1
|
Chang MC, Peng CL, Chen CT, Shih YH, Chen JH, Tai YJ, Chiang YC. Iodine-123 Metaiodobenzylguanidine (I-123 MIBG) in Clinical Applications: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:1563. [PMID: 39770405 PMCID: PMC11676292 DOI: 10.3390/ph17121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/06/2025] Open
Abstract
Iodine-123 metaiodobenzylguanidine (I-123 MIBG) is a crucial radiopharmaceutical widely used in nuclear medicine for its diagnostic capabilities in both cardiology and oncology. This review aims to present a comprehensive evaluation of the clinical applications of I-123 MIBG, focusing on its use in diagnosing and managing various diseases. In cardiology, I-123 MIBG has proven invaluable in assessing cardiac sympathetic innervation, particularly in patients with heart failure, where it provides prognostic information that guides treatment strategies. In oncology, I-123 MIBG is primarily utilized for imaging neuroendocrine tumors, such as neuroblastoma and pheochromocytoma, where it offers high specificity and sensitivity in the detection of adrenergic tissue. Additionally, its role in neurology, specifically in differentiating between Parkinson's disease, dementia, and Lewy body dementia, has become increasingly significant due to its ability to identify postganglionic sympathetic dysfunction. Despite its established clinical utility, the use of I-123 MIBG is not without limitations, including variability in imaging protocols and interpretation challenges. This review will explore these issues and discuss emerging alternatives, while also highlighting areas where I-123 MIBG continues to be a gold standard. By synthesizing the current research, this article aims to provide a clear understanding of the strengths, limitations, and prospects of I-123 MIBG in clinical practice.
Collapse
Affiliation(s)
- Ming-Cheng Chang
- Department of Isotope Research Application, National Atomic Research Institute, Taoyuan 325207, Taiwan; (M.-C.C.); (C.-L.P.); (C.-T.C.); (Y.-H.S.); (J.-H.C.)
| | - Cheng-Liang Peng
- Department of Isotope Research Application, National Atomic Research Institute, Taoyuan 325207, Taiwan; (M.-C.C.); (C.-L.P.); (C.-T.C.); (Y.-H.S.); (J.-H.C.)
| | - Chun-Tang Chen
- Department of Isotope Research Application, National Atomic Research Institute, Taoyuan 325207, Taiwan; (M.-C.C.); (C.-L.P.); (C.-T.C.); (Y.-H.S.); (J.-H.C.)
| | - Ying-Hsia Shih
- Department of Isotope Research Application, National Atomic Research Institute, Taoyuan 325207, Taiwan; (M.-C.C.); (C.-L.P.); (C.-T.C.); (Y.-H.S.); (J.-H.C.)
| | - Jyun-Hong Chen
- Department of Isotope Research Application, National Atomic Research Institute, Taoyuan 325207, Taiwan; (M.-C.C.); (C.-L.P.); (C.-T.C.); (Y.-H.S.); (J.-H.C.)
| | - Yi-Jou Tai
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan
| | - Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 302058, Taiwan
| |
Collapse
|
2
|
Dimitriadis K, Iliakis P, Pyrpyris N, Tatakis F, Fragkoulis C, Mantziaris V, Plaitis A, Beneki E, Tsioufis P, Hering D, Kollias A, Konstantinidis D, Tsioufis K. Renal Denervation in Heart Failure Treatment: Data for a Self-Fulfilling Prophecy. J Clin Med 2024; 13:6656. [PMID: 39597800 PMCID: PMC11594571 DOI: 10.3390/jcm13226656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Renal denervation (RDN), a transcatheter renal sympathetic nerve ablation procedure, is a relatively novel established procedure for the treatment of hypertension, with it being recognized as a third option for hypertension management in the most recent European guidelines, together with pharmacotherapy, for achieving blood pressure targets. Given the relationship between both hypertension and sympathetic overdrive and the development of heart failure (HF), even studies at the dawn of research on RDN explored it as a treatment to overcome diuretic resistance in those patients. As it is now recognized that RDN does not only have organ-specific but also systemic effects, several investigators have aimed to delineate whether renal sympathetic denervation could alter the prognosis, symptoms, and adverse events of HF patients. Data are available in both HF patients with reduced and preserved ejection fraction. As the significance of neuromodulation is gaining grounds in the HF therapeutic arsenal, in this review, we aim to provide a rationale for using RDN in HF and an up-to-date overview of available data in both HF phenotypes, as well as discuss the future of neuromodulatory therapy in HF management.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Panagiotis Iliakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Fotis Tatakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Vasileios Mantziaris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Aristides Plaitis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Panagiotis Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Dagmara Hering
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Anastasios Kollias
- Hypertension Center STRIDE-7, School of Medicine, Third Department of Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, 115 27 Athens, Greece;
| | - Dimitrios Konstantinidis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (P.I.); (N.P.); (F.T.); (C.F.); (V.M.); (A.P.); (E.B.); (P.T.); (D.K.); (K.T.)
| |
Collapse
|
3
|
Yokoyama H, Shishido K, Mizuno S, Yamanaka F, Saito S. Early Effect of Transcatheter Mitral Valve Repair on Cardiac Sympathetic Nerve Activity. STRUCTURAL HEART 2023. [DOI: 10.1016/j.shj.2022.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Elia A, Fossati S. Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Front Physiol 2023; 14:1060666. [PMID: 36798942 PMCID: PMC9926972 DOI: 10.3389/fphys.2023.1060666] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The heart is a functional syncytium controlled by a delicate and sophisticated balance ensured by the tight coordination of its several cell subpopulations. Accordingly, cardiomyocytes together with the surrounding microenvironment participate in the heart tissue homeostasis. In the right atrium, the sinoatrial nodal cells regulate the cardiac impulse propagation through cardiomyocytes, thus ensuring the maintenance of the electric network in the heart tissue. Notably, the central nervous system (CNS) modulates the cardiac rhythm through the two limbs of the autonomic nervous system (ANS): the parasympathetic and sympathetic compartments. The autonomic nervous system exerts non-voluntary effects on different peripheral organs. The main neuromodulator of the Sympathetic Nervous System (SNS) is norepinephrine, while the principal neurotransmitter of the Parasympathetic Nervous System (PNS) is acetylcholine. Through these two main neurohormones, the ANS can gradually regulate cardiac, vascular, visceral, and glandular functions by turning on one of its two branches (adrenergic and/or cholinergic), which exert opposite effects on targeted organs. Besides these neuromodulators, the cardiac nervous system is ruled by specific neuropeptides (neurotrophic factors) that help to preserve innervation homeostasis through the myocardial layers (from epicardium to endocardium). Interestingly, the dysregulation of this neuro-signaling pathway may expose the cardiac tissue to severe disorders of different etiology and nature. Specifically, a maladaptive remodeling of the cardiac nervous system may culminate in a progressive loss of neurotrophins, thus leading to severe myocardial denervation, as observed in different cardiometabolic and neurodegenerative diseases (myocardial infarction, heart failure, Alzheimer's disease). This review analyzes the current knowledge on the pathophysiological processes involved in cardiac nervous system impairment from the perspectives of both cardiac disorders and a widely diffused and devastating neurodegenerative disorder, Alzheimer's disease, proposing a relationship between neurodegeneration, loss of neurotrophic factors, and cardiac nervous system impairment. This overview is conducive to a more comprehensive understanding of the process of cardiac neuro-signaling dysfunction, while bringing to light potential therapeutic scenarios to correct or delay the adverse cardiovascular remodeling, thus improving the cardiac prognosis and quality of life in patients with heart or neurodegenerative disorders.
