1
|
Ayeni A, Evbuomwan O, Vangu MDTW. The Role of [ 18F]FDG PET/CT in Monitoring of Therapy Response in Lung Cancer. Semin Nucl Med 2025; 55:175-189. [PMID: 40021362 DOI: 10.1053/j.semnuclmed.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
Lung cancer remains a leading cause of cancer deaths worldwide, with an all stage 5-year relative survival rate of less than 30%. Multiple treatment strategies are available and continue to evolve, with therapy primarily tailored to the type and stage of the disease. Accurate monitoring of therapy response is crucial for optimizing treatment outcomes. PET/CT imaging with [18F]FDG has become the standard of care across various phases of lung cancer management due to its ability to assess metabolic activity. This review underscores the pivotal role of [18F]FDG PET/CT in evaluating therapy response in lung cancer, particularly in non-small cell lung cancer (NSCLC). It examines conventional response criteria and their adaptations in the era of immunotherapy, highlighting the value of integrating metabolic imaging with established criteria to improve treatment assessment and guide clinical decisions. The potential of non-[18F]FDG PET tracers targeting diverse biological pathways to provide deeper insights into tumor biology, therapy response and predictive outcomes is also explored. Additionally, the emerging role of radiomics in enhancing treatment efficacy assessment and improving patient management is briefly highlighted. Despite the challenges in the routine clinical application of various metabolic response criteria, [18F]FDG PET/CT remains a crucial tool in monitoring therapy response in lung cancer. Ongoing advancements in therapeutic strategies, radiopharmaceuticals, and imaging techniques continue to drive progress in lung cancer management, promising improved patient outcomes.
Collapse
Affiliation(s)
- Akinwale Ayeni
- Division of Nuclear Medicine, Department of Radiation Sciences, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa; Nuclear Medicine, Klerksdorp/Tshepong Hospital Complex, Klerksdorp, North West Province, South Africa; Division of Nuclear Medicine, Department of Radiation Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Osayande Evbuomwan
- Department of Nuclear Medicine, Faculty of Health Sciences, University of The Free State, Bloemfontein, South Africa
| | - Mboyo-Di-Tamba Willy Vangu
- Division of Nuclear Medicine, Department of Radiation Sciences, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Xu Z, Jiang G, Dai J. Tumor therapeutics in the era of "RECIST": past, current insights, and future prospects. Oncol Rev 2024; 18:1435922. [PMID: 39493769 PMCID: PMC11527623 DOI: 10.3389/or.2024.1435922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 11/05/2024] Open
Abstract
In recent years, advancements in medical treatment and imaging technologies have revolutionized the assessment of tumor response. However, the Response Evaluation Criteria in Solid Tumors (RECIST) has long been established as the gold standard for evaluating tumor treatment. As treatment modalities evolve, the need for continuous refinement and adaptation of RECIST becomes increasingly apparent. This review explores the historical evolution, current applications, limitations, and future directions of RECIST. It discusses the challenges of distinguishing true progression from pseudo-progression in ICIs (immune checkpoint inhibitors), the integration of advanced imaging tools, and the necessity for RECIST criteria tailored to specific therapies like neoadjuvant treatments. The review highlights the ongoing efforts to enhance RECIST's accuracy and reliability in clinical decision-making and the potential for developing new standards to better evaluate treatment efficacy in the rapidly evolving landscape of oncology.
Collapse
Affiliation(s)
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Dai
- *Correspondence: Gening Jiang, ; Jie Dai,
| |
Collapse
|
3
|
Masse M, Chardin D, Tricarico P, Ferrari V, Martin N, Otto J, Darcourt J, Comte V, Humbert O. [ 18F]FDG-PET/CT atypical response patterns to immunotherapy in non-small cell lung cancer patients: long term prognosis assessment and clinical management proposal. Eur J Nucl Med Mol Imaging 2024; 51:3696-3708. [PMID: 38896129 PMCID: PMC11457717 DOI: 10.1007/s00259-024-06794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
AIM To determine the long-term prognosis of immune-related response profiles (pseudoprogression and dissociated response), not covered by conventional PERCIST criteria, in patients with non-small-cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICPIs). METHODS 109 patients were prospectively included and underwent [18F]FDG-PET/CT at baseline, after 7 weeks (PETinterim1), and 3 months (PETinterim2) of treatment. On PETinterim1, tumor response was assessed using standard PERCIST criteria. In the event of PERCIST progression at this time-point, the study design provided for continued immunotherapy for 6 more weeks. Additional response patterns were then considered on PETinterim2: pseudo-progression (PsPD, subsequent metabolic response); dissociated response (DR, coexistence of responding and non-responding lesions), and confirmed progressive metabolic disease (cPMD, subsequent homogeneous progression of lesions). Patients were followed up for at least 12 months. RESULTS Median follow-up was 21 months. At PETinterim1, PERCIST progression was observed in 60% (66/109) of patients and ICPI was continued in 59/66. At the subsequent PETinterim2, 14% of patients showed PsPD, 11% DR, 35% cPMD, and 28% had a sustained metabolic response. Median overall survival (OS) and progression-free-survival (PFS) did not differ between PsPD and DR (27 vs 29 months, p = 1.0; 17 vs 12 months, p = 0.2, respectively). The OS and PFS of PsPD/DR patients were significantly better than those with cPMD (29 vs 9 months, p < 0.02; 16 vs 2 months, p < 0.001), but worse than those with sustained metabolic response (p < 0.001). This 3-group prognostic stratification enabled better identification of true progressors, outperforming the prognostic value of standard PERCIST criteria (p = 0.03). CONCLUSION [18F]FDG-PET/CT enables early assessment of response to immunotherapy. The new wsPERCIST ("wait and see") PET criteria proposed, comprising immune-related atypical response patterns, can refine conventional prognostic stratification based on PERCIST criteria. TRIAL REGISTRATION HDH F20230309081206. Registered 20 April 2023. Retrospectively registered.
Collapse
Affiliation(s)
- Mathilde Masse
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France.
