1
|
Chen G, Li Y, Geng S, Lv L, Wang Y, Li X, Chen S, Shi B. Evaluating the Heterogeneity of Advanced Prostate Cancer by 18F-DCFPyL and 18F-FDG PET/CT in a Prospective Cohort. Prostate 2025; 85:749-757. [PMID: 40045414 DOI: 10.1002/pros.24881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 02/18/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE 18F-DCFPyL (targeted PSMA) and 18F-FDG dual-tracer PET/CT combination with next-generation sequencing was applied in a prospective cohort of men with prostate cancer to identify the clinical and genetic characteristics with heterogeneous PET/CT imaging features. METHODS 104 men with documented prostate cancer underwent 18F-DCFPyL and 18F-FDG PET/CT, of which 83 underwent next-generation sequencing for detecting variation of AR, TP53, RB1, PTEN, etc. Lesions were classified into DCFPyL+FDG± lesions and DCFPyL-FDG+ lesions and analyzed for heterogeneous distribution. We divided the patients with positive lesions into DCFPyL+FDG± group and DCFPyL-FDG+ group, then compared the differences in clinical features and genetic mutations between the two groups with CRPC. RESULTS Overall, 92 men had positive lesions detected. By comparing lesion distribution with the DCFPyL+FDG ± , DCFPyL-FDG+ disease had higher proportions of visceral metastases (4.1% vs. 1.0%, p = 0.002). DCFPyL-FDG+ was more frequently found in CRPC cohorts, and in the CRPC cohort, patients with DCFPyL-FDG+ lesions often had worse PSA response. Exploratory analysis showed that TP53 and/or RB1 mutations might be a risk factor for DCFPyL-FDG+ disease (OR = 10.625, 95% CI 3.492-32.332, p < 0.001). CONCLUSION Patients with DCFPyL-FDG+ lesions were more likely to have visceral metastases detected, be found in castration-resistant cohorts, have TP53 and/or RB1 mutations detected, and have poor therapeutic response compared to patients with DCFPyL+FDG± lesions. Therefore, dual-tracer (18F-DCFPyL and 18F-FDG) PET/CT is recommended for patients with low PSMA expression incompatible with the true burden of the disease and those with TP53 and/or RB1 mutations to better evaluate the disease burden, tumor heterogeneity, and prognosis.
Collapse
Affiliation(s)
- GuangHao Chen
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - YueKai Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - ShangZhen Geng
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - LinChen Lv
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yong Wang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - ShouZhen Chen
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - BenKang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Kuroshima T, Kitagawa Y, Sato J, Watanabe S, Asaka T, Abe T, Harada H, Hirata K, Kuge Y. Maximum standardized uptake value in 11C-methionine positron emission tomography may predict the prognosis of patients with oral squamous cell carcinoma. Odontology 2025; 113:372-378. [PMID: 38703257 DOI: 10.1007/s10266-024-00946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
The present study aimed to elucidate the correlation between the uptake of 11C-methionine (MET) by a primary tumor and the survival of patients with oral squamous cell carcinoma (OSCC). This study enrolled 31 patients who underwent radical surgery for OSCC. The patients underwent pretreatment MET-positron emission tomography (PET) scanning. We analyzed correlations between the maximum standardized uptake value (SUVmax) of MET-PET in a primary tumor and the clinicopathological features. Further, we compared overall survival (OS), disease-specific survival (DSS), and loco-regional recurrence (LRR) rates between the two groups according to SUVmax of MET-PET. SUVmax of MET-PET in a primary tumor was higher in patients with advanced T-classification and advanced clinical stage, with significant differences (P = 0.001 and P = 0.016, respectively). The patients with SUVmax of MET-PET ≥ 4.4 showed significantly lower DSS rates and higher LRR rates than those with SUVmax of < 4.4 (P = 0.015 and P = 0.016, respectively). SUVmax of MET-PET and OS rates showed no significant correlation (P = 0.073). The present study revealed that SUVmax of MET-PET may predict clinical outcomes and prognosis in patients with OSCC who underwent radical surgery.
Collapse
Affiliation(s)
- Takeshi Kuroshima
- Division of Oral Diagnosis and Medicine, Hokkaido University Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, North 13 West 7, Kita-ku, Sapporo, Hokkaido, Japan.
- Department of Oral and Maxillofacial Surgical Oncology, Division of Health Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| | - Yoshimasa Kitagawa
- Division of Oral Diagnosis and Medicine, Hokkaido University Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, North 13 West 7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Jun Sato
- Division of Oral Diagnosis and Medicine, Hokkaido University Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, North 13 West 7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Shiro Watanabe
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takuya Asaka
- Division of Oral Diagnosis and Medicine, Hokkaido University Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, North 13 West 7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Takahiro Abe
- Department of Oral Surgery, Kitami Red Cross Hospital, Kitami, Hokkaido, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgical Oncology, Division of Health Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Kaneko K, Koriyama S, Tsuzuki S, Masui K, Kanasaki R, Yamamoto A, Nagao M, Muragaki Y, Kawamata T, Sakai S. Association Between Pretreatment 11C-Methionine Positron Emission Tomography Metrics, Histology, and Prognosis in 125 Newly Diagnosed Patients with Adult-Type Diffuse Glioma Based on the World Health Organization 2021Classification. World Neurosurg 2024; 186:e495-e505. [PMID: 38583563 DOI: 10.1016/j.wneu.2024.03.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVE To clarify the relationships between 11C-methionine (MET) positron emission tomography (PET) metrics and the histology, genetics, and prognosis of adult-type diffuse glioma (ADG) based on the World Health Organization (WHO) 2021 classification. METHODS A total of 125 newly diagnosed patients with ADG were enrolled. We compared the maximum standardized uptake value (SUVmax), tumor-to-normal background ratio (TNR), metabolic tumor volume (MTV), and total lesion methionine uptake (TLMU) to the histology and genetics of the patients with ADG. We also evaluated the prognoses of the 93 surgically treated patients. RESULTS The patients with isocitrate dehydrogenase wild ADG showed significantly higher MET-PET metrics (P < 0.05 for all parameters), significantly shorter overall survival and progression-free survival (P < 0.0001 for both) than those of the patients with isocitrate dehydrogenase mutant (IDHm) ADG. In the IDHm ADG group, the SUVmax, MTV, and TLMU values were significantly higher in patients with IDHm grade (G) 4 astrocytoma than patients with IDHm G2/3 astrocytoma (P < 0.05 for all), but not than patients with G2-3 oligodendroglioma. The progression-free survival was significantly shorter in the patients with G4 astrocytoma versus the patients with G2/3 astrocytoma and G3 oligodendroglioma (P < 0.05 for both). The SUVmax and TNR values were significantly higher in recurrent patients than nonrecurrent patients (P < 0.01 for both), but no significant differences were found in MTV or TLMU values. CONCLUSIONS MET-PET metrics well reflect the histological subtype, WHO grade and prognosis of ADG based on the 2021 WHO classification, with the exception of oligodendroglial tumors. Volumetric parameters were not significantly associated with recurrence, unlike the SUVmax and TNR.
Collapse
Affiliation(s)
- Koichiro Kaneko
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| | - Shunichi Koriyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shunsuke Tsuzuki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Rie Kanasaki
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Yamamoto
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Michinobu Nagao
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shuji Sakai
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Nakayama N, Yamada T, Yano H, Takei H, Ohe N, Miwa K, Shinoda J, Iwama T. Prediction of nuclide accumulation spread based on the volume of enhancing magnetic resonance imaging lesion in glioblastoma patients. J Neurosurg Sci 2024; 68:164-173. [PMID: 34647709 DOI: 10.23736/s0390-5616.21.05353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND 11C-methionine-PET (MET) and Thallium-201 chloride-SPECT (TL) are useful for predictive proliferation ability and tumor invasion range identification in glioma patients, however they are not always possible in any hospital or country. Our study aimed to assess whether the range of MET and Tl accumulation could be predicted from the contrast-enhanced lesions in Gadolinium (Gd)-T1 weighted magnetic resonance image in glioblastoma multiforme (GBM) patients. METHODS In 25 cases, the MET-area, TL-area, O-area where MET and TL overlap, and all accumulation area (AA-area) were measured in the same axial cross section as the Gd enhanced maximum area (Gd-area). This tracing operation was repeated with all axial fusion slices, and each volume was also measured (Gd-V, MET-V, TL-V, O-V, AA-V). RESULTS The maximum accumulation distance of MET and TL beyond the Gd-area was limited to within 30 mm, 35 mm, respectively. Significant positive correlations were showed in all combinations with Gd-area: MET-area (r=0.851, P<0.0001), TL-area (r=0.955, P<0.0001), O-area (r=0.935, P<0.0001) and AA-area (r=0.893, P<0.0001), respectively. All combinations with Gd-V showed significant positive correlation: MET-V (r=0.867, P<0.0001), TL-V (r=0.952, P<0.0001), O-V (r=0.935, P<0.0001) and AA-V (r=0.897, P<0.0001), respectively. CONCLUSIONS Approximate tumor volume Gd-V can be calculated using the formula A * B * C / 2, where A, B, and C represent the dimensions of Gd-enhanced lesion in 3 axes perpendicular to each other. The nuclide accumulation predictive table created using the obtained linear approximation functions can be used to predict the average tumor invasion range from the Gd-V without preoperative nuclear examinations.
Collapse
Affiliation(s)
- Noriyuki Nakayama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan -
| | - Tetsuya Yamada
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirohito Yano
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan
| | - Hiroaki Takei
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan
| | - Naoyuki Ohe
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Miwa
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan
| | - Jun Shinoda
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
5
|
Shahzadi I, Seidlitz A, Beuthien-Baumann B, Zwanenburg A, Platzek I, Kotzerke J, Baumann M, Krause M, Troost EGC, Löck S. Radiomics for residual tumour detection and prognosis in newly diagnosed glioblastoma based on postoperative [ 11C] methionine PET and T1c-w MRI. Sci Rep 2024; 14:4576. [PMID: 38403632 PMCID: PMC10894870 DOI: 10.1038/s41598-024-55092-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024] Open
Abstract
Personalized treatment strategies based on non-invasive biomarkers have potential to improve patient management in patients with newly diagnosed glioblastoma (GBM). The residual tumour burden after surgery in GBM patients is a prognostic imaging biomarker. However, in clinical patient management, its assessment is a manual and time-consuming process that is at risk of inter-rater variability. Furthermore, the prediction of patient outcome prior to radiotherapy may identify patient subgroups that could benefit from escalated radiotherapy doses. Therefore, in this study, we investigate the capabilities of traditional radiomics and 3D convolutional neural networks for automatic detection of the residual tumour status and to prognosticate time-to-recurrence (TTR) and overall survival (OS) in GBM using postoperative [11C] methionine positron emission tomography (MET-PET) and gadolinium-enhanced T1-w magnetic resonance imaging (MRI). On the independent test data, the 3D-DenseNet model based on MET-PET achieved the best performance for residual tumour detection, while the logistic regression model with conventional radiomics features performed best for T1c-w MRI (AUC: MET-PET 0.95, T1c-w MRI 0.78). For the prognosis of TTR and OS, the 3D-DenseNet model based on MET-PET integrated with age and MGMT status achieved the best performance (Concordance-Index: TTR 0.68, OS 0.65). In conclusion, we showed that both deep-learning and conventional radiomics have potential value for supporting image-based assessment and prognosis in GBM. After prospective validation, these models may be considered for treatment personalization.