Collapse
|
5
|
Gargiulo P, Acampa W, Asile G, Abbate V, Nardi E, Marzano F, Assante R, Nappi C, Parlati ALM, Basile C, Dellegrottaglie S, Paolillo S, Cuocolo A, Perrone-Filardi P. 123I-MIBG imaging in heart failure: impact of comorbidities on cardiac sympathetic innervation. Eur J Nucl Med Mol Imaging 2023; 50:813-824. [PMID: 36071220 PMCID: PMC9852124 DOI: 10.1007/s00259-022-05941-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/08/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Heart failure (HF) is a primary cause of morbidity and mortality worldwide, with significant impact on life quality and extensive healthcare costs. Assessment of myocardial sympathetic innervation function plays a central role in prognosis assessment in HF patients. The aim of this review is to summarize the most recent evidence regarding the clinical applications of iodine-123 metaiodobenzylguanidine (123I-MIBG) imaging in patients with HF and related comorbidities. METHODS A comprehensive literature search was conducted on PubMed and Web of Science databases. Articles describing the impact of 123I-MIBG imaging on HF and related comorbidities were considered eligible for the review. RESULTS We collected several data reporting that 123I-MIBG imaging is a safe and non-invasive tool to evaluate dysfunction of cardiac sympathetic neuronal function and to assess risk stratification in HF patients. HF is frequently associated with comorbidities that may affect cardiac adrenergic innervation. Furthermore, HF is frequently associated with comorbidities and chronic conditions, such as diabetes, obesity, kidney disease and others, that may affect cardiac adrenergic innervation. CONCLUSION Comorbidities and chronic conditions lead to more severe impairment of sympathetic nervous system in patients with HF, with a negative impact on disease progression and outcome. Cardiac imaging with 123I-MIBG can be a useful tool to reduce morbidity and prevent adverse events in HF patients.
Collapse
Affiliation(s)
- Paola Gargiulo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Gaetano Asile
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Vincenza Abbate
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Ermanno Nardi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Roberta Assante
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Christian Basile
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Pasquale Perrone-Filardi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy ,Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
6
|
Sex/Gender- and Age-Related Differences in β-Adrenergic Receptor Signaling in Cardiovascular Diseases. J Clin Med 2022; 11:jcm11154280. [PMID: 35893368 PMCID: PMC9330499 DOI: 10.3390/jcm11154280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Sex differences in cardiovascular disease (CVD) are often recognized from experimental and clinical studies examining the prevalence, manifestations, and response to therapies. Compared to age-matched men, women tend to have reduced CV risk and a better prognosis in the premenopausal period. However, with menopause, this risk increases exponentially, surpassing that of men. Although several mechanisms have been provided, including sex hormones, an emerging role in these sex differences has been suggested for β-adrenergic receptor (β-AR) signaling. Importantly, β-ARs are the most important G protein-coupled receptors (GPCRs), expressed in almost all the cell types of the CV system, and involved in physiological and pathophysiological processes. Consistent with their role, for decades, βARs have been considered the first targets for rational drug design to fight CVDs. Of note, β-ARs are seemingly associated with different CV outcomes in females compared with males. In addition, even if there is a critical inverse correlation between β-AR responsiveness and aging, it has been reported that gender is crucially involved in this age-related effect. This review will discuss how β-ARs impact the CV risk and response to anti-CVD therapies, also concerning sex and age. Further, we will explore how estrogens impact β-AR signaling in women.
Collapse
|
7
|
Tamaki S, Yamada T, Watanabe T, Morita T, Kawasaki M, Kikuchi A, Kawai T, Seo M, Nakamura J, Kayama K, Sakamoto D, Ueda K, Kogame T, Tamura Y, Fujita T, Nishigaki K, Fukuda Y, Kokubu Y, Fukunami M. Usefulness of the 2-year iodine-123 metaiodobenzylguanidine-based risk model for post-discharge risk stratification of patients with acute decompensated heart failure. Eur J Nucl Med Mol Imaging 2022; 49:1906-1917. [PMID: 34997293 DOI: 10.1007/s00259-021-05663-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE A four-parameter risk model that included cardiac iodine-123 metaiodobenzylguanidine (MIBG) imaging and readily available clinical parameters was recently developed for prediction of 2-year cardiac mortality risk in patients with chronic heart failure. We sought to validate the ability of this risk model to predict post-discharge clinical outcomes in patients with acute decompensated heart failure (ADHF) and to compare its prognostic value with that of the Acute Decompensated Heart Failure National Registry (ADHERE) and Get With The Guidelines-Heart Failure (GWTG-HF) risk scores. METHODS We studied 407 consecutive patients who were admitted for ADHF and survived to discharge, with definitive 2-year outcomes (death or survival). Cardiac MIBG imaging was performed just before discharge. The 2-year cardiac mortality risk was calculated using four parameters, namely age, left ventricular ejection fraction, New York Heart Association functional class, and cardiac MIBG heart-to-mediastinum ratio on delayed images. Patients were stratified into three groups based on the 2-year cardiac mortality risk: low- (< 4%), intermediate- (4-12%), and high-risk (> 12%) groups. The ADHERE and GWTG-HF risk scores were also calculated. RESULTS There was a significant difference in the incidence of cardiac death among the three groups stratified using the 2-year cardiac mortality risk model (p < 0.0001). The 2-year cardiac mortality risk model had a higher C-statistic (0.732) for the prediction of cardiac mortality than the ADHERE and GWTG-HF risk scores. CONCLUSION The 2-year MIBG-based cardiac mortality risk model is useful for predicting post-discharge clinical outcomes in patients with ADHF. TRIAL REGISTRATION NUMBER UMIN000015246, 25 September 2014.
Collapse
Affiliation(s)
- Shunsuke Tamaki
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan.
| | - Takahisa Yamada
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Tetsuya Watanabe
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Takashi Morita
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Masato Kawasaki
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Atsushi Kikuchi
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Tsutomu Kawai
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Masahiro Seo
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Jun Nakamura
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Kiyomi Kayama
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Daisuke Sakamoto
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Kumpei Ueda
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Takehiro Kogame
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Yuto Tamura
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Takeshi Fujita
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Keisuke Nishigaki
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Yuto Fukuda
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Yuki Kokubu
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Masatake Fukunami
- Division of Cardiology, Osaka General Medical Centre, 3-1-56, Mandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| |
Collapse
|
8
|
Nappi C, Assante R, Zampella E, Gaudieri V, De Simini G, Giordano A, D'Antonio A, Acampa W, Petretta M, Cuocolo A. Relationship between heart rate response and cardiac innervation in patients with suspected or known coronary artery disease. J Nucl Cardiol 2021; 28:2676-2683. [PMID: 32166569 DOI: 10.1007/s12350-020-02091-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Chronotropic response to pharmacological stress test is blunted in patients with autonomic neuropathy. The relationship between heart rate (HR) changes during pharmacological stress test and cardiac autonomic dysfunction has not been fully investigated. We assessed the potential interplay between HR response (HRR) and myocardial innervation in patients with suspected or known coronary artery disease (CAD). METHODS AND RESULTS We studied 71 patients with suspected or known CAD referred to pharmacological stress myocardial perfusion imaging and 123I metaiodobenzylguanidine (123I-MIBG) cardiac scintigraphy. HRR was calculated as the maximum percent change from baseline according to the formula: (peak HR - rest HR)/rest HR × 100. 123I-MIBG heart-to-mediastinum (H/M) ratio was calculated and a late H/M ratio < 1.6 was considered abnormal. HRR progressively decreased with decreasing late H/M ratio (P for trend = 0.02) and a significant correlation between HRR and late H/M ratio (P = 0.03) was observed. The addition of HRR to a model including age, diabetes, known CAD, left ventricular ejection fraction, and stress-induced ischemia added incremental value in predicting an abnormal late H/M ratio, increasing the global chi-square from 8.09 to 13.8 (P = 0.02). CONCLUSIONS The relationship between HRR and cardiac sympathetic innervation in patients with suspected or known CAD confirms a strong interplay between cardiac response to stress tests and cardiac autonomic activation. This finding suggests that HRR may be used as a surrogate for assessing cardiac sympathetic function.