- Université Côte D'Azur, CNRS, Inserm, iBV, Nice, France.
| | - David Chardin
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
- Université Côte D'Azur, CNRS, Inserm, iBV, Nice, France
| | - Pierre Tricarico
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
| | - Victoria Ferrari
- Centre Antoine Lacassagne, Oncology Department, 33 Avenue de Valombrose, 06100, Nice, France
| | - Nicolas Martin
- Centre Antoine Lacassagne, Oncology Department, 33 Avenue de Valombrose, 06100, Nice, France
| | - Josiane Otto
- Centre Antoine Lacassagne, Oncology Department, 33 Avenue de Valombrose, 06100, Nice, France
| | - Jacques Darcourt
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
- TIRO-UMR E 4320, UCA/CEA, 28 Avenue de Valombrose, 06100, Nice, France
| | - Victor Comte
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
- Université Côte D'Azur, CNRS, Inserm, iBV, Nice, France
| | - Olivier Humbert
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
- Université Côte D'Azur, CNRS, Inserm, iBV, Nice, France
| |
Collapse
|
4
|
Gu LW, Zhang X, Zhang J, Xiao BB, Wu LP, Tang LQ, Guo L, Liu LT. The prognostic value of pretreatment 18F-FDG PET-CT parameters with peripheral blood markers in patients with de novo metastatic nasopharyngeal carcinoma. Oral Oncol 2024; 156:106928. [PMID: 38968724 DOI: 10.1016/j.oraloncology.2024.106928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND AND PURPOSE To develop and validate a prognostic nomogram based on pretreatment 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET-CT)radiomics parameters and peripheral blood markers for risk stratification in patients with de novo metastatic nasopharyngeal carcinoma (dmNPC). MATERIALS AND METHODS A total of 558 patients with dmNPC were retrospectively enrolled between 2011 and 2019. Eligible patients were randomly divided into training and validation cohorts (7:3 ratio). A Cox regression model was used to identify prognostic factors for overall survival (OS). The predictive accuracy and discriminative ability of the prognostic nomogram were determined using the concordance index (C-index) and calibration curve. RESULTS Independent factors derived from multivariable analysis of the training cohort to predict death were lactate dehydrogenase levels, pretreatment Epstein-Barr virus DNA, total lesion glycolysis of locoregional lesions, number of metastatic lesions, and age, all of which were assembled into a nomogram with (nomogram B) or without PET-CT parameters (nomogram A). The C-index of nomogram B for predicting death was 0.70, which was significantly higher than the C-index values for nomogram A. Patients were then stratified into low- and high-risk groups based on the scores calculated using nomogram B for OS. The median OS was significantly higher in the low-risk group than in the high-risk group (69.60 months [95 % CI: 58.50-108.66] vs. 21.40 months [95 % CI: 19.20-23.90]; p<0.01). All the results were confirmed in the validation cohort. CONCLUSION The proposed nomogram including PET-CT parameters yielded accurate prognostic predictions for patients with dmNPC, enabling effective risk stratification for these patients.
Collapse
Affiliation(s)
- Li-Wen Gu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Xu Zhang
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Bei-Bei Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Li-Ping Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Lin-Quan Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Ling Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Li-Ting Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| |
Collapse
|
5
|
Anderson TM, Chang BH, Huang AC, Xu X, Yoon D, Shang CG, Mick R, Schubert E, McGettigan S, Kreider K, Xu W, Wherry EJ, Schuchter LM, Amaravadi RK, Mitchell TC, Farwell MD. FDG PET/CT Imaging 1 Week after a Single Dose of Pembrolizumab Predicts Treatment Response in Patients with Advanced Melanoma. Clin Cancer Res 2024; 30:1758-1767. [PMID: 38263597 PMCID: PMC11062839 DOI: 10.1158/1078-0432.ccr-23-2390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Immunologic response to anti-programmed cell death protein 1 (PD-1) therapy can occur rapidly with T-cell responses detectable in as little as one week. Given that activated immune cells are FDG avid, we hypothesized that an early FDG PET/CT obtained approximately 1 week after starting pembrolizumab could be used to visualize a metabolic flare (MF), with increased tumor FDG activity due to infiltration by activated immune cells, or a metabolic response (MR), due to tumor cell death, that would predict response. PATIENTS AND METHODS Nineteen patients with advanced melanoma scheduled to receive pembrolizumab were prospectively enrolled. FDG PET/CT imaging was performed at baseline and approximately 1 week after starting treatment. FDG PET/CT scans were evaluated for changes in maximum standardized uptake value (SUVmax) and thresholds were identified by ROC analysis; MF was defined as >70% increase in tumor SUVmax, and MR as >30% decrease in tumor SUVmax. RESULTS An MF or MR was identified in 6 of 11 (55%) responders and 0 of 8 (0%) nonresponders, with an objective response rate (ORR) of 100% in the MF-MR group and an ORR of 38% in the stable metabolism (SM) group. An MF or MR was associated with T-cell reinvigoration in the peripheral blood and immune infiltration in the tumor. Overall survival at 3 years was 83% in the MF-MR group and 62% in the SM group. Median progression-free survival (PFS) was >38 months (median not reached) in the MF-MR group and 2.8 months (95% confidence interval, 0.3-5.2) in the SM group (P = 0.017). CONCLUSIONS Early FDG PET/CT can identify metabolic changes in melanoma metastases that are potentially predictive of response to pembrolizumab and significantly correlated with PFS.