Collapse
Affiliation(s)
- Iram Shahzadi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Annekatrin Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bettina Beuthien-Baumann
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alex Zwanenburg
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Ivan Platzek
- Institute of Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jörg Kotzerke
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
6
|
Zhou S, Zhao X, Zhang S, Tian X, Wang X, Mu Y, Li F, Zhao AZ, Zhao Z. Prognosis prediction based on methionine metabolism genes signature in gliomas. BMC Med Genomics 2023; 16:317. [PMID: 38057821 PMCID: PMC10699061 DOI: 10.1186/s12920-023-01754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Glioma cells have increased intake and metabolism of methionine, which can be monitored with 11 C-L-methionine. However, a short half-life of 11 C (~ 20 min) limits its application in clinical practice. It is necessary to develop a methionine metabolism genes-based prediction model for a more convenient prediction of glioma survival. METHODS We evaluated the patterns of 29 methionine metabolism genes in glioma from the Cancer Genome Atlas (TCGA). A risk model was established using Lasso regression analysis and Cox regression. The reliability of the prognostic model was validated in derivation and validation cohorts (Chinese Glioma Genome Atlas; CGGA). GO, KEGG, GSEA and ESTIMATE analyses were performed for biological functions and immune characterization. RESULTS Our results showed that a majority of the methionine metabolism genes (25 genes) were involved in the overall survival of glioma (logrank p and Cox p < 0.05). A 7-methionine metabolism prognostic signature was significantly related to a poor clinical prognosis and overall survival of glioma patients (C-index = 0.83). Functional analysis revealed that the risk model was correlated with immune responses and with epithelial-mesenchymal transition. Furthermore, the nomogram integrating the signature of methionine metabolism genes manifested a strong prognostic ability in the training and validation groups. CONCLUSIONS The current model had the potential to improve the understanding of methionine metabolism in gliomas and contributed to the development of precise treatment for glioma patients, showing a promising application in clinical practice.
Collapse
Affiliation(s)
- Sujin Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Xianan Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Shiwei Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Xue Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Xuepeng Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Yunping Mu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Allan Z Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Zhenggang Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Ninatti G, Pini C, Bono BC, Gelardi F, Antunovic L, Fernandes B, Sollini M, Landoni C, Chiti A, Pessina F. The prognostic power of [ 11C]methionine PET in IDH-wildtype diffuse gliomas with lower-grade histological features: venturing beyond WHO classification. J Neurooncol 2023; 164:473-481. [PMID: 37695488 DOI: 10.1007/s11060-023-04438-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE IDH-wildtype (IDH-wt) diffuse gliomas with histological features of lower-grade gliomas (LGGs) are rare and heterogeneous primary brain tumours. [11C]Methionine (MET) positron emission tomography (PET) is commonly used to evaluate glial neoplasms at diagnosis. The present study aimed to assess the prognostic value of MET PET in newly diagnosed, treatment naïve IDH-wt gliomas with histological features of LGGs. METHODS Patients with a histological diagnosis of IDH-wt LGG who underwent preoperative (< 100 days) MET PET/CT and surgery were retrospectively included. Qualitative and semi-quantitative analyses of MET PET images were performed. Progression-free survival (PFS) and overall survival (OS) were analysed by Kaplan-Meier curves. Cox proportional-hazards regression was used to test the association of imaging and clinical data to PFS and OS. RESULTS We included 48 patients (M:F = 25:23; median age 55). 39 lesions were positive and 9 negative at MET PET. Positive MET PET was significantly associated with shorter median PFS (15.7 months vs. not reached, p = 0.0146) and OS time (32.6 months vs. not reached, p = 0.0253). Incomplete surgical resection and higher TBRmean values were independent predictors of shorter PFS on multivariate analysis (p < 0.001 for both). Higher tumour grade and incomplete surgical resection were independent predictors of OS at multivariate analysis (p = 0.027 and p = 0.01, respectively). CONCLUSION MET PET is useful for the prognostic stratification of patients with IDH-wt glial neoplasms with histological LGGs features. Considering their huge biological heterogeneity, the combination of MET PET and molecular analyses may help to improve the prognostic accuracy in these diffuse gliomas subset and influence therapeutic choices accordingly.
Collapse
Affiliation(s)
- Gaia Ninatti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristiano Pini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Beatrice Claudia Bono
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabrizia Gelardi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Lidija Antunovic
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bethania Fernandes
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy.
- Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Claudio Landoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Nuclear Medicine Department, IRCCS Monza, San Gerardo Hospital, Monza, Italy
| | - Arturo Chiti
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
8
|
Differentiating high-grade glioma progression from treatment-related changes with dynamic [ 18F]FDOPA PET: a multicentric study. Eur Radiol 2023; 33:2548-2560. [PMID: 36367578 DOI: 10.1007/s00330-022-09221-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Diagnostic accuracy of amino-acid PET for distinguishing progression from treatment-related changes (TRC) is currently based on single-center non-homogeneous glioma populations. Our study assesses the diagnostic value of static and dynamic [18F]FDOPA PET acquisitions to differentiate between high-grade glioma (HGG) recurrence and TRC in a large cohort sourced from two independent nuclear medicine centers. METHODS We retrospectively identified 106 patients with suspected glioma recurrences (WHO GIII, n = 38; GIV, n = 68; IDH-mutant, n = 35, IDH-wildtype, n = 71). Patients underwent dynamic [18F]FDOPA PET/CT (n = 83) or PET/MRI (n = 23), and static tumor-to-background ratios (TBRs), metabolic tumor volumes and dynamic parameters (time to peak and slope) were determined. The final diagnosis was either defined by histopathology or a clinical-radiological follow-up at 6 months. Optimal [18F]FDOPA PET parameter cut-offs were obtained by receiver operating characteristic analysis. Predictive factors and clinical parameters were assessed using univariate and multivariate Cox regression survival analyses. RESULTS Surgery or the clinical-radiological 6-month follow-up identified 71 progressions and 35 treatment-related changes. TBRmean, with a threshold of 1.8, best-differentiated glioma recurrence/progression from post-treatment changes in the whole population (sensitivity 82%, specificity 71%, p < 0.0001) whereas curve slope was only significantly different in IDH-mutant HGGs (n = 25). In survival analyses, MTV was a clinical independent predictor of progression-free and overall survival on the multivariate analysis (p ≤ 0.01). A curve slope > -0.12/h was an independent predictor for longer PFS in IDH-mutant HGGs CONCLUSION: Our multicentric study confirms the high accuracy of [18F]FDOPA PET to differentiate recurrent malignant gliomas from TRC and emphasizes the diagnostic and prognostic value of dynamic acquisitions for IDH-mutant HGGs. KEY POINTS • The diagnostic accuracy of dynamic amino-acid PET, for distinguishing progression from treatment-related changes, is currently based on single-center non-homogeneous glioma populations. • This multicentric study confirms the high accuracy of static [18F]FDOPA PET images for differentiating progression from treatment-related changes in a homogeneous population of high-grade gliomas and highlights the diagnostic and prognostic value of dynamic acquisitions for IDH-mutant high-grade gliomas. • Dynamic acquisitions should be performed in IDH-mutant glioma patients to provide valuable information for the differential diagnosis of recurrence and treatment-related changes.
Collapse
|
9
|
11C-methionine PET imaging characteristics in children with diffuse intrinsic pontine gliomas and relationship to survival and H3 K27M mutation status. Eur J Nucl Med Mol Imaging 2023; 50:1709-1719. [PMID: 36697961 DOI: 10.1007/s00259-022-06105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE This study aimed to describe 11C-methionine (11C-MET) PET imaging characteristics in patients with paediatric diffuse intrinsic pontine glioma (DIPG) and correlate them with survival and H3 K27M mutation status. METHODS We retrospectively analysed 98 children newly diagnosed with DIPG who underwent 11C-MET PET. PET imaging characteristics evaluated included uptake intensity, uniformity, metabolic tumour volume (MTV), and total lesion methionine uptake (TLMU). The maximum, mean, and peak of the tumour-to-background ratio (TBR), calculated as the corresponding standardised uptake values (SUV) divided by the mean reference value, were also recorded. The associations between the PET imaging characteristics and clinical outcomes in terms of progression-free survival (PFS) and overall survival (OS) and H3 K27M mutation status were assessed, respectively. RESULTS In univariate analysis, imaging characteristics significantly associated with shorter PFS and OS included a higher uniformity grade, higher TBRs, larger MTV, and higher TLMU. In multivariate analysis, larger MTV at diagnosis, shorter symptom duration, and no treatment were significantly correlated with shorter PFS and OS. The PET imaging features were not correlated with H3 K27M mutation status. CONCLUSION Although several imaging features were significantly associated with PFS and OS, only MTV, indicating the size of the active tumour, was identified as a strong independent prognostic factor.
Collapse
|
10
|
Morales-Lozano MI, Rodriguez-Otero P, Sancho L, Nuñez-Cordoba JM, Prieto E, Marcos-Jubilar M, Rosales JJ, Alfonso A, Guillen EF, San-Miguel J, Garcia-Velloso MJ. 11C-Methionine PET/CT in Assessment of Multiple Myeloma Patients: Comparison to 18F-FDG PET/CT and Prognostic Value. Int J Mol Sci 2022; 23:ijms23179895. [PMID: 36077292 PMCID: PMC9456410 DOI: 10.3390/ijms23179895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is the second most common haematological malignancy and remains incurable despite therapeutic advances. 18F-FDG (FDG) PET/CT is a relevant tool MM for staging and it is the reference imaging technique for treatment evaluation. However, it has limitations, and investigation of other PET tracers is required. Preliminary results with L-methyl-[11C]- methionine (MET), suggest higher sensitivity than 18F-FDG. This study aimed to compare the diagnostic accuracy and prognostic value of 1FDG and MET in MM patients. We prospectively compared FDG and MET PET/CT for assessment of bone disease and extramedullary disease (EMD) in a series of 52 consecutive patients (8 smoldering MM, 18 newly diagnosed MM and 26 relapsed MM patients). Bone marrow (BM) uptake patterns and the detection of focal lesions (FLs) and EMD were compared. Furthermore, FDG PET parameters with known MM prognostic value were explored for both tracers, as well as total lesion MET uptake (TLMU). Median patient age was 61 years (range, 37–83 years), 54% were male, 13% of them were in stage ISS (International Staging System) III, and 31% had high-risk cytogenetics. FDG PET/CT did not detect active disease in 6 patients, while they were shown to be positive by MET PET/CT. Additionally, MET PET/CT identified a higher number of FLs than FDG in more than half of the patients (63%). For prognostication we focussed on the relapsed cohort, due to the low number of progressions in the two other cohorts. Upon using FDG PET/CT in relapsed patients, the presence of more than 3 FLs (HR 4.61, p = 0.056), more than 10 FLs (HR 5.65, p = 0.013), total metabolic tumor volume (TMTV) p50 (HR 4.91, p = 0.049) or TMTV p75 (HR 5.32, p = 0.016) were associated with adverse prognosis. In MET PET/CT analysis, TMTV p50 (HR 4.71, p = 0.056), TMTV p75 (HR 6.27, p = 0.007), TLMU p50 (HR 8.8, p = 0.04) and TLMU p75 (HR 6.3, p = 0.007) adversely affected PFS. This study confirmed the diagnostic and prognostic value of FDG in MM. In addition, it highlights that MET has higher sensitivity than FDG PET/CT for detection of myeloma lesions, including FLs. Moreover, we show, for the first time, the prognostic value of TMTV and TLMU MET PET/CT in the imaging evaluation of MM patients.