Collapse
Affiliation(s)
- Carmela Nappi
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Giovanni De Simini
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Alessia Giordano
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
- Institute of Biostructure and Bioimaging, National Council of Research, Naples, Italy
| | - Mario Petretta
- Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
9
|
Nitta K, Fukuda Y, Takahari K, Takeda A, Higashihara T, Morita Y, Watanabe N, Ikenaga H, Utsunomiya H, Ishibashi K, Kurisu S, Takahashi S, Awai K, Nakano Y. Factors Influencing Cardiac Sympathetic Nervous Function in Patients With Severe Aortic Stenosis: Assessment by 123I-Metaiodobenzylguanidine Myocardial Scintigraphy. Heart Lung Circ 2021; 31:671-677. [PMID: 34794871 DOI: 10.1016/j.hlc.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/28/2021] [Accepted: 09/12/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Numerous studies have shown that 123I-metaiodobenzylguanidine (MIBG) scintigraphy, an index of cardiac sympathetic nervous (CSN) activity, is useful for predicting prognosis in patients with heart failure. However, the factors influencing the CSN activity of patients with severe aortic stenosis (AS) remain unclear. METHODS We enrolled 91 patients with severe AS who underwent 123I-MIBG scintigraphy, coronary computed tomography (CCT), and transthoracic echocardiography. When CCT angiography (CCTA) showed an obstructive epicardial artery, invasive coronary angiography was performed within 1 week of CCTA. RESULTS There were 21 male and 70 female patients with a mean age of 84±5 years. Eighty-five (85) patients (93%) had hypertension and 13 patients (14%) had diabetes. Two (2) patients (2%) had previous myocardial infarction and eight (9%) had a previous coronary intervention. All patients had severe AS: aortic valve area was 0.63±0.18 cm2 and the mean pressure gradient was 56±19 mmHg. Regarding 123I-MIBG parameters, early heart-to-mediastinum (H/M) ratio was 3.1±0.5, delayed H/M ratio was 2.8±0.6, and the washout rate (WR) was 35%±13%. Multivariable linear regression analysis showed that coronary artery disease (β=-0.30, p=0.002) was an independent predictor of delayed H/M ratio, and that aortic valve area (β=-0.20, p=0.048) was an independent predictor of WR. CONCLUSIONS Our findings suggest that coronary artery disease is an independent predictor of delayed H/M ratio, and aortic valve area is an independent predictor of WR in patients with severe AS.
Collapse
Affiliation(s)
- Kazuhiro Nitta
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukihiro Fukuda
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Kosuke Takahari
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Atsushi Takeda
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tasuku Higashihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuichi Morita
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Noriaki Watanabe
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroki Ikenaga
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroto Utsunomiya
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ken Ishibashi
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Kurisu
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shinya Takahashi
- Department of Cardiovascular Surgery, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
10
|
Elia A, Cannavo A, Gambino G, Cimini M, Ferrara N, Kishore R, Paolocci N, Rengo G. Aging is associated with cardiac autonomic nerve fiber depletion and reduced cardiac and circulating BDNF levels. J Geriatr Cardiol 2021; 18:549-559. [PMID: 34404991 PMCID: PMC8352776 DOI: 10.11909/j.issn.1671-5411.2021.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Aging is a multifactorial process associated with an impairment of autonomic nervous system (ANS) function. Progressive ANS remodeling includes upregulation of expression of circulating catecholamines and depletion of cardiac autonomic nerve fibers, and it is responsible, in part, for the increased susceptibility to cardiac diseases observed in elderly subjects. Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), are involved in synaptogenesis and neurite outgrowth processes, supporting neuronal cell differentiation and maturation. However, whether and how these factors and their downstream signaling are involved in cardiac aging remains unclear. Here, we tested whether, in the aged heart, the overall extent of autonomic fibers is reduced, owing to lower production of trophic factors such as BDNF and NGF. METHODS In vivo, we used young (age: 3 months; n = 10) and old (age: 24 months; n = 11) male Fisher rats, whereas, we used human neuroblastoma (SH-SY5Y) cells in vitro. RESULTS Compared to the young rats, old rats displayed a marked reduction in the overall ANS fiber density, affecting both sympathetic and cholinergic compartments, as indicated by dopamine β-hydroxylase (dβh) and vesicular acetylcholine transporter (VaChT) immunohistochemical staining. In addition, a marked downregulation of GAP-43 and BDNF protein was observed in the left ventricular lysates of old rats compared to those of young rats. Interestingly, we did not find any significant difference in cardiac NGF levels between the young and old groups. To further explore the impact of aging on ANS fibers, we treated SH-SY5Y cells in vitro with serum obtained from young and old rats. Sera from both groups induced a remarkable increase in neuronal sprouting, as evidenced by a crystal violet assay. However, this effect was blunted in cells cultured with old rat serum and was accompanied by a marked reduction in GAP-43 and BDNF protein levels. CONCLUSIONS Our data indicate that physiological aging is associated with an impairment of ANS structure and function and that reduced BDNF levels are responsible, at least in part, for these phenomena.
Collapse
Affiliation(s)
- Andrea Elia
- Department of Translational Medical Sciences, Federico II University of Naples Italy
- Istituti Clinici Scientifici ICS-Maugeri, Telese Terme (BN), Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Federico II University of Naples Italy
| | - Giuseppina Gambino
- Department of Translational Medical Sciences, Federico II University of Naples Italy
| | - Maria Cimini
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples Italy
- Istituti Clinici Scientifici ICS-Maugeri, Telese Terme (BN), Italy
| | - Raj Kishore
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, Baltimore, MD, USA
- Department of Biomedical Sciences, University of Padova, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Federico II University of Naples Italy
- Istituti Clinici Scientifici ICS-Maugeri, Telese Terme (BN), Italy
| |
Collapse
|
11
|
The emerging role of the sympathetic nervous system in skeletal muscle motor innervation and sarcopenia. Ageing Res Rev 2021; 67:101305. [PMID: 33610815 DOI: 10.1016/j.arr.2021.101305] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 02/15/2021] [Indexed: 12/30/2022]
Abstract
Examining neural etiologic factors'role in the decline of neuromuscular function with aging is essential to our understanding of the mechanisms underlying sarcopenia, the age-dependent decline in muscle mass, force and power. Innervation of the skeletal muscle by both motor and sympathetic axons has been established, igniting interest in determining how the sympathetic nervous system (SNS) affect skeletal muscle composition and function throughout the lifetime. Selective expression of the heart and neural crest derivative 2 gene in peripheral SNs increases muscle mass and force regulating skeletal muscle sympathetic and motor innervation; improving acetylcholine receptor stability and NMJ transmission; preventing inflammation and myofibrillar protein degradation; increasing autophagy; and probably enhancing protein synthesis. Elucidating the role of central SNs will help to define the coordinated response of the visceral and neuromuscular system to physiological and pathological challenges across ages. This review discusses the following questions: (1) Does the SNS regulate skeletal muscle motor innervation? (2) Does the SNS regulate presynaptic and postsynaptic neuromuscular junction (NMJ) structure and function? (3) Does sympathetic neuron (SN) regulation of NMJ transmission decline with aging? (4) Does maintenance of SNs attenuate aging sarcopenia? and (5) Do central SN group relays influence sympathetic and motor muscle innervation?