Collapse
Affiliation(s)
- Thomas M. Anderson
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bryan H. Chang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alexander C. Huang
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Yoon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Catherine G. Shang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rosemarie Mick
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Erin Schubert
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Suzanne McGettigan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin Kreider
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Xu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E. John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn M. Schuchter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi K. Amaravadi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tara C. Mitchell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D. Farwell
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Ghodsi A, Hicks RJ, Iravani A. PET/Computed Tomography Transformation of Oncology: Immunotherapy Assessment. PET Clin 2024; 19:291-306. [PMID: 38199917 DOI: 10.1016/j.cpet.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Immunotherapy approaches have changed the treatment landscape in a variety of malignancies with a high anti-tumor response. Immunotherapy may be associated with novel response and progression patterns that pose a substantial challenge to the conventional criteria for assessing treatment response, including response evaluation criteria in solid tumors (RECIST) 1.1. In addition to the morphologic details provided by computed tomography (CT) and MRI, hybrid molecular imaging emerges as a comprehensive imaging modality with the capacity to interrogate pathophysiological mechanisms like glucose metabolism. This review highlights the current status of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) in prognostication, response monitoring, and identifying immune-related adverse events. Furthermore, it investigates the potential role of novel immuno-PET tracers that could complement the utilization of 18F-FDG PET/CT by imaging the specific pathways involved in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Alireza Ghodsi
- Department of Radiology, University of Washington, 1144 Eastlake Avenue East, Seattle, WA 98109, USA
| | - Rodney J Hicks
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Australia; Department of Medicine, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Australia; The Melbourne Theranostic Innovation Centre, North Melbourne, Australia
| | - Amir Iravani
- Department of Radiology, University of Washington, 1144 Eastlake Avenue East, Seattle, WA 98109, USA.
| |
Collapse
|
7
|
Homburg S, Christensen CB, Pedersen M, Sørensen SG, Donia M, Svane IM, Hendel HW, Ellebaek E. Prospective Assessment of Fluorine-18-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography (FDG-PET/CT) for Early Identification of Checkpoint-Inhibitor-Induced Pseudoprogression. Cancers (Basel) 2024; 16:964. [PMID: 38473325 DOI: 10.3390/cancers16050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The activity of immune checkpoint inhibitors (ICIs) in patients with metastatic melanoma is often monitored using fluorine-18-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) scans. However, distinguishing disease progression (PD) from pseudoprogression (PsPD), where increased FDG uptake might reflect immune cell activity rather than tumor growth, remains a challenge. This prospective study compared the efficacy of dual-time point (DTP) FDG-PET/CT with modified response criteria (PERCIMT) in differentiating PsPD from PD. From July 2017-January 2021, 41 patients suspected to have PsPD on an evaluation scan were prospectively included (29 evaluable). A subsequent DTP FDG-PET/CT scan was conducted within 14 days, followed by a confirmatory FDG-PET/CT scan. Additionally, PERCIMT were applied. DTP FDG-PET/CT identified 24% with PsPD and 76% with PD. Applying PERCIMT criteria, 69% showed PsPD, while 31% had PD. On follow-up, 10 patients (34%) demonstrated confirmed PsPD, while 19 (66%) exhibited PD. The sensitivity and specificity of DTP FDG-PET/CT were 20% and 74%, respectively, and for PERCIMT this was 80% and 37%, respectively. Our findings suggest limited efficacy of DTP FDG-PET/CT in distinguishing PsPD from PD in ICI-treated patients with metastatic melanoma. The use of PERCIMT could complement clinical assessment and be incorporated in multidisciplinary team conferences for enhanced decision-making.
Collapse
Affiliation(s)
- Sif Homburg
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Charlotte Birk Christensen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Magnus Pedersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Simon Grund Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Helle Westergren Hendel
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Eva Ellebaek
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| |
Collapse
|
8
|
Fan X, Nijman HW, de Bruyn M, Elsinga PH. ImmunoPET provides a novel way to visualize the CD103 + tissue-resident memory T cell to predict the response of immune checkpoint inhibitors. EJNMMI Res 2024; 14:5. [PMID: 38182929 PMCID: PMC10769965 DOI: 10.1186/s13550-023-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have made significant progress in oncotherapy improving survival of patients. However, the benefits are limited to only a small subgroup of patients who could achieve durable responses. Early prediction of response may enable treatment optimization and patient stratification. Therefore, developing appropriate biomarkers is critical to monitoring efficacy and assessing patient response to ICIs. MAIN BODY Herein, we first introduce a new potential biomarker, CD103, expressed on tissue-resident memory T cells, and discuss the potential application of CD103 PET imaging in predicting immune checkpoint inhibitor treatment. In addition, we describe the current targets of ImmunoPET and compare these targets with CD103. To assess the benefit of PET imaging, a comparative analysis between ImmunoPET and other imaging techniques commonly employed for tumor diagnosis was performed. Additionally, we compare ImmunoPET and immunohistochemistry (IHC), a widely utilized clinical method for biomarker identification with respect to visualizing the immune targets. CONCLUSION CD103 ImmunoPET is a promising method for determining tumor-infiltrating lymphocytes (TILs) load and response to ICIs, thereby addressing the lack of reliable biomarkers in cancer immunotherapy. Compared to general T cell markers, CD103 is a specific marker for tissue-resident memory T cells, which number increases during successful ICI therapy. ImmunoPET offers noninvasive, dynamic imaging of specific markers, complemented by detailed molecular information from immunohistochemistry (IHC). Radiomics can extract quantitative features from traditional imaging methods, while near-infrared fluorescence (NIRF) imaging aids tumor detection during surgery. In the era of precision medicine, combining such methods will offer a more comprehensive approach to cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoyu Fan
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Sachpekidis C, Weru V, Kopp-Schneider A, Hassel JC, Dimitrakopoulou-Strauss A. The prognostic value of [ 18F]FDG PET/CT based response monitoring in metastatic melanoma patients undergoing immunotherapy: comparison of different metabolic criteria. Eur J Nucl Med Mol Imaging 2023; 50:2699-2714. [PMID: 37099131 PMCID: PMC10317882 DOI: 10.1007/s00259-023-06243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023]
Abstract
PURPOSE To investigate the prognostic value of [18F]FDG PET/CT as part of response monitoring in metastatic melanoma patients treated with immune checkpoint inhibitors (ICIs). METHODS Sixty-seven patients underwent [18F]FDG PET/CT before start of treatment (baseline PET/CT), after two cycles (interim PET/CT) and after four cycles of ICIs administration (late PET/CT). Metabolic response evaluation was based on the conventional EORTC and PERCIST criteria, as well as the newly introduced, immunotherapy-modified PERCIMT, imPERCIST5 and iPERCIST criteria. Metabolic response to immunotherapy was classified according to four response groups (complete metabolic response [CMR], partial metabolic response [PMR], stable metabolic disease [SMD], progressive metabolic disease [PMD]), and further dichotomized by response rate (responders = [CMR] + [PMR] vs. non-responders = [PMD] + [SMD]), and disease control rate (disease control = [CMR] + [PMR] + [SMD] vs. [PMD]). The spleen-to-liver SUV ratios (SLRmean, SLRmax) and bone marrow-to-liver SUV ratios (BLRmean, BLRmax) were also calculated. The results of PET/CT were correlated with patients' overall survival (OS). RESULTS Median patient follow up [95% CI] was 61.5 months [45.3 - 66.7 months]. On interim PET/CT, the application of the novel PERCIMT demonstrated significantly longer survival for metabolic responders, while the rest criteria revealed no significant survival differences between the different response groups. Respectively on late PET/CT, both a trend for longer OS and significantly longer OS were observed in patients responding to ICIs with metabolic response and disease control after application of various criteria, both conventional and immunotherapy-modified. Moreover, patients with lower SLRmean values demonstrated significantly longer OS. CONCLUSION In patients with metastatic melanoma PET/CT-based response assessment after four ICIs cycles is significantly associated with OS after application of different metabolic criteria. The prognostic performance of the modality is also high after the first two ICIs cycles, especially with employment of novel criteria. In addition, investigation of spleen glucose metabolism may provide further prognostic information.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210 Heidelberg, Heidelberg, Germany.