Collapse
Affiliation(s)
- Maria I. Morales-Lozano
- Department of Nuclear Medicine, Clinica Universidad de Navarra, CCUN Applied Medical Research, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Paula Rodriguez-Otero
- Department of Haematology, Clínica Universidad de Navarra, CCUN Applied Medical Research, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Lidia Sancho
- Department of Nuclear Medicine, Clinica Universidad de Navarra, CCUN Applied Medical Research, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Jorge M. Nuñez-Cordoba
- Research Support Service, Central Clinical Trials Unit, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Elena Prieto
- Department of Nuclear Medicine, Clinica Universidad de Navarra, CCUN Applied Medical Research, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Maria Marcos-Jubilar
- Department of Haematology, Clínica Universidad de Navarra, CCUN Applied Medical Research, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Juan J. Rosales
- Department of Nuclear Medicine, Clinica Universidad de Navarra, CCUN Applied Medical Research, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Ana Alfonso
- Department of Haematology, Clínica Universidad de Navarra, CCUN Applied Medical Research, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Edgar F. Guillen
- Department of Nuclear Medicine, Clinica Universidad de Navarra, CCUN Applied Medical Research, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Jesus San-Miguel
- Department of Haematology, Clínica Universidad de Navarra, CCUN Applied Medical Research, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Maria J. Garcia-Velloso
- Department of Nuclear Medicine, Clinica Universidad de Navarra, CCUN Applied Medical Research, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Correspondence:
| |
Collapse
|
11
|
van Dijken BRJ, Ankrah AO, Stormezand GN, Dierckx RAJO, Jan van Laar P, van der Hoorn A. Prognostic value of 11C-methionine volume-based PET parameters in IDH wild type glioblastoma. PLoS One 2022; 17:e0264387. [PMID: 35213602 PMCID: PMC8880430 DOI: 10.1371/journal.pone.0264387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose 11C-Methionine (11C-MET) PET prognostication of isocitrate dehydrogenase (IDH) wild type glioblastomas is inadequate as conventional parameters such as standardized uptake value (SUV) do not adequately reflect tumor heterogeneity. We retrospectively evaluated whether volume-based parameters such as metabolic tumor volume (MTV) and total lesion methionine metabolism (TLMM) outperformed SUV for survival correlation in patients with IDH wild type glioblastomas. Methods Thirteen IDH wild type glioblastoma patients underwent preoperative 11C-MET PET. Both SUV-based parameters and volume-based parameters were calculated for each lesion. Kaplan-Meier curves with log-rank testing and Cox regression analysis were used for correlation between PET parameters and overall survival. Results Median overall survival for the entire cohort was 393 days. MTV (HR 1.136, p = 0.007) and TLMM (HR 1.022, p = 0.030) were inversely correlated with overall survival. SUV-based 11C-MET PET parameters did not show a correlation with survival. In a paired analysis with other clinical parameters including age and radiotherapy dose, MTV and TLMM were found to be independent factors. Conclusions MTV and TLMM, and not SUV, significantly correlate with overall survival in patients with IDH wild type glioblastomas. The incorporation of volume-based 11C-MET PET parameters may lead to a better outcome prediction for this heterogeneous patient population.
Collapse
Affiliation(s)
- Bart R. J. van Dijken
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- * E-mail:
| | - Alfred O. Ankrah
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gilles N. Stormezand
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudi A. J. O. Dierckx
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter Jan van Laar
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Radiology, Zorggroep Twente, Almelo and Hengelo, the Netherlands
| | - Anouk van der Hoorn
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Takeuchi S, Hirata K. Pet imaging in thymomas. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Lim TX, Ahamed M, Reutens DC. The aryl hydrocarbon receptor: A diagnostic and therapeutic target in glioma. Drug Discov Today 2021; 27:422-435. [PMID: 34624509 DOI: 10.1016/j.drudis.2021.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/29/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme (GBM) is a deadly disease; 5-year survival rates have shown little improvement over the past 30 years. In vivo positron emission tomography (PET) imaging is an important method of identifying potential diagnostic and therapeutic molecular targets non-invasively. The aryl hydrocarbon receptor (AhR) is a transcription factor that regulates multiple genes involved in immune response modulation and tumorigenesis. The AhR is an attractive potential drug target and studies have shown that its activation by small molecules can modulate innate and adaptive immunity beneficially and prevent AhR-mediated tumour promotion in several cancer types. In this review, we provide an overview of the role of the AhR in glioma tumorigenesis and highlight its potential as an emerging biomarker for glioma therapies targeting the tumour immune response and PET diagnostics.
Collapse
Affiliation(s)
- Ting Xiang Lim
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Muneer Ahamed
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - David C Reutens
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
14
|
Tomura N, Saginoya T, Goto H. PET findings in lymphomatosis and gliomatosis of the brain: a comparison of C-11 methionine PET/CT and F-18 FDG PET/CT. Acta Radiol 2021; 62:1391-1396. [PMID: 33081486 DOI: 10.1177/0284185120966710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Positron emission tomography (PET) findings for gliomatosis and lymphomatosis have been rarely reported. PURPOSE To compare PET/computed tomography (CT) findings using 11C-methionine (MET) from PET/CT findings using 18F-fluorodeoxy glucose (FDG) for patients with lymphomatosis or gliomatosis of the brain. MATERIAL AND METHODS Participants comprised all 10 patients with lymphomatosis or gliomatosis of the brain treated at our institution in the past 12 years. Underlying pathologies comprised intravascular lymphoma (n = 1), lymphomatosis (n = 3), and gliomatosis (n = 6). All cases were pathologically diagnosed. In seven patients, both MET-PET/CT and FDG-PET/CT were performed simultaneously in a single study. In three patients, only FDG-PET/CT was performed. The degree of tracer accumulation to the lesion was evaluated qualitatively. Quantitatively, the ratio of maximum standard uptake value (SUVmax) in tumor to that in normal tissue (T/N ratio) was measured and compared between FDG and MET. RESULTS Qualitatively, MET accumulated to part of the lesion in six of seven patients and almost all of the lesion in one in seven patients. FDG accumulated to part of the lesion in three of ten patients and almost all of the lesion in one of ten patients. No FDG accumulation was seen in the lesion in six patients. Quantitatively, mean ± SD T/N ratio was significantly higher with MET (2.11 ± 0.63) than with FDG (1.18 ± 0.84; P < 0.05, Wilcoxon signed-rank test). CONCLUSION In lymphomatosis and gliomatosis, FDG accumulates in only part of the lesion. FDG is thus less suitable than MET for depicting these lesions.
Collapse
Affiliation(s)
- Noriaki Tomura
- Department of Neuroradiology, Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama City, Fukushima, Japan
| | - Toshiyuki Saginoya
- Department of Radiology, Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama City, Fukushima, Japan
| | - Hiromi Goto
- Department of Neurosurgery, Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama City, Fukushima, Japan
| |
Collapse
|
15
|
Tatekawa H, Uetani H, Hagiwara A, Bahri S, Raymond C, Lai A, Cloughesy TF, Nghiemphu PL, Liau LM, Pope WB, Salamon N, Ellingson BM. Worse prognosis for IDH wild-type diffuse gliomas with larger residual biological tumor burden. Ann Nucl Med 2021; 35:1022-1029. [PMID: 34121166 DOI: 10.1007/s12149-021-01637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The association of overall survival (OS) with tumor burden, including contrast enhanced (CE) volume on CE T1-weighted images, fluid-attenuated inversion recovery (FLAIR) hyperintense volume, and 3, 4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (FDOPA) hypermetabolic volume, in isocitrate dehydrogenase (IDH) wild-type gliomas remains unclear. This study aimed to assess the association between biological tumor burden in pre- and post-operative status and OS in IDH wild-type gliomas, and evaluated which volume was the best predictor of OS. METHODS Thirty-four patients with treatment-naïve IDH wild-type gliomas (WHO grade II 6, III 15, IV 13) were retrospectively included. Three pre-operative tumor regions of interest (ROIs) were segmented based on the CE, FLAIR hyperintense, and FDOPA hypermetabolic regions. Resected ROIs were segmented from the post-operative images. Residual CE, FLAIR hyperintense, and FDOPA hypermetabolic ROIs were created by subtracting resected ROIs from pre-operative ROIs. Cox regression analysis was conducted to investigate the association of OS with the volume of each ROI, and Akaike information criterion was used to assess the fitness. RESULTS Residual CE volume had a significant association with OS [hazard ratio (HR) = 1.26, p = 0.039], but this effect disappeared when controlling for tumor grade. Residual FDOPA hypermetabolic volume best fit the regression model and was significantly associated with OS (HR = 1.18, p = 0.008), even when controlling for tumor grade. FLAIR hyperintense volume showed no significant association with OS. CONCLUSION Residual FDOPA hypermetabolic burden predicted OS for IDH wild-type gliomas, regardless of the tumor grade. Furthermore, removing hypermetabolic and CE regions may improve the prognosis.
Collapse
Affiliation(s)
- Hiroyuki Tatekawa
- UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
- Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, USA
| | - Hiroyuki Uetani
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, USA
| | - Shadfar Bahri
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
- Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, USA
| | - Albert Lai
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
| | - Phioanh L Nghiemphu
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
| | - Linda M Liau
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
| | - Whitney B Pope
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
| | - Noriko Salamon
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA.
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA.
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA.
- Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, USA.
| |
Collapse
|
16
|
Nose-to-brain delivery: exploring newer domains for glioblastoma multiforme management. Drug Deliv Transl Res 2021; 10:1044-1056. [PMID: 32221847 DOI: 10.1007/s13346-020-00747-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive form of the primary brain tumors in humans. The intricate pathophysiology, the development of resistance by tumor cells, and the inability of the drugs to effectively cross the blood-brain and blood-tumor barriers result in poor prognosis for GBM patients, with a median survival time of only 1 to 2 years. Nose-to-brain delivery offers an attractive, noninvasive strategy to enhance drug penetration or transport novel drug/gene carriers into the brain. Although the exact mechanism of intranasal delivery remains elusive, the olfactory and trigeminal nerve pathways have been found to play a vital role in circumventing the traditional barriers of brain targeting. This review discusses the intranasal pathway as a novel domain for delivering drugs and nanocarriers encapsulating drugs/genes, as well as stem cell carriers specifically to the glioma cells. Considering the fact that most of these studies are still in preclinical stage, translating such intranasal delivery strategies from bench to bedside would be a critical step for better management and prognosis of GBM. Graphical abstract.
Collapse
|
17
|
Preoperative Texture Analysis Using 11C-Methionine Positron Emission Tomography Predicts Survival after Surgery for Glioma. Diagnostics (Basel) 2021; 11:diagnostics11020189. [PMID: 33525709 PMCID: PMC7911154 DOI: 10.3390/diagnostics11020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Positron emission tomography with 11C-methionine (MET) is well established in the diagnostic work-up of malignant brain tumors. Texture analysis is a novel technique for extracting information regarding relationships among surrounding voxels, in order to quantify their inhomogeneity. This study evaluated whether the texture analysis of MET uptake has prognostic value for patients with glioma. METHODS We retrospectively analyzed adults with glioma who had undergone preoperative metabolic imaging at a single center. Tumors were delineated using a threshold of 1.3-fold of the mean standardized uptake value for the contralateral cortex, and then processed to calculate the texture features in glioma. RESULTS The study included 42 patients (median age: 56 years). The World Health Organization classifications were grade II (7 patients), grade III (17 patients), and grade IV (18 patients). Sixteen (16.1%) all-cause deaths were recorded during the median follow-up of 18.8 months. The univariate analyses revealed that overall survival (OS) was associated with age (hazard ratio (HR) 1.04, 95% confidence interval (CI) 1.01-1.08, p = 0.0093), tumor grade (HR 3.64, 95% CI 1.63-9.63, p = 0.0010), genetic status (p < 0.0001), low gray-level run emphasis (LGRE, calculated from the gray-level run-length matrix) (HR 2.30 × 1011, 95% CI 737.11-4.23 × 1019, p = 0.0096), and correlation (calculated from the gray-level co-occurrence matrix) (HR 5.17, 95% CI 1.07-20.93, p = 0.041). The multivariate analyses revealed OS was independently associated with LGRE and correlation. The survival curves were also significantly different (both log-rank p < 0.05). CONCLUSION Textural features obtained using preoperative MET positron emission tomography may compliment the semi-quantitative assessment for prognostication in glioma cases.