Collapse
|
12
|
Bencivenga L, Komici K, Femminella GD, Paolillo S, Gargiulo P, Formisano R, Assante R, Nappi C, Puzone B, Sepe I, Cittadini A, Vitale DF, Ferrara N, Cuocolo A, Filardi PP, Rengo G. Impact of the number of comorbidities on cardiac sympathetic derangement in patients with reduced ejection fraction heart failure. Eur J Intern Med 2021; 86:86-90. [PMID: 33485737 DOI: 10.1016/j.ejim.2021.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Heart failure (HF) is frequently associated with comorbidities. 123I-metaiodobenzylguanidine (123I-mIBG) imaging constitutes an effective tool to measure cardiac adrenergic innervation and to improve prognostic stratification in HF patients, including the risk of major arrhythmic events. Although comorbidities have been individually associated with reduced cardiac adrenergic innervation, thus suggesting increased arrhythmic risk, very comorbid HF patients seem to be less likely to experience fatal arrhythmias. We evaluated the impact of the number of comorbidities on cardiac adrenergic innervation, assessed through 123I-mIBG imaging, in patients with systolic HF. METHODS Patients with systolic HF underwent clinical examination, transthoracic echocardiography and cardiac 123I-mIBG scintigraphy. The presence of 7 comorbidities/conditions (smoking, chronic obstructive pulmonary disease, diabetes mellitus, peripheral artery disease, atrial fibrillation, chronic ischemic heart disease and chronic kidney disease) was documented in the overall study population. RESULTS The study population consisted of 269 HF patients with a mean age of 66±11 years, a left ventricular ejection fraction (LVEF) of 31±7%, and 153 (57%) patients presented ≥3 comorbidities. Highly comorbid patients presented a reduced late heart to mediastinum (H/M) ratio, while no significant differences emerged in terms of early H/M ratio and washout rate. Multiple regression analysis revealed that the number of comorbidities was not associated with mIBG parameters of cardiac denervation, which were correlated with age, body mass index and LVEF. CONCLUSION In systolic HF patients, the number of comorbidities is not associated with alterations in cardiac adrenergic innervation. These results are consistent with the observation that very comorbid HF patients suffer lower risk of sudden cardiac death.
Collapse
Affiliation(s)
- Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy; Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Klara Komici
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Paola Gargiulo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Roberto Formisano
- Istituti Clinici Scientifici Maugeri SpA Società Benefit (ICS Maugeri SpA SB), Telese Terme (BN), Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Brunella Puzone
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Immacolata Sepe
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy; Istituti Clinici Scientifici Maugeri SpA Società Benefit (ICS Maugeri SpA SB), Telese Terme (BN), Italy.
| |
Collapse
|
13
|
Giovanni S, Stefano M, Teresa SM, Margherita C, Giovanni B, Umberto P, Paola P, Giacomo C, Pierfranco D, Alfonso G, Riccardo C, Claudio M. Incremental prognostic value of myocardial neuroadrenergic damage in patients with chronic congestive heart failure: An iodine-123 meta-iodobenzylguanidine scintigraphy study. J Nucl Cardiol 2020; 27:1787-1797. [PMID: 30377997 DOI: 10.1007/s12350-018-01467-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND ICD in primary prevention reduced mortality in patients with heart failure (HF); however, in about 80% of the ICD recipients an event requiring a device intervention will never occur. Thus, a reliable screening test included in a multiparametric approach to appropriately select patients to ICD implantation is increasingly required. Aim of the work was to assess if the Iodine-123 Meta-Iodobenzylguanidine scintigraphy (123I-mIBG) could be useful to identify patients with HF who would not benefit from the ICD implantation because at low risk of arrhythmias. METHODS AND RESULTS This is a retrospective multicentre study on patients undergoing 123I-mIBG from February 2012 to December 2015. Inclusion criteria where: age ≥ 18 years old, LVEF ≤ 35% with idiopathic or ischemic heart disease, no previous malignant ventricular arrhythmias. Patients were divided in two groups based on of late H/M < or ≥ 1.60 on 123I-mIBG. Primary end-point was occurrence of malignant arrhythmias. Secondary end-point was occurrence of cardiac death and hospitalization for worsening HF. MACE were mortality and malignant arrhythmias. Eighty-one patients were enrolled (mean age: 69 years). On 123I-mIBG, 54 patients had late H/M < 1.6 and 27 patients had late H/M ≥ 1.60. After a mean follow-up of 13.3 (± 9.7) months, the primary end-point occurred in 13 patients out of 81. No arrhythmias occurred in patients with H/M late ≥ 1.6. Nineteen patients out of 20 with MACE showed an H/M late < 1.6. Death in group with H/M ≥ 1.6 occurred for worsening HF. A late H/M ≥ 1.60 showed a very high NPV for arrhythmia (100%) and for death (96.3%). CONCLUSION 123I-mIBG imaging has the capability to identify patients at low risk of events.
Collapse
Affiliation(s)
- Scrima Giovanni
- Cardiology Department, Ospedale Santa Croce Moncalieri, Moncalieri, Italy.
| | - Maffè Stefano
- Division of Cardiology, SS Trinita' Hospital, ASL No, Borgomanero, NO, Italy
| | | | | | - Bertuccio Giovanni
- Nuclear Medicine Department, Ospedale Santa Croce Moncalieri, Moncalieri, Italy
| | - Parravicini Umberto
- Division of Cardiology, SS Trinita' Hospital, ASL No, Borgomanero, NO, Italy
| | - Paffoni Paola
- Division of Cardiology, SS Trinita' Hospital, ASL No, Borgomanero, NO, Italy
| | - Canavese Giacomo
- Nuclear Medicine Department, Ospedale Santa Croce Moncalieri, Moncalieri, Italy
| | | | - Gambino Alfonso
- Cardiology Department, Ospedale Santa Croce Moncalieri, Moncalieri, Italy
| | - Campini Riccardo
- IRCCS Nuclear Medicine Department, Maugeri Clinical Scientific Institute, Veruno, Italy
| | - Marcassa Claudio
- IRCCS Cardiology Department, Maugeri Clinical Scientific Institute, Veruno, Italy
| |
Collapse
|
14
|
Borovac JA, D'Amario D, Bozic J, Glavas D. Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers. World J Cardiol 2020; 12:373-408. [PMID: 32879702 PMCID: PMC7439452 DOI: 10.4330/wjc.v12.i8.373] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/19/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome characterized by the activation of at least several neurohumoral pathways that have a common role in maintaining cardiac output and adequate perfusion pressure of target organs and tissues. The sympathetic nervous system (SNS) is upregulated in HF as evident in dysfunctional baroreceptor and chemoreceptor reflexes, circulating and neuronal catecholamine spillover, attenuated parasympathetic response, and augmented sympathetic outflow to the heart, kidneys and skeletal muscles. When these sympathoexcitatory effects on the cardiovascular system are sustained chronically they initiate the vicious circle of HF progression and become associated with cardiomyocyte apoptosis, maladaptive ventricular and vascular remodeling, arrhythmogenesis, and poor prognosis in patients with HF. These detrimental effects of SNS activity on outcomes in HF warrant adequate diagnostic and treatment modalities. Therefore, this review summarizes basic physiological concepts about the interaction of SNS with the cardiovascular system and highlights key pathophysiological mechanisms of SNS derangement in HF. Finally, special emphasis in this review is placed on the integrative and up-to-date overview of diagnostic modalities such as SNS imaging methods and novel laboratory biomarkers that could aid in the assessment of the degree of SNS activation and provide reliable prognostic information among patients with HF.
