that can properly be described as molecular imaging, with a very large number of specific radioactive probes of known structure that image specific molecular processes. The advances of cancer treatment in recent decades towards targeted and immune therapies, combined with recognition of heterogeneity of cancer cell phenotype among patients, within patients and even within tumours, has created a growing need for personalised molecular imaging to support treatment decision. This article describes the evolution of the present vast range of radioactive probes – radiopharmaceuticals – leveraging a wide variety of chemical disciplines, over the last half century. These radiochemical innovations have been inspired by the need to support personalised medicine and also by the parallel development in development of new radionuclide imaging technologies – from gamma scintigraphy, through single photon emission tomography (SPECT), through the rise of clinical positron emission tomography (PET) and PET-CT, and perhaps in the future, by the advent of total body PET. Thus, in the interdisciplinary world of nuclear medicine and molecular imaging, as quickly as radiochemistry solutions are developed to meet new needs in cancer imaging, new challenges emerge as developments in one contributing technology drive innovations in the others.
Collapse
Affiliation(s)
- Timothy H Witney
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, England
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, England.
| |
Collapse
|
42
|
Berger A, Araújo-Filho I, Piffoux M, Nicolás-Boluda A, Grangier A, Boucenna I, Real CC, Marques FLN, de Paula Faria D, do Rego ACM, Broudin C, Gazeau F, Wilhelm C, Clément O, Cellier C, Buchpiguel CA, Rahmi G, Silva AKA. Local administration of stem cell-derived extracellular vesicles in a thermoresponsive hydrogel promotes a pro-healing effect in a rat model of colo-cutaneous post-surgical fistula. NANOSCALE 2021; 13:218-232. [PMID: 33326529 DOI: 10.1039/d0nr07349k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extracellular vesicles (EVs), especially from stem/stromal cells (SCs), represent a cell-free alternative in regenerative medicine holding promises to promote tissue healing while providing safety and logistic advantages in comparison to cellular counterparts. Herein, we hypothesize that SC EVs, administered locally in a thermoresponsive gel, is a therapeutic strategy for managing post-surgical colo-cutaneous fistulas. This disease is a neglected and challenging condition associated to low remission rates and high refractoriness. Herein, EVs from a murine SC line were produced by a high-yield scalable method in bioreactors. The post-surgical intestinal fistula model was induced via a surgical cecostomy communicating the cecum and the skin in Wistar rats. Animals were treated just after cecostomy with PBS, thermoresponsive Pluronic F-127 hydrogel alone or containing SC EVs. A PET-monitored biodistribution investigation of SC EVs labelled with 89Zr was performed. Fistula external orifice and output assessment, probe-based confocal laser endomicroscopy, MRI and histology were carried out for therapy follow-up. The relevance of percutaneous EV administration embedded in the hydrogel vehicle was indicated by the PET-biodistribution study. Local administration of SC EVs in the hydrogel reduced colo-cutaneous fistula diameter, output, fibrosis and inflammation while increasing the density of neo-vessels when compared to the PBS and gel groups. This multi-modal investigation pointed-out the therapeutic potential of SC EVs administered locally and in a thermoresponsive hydrogel for the management of challenging post-surgical colon fistulas in a minimally-invasive cell-free strategy.
Collapse
Affiliation(s)
- Arthur Berger
- Laboratoire Imagerie de l'Angiogénèse, Plateforme d'Imagerie du Petit Animal, PARCC, INSERM U970, Université de Paris, 75015, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Southcott L, Wang X, Wharton L, Yang H, Radchenko V, Kubeil M, Stephan H, de Guadalupe Jaraquemada-Peláez M, Orvig C. High denticity oxinate-linear-backbone chelating ligand for diagnostic radiometal ions [111In]In3+ and [89Zr]Zr4+. Dalton Trans 2021; 50:3874-3886. [DOI: 10.1039/d0dt04230g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A potentially decadentate oxinate-containing ligand was synthesized and assessed through solution thermodynamics studies, concentration dependent radiolabeling and serum stability assays with [nat/111In]In3+ and [nat/89Zr]Zr4+.