Collapse
|
18
|
Belyaev AY, Usachev DY, Pronin IN, Shults EI, Batalov AI. [Anaplastic astrocytoma and anaplastic oligodendroglioma of the brain: current state of the problem]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2021; 85:96-102. [PMID: 34463456 DOI: 10.17116/neiro20218504196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This review is devoted to the problem of anaplastic cerebral gliomas. The authors consider classification, neuroimaging of these tumors including comparison of magnetic resonance imaging and positron emission tomography data. Clinical manifestations of anaplastic gliomas, issues of their histological and molecular genetic classification are discussed. Moreover, the authors compare the data of neuroimaging and genetic examinations of tumors. Other issues are multicomponent treatment and prognosis in patients with anaplastic glioma of the brain.
Collapse
Affiliation(s)
| | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - E I Shults
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
19
|
Maximum Uptake and Hypermetabolic Volume of 18F-FDOPA PET Estimate Molecular Status and Overall Survival in Low-Grade Gliomas: A PET and MRI Study. Clin Nucl Med 2020; 45:e505-e511. [PMID: 33031233 DOI: 10.1097/rlu.0000000000003318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE We evaluated F-FDOPA PET and MRI characteristics in association with the molecular status and overall survival (OS) in a large number of low-grade gliomas (LGGs). METHODS Eighty-six patients who underwent F-FDOPA PET and MRI and were diagnosed with new or recurrent LGGs were retrospectively evaluated with respect to their isocitrate dehydrogenase (IDH) and 1p19q status (10 IDH wild type, 57 mutant, 19 unknown; 1p19q status in IDH mutant: 20 noncodeleted, 37 codeleted). After segmentation of the hyperintense area on fluid-attenuated inversion recovery image (FLAIRROI), the following were calculated: normalized SUVmax (nSUVmax) of F-FDOPA relative to the striatum, F-FDOPA hypermetabolic volume (tumor-to-striatum ratios >1), FLAIRROI volume, relative cerebral blood volume, and apparent diffusion coefficient within FLAIRROI. Receiver operating characteristic curve and Cox regression analyses were performed. RESULTS PET and MRI metrics combined with age predicted the IDH mutation and 1p19q codeletion statuses with sensitivities of 73% and 76% and specificities of 100% and 94%, respectively. Significant correlations were found between OS and the IDH mutation status (hazard ratio [HR] = 4.939), nSUVmax (HR = 2.827), F-FDOPA hypermetabolic volume (HR = 1.048), and FLAIRROI volume (HR = 1.006). The nSUVmax (HR = 151.6) for newly diagnosed LGGs and the F-FDOPA hypermetabolic volume (HR = 1.038) for recurrent LGGs demonstrated significant association with OS. CONCLUSIONS Combining F-FDOPA PET and MRI with age proved useful for predicting the molecular status in patients with LGGs, whereas the nSUVmax and F-FDOPA hypermetabolic volume may be useful for prognostication.
Collapse
|
20
|
Zou Q, Jiao J, Zou MH, Li MZ, Yang T, Xu L, Zhang Y. Semi-automatic evaluation of baseline whole-body tumor burden as an imaging biomarker of 68Ga-PSMA-11 PET/CT in newly diagnosed prostate cancer. Abdom Radiol (NY) 2020; 45:4202-4213. [PMID: 32948911 DOI: 10.1007/s00261-020-02745-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The prognostic value of baseline tumor burden of prostate cancer was rarely studied. We aimed to evaluate the whole-body tumor burden of 68Ga- prostate specific membrane antigen-HBED-CC (68Ga-PSMA-11) PET/CT in newly diagnosed prostate cancer semi-automatically, and explore its preliminary application in predicting prognosis. METHODS Similar to metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of 18F-FDG PET/CT, 68Ga-PSMA-11 PET/CT tumor burden parameters including whole-body PSMA tumor volume (wbPSMA-TV) and whole-body total lesions PSMA uptake (wbTL-PSMA) were acquired semi-automatically. The intra-observer and inter-observer reliability was analyzed. The relationship between tumor burden and prostate-specific antigen (PSA) value or Gleason score was investigated. The preliminary application of tumor burden in predicting progression-free survival (PFS) was explored. RESULTS Fifty-nine newly diagnosed prostate cancer patients were retrospectively analyzed. Semi-automatic quantification of whole-body tumor burden had excellent intra-observer and inter-observer consistency [all intra-class correlation coefficient (ICC) > 0.990]. wbPSMA-TV and wbTL-PSMA were 32.6 (range 1.0-3968.2) cm3 and 161.9 (range 6.0-24971.7), respectively. wbPSMA-TV and wbTL-PSMA correlated with PSA (r = 0.858, p < 0.001; r = 0.879, p < 0.001) and Gleason score (r = 0.793, p < 0.001; r = 0.805, p < 0.001) significantly. In univariate analysis, wbPSMA-TV, wbTL-PSMA, SUVmax, SUVpeak, SUVmean, PSMA-TV, TL-PSMA of primary tumor, fPSA and Gleason score were independent significant predictors of PFS (all p < 0.05). Moreover, in multivariate analysis, wbTL-PSMA [hazard ratio (HR): 1.001, p = 0.014] and Gleason score (HR: 5.124, p = 0.031) can significantly predict progression-free prognosis. CONCLUSIONS As imaging biomarkers, wbPSMA-TV and wbTL-PSMA correlated with clinical characteristics significantly. High wbTL-PSMA or Gleason score was associated with shorter PFS of newly diagnosed prostate cancer independently.
Collapse
|
21
|
Morales-Lozano MI, Viering O, Samnick S, Rodriguez-Otero P, Buck AK, Marcos-Jubilar M, Rasche L, Prieto E, Kortüm KM, San-Miguel J, Garcia-Velloso MJ, Lapa C. 18F-FDG and 11C-Methionine PET/CT in Newly Diagnosed Multiple Myeloma Patients: Comparison of Volume-Based PET Biomarkers. Cancers (Basel) 2020; 12:cancers12041042. [PMID: 32340251 PMCID: PMC7226577 DOI: 10.3390/cancers12041042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/02/2022] Open
Abstract
11C-methionine (11C-MET) is a new positron emission tomography (PET) tracer for the assessment of disease activity in multiple myeloma (MM) patients, with preliminary data suggesting higher sensitivity and specificity than 18F-fluorodeoxyglucose (18F-FDG). However, the value of tumor burden biomarkers has yet to be investigated. Our goals were to corroborate the superiority of 11C-MET for MM staging and to compare its suitability for the assessment of metabolic tumor burden biomarkers in comparison to 18F-FDG. Twenty-two patients with newly diagnosed, treatment-naïve symptomatic MM who had undergone 11C-MET and 18F-FDG PET/CT were evaluated. Standardized uptake values (SUV) were determined and compared with total metabolic tumor volume (TMTV) for both tracers: total lesion glycolysis (TLG) and total lesion 11C-MET uptake (TLMU). PET-derived values were compared to Revised International Staging System (R-ISS), cytogenetic, and serologic MM markers such as M component, beta 2 microglobulin (B2M), serum free light chains (FLC), albumin, and lactate dehydrogenase (LDH). In 11 patients (50%), 11C-MET detected more focal lesions (FL) than FDG (p < 0.01). SUVmax, SUVmean, SUVpeak, TMTV, and TLMU were also significantly higher in 11C-MET than in 18F-FDG (p < 0.05, respectively). 11C-MET PET biomarkers had a better correlation with tumor burden (bone marrow plasma cell infiltration, M component; p < 0.05 versus p = n.s. respectively). This pilot study suggests that 11C-MET PET/CT is a more sensitive marker for the assessment of myeloma tumor burden than 18F-FDG. Its implications for prognosis evaluation need further investigation.
Collapse
Affiliation(s)
- Maria I Morales-Lozano
- Department of Nuclear Medicine, University Clinic of Navarra, Center of Applied Medical Research (CIMA), Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain; (M.I.M.-L.); (E.P.)
| | - Oliver Viering
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (O.V.); (S.S.); (A.K.B.); (C.L.)
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (O.V.); (S.S.); (A.K.B.); (C.L.)
| | - Paula Rodriguez-Otero
- Department of Hematology, University Clinic of Navarra, CIMA, CIBERONC, IDISNA, 31008 Pamplona, Spain; (P.R.-O.); (M.M.-J.); (J.S.-M.)
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (O.V.); (S.S.); (A.K.B.); (C.L.)
| | - Maria Marcos-Jubilar
- Department of Hematology, University Clinic of Navarra, CIMA, CIBERONC, IDISNA, 31008 Pamplona, Spain; (P.R.-O.); (M.M.-J.); (J.S.-M.)
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany; (L.R.); (K.M.K.)
| | - Elena Prieto
- Department of Nuclear Medicine, University Clinic of Navarra, Center of Applied Medical Research (CIMA), Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain; (M.I.M.-L.); (E.P.)
| | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany; (L.R.); (K.M.K.)
| | - Jesus San-Miguel
- Department of Hematology, University Clinic of Navarra, CIMA, CIBERONC, IDISNA, 31008 Pamplona, Spain; (P.R.-O.); (M.M.-J.); (J.S.-M.)
| | - Maria J. Garcia-Velloso
- Department of Nuclear Medicine, University Clinic of Navarra, Center of Applied Medical Research (CIMA), Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain; (M.I.M.-L.); (E.P.)
- Correspondence: ; Tel.: +34-948-255400 (ext. 4948); Fax: +34-948-296500
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (O.V.); (S.S.); (A.K.B.); (C.L.)
- Nuclear Medicine, Medical Faculty, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| |
Collapse
|
22
|
John F, Bosnyák E, Robinette NL, Amit-Yousif AJ, Barger GR, Shah KD, Michelhaugh SK, Klinger NV, Mittal S, Juhász C. Multimodal imaging-defined subregions in newly diagnosed glioblastoma: impact on overall survival. Neuro Oncol 2020; 21:264-273. [PMID: 30346623 DOI: 10.1093/neuonc/noy169] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although glioblastomas are heterogeneous brain-infiltrating tumors, their treatment is mostly focused on the contrast-enhancing tumor mass. In this study, we combined conventional MRI, diffusion-weighted imaging (DWI), and amino acid PET to explore imaging-defined glioblastoma subregions and evaluate their potential prognostic value. METHODS Contrast-enhanced T1, T2/fluid attenuated inversion recovery (FLAIR) MR images, apparent diffusion coefficient (ADC) maps from DWI, and alpha-[11C]-methyl-L-tryptophan (AMT)-PET images were analyzed in 30 patients with newly diagnosed glioblastoma. Five tumor subregions were identified based on a combination of MRI contrast enhancement, T2/FLAIR signal abnormalities, and AMT uptake on PET. ADC and AMT uptake tumor/contralateral normal cortex (T/N) ratios in these tumor subregions were correlated, and their prognostic value was determined. RESULTS A total of 115 MRI/PET-defined subregions were analyzed. Most tumors showed not only a high-AMT uptake (T/N ratio > 1.65, N = 27) but also a low-uptake subregion (N = 21) within the contrast-enhancing tumor mass. High AMT uptake extending beyond contrast enhancement was also common (N = 25) and was associated with low ADC (r = -0.40, P = 0.05). Higher AMT uptake in the contrast-enhancing tumor subregions was strongly prognostic for overall survival (hazard ratio: 7.83; 95% CI: 1.98-31.02, P = 0.003), independent of clinical and molecular genetic prognostic variables. Nonresected high-AMT uptake subregions predicted the sites of tumor progression on posttreatment PET performed in 10 patients. CONCLUSIONS Glioblastomas show heterogeneous amino acid uptake with high-uptake regions often extending into non-enhancing brain with high cellularity; nonresection of these predict the site of posttreatment progression. High tryptophan uptake values in MRI contrast-enhancing tumor subregions are a strong, independent imaging marker for longer overall survival.