| | - Vivienn Weru
- Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210 Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Xie R, Wang N, Peng C, Zhang S, Zhong A, Chen J. Current application of immunotherapy in melanoma. Chin Med J (Engl) 2023; 136:1174-1176. [PMID: 37075763 PMCID: PMC10278730 DOI: 10.1097/cm9.0000000000002660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 04/21/2023] Open
Affiliation(s)
- Ruxin Xie
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ningning Wang
- Chinese Medical Journals Publishing House Co., Ltd, Beijing 100710, China
| | - Caihui Peng
- Department of Athletics and Swimming, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Shiwei Zhang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ai Zhong
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Iravani A, Wallace R, Lo SN, Galligan A, Weppler AM, Hicks RJ, Sandhu S. FDG PET/CT Prognostic Markers in Patients with Advanced Melanoma Treated with Ipilimumab and Nivolumab. Radiology 2023; 307:e221180. [PMID: 36853183 DOI: 10.1148/radiol.221180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Background Despite improved response to combined ipilimumab and nivolumab (hereafter, IpiNivo) treatment for advanced melanoma, many patients exhibit primary or acquired resistance. This, combined with high risk of immune-related adverse events, makes identifying markers predictive of outcomes desirable. Purpose To investigate the prognostic value of fluorine 18 (18F) fluorodeoxyglucose (FDG) PET/CT parameters at baseline and as part of response monitoring in patients with advanced melanoma undergoing IpiNivo treatment. Materials and Methods This was a single-center retrospective study of adult patients with melanoma who received IpiNivo. Baseline FDG PET/CT parameters that included metabolic tumor volume (MTV), tumor stage, mutation status, Eastern Cooperative Oncology Group performance score, lactate dehydrogenase level, and treatment line were correlated with overall survival in univariable and multivariable Cox regression analyses. Treatment response as determined with FDG PET/CT was correlated with overall survival. Results In total, 122 patients (median age, 61 years [IQR, 51-69 years]; 89 men) were included; 78% (95 of 122) had an Eastern Cooperative Oncology Group score of 0, 52% (45 of 86) had an elevated lactate dehydrogenase level, 39% (48 of 122) had a metastatic stage of M1c and 45% (55 of 122) M1d, 45% (55 of 122) had BRAF V600E/K mutation, and the median MTV was 42 mL. Patients with a higher than median MTV at baseline FDG PET/CT had a lower 12-month survival rate compared with those with a lower than median MTV (43% [95% CI: 32, 58] vs 66% [95% CI: 55, 79], P < .001). In multivariable analysis, higher versus lower than median MTV, Eastern Cooperative Oncology Group performance scores of 1-2 versus 0, and subsequent versus first-line IpiNivo treatment were independently associated with overall survival (hazard ratio [HR]: 1.68 [95% CI: 1.02, 2.78], P = .04; 3.1 [95% CI: 1.8, 5.4], P < .001; and 11.2 [95% CI: 3.4, 37.1], P = .002, respectively). The 12-month overall survival rate was lower in patients with progressive disease than in those without progression (35% [95% CI: 24, 51] vs 90% [95% CI: 83, 99]; HR, 7.3 [95% CI: 3.9, 13.3]; P < .001). Conclusion Baseline fluorine 18 fluorodeoxyglucose PET/CT metabolic tumor volume was an independent prognostic marker in patients with advanced melanoma who received ipilimumab and nivolumab treatment. © RSNA, 2023 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Amir Iravani
- From the Molecular Imaging and Therapeutic Nuclear Medicine (A.I.) and Department of Oncology (R.W., S.S.), Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology (A.I., S.S.) and St Vincent's Hospital Department of Medicine (A.G., R.J.H.), University of Melbourne, Melbourne, Australia; Department of Radiology, University of Washington, Seattle, Wash (A.I.); Melanoma Institute Australia, University of Sydney, North Sydney, Australia (S.N.L.); Faculty of Health and Medicine, University of Sydney, Sydney, Australia (S.N.L.); Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia (S.N.L.); Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Melbourne, Australia (A.G.); Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Australia (A.G.); and Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada (A.M.W.)
| | - Roslyn Wallace
- From the Molecular Imaging and Therapeutic Nuclear Medicine (A.I.) and Department of Oncology (R.W., S.S.), Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology (A.I., S.S.) and St Vincent's Hospital Department of Medicine (A.G., R.J.H.), University of Melbourne, Melbourne, Australia; Department of Radiology, University of Washington, Seattle, Wash (A.I.); Melanoma Institute Australia, University of Sydney, North Sydney, Australia (S.N.L.); Faculty of Health and Medicine, University of Sydney, Sydney, Australia (S.N.L.); Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia (S.N.L.); Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Melbourne, Australia (A.G.); Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Australia (A.G.); and Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada (A.M.W.)