Collapse
Affiliation(s)
- Lily Southcott
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Xiaozhu Wang
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Luke Wharton
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Hua Yang
- Life Sciences Division
- TRIUMF
- Vancouver
- Canada
| | - Valery Radchenko
- Life Sciences Division
- TRIUMF
- Vancouver
- Canada
- Department of Chemistry
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden Rossendorf
- 01328 Dresden
- Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden Rossendorf
- 01328 Dresden
- Germany
| | | | - Chris Orvig
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
44
|
Kurebayashi Y, Choyke PL, Sato N. Imaging of cell-based therapy using 89Zr-oxine ex vivo cell labeling for positron emission tomography. Nanotheranostics 2021; 5:27-35. [PMID: 33391973 PMCID: PMC7738941 DOI: 10.7150/ntno.51391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
With the rapid development of anti-cancer cell-based therapies, such as adoptive T cell therapies using tumor-infiltrating T cells, T cell receptor transduced T cells, and chimeric antigen receptor T cells, there has been a growing interest in imaging technologies to non-invasively track transferred cells in vivo. Cell tracking using ex vivo cell labeling with positron emitting radioisotopes for positron emission tomography (PET) imaging has potential advantages over single-photon emitting radioisotopes. These advantages include intrinsically higher resolution, higher sensitivity, and higher signal-to-background ratios. Here, we review the current status of recently developed Zirconium-89 (89Zr)-oxine ex vivo cell labeling with PET imaging focusing on its applications and future perspectives. Labeling of cells with 89Zr-oxine is completed in a series of relatively simple steps, and its low radioactivity doses required for imaging does not interfere with the proliferation or function of the labeled immune cells. Preclinical studies have revealed that 89Zr-oxine PET allows high-resolution in vivo tracking of labeled cells for 1-2 weeks after cell transfer both in mice and non-human primates. These results provide a strong rationale for the clinical translation of 89Zr-oxine PET-based imaging of cell-based therapy.
Collapse
Affiliation(s)
| | | | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Man F, Khan AA, Carrascal-Miniño A, Blower PJ, T M de Rosales R. A kit formulation for the preparation of [ 89Zr]Zr(oxinate) 4 for PET cell tracking: White blood cell labelling and comparison with [ 111In]In(oxinate) 3. Nucl Med Biol 2020; 90-91:31-40. [PMID: 32979725 PMCID: PMC7116765 DOI: 10.1016/j.nucmedbio.2020.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Advances in immunology and cell-based therapies are creating a need to track individual cell types, such as immune cells (neutrophils, eosinophils, chimeric antigen receptor (CAR) T cells, etc.) and stem cells. As the fate of administered cells remains largely unknown, nuclear imaging could determine the migration and survival of cells in patients. [89Zr]Zr(oxinate)4, or [89Zr]Zr-oxine, is a radiotracer for positron emission tomography (PET) that has been evaluated in preclinical models of cell tracking and could improve on [111In]In-oxine, the current gold standard radiotracer for cell tracking by scintigraphy and single-photon emission computed tomography (SPECT), because of the better sensitivity, spatial resolution and quantification of PET. However, a clinically usable formulation of [89Zr]Zr-oxine is lacking. This study demonstrates a 1-step procedure for preparing [89Zr]Zr-oxine and evaluates it against [111In]In-oxine in white blood cell (WBC) labelling. METHODS Commercial [89Zr]Zr-oxalate was added to a formulation containing oxine, a buffering agent, a base and a surfactant or organic solvent. WBC isolated from 10 human volunteers were radiolabelled with [89Zr]Zr-oxine following a clinical radiolabelling protocol. Labelling efficiency, cell viability, chemotaxis and DNA damage were evaluated in vitro, in an intra-individual comparison against [111In]In-oxine. RESULTS An optimised formulation of [89Zr]Zr-oxine containing oxine, polysorbate 80 and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) was developed. This enabled 1-step radiolabelling of oxine with commercial [89Zr]Zr-oxalate (0.1-25 MBq) in 5 min and radiotracer stability for 1 week. WBC labelling efficiency was 48.7 ± 6.3%, compared to 89.1 ± 9.5% (P < 0.0001, n = 10) for [111In]In-oxine. Intracellular retention of 89Zr and cell viability after radiolabelling were comparable to 111In. There were no significant differences in leukocyte chemotaxis or DNA damage between [89Zr]Zr-oxine or [111In]In-oxine. CONCLUSIONS, ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: Our results demonstrate that [89Zr]Zr-oxine is a suitable PET alternative to [111In]In-oxine for WBC imaging. Our formulation allows rapid, stable, high-yield, single-step preparation of [89Zr]Zr-oxine from commercially available 89Zr. This will facilitate the clinical translation of cell tracking using [89Zr]Zr-oxine.