Collapse
Affiliation(s)
- Flóra John
- Department of Pediatrics, Wayne State University, Detroit, Michigan.,PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan
| | - Edit Bosnyák
- Department of Pediatrics, Wayne State University, Detroit, Michigan.,PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan
| | - Natasha L Robinette
- Department of Oncology, Wayne State University, Detroit, Michigan.,Department of Radiology, Wayne State University, Detroit, Michigan.,Karmanos Cancer Institute, Detroit, Michigan
| | - Alit J Amit-Yousif
- Department of Oncology, Wayne State University, Detroit, Michigan.,Department of Radiology, Wayne State University, Detroit, Michigan.,Karmanos Cancer Institute, Detroit, Michigan
| | - Geoffrey R Barger
- Department of Neurology, Wayne State University, Detroit, Michigan.,Karmanos Cancer Institute, Detroit, Michigan
| | - Keval D Shah
- Department of Neurology, Wayne State University, Detroit, Michigan
| | | | | | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University, Detroit, Michigan.,Department of Oncology, Wayne State University, Detroit, Michigan.,Department of Biomedical Engineering, Wayne State University, Detroit, Michigan.,Karmanos Cancer Institute, Detroit, Michigan
| | - Csaba Juhász
- Department of Pediatrics, Wayne State University, Detroit, Michigan.,Department of Neurology, Wayne State University, Detroit, Michigan.,Department of Neurosurgery, Wayne State University, Detroit, Michigan.,PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan.,Karmanos Cancer Institute, Detroit, Michigan
| |
Collapse
|
23
|
Inoue A, Ohnishi T, Kohno S, Ohue S, Nishikawa M, Suehiro S, Matsumoto S, Ozaki S, Fukushima M, Kurata M, Kitazawa R, Shigekawa S, Watanabe H, Kunieda T. Met-PET uptake index for total tumor resection: identification of 11C-methionine uptake index as a goal for total tumor resection including infiltrating tumor cells in glioblastoma. Neurosurg Rev 2020; 44:587-597. [PMID: 32060762 DOI: 10.1007/s10143-020-01258-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Glioblastoma multiforme (GBM) is largely due to glioma stem cells (GSCs) that escape from total resection of gadolinium (Gd)-enhanced tumor on MRI. The aim of this study is to identify the imaging requirements for maximum resection of GBM with infiltrating GSCs. We investigated the relationship of tumor imaging volume between MRI and 11C-methionine (Met)-PET and also the relationship between Met uptake index and tumor activity. In ten patients, tumor-to-contralateral normal brain tissue ratio (TNR) was calculated to evaluate metabolic activity of Met uptake areas which were divided into five subareas by the degrees of TNR. In each GBM, tumor tissue was obtained from subareas showing the positive Met uptake. Immunohistochemistry was performed to examine the tumor proliferative activity and existence of GSCs. In all patients, the volume of Met uptake area at TNR ≦ 1.4 was larger than that of the Gd-enhanced area. The Met uptake area at TNR 1.4 beyond the Gd-enhanced tumor was much wider in high invasiveness-type GBMs than in those of low invasiveness type, and survival was much shorter in the former than the latter types. Immunohistochemistry revealed the existence of GSCs in the area showing Met uptake at TNR 1.4 and no Gd enhancement. Areas at TNR > 1.4 included active tumor cells with relatively high Ki-67 labeling index. In addition, it was demonstrated that GSCs could exist beyond the border of Gd-enhanced tumor. Therefore, to obtain maximum resection of GBMs, including infiltrating GSCs, aggressive surgical excision that includes the Met-positive area at TNR 1.4 should be considered.
Collapse
Affiliation(s)
- Akihiro Inoue
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Takanori Ohnishi
- Department of Neurosurgery, Washoukai Sadamoto Hospital, 1-6-1 Takehara, Matsuyama, Ehime, 790-0052, Japan
| | - Shohei Kohno
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shiro Ohue
- Department of Neurosurgery, Ehime Prefectural Central Hospital, 83 Kasuga-machi, Matsuyama, Ehime, 790-0024, Japan
| | - Masahiro Nishikawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Satoshi Suehiro
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shirabe Matsumoto
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Saya Ozaki
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mana Fukushima
- Division of Diagnostic Pathology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mie Kurata
- Department of Analytical Pathology, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Seiji Shigekawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hideaki Watanabe
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
24
|
Kobayashi K, Manabe O, Hirata K, Yamaguchi S, Kobayashi H, Terasaka S, Toyonaga T, Furuya S, Magota K, Kuge Y, Kudo K, Shiga T, Tamaki N. Influence of the scan time point when assessing hypoxia in 18F-fluoromisonidazole PET: 2 vs. 4 h. Eur J Nucl Med Mol Imaging 2019; 47:1833-1842. [PMID: 31781832 DOI: 10.1007/s00259-019-04626-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/18/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE 18F-fluoromisonidazole (18F-FMISO) is the most widely used positron emission tomography (PET) tracer for imaging tumor hypoxia. Previous reports suggested that the time from injection to the scan may affect the assessment of 18F-FMISO uptake. Herein, we directly compared the images at 2 h and 4 h after a single injection of 18F-FMISO. METHODS Twenty-three patients with or suspected of having a brain tumor were scanned twice at 2 and 4 h following an intravenous injection of 18F-FMISO. We estimated the mean standardized uptake value (SUV) of the gray matter and white matter and the gray-to-white matter ratio in the background brain tissue from the two scans. We also performed a semi-quantitative analysis using the SUVmax and maximum tumor-to-normal ratio (TNR) for the tumor. RESULTS At 2 h, the SUVmean of gray matter was significantly higher than that of white matter (median 1.23, interquartile range (IQR) 1.10-1.32 vs. 1.04, IQR 0.95-1.16, p < 0.0001), whereas at 4 h, it significantly decreased to approach that of the white matter (1.10, IQR 1.00-1.23 vs. 1.02, IQR 0.93-1.13, p = NS). The gray-to-white matter ratio thus significantly declined from 1.17 (IQR 1.14-1.19) to 1.09 (IQR 1.07-1.10) (p < 0.0001). All 7 patients with glioblastoma showed significant increases in the SUVmax (2.20, IQR 1.67-3.32 at 2 h vs. 2.65, IQR 1.74-4.41 at 4 h, p = 0.016) and the TNR (1.75, IQR 1.40-2.38 at 2 h vs. 2.34, IQR 1.67-3.60 at 4 h, p = 0.016). CONCLUSION In the assessment of hypoxic tumors, 18F-FMISO PET for hypoxia imaging should be obtained at 4 h rather than 2 h after the injection.
Collapse
Affiliation(s)
- Kentaro Kobayashi
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, 060-8638, Japan
| | - Osamu Manabe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, 060-8638, Japan
| | - Kenji Hirata
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, 060-8638, Japan.
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Sho Furuya
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, 060-8638, Japan
| | - Keiichi Magota
- Division of Medical Imaging and Technology, Hokkaido University Hospital, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Tohru Shiga
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, 060-8638, Japan
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
25
|
Hotta M, Minamimoto R, Miwa K. 11C-methionine-PET for differentiating recurrent brain tumor from radiation necrosis: radiomics approach with random forest classifier. Sci Rep 2019; 9:15666. [PMID: 31666650 PMCID: PMC6821731 DOI: 10.1038/s41598-019-52279-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
Differentiating recurrent brain tumor from radiation necrosis is often difficult. This study aims to investigate the efficacy of 11C-methionine (MET)-PET radiomics for distinguishing recurrent brain tumor from radiation necrosis, as compared with conventional tumor-to-normal cortex (T/N) ratio evaluation. We enrolled 41 patients with metastatic brain tumor or glioma treated using radiation therapy who underwent MET-PET. The area with a standardized uptake value > 1.3 times that of the normal brain cortex was contoured. Forty-two PET features were extracted and used in a random forest classifier and the diagnostic performance was evaluated using a 10-fold cross-validation scheme. Gini index was measured to identify relevant PET parameters for classification. The reference standard was surgical histopathological analysis or more than 6 months of follow-up with MRI. Forty-four lesions were used for the analysis. Thirty-three and 11 lesions were confirmed as recurrent brain tumor and radiation necrosis, respectively. Radiomics and T/N ratio evaluation showed sensitivities of 90.1% and 60.6%, and specificities of 93.9% and 72.7% with areas under the curve of 0.98 and 0.73, respectively. Gray level co-occurrence matrix dissimilarity was the most pertinent feature for diagnosis. MET-PET radiomics yielded excellent outcome for differentiating recurrent brain tumor from radiation necrosis, which outperformed T/N ratio evaluation.
Collapse
Affiliation(s)
- Masatoshi Hotta
- Department of Radiology, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Ryogo Minamimoto
- Department of Radiology, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara city, Tochigi, 324-850, Japan
| |
Collapse
|
26
|
Yang Y, He MZ, Li T, Yang X. MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis. Neurosurg Rev 2019; 42:185-195. [PMID: 28918564 PMCID: PMC6503074 DOI: 10.1007/s10143-017-0906-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022]
Abstract
Based on studies focusing on positron emission tomography (PET)-computed tomography (CT) combined with magnetic resonance imaging (MRI) in the diagnosis of glioma, we conducted a systematic review and meta-analysis evaluating the pros and cons and the accuracy of different examinations. PubMed and Cochrane Library were searched. The search was conducted until April 2017. Two reviewers independently conducted the literature search according to the criteria set initially. Based on the exclusion criteria, 15 articles are included in this study. Of all studies that used MRI examination, there are five involving 18F-fluorodeoxyglucose-PET, five involving 11C-methionine-PET, five involving 18F-fluoro-ethyl-tyrosine-PET, and three involving 18F-fluorothymidine-PET. Due to the limitations such as lack of data, small sample size, and unrepresentative studies, we use a non-quantitative methodology. MRI examination can provide the anatomy information of glioma more clearly. PET-CT examinations based on tumor metabolism using different tracers have more advantages in determining the degree of glioma malignancy and boundaries. However, information provided by PET-CT of different tracers is not the same. With respect to the novel hybrid MRI/PET examination equipment proposed in recent years, the combination of MRI and PET-CT can definitively improve the diagnostic accuracy of glioma.