| | - Serigne N Lo
- From the Molecular Imaging and Therapeutic Nuclear Medicine (A.I.) and Department of Oncology (R.W., S.S.), Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology (A.I., S.S.) and St Vincent's Hospital Department of Medicine (A.G., R.J.H.), University of Melbourne, Melbourne, Australia; Department of Radiology, University of Washington, Seattle, Wash (A.I.); Melanoma Institute Australia, University of Sydney, North Sydney, Australia (S.N.L.); Faculty of Health and Medicine, University of Sydney, Sydney, Australia (S.N.L.); Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia (S.N.L.); Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Melbourne, Australia (A.G.); Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Australia (A.G.); and Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada (A.M.W.)
| | - Anna Galligan
- From the Molecular Imaging and Therapeutic Nuclear Medicine (A.I.) and Department of Oncology (R.W., S.S.), Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology (A.I., S.S.) and St Vincent's Hospital Department of Medicine (A.G., R.J.H.), University of Melbourne, Melbourne, Australia; Department of Radiology, University of Washington, Seattle, Wash (A.I.); Melanoma Institute Australia, University of Sydney, North Sydney, Australia (S.N.L.); Faculty of Health and Medicine, University of Sydney, Sydney, Australia (S.N.L.); Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia (S.N.L.); Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Melbourne, Australia (A.G.); Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Australia (A.G.); and Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada (A.M.W.)
| | - Alison M Weppler
- From the Molecular Imaging and Therapeutic Nuclear Medicine (A.I.) and Department of Oncology (R.W., S.S.), Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology (A.I., S.S.) and St Vincent's Hospital Department of Medicine (A.G., R.J.H.), University of Melbourne, Melbourne, Australia; Department of Radiology, University of Washington, Seattle, Wash (A.I.); Melanoma Institute Australia, University of Sydney, North Sydney, Australia (S.N.L.); Faculty of Health and Medicine, University of Sydney, Sydney, Australia (S.N.L.); Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia (S.N.L.); Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Melbourne, Australia (A.G.); Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Australia (A.G.); and Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada (A.M.W.)
| | - Rodney J Hicks
- From the Molecular Imaging and Therapeutic Nuclear Medicine (A.I.) and Department of Oncology (R.W., S.S.), Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology (A.I., S.S.) and St Vincent's Hospital Department of Medicine (A.G., R.J.H.), University of Melbourne, Melbourne, Australia; Department of Radiology, University of Washington, Seattle, Wash (A.I.); Melanoma Institute Australia, University of Sydney, North Sydney, Australia (S.N.L.); Faculty of Health and Medicine, University of Sydney, Sydney, Australia (S.N.L.); Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia (S.N.L.); Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Melbourne, Australia (A.G.); Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Australia (A.G.); and Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada (A.M.W.)
| | - Shahneen Sandhu
- From the Molecular Imaging and Therapeutic Nuclear Medicine (A.I.) and Department of Oncology (R.W., S.S.), Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology (A.I., S.S.) and St Vincent's Hospital Department of Medicine (A.G., R.J.H.), University of Melbourne, Melbourne, Australia; Department of Radiology, University of Washington, Seattle, Wash (A.I.); Melanoma Institute Australia, University of Sydney, North Sydney, Australia (S.N.L.); Faculty of Health and Medicine, University of Sydney, Sydney, Australia (S.N.L.); Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia (S.N.L.); Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Melbourne, Australia (A.G.); Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Australia (A.G.); and Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada (A.M.W.)
| |
Collapse
|
12
|
Evangelista L, Bianchi A, Annovazzi A, Sciuto R, Di Traglia S, Bauckneht M, Lanfranchi F, Morbelli S, Nappi AG, Ferrari C, Rubini G, Panareo S, Urso L, Bartolomei M, D’Arienzo D, Valente T, Rossetti V, Caroli P, Matteucci F, Aricò D, Bombaci M, Caponnetto D, Bertagna F, Albano D, Dondi F, Gusella S, Spimpolo A, Carriere C, Balma M, Buschiazzo A, Gallicchio R, Storto G, Ruffini L, Cervati V, Ledda RE, Cervino AR, Cuppari L, Burei M, Trifirò G, Brugola E, Zanini CA, Alessi A, Fuoco V, Seregni E, Deandreis D, Liberini V, Moreci AM, Ialuna S, Pulizzi S, De Rimini ML. ITA-IMMUNO-PET: The Role of [18F]FDG PET/CT for Assessing Response to Immunotherapy in Patients with Some Solid Tumors. Cancers (Basel) 2023; 15:cancers15030878. [PMID: 36765835 PMCID: PMC9913289 DOI: 10.3390/cancers15030878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
AIM To examine the role of [18F]FDG PET/CT for assessing response to immunotherapy in patients with some solid tumors. METHODS Data recorded in a multicenter (n = 17), retrospective database between March and November 2021 were analyzed. The sample included patients with a confirmed diagnosis of a solid tumor who underwent serial [18F]FDG PET/CT (before and after one or more cycles of immunotherapy), who were >18 years of age, and had a follow-up of at least 12 months after their first PET/CT scan. Patients enrolled in clinical trials or without a confirmed diagnosis of cancer were excluded. The authors classified cases as having a complete or partial metabolic response to immunotherapy, or stable or progressive metabolic disease, based on a visual and semiquantitative analysis according to the EORTC criteria. Clinical response to immunotherapy was assessed at much the same time points as the serial PET scans, and both the obtained responses were compared. RESULTS The study concerned 311 patients (median age: 67; range: 31-89 years) in all. The most common neoplasm was lung cancer (56.9%), followed by malignant melanoma (32.5%). Nivolumab was administered in 46.3%, and pembrolizumab in 40.5% of patients. Baseline PET and a first PET scan performed at a median 3 months after starting immunotherapy were available for all 311 patients, while subsequent PET scans were obtained after a median 6, 12, 16, and 21 months for 199 (64%), 102 (33%), 46 (15%), and 23 (7%) patients, respectively. Clinical response to therapy was recorded at around the same time points after starting immunotherapy for 252 (81%), 173 (56%), 85 (27%), 40 (13%), and 22 (7%) patients, respectively. After a median 18 (1-137) months, 113 (36.3%) patients had died. On Kaplan-Meier analysis, metabolic responders on the first two serial PET scans showed a better prognosis than non-responders, while clinical response became prognostically informative from the second assessment after starting immunotherapy onwards. CONCLUSIONS [18F]FDG PET/CT could have a role in the assessment of response to immunotherapy in patients with some solid tumors. It can provide prognostic information and thus contribute to a patient's appropriate treatment. Prospective randomized controlled trials are mandatory.