Collapse
Affiliation(s)
- Josip Anđelo Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
| | - Domenico D'Amario
- Department of Cardiovascular and Thoracic Sciences, IRCCS Fondazione Policlinico A. Gemelli, Universita Cattolica Sacro Cuore, Rome 00168, Italy
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Duska Glavas
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
- Clinic for Cardiovascular Diseases, University Hospital of Split, Split 21000, Croatia
| |
Collapse
|
15
|
Pagano G, Cannavo A, Rengo G. Is the Hitman in Cardiac Death Hidden in the Sympathetic Nervous System Remodeling? J Am Coll Cardiol 2020; 75:14-16. [DOI: 10.1016/j.jacc.2019.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
|
16
|
Impact of body mass index on cardiac adrenergic derangement in heart failure patients: a 123I-mIBG imaging study. Eur J Nucl Med Mol Imaging 2019; 47:1713-1721. [PMID: 31872281 DOI: 10.1007/s00259-019-04658-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE To assess the impact of body mass index (BMI) on cardiac adrenergic derangement, measured by iodine-123 meta-iodobenzylguanidine (123I-mIBG) imaging in heart failure (HF) patients. Overweight and obesity represent relevant health issues, and augmented sympathetic tone has been described in patients with increased BMI. An extensive literature supports that HF-dependent cardiac denervation, measured through mIBG parameters, is an independent predictor of cardiovascular outcomes and mortality. However, the influence of BMI on cardiac mIBG uptake has not been largely investigated. METHODS We prospectively enrolled patients with systolic HF, collecting demographic, clinical, echocardiographic data, and mIBG imaging parameters. In order to detect the factors associated with mIBG parameters, a model building strategy, based on the Multivariable Fractional Polynomial algorithm, has been employed. RESULTS We studied 249 patients with systolic HF, mean age of 66.4 ± 10.6 years, and mean left ventricular ejection fraction (LVEF) of 30.7% ± 6.4, undergoing cardiac 123I-mIBG imaging to assess HF severity and prognosis. Seventy-eight patients (31.3%) presented a BMI ≥ 30 kg/m2 and obese patients showed a significant reduction in early heart to mediastinum (H/M) ratio (1.66 ± 0.19 vs. 1.75 ± 0.26; p = 0.008) and a trend to reduction in washout rate (33.6 ± 18.3 vs. 38.1 ± 20.1; p = 0.092) compared with patients with BMI < 30 kg/m2. Multiple regression analysis revealed that BMI, age, and LVEF were significantly correlated with early and late H/M ratios. CONCLUSIONS Results of the present study indicate that BMI, together with LVEF and age, is independently correlated with cardiac mIBG uptake in HF patients.
Collapse
|
17
|
de Lucia C, Gambino G, Petraglia L, Elia A, Komici K, Femminella GD, D'Amico ML, Formisano R, Borghetti G, Liccardo D, Nolano M, Houser SR, Leosco D, Ferrara N, Koch WJ, Rengo G. Long-Term Caloric Restriction Improves Cardiac Function, Remodeling, Adrenergic Responsiveness, and Sympathetic Innervation in a Model of Postischemic Heart Failure. Circ Heart Fail 2019. [PMID: 29535114 DOI: 10.1161/circheartfailure.117.004153] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Caloric restriction (CR) has been described to have cardioprotective effects and improve functional outcomes in animal models and humans. Chronic ischemic heart failure (HF) is associated with reduced cardiac sympathetic innervation, dysfunctional β-adrenergic receptor signaling, and decreased cardiac inotropic reserve. We tested the effects of a long-term CR diet, started late after myocardial infarction on cardiac function, sympathetic innervation, and β-adrenergic receptor responsiveness in a rat model of postischemic HF. METHODS AND RESULTS Adult male rats were randomly assigned to myocardial infarction or sham operation and 4 weeks later were further randomized to a 1-year CR or normal diet. One year of CR resulted in a significant reduction in body weight, heart weight, and heart weight/tibia length ratio when compared with normal diet in HF groups. At the end of the study period, echocardiography and histology revealed that HF animals under the CR diet had ameliorated left ventricular remodeling compared with HF rats fed with normal diet. Invasive hemodynamic showed a significant improvement of cardiac inotropic reserve in CR HF rats compared with HF-normal diet animals. Importantly, CR dietary regimen was associated with a significant increase of cardiac sympathetic innervation and with normalized cardiac β-adrenergic receptor levels in HF rats when compared with HF rats on the standard diet. CONCLUSIONS We demonstrate, for the first time, that chronic CR, when started after HF established, can ameliorate cardiac dysfunction and improve inotropic reserve. At the molecular level, we find that chronic CR diet significantly improves sympathetic cardiac innervation and β-adrenergic receptor levels in failing myocardium.
Collapse
Affiliation(s)
- Claudio de Lucia
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Giuseppina Gambino
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Laura Petraglia
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Andrea Elia
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Klara Komici
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Grazia Daniela Femminella
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Maria Loreta D'Amico
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Roberto Formisano
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Giulia Borghetti
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Daniela Liccardo
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Maria Nolano
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Steven R Houser
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Dario Leosco
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Nicola Ferrara
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Walter J Koch
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.).
| | - Giuseppe Rengo
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.).
| |
Collapse
|
18
|
Cardiac sympathetic innervation scintigraphy with 123I-meta-iodobenzylguanidine. Basis, protocols and clinical applications in Cardiology. Rev Esp Med Nucl Imagen Mol 2019. [DOI: 10.1016/j.remnie.2019.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Nappi C, Gaudieri V, Cuocolo A. Behind Traditional Semi-quantitative Scores of Myocardial Perfusion Imaging: An Eye on Niche Parameters. Eur Cardiol 2019; 14:13-17. [PMID: 31131032 PMCID: PMC6523048 DOI: 10.15420/ecr.2019.5.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The evaluation of stress-induced myocardial perfusion defects by non-invasive myocardial perfusion imaging (MPI) modalities has a leading role in the identification of coronary artery disease, and has excellent diagnostic and prognostic value. Non-invasive MPI can be performed using conventional and novel gamma cameras or by PET/CT. New software has allowed novel parameters that may have a role in the identification of early marks of cardiac impairment to be evaluated. We aim to give an overview of niche parameters obtainable by single photon emission CT (SPECT) and PET/CT MPI that may help practitioners to detect initial signs of cardiac damage and identify new therapy targets. In particular, we summarise the role of left ventricular geometry indices for remodelling, phase analysis parameters to evaluate mechanical dyssynchrony, the concept of relative flow reserve in the evaluation of flow-limiting epicardial stenosis, vascular age and epicardial adipose tissue as early markers of atherosclerotic burden, and emerging parameters for the evaluation of myocardial innervation, such as the total defect score.