Collapse
Affiliation(s)
- Yihan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Mike Z He
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
27
|
Zhang Q, Gao X, Wei G, Qiu C, Qu H, Zhou X. Prognostic Value of MTV, SUVmax and the T/N Ratio of PET/CT in Patients with Glioma: A Systematic Review and Meta-Analysis. J Cancer 2019; 10:1707-1716. [PMID: 31205526 PMCID: PMC6548003 DOI: 10.7150/jca.28605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
Abstract
Background: In the past decade, positron emission tomography/computed tomography (PET/CT) has become an important imaging tool for clinical assessment of tumor patients. Our meta-analysis aimed to compare the predictive value of PET/CT parameters regard to overall survival (OS) and progression-free survival (PFS) outcomes in glioma. Methods: Relevant articles were systematically searched in PMC, PubMed, EMBASE and WEB of science. Studies involving the prognostic roles of PET/CT parameters with OS and PFS in glioma patients were evaluated. The impact of metabolic tumor volume (MTV), maximal standard uptake value (SUVmax), and the ratio of uptake in tumor to normal (T/N ratio) on survival was measured by calculating combined hazard ratios (HRs) and 95% confidence intervals (CIs). Results: A total of 32 articles with 1715 patients were included. The combined HRs of higher MTV, higher SUVmax and higher T/N ratio for OS were 1.14 (95% CI: 0.98-1.32, P heterogeneity<0.001), 1.69 (95% CI: 1.18-2.41, P heterogeneity<0.001) and 1.68 (95% CI: 1.40-2.01, P heterogeneity< 0.001), respectively. Regarding PFS, the combined HRs were 1.04 (95% CI: 0.97-1.11, P heterogeneity=0.002) with higher MTV, 1.45 (95% CI: 1.11-1.90, P heterogeneity<0.001) with higher SUVmax and 2.07 (95% CI: 1.45-2.95, P heterogeneity<0.001) with higher T/N ratio. Results remained similar in the sub-group analyses. Conclusion: PET/CT parameters T/N ratio may be a significant prognostic factor in patients with glioma. Evidence of SUVmax and MTV needed more large-scale studies performed to validate. PET/CT scan could be a promising technique to provide prognostic information for these patients.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, Xinghua People's Hospital, Xinghua 225700, Jiangsu, P.R. China
| | - Xian Gao
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guohua Wei
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Cheng Qiu
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, P.R. China
| | - Hongyi Qu
- Department of Neurosurgery, Xinghua People's Hospital, Xinghua 225700, Jiangsu, P.R. China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
28
|
Abstract
Methionine (MET) dependence is a cancer-specific metabolic abnormality that is due to MET overuse for aberrant transmethylation reactions. [11C]-MET is very useful for positron-emission tomography (PET) due to MET overuse in malignant tumors. Many benefits of MET-PET have been demonstrated. MET-PET can differentiate recurrent glioma and necrosis. [11C]-MET-PET can also predict prognosis in gliomas better than [18F]-FDG PET. [11C]-MET-PET is better than MRI for predicting survival in low-grade glioma (LGG). MET-PET has greater specificity for detecting residual tumor after surgery than MRI.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA. .,Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
29
|
Modified fractal analysis of methionine positron emission tomography images for predicting prognosis in newly diagnosed patients with glioma. Nucl Med Commun 2018; 39:1165-1173. [PMID: 30247386 DOI: 10.1097/mnm.0000000000000917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess intratumoural metabolic heterogeneity using modified fractal analysis and to determine its prognostic significance in patients with glioma. PATIENTS AND METHODS A total of 57 patients with newly diagnosed glioma who underwent methionine PET-computed tomography between August 2012 and January 2017 were enrolled. The requirement for informed consent was waived for this retrospective study. Tumour-to-normal tissue ratio, metabolic tumour volume, total lesion methionine uptake and modified fractal dimension (m-FD) were calculated for each tumour using methionine PET-computed tomography. Associations between these indices and tumour grade and overall survival were analysed. RESULTS Overall, eight patients had grade II, 20 had grade III and 29 had grade IV tumours. The tumour-to-normal tissue ratios of grade III and grade IV tumours were significantly greater than that of grade II tumours. The metabolic tumour volume and total lesion methionine uptake of grade III tumours were significantly greater than those of grade II and grade IV tumours. The m-FD of grade IV tumours was significantly greater than those of grade II and grade III tumours. A total of 47 patients were followed up, and their prognoses were evaluated. Only the m-FD was significantly associated with a poor prognosis (P<0.05). Multivariate analyses identified age (>58 years) (hazard ratio: 5.73; 95.0% confidence interval: 1.4-29.9; P=0.015) and the m-FD (>0.87) (hazard ratio: 4.80; 95.0% confidence interval: 1.12-32.9; P=0.033) as independent prognostic factors for overall survival. CONCLUSION Intratumoural metabolic heterogeneity is a useful imaging biomarker in patients with glioma.
Collapse
|
30
|
Kim YI, Kim Y, Lee JY, Jang SJ. Prognostic Value of the Metabolic and Volumetric Parameters of 11C-Methionine Positron-Emission Tomography for Gliomas: A Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol 2018; 39:1629-1634. [PMID: 29954817 DOI: 10.3174/ajnr.a5707] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/29/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Several studies have demonstrated that 11C-methionine positron-emission tomography provides information on prognosis. PURPOSE We performed a systematic review and meta-analysis of the prognostic value of the metabolic and volumetric parameters of 11C-methionine-PET for gliomas. DATA SOURCES A systematic search was performed using the following combination of keywords: "methionine," "PET," "glioma," and "prognosis." STUDY SELECTION The inclusion criteria were the use of 11C-methionine-PET as an imaging tool, studies limited to gliomas, studies including metabolic parameters (tumor-to-normal ratio) and/or volumetric parameters (metabolic tumor volume), and studies reporting survival data. The electronic search first identified 181 records, and 14 studies were selected. DATA ANALYSIS Event-free survival and overall survival were the outcome measures of interest. The effect of the tumor-to-normal ratio and metabolic tumor volume on survival was determined by the effect size of the hazard ratio. Hazard ratios were extracted directly from each study when provided or determined by analyzing the Kaplan-Meier curves. DATA SYNTHESIS The combined hazard ratios of the tumor-to-normal ratio for event-free survival was 1.74 with no significance and that of the tumor-to-normal ratio for overall survival was 2.02 with significance. The combined hazard ratio of the metabolic tumor volume for event-free survival was 2.72 with significance and that of the metabolic tumor volume for overall survival was 3.50 with significance. LIMITATIONS The studies selected were all retrospective, and there were only 4 studies involving the metabolic tumor volume. CONCLUSIONS The present meta-analysis of 11C-methionine-PET suggests that the tumor-to-normal ratio for overall survival and the metabolic tumor volume for event-free survival and overall survival are significant prognostic factors for patients with gliomas.
Collapse
Affiliation(s)
- Y-I Kim
- From the Department of Nuclear Medicine (Y.-i.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine (Y.-i.K., J.Y.L., S.J.J.), CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Y Kim
- Veterans Health Service Medical Center (Y.K.), Seoul, Republic of Korea
| | - J Y Lee
- Department of Nuclear Medicine (Y.-i.K., J.Y.L., S.J.J.), CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - S J Jang
- Department of Nuclear Medicine (Y.-i.K., J.Y.L., S.J.J.), CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
31
|
Differentiation of Recurrent/Residual Glioma From Radiation Necrosis Using Semi Quantitative 99mTc MDM (Bis-Methionine-DTPA) Brain SPECT/CT and Dynamic Susceptibility Contrast-Enhanced MR Perfusion. Clin Nucl Med 2018; 43:e74-e81. [PMID: 29356734 DOI: 10.1097/rlu.0000000000001943] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Poetsch N, Woehrer A, Gesperger J, Furtner J, Haug AR, Wilhelm D, Widhalm G, Karanikas G, Weber M, Rausch I, Mitterhauser M, Wadsak W, Hacker M, Preusser M, Traub-Weidinger T. Visual and semiquantitative 11C-methionine PET: an independent prognostic factor for survival of newly diagnosed and treatment-naïve gliomas. Neuro Oncol 2018; 20:411-419. [PMID: 29016947 PMCID: PMC5817953 DOI: 10.1093/neuonc/nox177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Few data exist regarding the prognostic value of L-[S-methyl-11C]methionine (MET) PET for treatment-naïve gliomas. Methods A total of 160 glioma patients (89 men, 71 women; mean age: 45, range 18-84 y) underwent a MET PET prior to any therapy. The PET scans were evaluated visually and semiquantitatively by tumor-to-background (T/N) ratio thresholds chosen by analysis of receiver operating characteristics. Additionally, isocitrate dehydrogenase 1-R132H (IDH1-R132H) immunohistochemistry was performed. Survival analysis was done using Kaplan-Meier estimates and the Cox proportional hazards model. Results Significantly shorter mean survival times (7.2 vs 8.6 y; P = 0.024) were seen in patients with amino acid avid gliomas (n = 137) compared with visually negative tumors (n = 33) in MET PET. T/N ratio thresholds of 2.1 and 3.5 were significantly associated with survival (10.3 vs 7 vs 4.3 y; P < 0.001). Mean survival differed significantly using the median T/N ratio of 2.4 as cutoff, independent of histopathology (P < 0.01; mean survival: 10.2 ± 0.8 y vs 5.5 ± 0.6 y). In the subgroup of 142 glioma patients characterized by IDH1-R132H status, METT/N ratio demonstrated a significant prognostic impact in IDH1-R132H wildtype astrocytomas and glioblastoma (P = 0.001). Additionally, multivariate testing revealed semiquantitative MET PET as an independent prognostic parameter for treatment-naïve glioma patients without (P = 0.031) and with IDH1-R132H characterization of gliomas (P = 0.024; odds ratio 1.57). Conclusion This retrospective analysis demonstrates the value of MET PET as a prognostic parameter on survival in treatment-naïve glioma patients.
Collapse
Affiliation(s)
- Nina Poetsch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Johanna Gesperger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Dorothee Wilhelm
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Georgios Karanikas
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute of Applied Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Jung JH, Ahn BC. Current Radiopharmaceuticals for Positron Emission Tomography of Brain Tumors. Brain Tumor Res Treat 2018; 6:47-53. [PMID: 30381916 PMCID: PMC6212689 DOI: 10.14791/btrt.2018.6.e13] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
Brain tumors represent a diverse spectrum of histology, biology, prognosis, and treatment options. Although MRI remains the gold standard for morphological tumor characterization, positron emission tomography (PET) can play a critical role in evaluating disease status. This article focuses on the use of PET with radiolabeled glucose and amino acid analogs to aid in the diagnosis of tumors and differentiate between recurrent tumors and radiation necrosis. The most widely used tracer is ¹⁸F-fluorodeoxyglucose (FDG). Although the intensity of FDG uptake is clearly associated with tumor grade, the exact role of FDG PET imaging remains debatable. Additionally, high uptake of FDG in normal grey matter limits its use in some low-grade tumors that may not be visualized. Because of their potential to overcome the limitation of FDG PET of brain tumors, ¹¹C-methionine and ¹⁸F-3,4-dihydroxyphenylalanine (FDOPA) have been proposed. Low accumulation of amino acid tracers in normal brains allows the detection of low-grade gliomas and facilitates more precise tumor delineation. These amino acid tracers have higher sensitivity and specificity for detecting brain tumors and differentiating recurrent tumors from post-therapeutic changes. FDG and amino acid tracers may be complementary, and both may be required for assessment of an individual patient. Additional tracers for brain tumor imaging are currently under development. Combinations of different tracers might provide more in-depth information about tumor characteristics, and current limitations may thus be overcome in the near future. PET with various tracers including FDG, ¹¹C-methionine, and FDOPA has improved the management of patients with brain tumors. To evaluate the exact value of PET, however, additional prospective large sample studies are needed.
Collapse
Affiliation(s)
- Ji Hoon Jung
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Byeong Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea.
| |
Collapse
|
34
|
Komatsu Y, Nishijima KI, Oomagari S, Kanai Y, Naka S, Higashikawa K, Ebita Y, Shiga T, Hatazawa J, Tamaki N, Kuge Y. Measurement of Iodine-Derived Contamination in L-[ 11C]Methionine Injection. ACTA ACUST UNITED AC 2018. [DOI: 10.3769/radioisotopes.67.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Yukiko Komatsu
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University
| | - Ken-ichi Nishijima
- Central Institute of Isotope Science, Hokkaido University
- Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University
| | | | - Yasukazu Kanai
- Department of Molecular Imaging in Medicine, Graduate School of Medicine, Osaka University
| | - Sadahiro Naka
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University
- Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University
| | - Yoko Ebita
- Central Institute of Isotope Science, Hokkaido University
| | - Tohru Shiga
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University
- Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University
| |
Collapse
|
35
|
Papp L, Pötsch N, Grahovac M, Schmidbauer V, Woehrer A, Preusser M, Mitterhauser M, Kiesel B, Wadsak W, Beyer T, Hacker M, Traub-Weidinger T. Glioma Survival Prediction with Combined Analysis of In Vivo 11C-MET PET Features, Ex Vivo Features, and Patient Features by Supervised Machine Learning. J Nucl Med 2017; 59:892-899. [DOI: 10.2967/jnumed.117.202267] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/31/2017] [Indexed: 01/03/2023] Open
|
36
|
Bosnyák E, Michelhaugh SK, Klinger NV, Kamson DO, Barger GR, Mittal S, Juhász C. Prognostic Molecular and Imaging Biomarkers in Primary Glioblastoma. Clin Nucl Med 2017; 42:341-347. [PMID: 28195901 DOI: 10.1097/rlu.0000000000001577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Several molecular glioma markers (including isocitrate dehydrogenase 1 [IDH1] mutation, amplification of the epidermal growth factor receptor [EGFR], and methylation of the O6-methylguanine-DNA methyltransferase [MGMT] promoter) have been associated with glioblastoma survival. In this study, we examined the association between tumoral amino acid uptake, molecular markers, and overall survival in patients with IDH1 wild-type (primary) glioblastoma. PATIENTS AND METHODS Twenty-one patients with newly diagnosed IDH1 wild-type glioblastomas underwent presurgical MRI and PET scanning with alpha[C-11]-L-methyl-tryptophan (AMT). MRI characteristics (T2- and T1-contrast volume), tumoral tryptophan uptake, PET-based metabolic tumor volume, and kinetic variables were correlated with prognostic molecular markers (EGFR and MGMT) and overall survival. RESULTS EGFR amplification was associated with lower T1-contrast volume (P = 0.04) as well as lower T1-contrast/T2 volume (P = 0.04) and T1-contrast/PET volume ratios (P = 0.02). Tumors with MGMT promoter methylation showed lower metabolic volume (P = 0.045) and lower tumor/cortex AMT unidirectional uptake ratios than those with unmethylated MGMT promoter (P = 0.009). While neither EGFR amplification nor MGMT promoter methylation was significantly associated with survival, high AMT tumor/cortex uptake ratios on PET were strongly prognostic for longer survival (hazards ratio, 30; P = 0.002). Estimated mean overall survival was 26 months in patients with high versus 8 months in those with low tumoral AMT uptake ratios. CONCLUSIONS The results demonstrate specific MRI and amino acid PET imaging characteristics associated with EGFR amplification and MGMT promoter methylation in patients with primary glioblastoma. High tryptophan uptake on PET may identify a subgroup with prolonged survival.