Collapse
Affiliation(s)
- Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine DIMED, University of Padua, 35129 Padua, Italy
- Correspondence:
| | - Andrea Bianchi
- Nuclear Medicine Unit, ASO S.Croce e Carle Cuneo, 12100 Cuneo, Italy
| | - Alessio Annovazzi
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Rosa Sciuto
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Silvia Di Traglia
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Matteo Bauckneht
- Department of Health Sciences (DISSAL), University of Genova, 16126 Genova, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Lanfranchi
- Department of Health Sciences (DISSAL), University of Genova, 16126 Genova, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Morbelli
- Department of Health Sciences (DISSAL), University of Genova, 16126 Genova, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Anna Giulia Nappi
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Cristina Ferrari
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Giuseppe Rubini
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| | - Luca Urso
- Nuclear Medicine Unit, University of Ferrara, 44121 Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, University of Ferrara, 44121 Ferrara, Italy
| | - Davide D’Arienzo
- Nuclear Medicine Unit, Dept Servizi Sanitari, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Tullio Valente
- Radiology Department, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Virginia Rossetti
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), 47014 Meldola, Italy
| | - Paola Caroli
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), 47014 Meldola, Italy
| | - Federica Matteucci
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), 47014 Meldola, Italy
| | - Demetrio Aricò
- Nuclear Medicine Unit, Humanitas Istituto Clinico Catanese, 95045 Misterbianco, Italy
| | - Michelangelo Bombaci
- Nuclear Medicine Unit, Humanitas Istituto Clinico Catanese, 95045 Misterbianco, Italy
| | - Domenica Caponnetto
- Nuclear Medicine Unit, Humanitas Istituto Clinico Catanese, 95045 Misterbianco, Italy
| | | | - Domenico Albano
- Nuclear Medicine Unit, University of Brescia, 25123 Brescia, Italy
| | - Francesco Dondi
- Nuclear Medicine Unit, University of Brescia, 25123 Brescia, Italy
| | - Sara Gusella
- Nuclear Medicine Department, Central Hospital Bolzano (SABES-ASDAA), 39100 Bolzano-Bozen, Italy
| | - Alessandro Spimpolo
- Nuclear Medicine Department, Central Hospital Bolzano (SABES-ASDAA), 39100 Bolzano-Bozen, Italy
| | - Cinzia Carriere
- Dermatology Department, Central Hospital Bolzano (SABES-ASDAA), 39100 Bolzano-Bozen, Italy
| | - Michele Balma
- Nuclear Medicine Unit, ASO S.Croce e Carle Cuneo, 12100 Cuneo, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine Unit, ASO S.Croce e Carle Cuneo, 12100 Cuneo, Italy
| | - Rosj Gallicchio
- Nuclear Medicine Unit, IRCCS CROB Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Giovanni Storto
- Nuclear Medicine Unit, IRCCS CROB Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Livia Ruffini
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Veronica Cervati
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Roberta Eufrasia Ledda
- Department of Medicine and Surgery, Unit of Radiological Sciences, University of Parma, 43126 Parma, Italy
| | - Anna Rita Cervino
- Nuclear Medicine Unit, Veneto Institute Of Oncology IOV—IRCSS, 35128 Padua, Italy
| | - Lea Cuppari
- Nuclear Medicine Unit, Veneto Institute Of Oncology IOV—IRCSS, 35128 Padua, Italy
| | - Marta Burei
- Nuclear Medicine Unit, Veneto Institute Of Oncology IOV—IRCSS, 35128 Padua, Italy
| | - Giuseppe Trifirò
- Nuclear Medicine Unit, ICS MAUGERI SPA SB—IRCCS, 35128 Padua, Italy
| | | | | | - Alessandra Alessi
- Nuclear Medicine Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Valentina Fuoco
- Nuclear Medicine Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Ettore Seregni
- Nuclear Medicine Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Désirée Deandreis
- Nuclear Medicine Division, Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Virginia Liberini
- Nuclear Medicine Unit, ASO S.Croce e Carle Cuneo, 12100 Cuneo, Italy
- Nuclear Medicine Division, Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Antonino Maria Moreci
- Nuclear Medicine Unit, Az. Ospedaliera Ospedali Riuniti Villa Sofia-Cervello di Palermo, 90100 Palermo, Italy
| | - Salvatore Ialuna
- Nuclear Medicine Unit, Az. Ospedaliera Ospedali Riuniti Villa Sofia-Cervello di Palermo, 90100 Palermo, Italy
| | - Sabina Pulizzi
- Nuclear Medicine Unit, Az. Ospedaliera Ospedali Riuniti Villa Sofia-Cervello di Palermo, 90100 Palermo, Italy
| | - Maria Luisa De Rimini
- Nuclear Medicine Unit, Dept Servizi Sanitari, AORN Ospedali dei Colli, 80131 Naples, Italy
| |
Collapse
|
13
|
Murad V, Kulanthaivelu R, Ortega C, Veit-Haibach P, Metser U. Standardized classification schemes in reporting oncologic PET/CT. Front Med (Lausanne) 2023; 9:1051309. [PMID: 36777163 PMCID: PMC9909469 DOI: 10.3389/fmed.2022.1051309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
The imaging report is essential for the communication between physicians in patient care. The information it contains must be clear, concise with evidence-based conclusions and sufficient to support clinical decision-making. In recent years, several classification schemes and/or reporting guidelines for PET have been introduced. In this manuscript, we will review the classifications most frequently used in oncology for interpreting and reporting 18F-FDG PET imaging in lymphoma, multiple myeloma, melanoma and head and neck cancers, PSMA-ligand PET imaging for prostate cancer, and 68Ga-DOTA-peptide PET in neuroendocrine tumors (NET).