Collapse
Affiliation(s)
- Francis Man
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, UK.
| | - Azalea A Khan
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Amaia Carrascal-Miniño
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
46
|
Bansal A, Pandey MK, Yamada S, Goyal R, Schmit NR, Jeon R, Nesbitt JJ, Witt TA, Singh RD, Gunderson TM, Boroumand S, Li M, Crespo-Diaz RJ, Hillestad ML, Terzic A, Behfar A, DeGrado TR. [ 89Zr]Zr-DBN labeled cardiopoietic stem cells proficient for heart failure. Nucl Med Biol 2020; 90-91:23-30. [PMID: 32957056 PMCID: PMC7736260 DOI: 10.1016/j.nucmedbio.2020.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/09/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Radiolabeling of stem cells with a positron emitting radioisotope represents a major advancement in regenerative biotherapy enabling non-invasive imaging. To assess the value of such an approach in a clinically relevant scenario, the tolerability and therapeutic aptitude of [89Zr]zirconium-p-isothiocyanatobenzyl-desferrioxamine ([89Zr]Zr-DBN) labeled human cardiopoietic stem cells (CPs) were evaluated in a model of ischemic heart failure. METHODS AND RESULTS [89Zr]Zr-DBN based radiolabeling of human CPs yielded [89Zr]Zr-DBN-CPs with radioactivity yield of 0.70 ± 0.20 MBq/106 cells and excellent label stability. Compared to unlabeled cell counterparts, [89Zr]Zr-DBN-CPs maintained morphology, viability, and proliferation capacity with characteristic expression of mesodermal and pro-cardiogenic transcription factors defining the cardiopoietic phenotype. Administered in chronically infarcted murine hearts, [89Zr]Zr-DBN-CPs salvaged cardiac pump failure, documented by improved left ventricular ejection fraction not inferior to unlabeled CPs and notably superior to infarcted hearts without cell treatment. CONCLUSION The present study establishes that [89Zr]Zr-DBN labeling does not compromise stem cell identity or efficacy in the setting of heart failure, offering a non-invasive molecular imaging platform to monitor regenerative biotherapeutics post-transplantation.
Collapse
Affiliation(s)
- Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | | | - Satsuki Yamada
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ribu Goyal
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Ryounghoon Jeon
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jonathan J Nesbitt
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tyra A Witt
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Raman D Singh
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tina M Gunderson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Soulmaz Boroumand
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mark Li
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ruben J Crespo-Diaz
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Matthew L Hillestad
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Atta Behfar
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
47
|
Murty S, Labanieh L, Murty T, Gowrishankar G, Haywood T, Alam IS, Beinat C, Robinson E, Aalipour A, Klysz DD, Cochran JR, Majzner RG, Mackall CL, Gambhir SS. PET Reporter Gene Imaging and Ganciclovir-Mediated Ablation of Chimeric Antigen Receptor T Cells in Solid Tumors. Cancer Res 2020; 80:4731-4740. [DOI: 10.1158/0008-5472.can-19-3579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/30/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
|
48
|
Mohseni YR, Tung SL, Dudreuilh C, Lechler RI, Fruhwirth GO, Lombardi G. The Future of Regulatory T Cell Therapy: Promises and Challenges of Implementing CAR Technology. Front Immunol 2020; 11:1608. [PMID: 32793236 PMCID: PMC7393941 DOI: 10.3389/fimmu.2020.01608] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Cell therapy with polyclonal regulatory T cells (Tregs) has been translated into the clinic and is currently being tested in transplant recipients and patients suffering from autoimmune diseases. Moreover, building on animal models, it has been widely reported that antigen-specific Tregs are functionally superior to polyclonal Tregs. Among various options to confer target specificity to Tregs, genetic engineering is a particularly timely one as has been demonstrated in the treatment of hematological malignancies where it is in routine clinical use. Genetic engineering can be exploited to express chimeric antigen receptors (CAR) in Tregs, and this has been successfully demonstrated to be robust in preclinical studies across various animal disease models. However, there are several caveats and a number of strategies should be considered to further improve on targeting, efficacy and to understand the in vivo distribution and fate of CAR-Tregs. Here, we review the differing approaches to confer antigen specificity to Tregs with emphasis on CAR-Tregs. This includes an overview and discussion of the various approaches to improve CAR-Treg specificity and therapeutic efficacy as well as addressing potential safety concerns. We also discuss different imaging approaches to understand the in vivo biodistribution of administered Tregs. Preclinical research as well as suitability of methodologies for clinical translation are discussed.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Bioengineering