Collapse
Affiliation(s)
- Edit Bosnyák
- From the Department of *Pediatrics, Wayne State University, Detroit; †PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit; Departments of ‡Neurosurgery, and §Neurology, Wayne State University, Detroit; ∥Karmanos Cancer Institute, Detroit; and ¶Deparment of Oncology, Wayne State University, Detroit, Michigan
| | | | | | | | | | | | | |
Collapse
|
37
|
Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study. Eur J Nucl Med Mol Imaging 2017; 44:1285-1295. [DOI: 10.1007/s00259-017-3661-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
|
38
|
Ferda J, Ferdová E, Hes O, Mraček J, Kreuzberg B, Baxa J. PET/MRI: Multiparametric imaging of brain tumors. Eur J Radiol 2017; 94:A14-A25. [PMID: 28283219 DOI: 10.1016/j.ejrad.2017.02.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 12/01/2022]
Abstract
A combination of morphological imaging of the brain with microstructural and functional imaging provides a comprehensive overview of the properties of individual tissues. While diffusion weighted imaging provides information about tissue cellularity, spectroscopic imaging allows us to evaluate the integrity of neurons and possible anaerobic glycolysis during tumor hypoxia, in addition to the presence of accelerated synthesis or degradation of cellular membranes; on the other hand, PET metabolic imaging is used to evaluate major metabolic pathways, determining the overall extent of the tumor (18F-FET, 18F-FDOPA, 18F-FCH) or the degree of differentiation (18F-FDG, 18F-FLT, 18F-FDOPA and 18F-FET). Multi-parameter analysis of tissue characteristics and determination of the phenotype of the tumor tissue is a natural advantage of PET/MRI scanning. The disadvantages are higher cost and limited availability in all centers with neuro-oncology surgery. PET/MRI scanning of brain tumors is one of the most promising indications since the earliest experiments with integrated PET/MRI imaging systems, and along with hybrid imaging of neurodegenerative diseases, represent a new direction in the development of neuroradiology on the path towards comprehensive imaging at the molecular level.
Collapse
Affiliation(s)
- Jiří Ferda
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| | - Eva Ferdová
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| | - Ondřej Hes
- Sikl's Institute of Pathological Anatomy, University Hospital Plzen, Alej Svobody 80;304 60 Plzeň, Czech Republic.
| | - Jan Mraček
- Clinic of the Neurosurgery, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| | - Boris Kreuzberg
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| | - Jan Baxa
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| |
Collapse
|
39
|
Deuschl C, Goericke S, Grueneisen J, Sawicki LM, Goebel J, El Hindy N, Wrede K, Binse I, Poeppel T, Quick H, Forsting M, Hense J, Umutlu L, Schlamann M. Simultaneous 11C-Methionine Positron Emission Tomography/Magnetic Resonance Imaging of Suspected Primary Brain Tumors. PLoS One 2016; 11:e0167596. [PMID: 27907162 PMCID: PMC5132315 DOI: 10.1371/journal.pone.0167596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022] Open
Abstract
Introduction The objective of this study was to assess the diagnostic value of integrated 11C- methionine PET/MRI for suspected primary brain tumors, in comparison to MRI alone. Material and Methods Forty-eight consecutive patients with suspected primary brain tumor were prospectively enrolled for an integrated 11C-methionine PET/MRI. Two neuro-radiologists separately evaluated the MRI alone and the integrated PET/MRI data sets regarding most likely diagnosis and diagnostic confidence on a 5-point scale. Reference standard was histopathology or follow-up imaging. Results Fifty-one suspicious lesions were detected: 16 high-grade glioma and 25 low-grade glioma. Ten non-malignant cerebral lesions were described by the reference standard. MRI alone and integrated PET/MRI each correctly classified 42 of the 51 lesions (82.4%) as neoplastic lesions (WHO grade II, III and IV) or non-malignant lesions (infectious and neoplastic lesions). Diagnostic confidence for all lesions, low-grade astrocytoma and high-grade astrocytoma (3.7 vs. 4.2, 3,1 vs. 3.8, 4.0 vs. 4,7) were significantly (p < 0.05) better with integrated PET/MRI than in MRI alone. Conclusions The present study demonstrates the high potential of integrated 11C-methionine-PET/MRI for the assessment of suspected primary brain tumors. Although integrated methionine PET/MRI does not lead to an improvement of correct diagnoses, diagnostic confidence is significantly improved.
Collapse
Affiliation(s)
- Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Sophia Goericke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Johannes Grueneisen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Lino Morris Sawicki
- Institute of Diagnostic and Interventional Radiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Juliane Goebel
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Nicolai El Hindy
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - Karsten Wrede
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - Ina Binse
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Thorsten Poeppel
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Harald Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Joerg Hense
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Marc Schlamann
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Department of Neuroradiology, University Hospital Giessen, Gießen, Germany
| |
Collapse
|
40
|
Toyonaga T, Yamaguchi S, Hirata K, Kobayashi K, Manabe O, Watanabe S, Terasaka S, Kobayashi H, Hattori N, Shiga T, Kuge Y, Tanaka S, Ito YM, Tamaki N. Hypoxic glucose metabolism in glioblastoma as a potential prognostic factor. Eur J Nucl Med Mol Imaging 2016; 44:611-619. [PMID: 27752745 DOI: 10.1007/s00259-016-3541-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/29/2016] [Indexed: 02/05/2023]
Abstract
PURPOSE Metabolic activity and hypoxia are both important factors characterizing tumor aggressiveness. Here, we used F-18 fluoromisonidazole (FMISO) and F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) to define metabolically active hypoxic volume, and investigate its clinical significance in relation to progression free survival (PFS) and overall survival (OS) in glioblastoma patients. EXPERIMENTAL DESIGN Glioblastoma patients (n = 32) underwent FMISO PET, FDG PET, and magnetic resonance imaging (MRI) before surgical intervention. FDG and FMISO PET images were coregistered with gadolinium-enhanced T1-weighted MR images. Volume of interest (VOI) of gross tumor volume (GTV) was manually created to enclose the entire gadolinium-positive areas. The FMISO tumor-to-normal region ratio (TNR) and FDG TNR were calculated in a voxel-by-voxel manner. For calculating TNR, standardized uptake value (SUV) was divided by averaged SUV of normal references. Contralateral frontal and parietal cortices were used as the reference region for FDG, whereas the cerebellar cortex was used as the reference region for FMISO. FDG-positive was defined as the FDG TNR ≥1.0, and FMISO-positive was defined as FMISO TNR ≥1.3. Hypoxia volume (HV) was defined as the volume of FMISO-positive and metabolic tumor volume in hypoxia (hMTV) was the volume of FMISO/FDG double-positive. The total lesion glycolysis in hypoxia (hTLG) was hMTV × FDG SUVmean. The extent of resection (EOR) involving cytoreduction surgery was volumetric change based on planimetry methods using MRI. These factors were tested for correlation with patient prognosis. RESULTS All tumor lesions were FMISO-positive and FDG-positive. Univariate analysis indicated that hMTV, hTLG, and EOR were significantly correlated with PFS (p = 0.007, p = 0.04, and p = 0.01, respectively) and that hMTV, hTLG, and EOR were also significantly correlated with OS (p = 0.0028, p = 0.037, and p = 0.014, respectively). In contrast, none of FDG TNR, FMISO TNR, GTV, HV, patients' age, or Karnofsky performance scale (KPS) was significantly correlated with PSF or OS. The hMTV and hTLG were found to be independent factors affecting PFS and OS on multivariate analysis. CONCLUSIONS We introduced hMTV and hTLG using FDG and FMISO PET to define metabolically active hypoxic volume. Univariate and multivariate analyses demonstrated that both hMTV and hTLG are significant predictors for PFS and OS in glioblastoma patients.
Collapse
Affiliation(s)
- Takuya Toyonaga
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shigeru Yamaguchi
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.,Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Kentaro Kobayashi
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Osamu Manabe
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shiro Watanabe
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shunsuke Terasaka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroyuki Kobayashi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoya Hattori
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Tohru Shiga
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoichi M Ito
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
41
|
Abstract
A previous review published in 2012 demonstrated the role of clinical PET for diagnosis and management of brain tumors using mainly FDG, amino acid tracers, and 18F-fluorothymidine. This review provides an update on clinical PET studies, most of which are motivated by prediction of prognosis and planning and monitoring of therapy in gliomas. For FDG, there has been additional evidence supporting late scanning, and combination with 13N ammonia has yielded some promising results. Large neutral amino acid tracers have found widespread applications mostly based on 18F-labeled compounds fluoroethyltyrosine and fluorodopa for targeting biopsies, therapy planning and monitoring, and as outcome markers in clinical trials. 11C-alpha-methyltryptophan (AMT) has been proposed as an alternative to 11C-methionine, and there may also be a role for cyclic amino acid tracers. 18F-fluorothymidine has shown strengths for tumor grading and as an outcome marker. Studies using 18F-fluorocholine (FCH) and 68Ga-labeled compounds are promising but have not yet clearly defined their role. Studies on radiotherapy planning have explored the use of large neutral amino acid tracers to improve the delineation of tumor volume for irradiation and the use of hypoxia markers, in particular 18F-fluoromisonidazole. Many studies employed the combination of PET with advanced multimodal MR imaging methods, mostly demonstrating complementarity and some potential benefits of hybrid PET/MR.
Collapse
Affiliation(s)
- Karl Herholz
- The University of Manchester, Division of Neuroscience and Experimental Psychology Wolfson Molecular Imaging Centre, Manchester, England, United Kingdom.
| |
Collapse
|
42
|
Miyake K, Ogawa D, Okada M, Hatakeyama T, Tamiya T. Usefulness of positron emission tomographic studies for gliomas. Neurol Med Chir (Tokyo) 2016; 56:396-408. [PMID: 27250577 PMCID: PMC4945598 DOI: 10.2176/nmc.ra.2015-0305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Non-invasive positron emission tomography (PET) enables the measurement of metabolic and molecular processes with high sensitivity. PET plays a significant role in the diagnosis, prognosis, and treatment of brain tumors and predominantly detects brain tumors by detecting their metabolic alterations, including energy metabolism, amino acids, nucleic acids, and hypoxia. Glucose metabolic tracers are related to tumor cell energy and exhibit good sensitivity but poor specificity for malignant tumors. Amino acid metabolic tracers provide a better delineation of tumors and cellular proliferation. Nucleic acid metabolic tracers have a high sensitivity for malignant tumors and cellular proliferation. Hypoxic metabolism tracers are useful for detecting resistance to radiotherapy and chemotherapy. Therefore, PET imaging techniques are useful for detecting biopsy-targeting points, deciding on tumor resection, radiotherapy planning, monitoring therapy, and distinguishing brain tumor recurrence or progression from post-radiotherapy effects. However, it is not possible to use only one PET tracer to make all clinical decisions because each tracer has both advantages and disadvantages. This study focuses on the different kinds of PET tracers and summarizes their recent applications in patients with gliomas. Combinational uses of PET tracers are expected to contribute to differential diagnosis, prognosis, treatment targeting, and monitoring therapy.