Collapse
Affiliation(s)
- Vanessa Murad
- Molecular Imaging Division, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, University of Toronto, Toronto, ON, Canada
| | - Roshini Kulanthaivelu
- Molecular Imaging Division, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, University of Toronto, Toronto, ON, Canada
| | - Claudia Ortega
- Molecular Imaging Division, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- Molecular Imaging Division, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, University of Toronto, Toronto, ON, Canada
| | - Ur Metser
- Molecular Imaging Division, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Tang S, Zhang Y, Li Y, Zhang Y, Xu Y, Ding H, Chen Y, Ren P, Ye H, Fu S, Lin S. Predictive value of 18F-FDG PET/CT for evaluating the response to hypofractionated radiotherapy combined with PD-1 blockade in non-small cell lung cancer. Front Immunol 2023; 14:1034416. [PMID: 36860861 PMCID: PMC9969129 DOI: 10.3389/fimmu.2023.1034416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Purpose This retrospective study aimed to investigate 18F-fluorodeoxyglucose (18F-FDG)-positron emission tomography/computed tomography (PET/CT) as a predictor of response to hypofractionated radiotherapy (HFRT) combined with programmed cell death-1 (PD-1) blockade for lung cancer. Methods We included 41 patients with advanced non-small cell lung cancer (NSCLC) in this study. PET/CT was performed before (SCAN-0) and one month (SCAN-1), three months (SCAN-2), and six months (SCAN-3) after treatment. Using the European Organization for Research and Treatment of Cancer 1999 criteria and PET response criteria in solid tumors, treatment responses were classified as complete metabolic response (CMR), partial metabolic response (PMR), stable metabolic disease (SMD), or progressive metabolic disease (PMD). Patients were further categorized as those with metabolic benefits (MB; SMD, PMR, and CMR) and those without MBs (NO-MB; PMD). We analyzed the prognosis and overall survival (OS) of patients with new visceral/bone lesions during treatment. Based on the findings, we generated a nomogram to predict survival. Receiver operating characteristics and calibration curves were used to evaluate the accuracy of the prediction model. Results The mean OS based on SCANs 1, 2, and 3 was significantly higher in patients with MB and those without new visceral/bone lesions. The prediction nomogram for survival had a high area under the curve and a high predictive value based on the receiver operating characteristics and calibration curves. Conclusion 18FDG-PET/CT has the potential to predict the outcomes of HFRT combined with PD-1 blockade in NSCLC. Therefore, we recommend using a nomogram to predict patient survival.
Collapse
Affiliation(s)
- Shan Tang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, The First People's Hospital of Guangyuan, Guangyuan, China
| | - Yan Zhang
- Department of Oncology, The People's Hospital of Luzhou, Luzhou, China
| | - Yunfei Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuke Xu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haoyuan Ding
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Peirong Ren
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hua Ye
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Lin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Berz AM, Dromain C, Vietti-Violi N, Boughdad S, Duran R. Tumor response assessment on imaging following immunotherapy. Front Oncol 2022; 12:982983. [PMID: 36387133 PMCID: PMC9641095 DOI: 10.3389/fonc.2022.982983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, various systemic immunotherapies have been developed for cancer treatment, such as monoclonal antibodies (mABs) directed against immune checkpoints (immune checkpoint inhibitors, ICIs), oncolytic viruses, cytokines, cancer vaccines, and adoptive cell transfer. While being estimated to be eligible in 38.5% of patients with metastatic solid or hematological tumors, ICIs, in particular, demonstrate durable disease control across many oncologic diseases (e.g., in melanoma, lung, bladder, renal, head, and neck cancers) and overall survival benefits. Due to their unique mechanisms of action based on T-cell activation, response to immunotherapies is characterized by different patterns, such as progression prior to treatment response (pseudoprogression), hyperprogression, and dissociated responses following treatment. Because these features are not encountered in the Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1), which is the standard for response assessment in oncology, new criteria were defined for immunotherapies. The most important changes in these new morphologic criteria are, firstly, the requirement for confirmatory imaging examinations in case of progression, and secondly, the appearance of new lesions is not necessarily considered a progressive disease. Until today, five morphologic (immune-related response criteria (irRC), immune-related RECIST (irRECIST), immune RECIST (iRECIST), immune-modified RECIST (imRECIST), and intra-tumoral RECIST (itRECIST)) criteria have been developed to accurately assess changes in target lesion sizes, taking into account the specific response patterns after immunotherapy. In addition to morphologic response criteria, 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) is a promising option for metabolic response assessment and four metabolic criteria are used (PET/CT Criteria for Early Prediction of Response to Immune Checkpoint Inhibitor Therapy (PECRIT), PET Response Evaluation Criteria for Immunotherapy (PERCIMT), immunotherapy-modified PET Response Criteria in Solid Tumors (imPERCIST5), and immune PERCIST (iPERCIST)). Besides, there is evidence that parameters on 18F-FDG-PET/CT, such as the standardized uptake value (SUV)max and several radiotracers, e.g., directed against PD-L1, may be potential imaging biomarkers of response. Moreover, the emerge of human intratumoral immunotherapy (HIT-IT), characterized by the direct injection of immunostimulatory agents into a tumor lesion, has given new importance to imaging assessment. This article reviews the specific imaging patterns of tumor response and progression and available imaging response criteria following immunotherapy.