- Humans
- Immunomodulation
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Cell Antigen Receptor Specificity
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Yasmin R. Mohseni
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Sim L. Tung
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Caroline Dudreuilh
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Robert I. Lechler
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Gilbert O. Fruhwirth
- Imaging Therapies and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| |
Collapse
|
49
|
Patrick PS, Kolluri KK, Zaw Thin M, Edwards A, Sage EK, Sanderson T, Weil BD, Dickson JC, Lythgoe MF, Lowdell M, Janes SM, Kalber TL. Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT. Stem Cell Res Ther 2020; 11:256. [PMID: 32586403 PMCID: PMC7318529 DOI: 10.1186/s13287-020-01770-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/01/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MSCTRAIL is a cell-based therapy consisting of human allogeneic umbilical cord-derived MSCs genetically modified to express the anti-cancer protein TRAIL. Though cell-based therapies are typically designed with a target tissue in mind, delivery is rarely assessed due to a lack of translatable non-invasive imaging approaches. In this preclinical study, we demonstrate 89Zr-oxine labelling and PET-CT imaging as a potential clinical solution for non-invasively tracking MSCTRAIL biodistribution. Future implementation of this technique should improve our understanding of MSCTRAIL during its evaluation as a therapy for metastatic lung adenocarcinoma. METHODS MSCTRAIL were radiolabelled with 89Zr-oxine and assayed for viability, phenotype, and therapeutic efficacy post-labelling. PET-CT imaging of 89Zr-oxine-labelled MSCTRAIL was performed in a mouse model of lung cancer following intravenous injection, and biodistribution was confirmed ex vivo. RESULTS MSCTRAIL retained the therapeutic efficacy and MSC phenotype in vitro at labelling amounts up to and above those required for clinical imaging. The effect of 89Zr-oxine labelling on cell proliferation rate was amount- and time-dependent. PET-CT imaging showed delivery of MSCTRAIL to the lungs in a mouse model of lung cancer up to 1 week post-injection, validated by in vivo bioluminescence imaging, autoradiography, and fluorescence imaging on tissue sections. CONCLUSIONS 89Zr-oxine labelling and PET-CT imaging present a potential method of evaluating the biodistribution of new cell therapies in patients, including MSCTRAIL. This offers to improve understanding of cell therapies, including mechanism of action, migration dynamics, and inter-patient variability.
Collapse
Affiliation(s)
- P Stephen Patrick
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
| | - Krishna K Kolluri
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - May Zaw Thin
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Adam Edwards
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Elizabeth K Sage
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Tom Sanderson
- Institute of Nuclear Medicine, University College London, London, UK
| | - Benjamin D Weil
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free Hospital, London, UK
| | - John C Dickson
- Institute of Nuclear Medicine, University College London, London, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Mark Lowdell
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free Hospital, London, UK
- Department of Haematology, Cancer Institute, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
| |
Collapse
|
50
|
Evidence of Accumulated Endothelial Progenitor Cells in the Lungs of Rats with Pulmonary Arterial Hypertension by 89Zr-oxine PET Imaging. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1108-1117. [PMID: 32490032 PMCID: PMC7256434 DOI: 10.1016/j.omtm.2020.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Endothelial progenitor cells (EPCs) play a major role in regulating pulmonary vascular remodeling during pulmonary arterial hypertension (PAH) development. Several preclinical and clinical trials of EPCs transplantation have been performed for the treatment of PAH. However, there is no reliable method to monitor real-time cell trafficking and quantify transplanted EPCs. Here in this paper we isolated EPCs from human peripheral blood, identified their functional integrity, and efficiently labeled the EPCs with 89Zr-oxine and DiO. Labeled EPCs were injected into the tail vein of normal and PAH rats to be tracked in vivo. From the microPET/CT images, we found EPCs were distributed primarily in the lung at 1 h and then migrated to the liver and spleen. We could observe the 3,3′ dioctadecyloxacarbocyanine perchlorate (DiO)-labeled EPCs binding in the pulmonary vasculature by CellVizio confocal. The result of quantitative analysis revealed significantly higher accumulation of EPCs in the lungs of PAH rats than in those of healthy rats. The distribution and higher accumulation of EPCs in the lungs of PAH rats could help to evaluate the safety and provide evidence of effectiveness of EPC therapy.
Collapse
|