Collapse
Affiliation(s)
- Keisuke Miyake
- Department of Neurological Surgery, Kagawa University Faculty of Medicine
| | | | | | | | | |
Collapse
|
43
|
Kim ES, Satter M, Reed M, Fadell R, Kardan A. A novel, integrated PET-guided MRS technique resulting in more accurate initial diagnosis of high-grade glioma. Neuroradiol J 2016; 29:193-7. [PMID: 27122050 DOI: 10.1177/1971400916639962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal malignant glioma in adults. Currently, the modality of choice for diagnosing brain tumor is high-resolution magnetic resonance imaging (MRI) with contrast, which provides anatomic detail and localization. Studies have demonstrated, however, that MRI may have limited utility in delineating the full tumor extent precisely. Studies suggest that MR spectroscopy (MRS) can also be used to distinguish high-grade from low-grade gliomas. However, due to operator dependent variables and the heterogeneous nature of gliomas, the potential for error in diagnostic accuracy with MRS is a concern. Positron emission tomography (PET) imaging with (11)C-methionine (MET) and (18)F-fluorodeoxyglucose (FDG) has been shown to add additional information with respect to tumor grade, extent, and prognosis based on the premise of biochemical changes preceding anatomic changes. Combined PET/MRS is a technique that integrates information from PET in guiding the location for the most accurate metabolic characterization of a lesion via MRS. We describe a case of glioblastoma multiforme in which MRS was initially non-diagnostic for malignancy, but when MRS was repeated with PET guidance, demonstrated elevated choline/N-acetylaspartate (Cho/NAA) ratio in the right parietal mass consistent with a high-grade malignancy. Stereotactic biopsy, followed by PET image-guided resection, confirmed the diagnosis of grade IV GBM. To our knowledge, this is the first reported case of an integrated PET/MRS technique for the voxel placement of MRS. Our findings suggest that integrated PET/MRS may potentially improve diagnostic accuracy in high-grade gliomas.
Collapse
Affiliation(s)
- Ellen S Kim
- Department of Internal Medicine, Kettering Medical Center, USA
| | - Martin Satter
- Department of Nuclear Medicine/PET, Kettering Medical Center, USA
| | - Marilyn Reed
- Department of Neuro Sciences Service Line, Kettering Medical Center, USA
| | - Ronald Fadell
- Department of Radiology, Kettering Medical Center, USA
| | - Arash Kardan
- Department of Nuclear Medicine/PET, Kettering Medical Center, USA Boonshoft School of Medicine, Wright State University, USA
| |
Collapse
|
44
|
Static FET-PET and MR Imaging in Anaplastic Gliomas (WHO III). World Neurosurg 2016; 91:524-531.e1. [PMID: 26947726 DOI: 10.1016/j.wneu.2016.02.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE O-(2-[18F]-fluoroethyl)-L-tyrosine-positron emission tomography (FET-PET) imaging is an additional tool for tumor grading and surgery planning. Up to now, not much is known about FET-PET imaging in anaplastic gliomas. Our objective was to assess the FET uptake in anaplastic gliomas, compared with magnetic resonance imaging (MRI), histopathologic markers, and its prognostic value. PATIENTS AND METHODS Forty-six patients (27 males/19 females) with an anaplastic glioma (WHO III) who received MRI and FET-PET imaging before surgery were retrospectively analyzed. Tumor volume was calculated in MRI and FET-PET imaging using a tumor-to-background ratio (TBR), and maximum FET uptake (TBRmax) was calculated. Overall survival (OS) and histopathologic markers (isocitrate-dehydrogenase 1/2-mutation, oligodendrial differentiation, and Ki67 proliferation index) were assessed. Univariate and multivariate analysis was performed for OS. RESULTS In univariate analysis a significant correlation of TBRmax to OS was observed (P = 0.031). Tumor volume in FET-PET imaging (TBR > 2.0) (P = 0.028) showed a higher correlation to OS than the volume of the contrast-enhancing tumor part (P = 0.031). The highest correlation was observed for intersection of volume TBR > 1.3 and the volume of the contrast-enhancing tumor part (P = 0.005); fluid-attenuated inversion recovery volume showed no significant correlation to OS (P = 0.401) in the univariate analysis. Anaplastic glioma with oligodendrial differentiation showed significantly higher TBRmax values (P = 0.029), while no significant difference was observed for isocitrate hydrogenase 1/2-mutation (P = 0.752). CONCLUSION Static FET-PET provides significant prognostic information in anaplastic gliomas, which adds to the value of MRI, supporting the use of both modalities preoperatively to assess individual risks and estimate prognosis. Definition of the histopathologic subtype using static FET-PET remains challenging.
Collapse
|
45
|
Toyonaga T, Hirata K, Yamaguchi S, Hatanaka KC, Yuzawa S, Manabe O, Kobayashi K, Watanabe S, Shiga T, Terasaka S, Kobayashi H, Kuge Y, Tamaki N. (18)F-fluoromisonidazole positron emission tomography can predict pathological necrosis of brain tumors. Eur J Nucl Med Mol Imaging 2016; 43:1469-76. [PMID: 26841941 DOI: 10.1007/s00259-016-3320-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/15/2016] [Indexed: 01/09/2023]
Abstract
PURPOSE Tumor necrosis is one of the indicators of tumor aggressiveness. (18)F-fluoromisonidazole (FMISO) is the most widely used positron emission tomography (PET) tracer to evaluate severe hypoxia in vivo. Because severe hypoxia causes necrosis, we hypothesized that intratumoral necrosis can be detected by FMISO PET in brain tumors regardless of their histopathology. We applied FMISO PET to various types of brain tumors before tumor resection and evaluated the correlation between histopathological necrosis and FMISO uptake. METHODS This study included 59 brain tumor patients who underwent FMISO PET/computed tomography before any treatments. According to the pathological diagnosis, the brain tumors were divided into three groups: astrocytomas (group 1), neuroepithelial tumors except for astrocytomas (group 2), and others (group 3). Two experienced neuropathologists evaluated the presence of necrosis in consensus. FMISO uptake in the tumor was evaluated visually and semi-quantitatively using the tumor-to-normal cerebellum ratio (TNR). RESULTS In visual analyses, 26/27 cases in the FMISO-positive group presented with necrosis, whereas 28/32 cases in the FMISO-negative group did not show necrosis. Mean TNRs with and without necrosis were 3.49 ± 0.97 and 1.43 ± 0.42 (p < 0.00001) in group 1, 2.91 ± 0.83 and 1.44 ± 0.20 (p < 0.005) in group 2, and 2.63 ± 1.16 and 1.35 ± 0.23 (p < 0.05) in group 3, respectively. Using a cut-off value of TNR = 1.67, which was calculated by normal reference regions of interest, we could predict necrosis with sensitivity, specificity, and accuracy of 96.7, 93.1, and 94.9 %, respectively. CONCLUSIONS FMISO uptake within the lesion indicated the presence of histological micro-necrosis. When we used a TNR of 1.67 as the cut-off value, intratumoral micro-necrosis was sufficiently predictable. Because the presence of necrosis implies a poor prognosis, our results suggest that FMISO PET could provide important information for treatment decisions or surgical strategies of any type of brain tumor.
Collapse
Affiliation(s)
- Takuya Toyonaga
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Shigeru Yamaguchi
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-8638, Japan. .,Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Kanako C Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Sayaka Yuzawa
- Department of Cancer Pathology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Manabe
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Kentaro Kobayashi
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Shiro Watanabe
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Tohru Shiga
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Shunsuke Terasaka
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kobayashi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-8638, Japan
| |
Collapse
|
46
|
Early [18F]FET-PET in Gliomas after Surgical Resection: Comparison with MRI and Histopathology. PLoS One 2015; 10:e0141153. [PMID: 26502297 PMCID: PMC4621037 DOI: 10.1371/journal.pone.0141153] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/03/2015] [Indexed: 11/19/2022] Open
Abstract
Background The precise definition of the post-operative resection status in high-grade gliomas (HGG) is crucial for further management. We aimed to assess the feasibility of assessment of the resection status with early post-operative positron emission tomography (PET) using [18F]O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET). Methods 25 patients with the suspicion of primary HGG were enrolled. All patients underwent pre-operative [18F]FET-PET and magnetic resonance imaging (MRI). Intra-operatively, resection status was assessed using 5-aminolevulinic acid (5-ALA). Imaging was repeated within 72h after neurosurgery. Post-operative [18F]FET-PET was compared with MRI, intra-operative assessment and clinical follow-up. Results [18F]FET-PET, MRI and intra-operative assessment consistently revealed complete resection in 12/25 (48%) patients and incomplete resection in 6/25 cases (24%). In 7 patients, PET revealed discordant findings. One patient was re-resected. 3/7 experienced tumor recurrence, 3/7 died shortly after brain surgery. Conclusion Early assessment of the resection status in HGG with [18F]FET-PET seems to be feasible.
Collapse
|
47
|
Hirata K, Tamaki N. uPAR as a Glioma Imaging Target. J Nucl Med 2015; 57:169-70. [PMID: 26429953 DOI: 10.2967/jnumed.115.166231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Kenji Hirata
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
48
|
Prognostic Value of Metabolic Tumor Volume on (11)C-Methionine PET in Predicting Progression-Free Survival in High-Grade Glioma. Nucl Med Mol Imaging 2015; 49:291-7. [PMID: 26550048 DOI: 10.1007/s13139-015-0362-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/01/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE C-11 methionine (MET) PET is commonly used for diagnosing high-grade glioma (HGG). Recently, volumetric analysis has been widely applied to oncologic PET imaging. In this study, we investigated the prognostic value of metabolic tumor volume (MTV) on MET PET in HGG. METHODS A total of 30 patients with anaplastic astrocytoma (n = 12) and glioblastoma multiforme (n = 18) who underwent MET PET before treatment (surgery followed by chemo-radiotherapy) were retrospectively enrolled. Maximal tumor-to-normal brain ratio (TNRmax, maximum tumor activity divided by mean of normal tissue) and MTV (volume of tumor tissue that shows uptake >1.3-fold of mean uptake in normal tissue) were measured on MET PET. Adult patients were classified into two subgroups according to Radiation Therapy Oncology Group Recursive Partitioning Analysis (RTOG RPA) classification. Prognostic values of TNRmax, MTV and clinicopathologic factors were evaluated with regard to progression-free survival (PFS). RESULTS Median PFS of all patients was 7.9 months (range 1.0-53.8 months). In univariate analysis, MTV (cutoff 35 cm(3)) was a significant prognostic factor for PFS (P = 0.01), whereas TNRmax (cutoff 3.3) and RTOG RPA class were not (P = 0.80 and 0.61, respectively). Treatment of surgical resection exhibited a borderline significance (P = 0.06). In multivariate analysis, MTV was the only independent prognostic factor for PFS (P = 0.03). CONCLUSION MTV on MET PET is a significant and independent prognostic factor for PFS in HGG patients, whereas TNRmax is not. Thus, performing volumetric analysis of MET PET is recommended in HGG for better prognostication.
Collapse
|