Collapse
Affiliation(s)
- Carmela Nappi
- Department of Advanced Biomedical Sciences, University Federico II Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University Federico II Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II Naples, Italy
| |
Collapse
|
20
|
Casáns-Tormo I, Jiménez-Heffernan A, Pubul-Núñez V, Ruano-Pérez R. Cardiac sympathetic innervation scintigraphy with 123I-meta-iodobenzylguanidine. Basis, protocols and clinical applications in Cardiology. Rev Esp Med Nucl Imagen Mol 2019; 38:262-271. [PMID: 31031167 DOI: 10.1016/j.remn.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/12/2019] [Accepted: 01/21/2019] [Indexed: 01/08/2023]
Abstract
Imaging of cardiac sympathetic innervation is only possible by nuclear cardiology techniques and its assessment is key in the evaluation of and decision-making for patients with cardiac sympathetic impairment. This review includes the basis of cardiac sympathetic scintigraphy with 123I-meta-iodobenzylguanidine (123I-MIBG), recommended protocols, patient preparation, image acquisition and quantification, reproducibility, dosimetry, etc., and also the clinical indications for cardiac patients, mainly with regard to heart failure, arrhythmia, coronary artery disease, cardiotoxicity, including its contribution to establishing the indication for and monitoring the response to implantable cardiac devices, pharmacological treatment, heart transplantation and other.
Collapse
Affiliation(s)
- I Casáns-Tormo
- Servicio de Medicina Nuclear, Hospital Clínico Universitario, Valencia, España; Grupo de Trabajo de Cardiología Nuclear de la Sociedad Española de Medicina Nuclear e Imagen Molecular.
| | - A Jiménez-Heffernan
- Grupo de Trabajo de Cardiología Nuclear de la Sociedad Española de Medicina Nuclear e Imagen Molecular; Servicio de Medicina Nuclear, Hospital Universitario Juan Ramón Jiménez, Huelva, España
| | - V Pubul-Núñez
- Grupo de Trabajo de Cardiología Nuclear de la Sociedad Española de Medicina Nuclear e Imagen Molecular; Servicio de Medicina Nuclear, Hospital Clínico Universitario, Santiago de Compostela, A Coruña, España
| | - R Ruano-Pérez
- Grupo de Trabajo de Cardiología Nuclear de la Sociedad Española de Medicina Nuclear e Imagen Molecular; Servicio de Medicina Nuclear, Hospital Clínico Universitario, Valladolid, España
| |
Collapse
|
21
|
de Lucia C, Piedepalumbo M, Paolisso G, Koch WJ. Sympathetic nervous system in age-related cardiovascular dysfunction: Pathophysiology and therapeutic perspective. Int J Biochem Cell Biol 2019; 108:29-33. [PMID: 30639431 PMCID: PMC6383565 DOI: 10.1016/j.biocel.2019.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/30/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases such as heart failure and metabolic syndrome have high prevalence in the elderly population and are leading causes of death, disability, hospitalization, driving high healthcare costs worldwide. To reduce this social and economic burden there is urgency to find effective therapeutic targets. Several studies have linked the dysfunction of the Sympathetic Nervous System and β-adrenergic receptor signaling with the pathogenesis of age-related cardiovascular diseases. Therapeutic treatments that restore their functions have been shown to be effective in subjects with cardiovascular comorbidities. In fact, lifestyle interventions (such as exercise training and diet) as well as pharmacologic treatments (e.g. β-blockers or moxonidine) and mini-invasive interventions (renal sympathetic denervation) have beneficial effects on age-related cardiovascular diseases. In the current "Medicine in focus" article we will discuss the pathogenic role of the Sympathetic Nervous System in age-related cardiovascular diseases as well as current and new therapeutic approaches.
Collapse
Affiliation(s)
- Claudio de Lucia
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA.
| | - Michela Piedepalumbo
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA; Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Giuseppe Paolisso
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA.
| |
Collapse
|
22
|
Deus LA, Sousa CV, Rosa TS, Filho JMS, Santos PA, Barbosa LD, Silva Aguiar S, Souza LHR, Simões HG. Heart rate variability in middle-aged sprint and endurance athletes. Physiol Behav 2018; 205:39-43. [PMID: 30389479 DOI: 10.1016/j.physbeh.2018.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 10/02/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Aging is associated with decreased autonomic balance which could be assessed by Heart Rate Variability (HRV). Exercise training improves autonomic balance, but there is a lack in the literature regarding the heart rate variability (HRV) of master sprinters and endurance athletes. PURPOSE The effects of lifelong endurance and sprint training on cardiac autonomic balance were assessed in master athletes and compared with age-matched controls and young untrained controls. METHODS Participants (n = 81) were 8 master sprinters (MS; 51.8 ± 11.1 yrs), 8 master endurance athletes (EN, n = 8, 53.6 ± 8.6 yrs), 17 age-matched untrained (CON, 47.47 ± 6.00 yrs) and 48 young controls (YC, 25.40 ± 3.87 yrs). For the acquisition of RR intervals (iRR) (Polar RS800X Heart Rate Monitor®) the participants remained seated for 15-min with the final 10-min being considered for analysis. HRV was measured using Kubios software. A one-way ANOVA with repeated measures was applied. RESULTS All studied parameters did not differ between MS and EN {Time Domain [HR (bpm) 59.00 ± 6.13 vs. 58.94 ± 12.75], [R-R (ms) 1030.45 ± 107.45 vs. 1068.77 ± 206.17], [SDNN (ms) 57.35 ± 20.07 vs. 80.66 ± 71.07], [RMSSD (ms) 40.88 ± 20.07 vs. 38.93 ± 20.44]; Non-linear domain [SD1 (ms) 28.93 ± 14.20 vs. 27.56 ± 14.46]}, whose demonstrated a reduced HR and elevated mean R-R intervals in comparison to both YC {[HR (bpm) 69.64 ± 9.81]; [R-R (ms) 883.93 ± 124.11]} and age-matched controls {[HR (bpm) 70.06 ± 6.63]; [R-R (ms) 865.11 ± 78.39]}. It was observed a lower HRV for middle-aged CON {[RMSSD (ms) 20.23 ± 5.87], [SDNN (ms) 37.79 ± 10.15] and [SD1 (ms) 14.31 ± 4.15]} compared to YC {[RMSSD (ms) 43.33 ± 26.41], [SDNN (ms) 67.07 ± 28.77] and [SD1 (ms) 30.66 ± 18.69; p < .05]}. These last age-related differences were not observed for MS and EN. CONCLUSION For master athletes, regardless of whether they are trained in endurance or sprinters, both training modes revealed to be equally beneficial in attenuating the effects of aging on the autonomic balance.
Collapse
Affiliation(s)
- Lysleine Alves Deus
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil.
| | - Caio Victor Sousa
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| | - Thiago Santos Rosa
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| | | | | | - Lucas Duarte Barbosa
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| | - Samuel Silva Aguiar
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| | - Luiz Humberto Rodrigues Souza
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil; Physical Education Department, Bahia State University, Bahia, Brazil
| | | |
Collapse
|
23
|
Stoyek MR, Rog-Zielinska EA, Quinn TA. Age-associated changes in electrical function of the zebrafish heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:91-104. [DOI: 10.1016/j.pbiomolbio.2018.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022]
|
24
|
Abstract
Heart failure (HF) has become increasingly common within the elderly population, decreasing their survival and overall quality of life. In fact, despite the improvements in treatment, many elderly people suffer from cardiac dysfunction (HF, valvular diseases, arrhythmias or hypertension-induced cardiac hypertrophy) that are much more common in an older fragile heart. Since β-adrenergic receptor (β-AR) signaling is abnormal in failing as well as aged hearts, this pathway is an effective diagnostic and therapeutic target. Both HF and aging are characterized by activation/hyperactivity of various neurohormonal pathways, the most important of which is the sympathetic nervous system (SNS). SNS hyperactivity is initially a compensatory mechanism to stimulate contractility and maintain cardiac output. Unfortunately, this chronic stimulation becomes detrimental and causes decreased cardiac function as well as reduced inotropic reserve due to a decrease in cardiac β-ARs responsiveness. Therapies which (e.g., β-blockers and physical activity) restore β-ARs responsiveness can ameliorate cardiac performance and outcomes during HF, particularly in older patients. In this review, we will discuss physiological β-adrenergic signaling and its alterations in both HF and aging as well as the potential clinical application of targeting β-adrenergic signaling in these disease processes.
Collapse
|
25
|
de Lucia C, Eguchi A, Koch WJ. New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Front Pharmacol 2018; 9:904. [PMID: 30147654 PMCID: PMC6095970 DOI: 10.3389/fphar.2018.00904] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) has become increasingly common within the elderly population, decreasing their survival and overall quality of life. In fact, despite the improvements in treatment, many elderly people suffer from cardiac dysfunction (HF, valvular diseases, arrhythmias or hypertension-induced cardiac hypertrophy) that are much more common in an older fragile heart. Since β-adrenergic receptor (β-AR) signaling is abnormal in failing as well as aged hearts, this pathway is an effective diagnostic and therapeutic target. Both HF and aging are characterized by activation/hyperactivity of various neurohormonal pathways, the most important of which is the sympathetic nervous system (SNS). SNS hyperactivity is initially a compensatory mechanism to stimulate contractility and maintain cardiac output. Unfortunately, this chronic stimulation becomes detrimental and causes decreased cardiac function as well as reduced inotropic reserve due to a decrease in cardiac β-ARs responsiveness. Therapies which (e.g., β-blockers and physical activity) restore β-ARs responsiveness can ameliorate cardiac performance and outcomes during HF, particularly in older patients. In this review, we will discuss physiological β-adrenergic signaling and its alterations in both HF and aging as well as the potential clinical application of targeting β-adrenergic signaling in these disease processes.
Collapse
Affiliation(s)
| | | | - Walter J. Koch
- Department of Pharmacology – Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
26
|
The Impact of Ageing on 11C-Hydroxyephedrine Uptake in the Rat Heart. Sci Rep 2018; 8:11120. [PMID: 30042495 PMCID: PMC6057985 DOI: 10.1038/s41598-018-29509-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022] Open
Abstract
We aimed to explore the impact of ageing on 11C-hydroxyephedrine (11C-HED) uptake in the healthy rat heart in a longitudinal setting. To investigate a potential cold mass effect, the influence of specific activity on cardiac 11C-HED uptake was evaluated: 11C-HED was synthesized by N-methylation of (−)-metaraminol as the free base (radiochemical purity >95%) and a wide range of specific activities (0.2–141.9 GBq/μmol) were prepared. 11C-HED (48.7 ± 9.7MBq, ranged 0.2–60.4 μg/kg cold mass) was injected in healthy Wistar Rats. Dynamic 23-frame PET images were obtained over 30 min. Time activity curves were generated for the blood input function and myocardial tissue. Cardiac 11C-HED retention index (%/min) was calculated as myocardial tissue activity at 20–30 min divided by the integral of the blood activity curves. Additionally, the impact of ageing on myocardial 11C-HED uptake was investigated longitudinally by PET studies at different ages of healthy Wistar Rats. A dose-dependent reduction of cardiac 11C-HED uptake was observed: The estimated retention index as a marker of norepinephrine function decreased at a lower specific activity (higher amount of cold mass). This observed high affinity of 11C-HED to the neural norepinephrine transporter triggered a subsequent study: In a longitudinal setting, the 11C-HED retention index decreased with increasing age. An age-related decline of cardiac sympathetic innervation could be demonstrated. The herein observed cold mass effect might increase in succeeding scans and therefore, 11C-HED microPET studies should be planned with extreme caution if one single radiosynthesis is scheduled for multiple animals.
Collapse
|
27
|
Ageing effect on 18F-DOPA and 123I-MIBG uptake. Nucl Med Commun 2018; 39:539-544. [DOI: 10.1097/mnm.0000000000000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Nakajima K, Okuda K, Matsuo S, Wakabayashi H, Kinuya S. Is 123I-metaiodobenzylguanidine heart-to-mediastinum ratio dependent on age? From Japanese Society of Nuclear Medicine normal database. Ann Nucl Med 2018; 32:175-181. [PMID: 29333564 PMCID: PMC5852176 DOI: 10.1007/s12149-018-1231-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 10/26/2022]
Abstract
BACKGROUND Heart-to-mediastinum ratios (HMRs) of 123I-metaiodobenzylguanidine (MIBG) have usually been applied to prognostic evaluations of heart failure and Lewy body disease. However, whether these ratios depend on patient age has not yet been clarified using normal databases. METHODS We analyzed 62 patients (average age 57 ± 19 years, male 45%) derived from a normal database of the Japanese Society of Nuclear Medicine working group. The HMR was calculated from early (15 min) and delayed (3-4 h) anterior planar 123I-MIBG images. All HMRs were standardized to medium-energy general purpose (MEGP) collimator equivalent conditions using conversion coefficients for the collimator types. Washout rates (WR) were also calculated, and we analyzed whether early and late HMR, and WR are associated with age. RESULTS Before standardization of HMR to MEGP collimator conditions, HMR and age did not significantly correlate. However, late HMR significantly correlated with age after standardization: late HMR = - 0.0071 × age + 3.69 (r2 = 0.078, p = 0.028), indicating that a 14-year increase in age corresponded to a decrease in HMR of 0.1. Whereas the lower limit (2.5% quantile) of late HMR was 2.3 for all patients, it was 2.5 and 2.0 for those aged ≤ 63 and > 63 years, respectively. Early HMR tended to be lower in subjects with the higher age (p = 0.076), whereas WR was not affected by age. CONCLUSION While late HMR was slightly decreased in elderly patients, the lower limit of 2.2-2.3 can still be used to determine both early and late HMR.
Collapse
Affiliation(s)
- Kenichi Nakajima
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.
| | - Koichi Okuda
- Department of Physics, Kanazawa Medical University, Uchinada, Kahoku, Japan
| | - Shinro Matsuo
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
29
|
Bharani KL, Derex R, Granholm AC, Ledreux A. A noradrenergic lesion aggravates the effects of systemic inflammation on the hippocampus of aged rats. PLoS One 2017; 12:e0189821. [PMID: 29261743 PMCID: PMC5736222 DOI: 10.1371/journal.pone.0189821] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/02/2017] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammation is potentiated by early degeneration of the locus coeruleus noradrenergic pathway (LC-NE) commonly seen in aging-related neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. In animal models, lipopolysaccharide (LPS) induces strong peripheral immune responses that can cause cognitive changes secondary to neuroinflammation. The influence of the peripheral immune response on cognition might be exacerbated by LC-NE degeneration, but this has not been well characterized previously. In this study, we investigated how systemic inflammation affects neuroinflammation and cognition in aged rats that have had either normal or damaged LC-NE transmitter systems. Rats were first exposed to the selective noradrenergic (NE) neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) to induce degeneration of central NE pathways. Two weeks later, the rats received a low dose of LPS. This resulted in 3 treatment groups (Control, LPS-, and DSP4+LPS-treated rats) studied at 4 hours (short-term subgroup) and 7 days (long-term subgroup) following the LPS injection. DSP4+LPS-treated rats exhibited increased serum levels of several pro-inflammatory cytokines, increased astroglial and microglial activation in the hippocampus, and poorer performance in the novel object recognition task (NORT) compared to controls and LPS-treated rats. Additionally, serum and brain tissue levels of brain-derived neurotrophic factor (BDNF) were modulated over time in the DSP4+LPS group compared to the other two groups. Specifically, DSP4+LPS-treated rats in the short-term subgroup had lower hippocampal BDNF levels (~25%) than controls and LPS-treated rats, which negatively correlated with hippocampal astrogliosis and positively correlated with hippocampal IL-1β levels. Serum and hippocampal BDNF levels in the DSP4+LPS-treated rats in the long-term subgroup returned to levels similar to the control group. These results show that systemic inflammation in LC-NE-lesioned aged rats promotes an exacerbated systemic and central inflammatory response compared to LC-NE-intact rats and alters BDNF levels, indicating the important role of this neurotransmitter system in response to neuroinflammation.
Collapse
Affiliation(s)
- Krishna L. Bharani
- Department of Neurosciences, Medical University of South Carolina, BSB, Charleston, SC, United States of America
| | - Rebecca Derex
- Department of Neurosciences, Medical University of South Carolina, BSB, Charleston, SC, United States of America
| | - Ann-Charlotte Granholm
- Department of Neurosciences, Medical University of South Carolina, BSB, Charleston, SC, United States of America
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States of America
| | - Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States of America
- * E-mail:
| |
Collapse
|
30
|
de Lucia C, Komici K, Borghetti G, Femminella GD, Bencivenga L, Cannavo A, Corbi G, Ferrara N, Houser SR, Koch WJ, Rengo G. microRNA in Cardiovascular Aging and Age-Related Cardiovascular Diseases. Front Med (Lausanne) 2017; 4:74. [PMID: 28660188 PMCID: PMC5466994 DOI: 10.3389/fmed.2017.00074] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, life expectancy has significantly increased although several chronic diseases persist in the population, with aging as the leading risk factor. Despite improvements in diagnosis and treatment, many elderlies suffer from cardiovascular problems that are much more frequent in an older, more fragile organism. In the long term, age-related cardiovascular diseases (CVDs) contribute to the decline of quality of life and ability to perform normal activities of daily living. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the posttranscriptional level in both physiological and pathological conditions. In this review, we will focus on the role of miRNAs in aging and age-related CVDs as heart failure, hypertension, atherosclerosis, atrial fibrillation, and diabetes mellitus. miRNAs are key regulators of complex biological mechanisms, representing an exciting potential therapeutic target in CVDs. Moreover, one major challenge in geriatric medicine is to find reliable biomarkers for diagnosis, prognosis, and prediction of the response to specific drugs. miRNAs represent a very promising tool due to their stability in the circulation and unique signature in CVDs. However, further studies are needed to investigate their translational potential in the real clinical practice.
Collapse
Affiliation(s)
- Claudio de Lucia
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Klara Komici
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Grazia Daniela Femminella
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Leonardo Bencivenga
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Alessandro Cannavo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Nicola Ferrara
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Benevento, Italy
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Giuseppe Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Benevento, Italy
| |
Collapse
|
31
|
Sestini S, Pestelli F, Leoncini M, Bellandi F, Mazzeo C, Mansi L, Carrio I, Castagnoli A. The natural history of takotsubo syndrome: a two-year follow-up study with myocardial sympathetic and perfusion G-SPECT imaging. Eur J Nucl Med Mol Imaging 2016; 44:267-283. [PMID: 27909770 DOI: 10.1007/s00259-016-3575-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/18/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE To investigate changes in sympathetic activity, perfusion, and left ventricular (LV) functionality in takotsubo cardiomyopathy (TTC) patients from onset (T0) to post-onset conditions at 1 month (T1), 1-2 years (T2, T3). METHODS Twenty-two patients (70 ± 11 years) underwent serial gated single photon emission tomography (G-SPECT) studies with 123I-mIBG and 99mTc-Sestamibi. Statistics were performed using ANOVA/Sheffé post-hoc, correlation test, and receiver operating characteristic (ROC) curve analysis (p < 0.05). RESULTS Patients presented at T0 with LV ballooning and reduced early-late mIBG uptake (95%, 100%), left ventricular ejection fraction (LVEF)G-SPECT (86%) and perfusion (77 %). Adrenergic dysfunction was greater in apex, it overlaps with contractile impairment, and both were more severe than perfusion defect. During follow-up, LVEFG-SPECT, contractility, and perfusion were normal, while 82% and 90% of patients at T1 and 50% at T2 and T3 continued to show a reduced apical early-late mIBG distribution. These patients presented at T0-T1 with greater impairment of adrenergic function, contractility, and perfusion. A relationship was present within innervation and both perfusion and contractile parameters at T0 and T1, and between the extent of adrenergic defect at T3 and both the defect extent and age at T0 (cut-off point 42.5%, 72 years). CONCLUSION Outcome for TTC is not limited to a reversible contractile and perfusion abnormalities, but it includes residual adrenergic dysfunction, depending on the level of adrenergic impairment and age of patients at onset. The number of patients, as well as degree of perfusion abnormalities were found to be higher than those previously reported possibly depending on the time-interval between hospital admission and perfusion scan.
Collapse
Affiliation(s)
- Stelvio Sestini
- Deptartment of Diagnostic Imaging, Nuclear Medicine Unit, N.O.P. - S. Stefano, U.S.L. Toscana Centro, via Suor Niccolina Infermiera 20, 59100, Prato, Italy.
| | - Francesco Pestelli
- Deptartment of Internal Medicine, Cardiovascular Unit, N.O.P. - S. Stefano, U.S.L, Toscana Centro, Prato, Italy
| | - Mario Leoncini
- Deptartment of Internal Medicine, Cardiovascular Unit, N.O.P. - S. Stefano, U.S.L, Toscana Centro, Prato, Italy
| | - Francesco Bellandi
- Deptartment of Internal Medicine, Cardiovascular Unit, N.O.P. - S. Stefano, U.S.L, Toscana Centro, Prato, Italy
| | - Christian Mazzeo
- Deptartment of Diagnostic Imaging, Nuclear Medicine Unit, N.O.P. - S. Stefano, U.S.L. Toscana Centro, via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Luigi Mansi
- Deptartment of Diagnostic Imaging, Nuclear Medicine Unit, University II Naples, Naples, Italy
| | - Ignasi Carrio
- Nuclear Medicine, Hospital Sant Pau, Barcelona, Spain
| | - Antonio Castagnoli
- Deptartment of Diagnostic Imaging, Nuclear Medicine Unit, N.O.P. - S. Stefano, U.S.L. Toscana Centro, via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| |
Collapse
|