Collapse
Affiliation(s)
- Antonia M. Berz
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
- Department of Radiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clarisse Dromain
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Naïk Vietti-Violi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sarah Boughdad
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
16
|
Gao Y, Wu C, Chen X, Ma L, Zhang X, Chen J, Liao X, Liu M. PET/CT molecular imaging in the era of immune-checkpoint inhibitors therapy. Front Immunol 2022; 13:1049043. [PMID: 36341331 PMCID: PMC9630646 DOI: 10.3389/fimmu.2022.1049043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 04/24/2024] Open
Abstract
Cancer immunotherapy, especially immune-checkpoint inhibitors (ICIs), has paved a new way for the treatment of many types of malignancies, particularly advanced-stage cancers. Accumulating evidence suggests that as a molecular imaging modality, positron emission tomography/computed tomography (PET/CT) can play a vital role in the management of ICIs therapy by using different molecular probes and metabolic parameters. In this review, we will provide a comprehensive overview of the clinical data to support the importance of 18F-fluorodeoxyglucose PET/CT (18F-FDG PET/CT) imaging in the treatment of ICIs, including the evaluation of the tumor microenvironment, discovery of immune-related adverse events, evaluation of therapeutic efficacy, and prediction of therapeutic prognosis. We also discuss perspectives on the development direction of 18F-FDG PET/CT imaging, with a particular emphasis on possible challenges in the future. In addition, we summarize the researches on novel PET molecular probes that are expected to potentially promote the precise application of ICIs.
Collapse
|
17
|
van de Donk PP, Oosting SF, Knapen DG, van der Wekken AJ, Brouwers AH, Lub-de Hooge MN, de Groot DJA, de Vries EG. Molecular imaging to support cancer immunotherapy. J Immunother Cancer 2022; 10:e004949. [PMID: 35922089 PMCID: PMC9352987 DOI: 10.1136/jitc-2022-004949] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 11/04/2022] Open
Abstract
The advent of immune checkpoint inhibitors has reinvigorated the field of immuno-oncology. These monoclonal antibody-based therapies allow the immune system to recognize and eliminate malignant cells. This has resulted in improved survival of patients across several tumor types. However, not all patients respond to immunotherapy therefore predictive biomarkers are important. There are only a few Food and Drug Administration-approved biomarkers to select patients for immunotherapy. These biomarkers do not consider the heterogeneity of tumor characteristics across lesions within a patient. New molecular imaging tracers allow for whole-body visualization with positron emission tomography (PET) of tumor and immune cell characteristics, and drug distribution, which might guide treatment decision making. Here, we summarize recent developments in molecular imaging of immune checkpoint molecules, such as PD-L1, PD-1, CTLA-4, and LAG-3. We discuss several molecular imaging approaches of immune cell subsets and briefly summarize the role of FDG-PET for evaluating cancer immunotherapy. The main focus is on developments in clinical molecular imaging studies, next to preclinical studies of interest given their potential translation to the clinic.
Collapse
Affiliation(s)
- Pim P van de Donk
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sjoukje F Oosting
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Daan G Knapen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anthonie J van der Wekken
- Department of Pulmonary Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Derk-Jan A de Groot
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth Ge de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Hughes DJ, Subesinghe M, Taylor B, Bille A, Spicer J, Papa S, Goh V, Cook GJR. 18F FDG PET/CT and Novel Molecular Imaging for Directing Immunotherapy in Cancer. Radiology 2022; 304:246-264. [PMID: 35762888 DOI: 10.1148/radiol.212481] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immunotherapy has transformed the treatment landscape of many cancers, with durable responses in disease previously associated with a poor prognosis. Patient selection remains a challenge, with predictive biomarkers an urgent unmet clinical need. Current predictive biomarkers, including programmed death-ligand 1 (PD-L1) (measured with immunohistochemistry), are imperfect. Promising biomarkers, including tumor mutation burden and tumor infiltrating lymphocyte density, fail to consistently predict response and have yet to translate to routine clinical practice. Heterogeneity of immune response within and between lesions presents a further challenge where fluorine 18 fluorodeoxyglucose PET/CT has a potential role in assessing response, stratifying treatment, and detecting and monitoring immune-related toxicities. Novel radiopharmaceuticals also present a unique opportunity to define the immune tumor microenvironment to better predict which patients may respond to therapy, for example by means of in vivo whole-body PD-L1 and CD8+ T cell expression imaging. In addition, longitudinal molecular imaging may help further define dynamic changes, particularly in cases of immunotherapy resistance, helping to direct a more personalized therapeutic approach. This review highlights current and emerging applications of molecular imaging to stratify, predict, and monitor molecular dynamics and treatment response in areas of clinical need.
Collapse
Affiliation(s)
- Daniel J Hughes
- From the Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, 4th Floor, Lambeth Wing, London SE1 7EH, UK (D.J.H., M.S., V.G., G.J.R.C.); King's College London and Guy's and St Thomas' PET Centre, London, UK (D.J.H., M.S., G.J.R.C.); Comprehensive Cancer Centre (B.T., A.B.), Department of Thoracic Surgery (A.B.), and Department of Radiology (V.G.), Guy's and St Thomas' NHS Foundation Trust, London, UK; and School of Cancer and Pharmaceutical Sciences, King's College London, London, UK (J.S., S.P.)
| | - Manil Subesinghe
- From the Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, 4th Floor, Lambeth Wing, London SE1 7EH, UK (D.J.H., M.S., V.G., G.J.R.C.); King's College London and Guy's and St Thomas' PET Centre, London, UK (D.J.H., M.S., G.J.R.C.); Comprehensive Cancer Centre (B.T., A.B.), Department of Thoracic Surgery (A.B.), and Department of Radiology (V.G.), Guy's and St Thomas' NHS Foundation Trust, London, UK; and School of Cancer and Pharmaceutical Sciences, King's College London, London, UK (J.S., S.P.)
| | - Benjamin Taylor
- From the Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, 4th Floor, Lambeth Wing, London SE1 7EH, UK (D.J.H., M.S., V.G., G.J.R.C.); King's College London and Guy's and St Thomas' PET Centre, London, UK (D.J.H., M.S., G.J.R.C.); Comprehensive Cancer Centre (B.T., A.B.), Department of Thoracic Surgery (A.B.), and Department of Radiology (V.G.), Guy's and St Thomas' NHS Foundation Trust, London, UK; and School of Cancer and Pharmaceutical Sciences, King's College London, London, UK (J.S., S.P.)
| | - Andrea Bille
- From the Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, 4th Floor, Lambeth Wing, London SE1 7EH, UK (D.J.H., M.S., V.G., G.J.R.C.); King's College London and Guy's and St Thomas' PET Centre, London, UK (D.J.H., M.S., G.J.R.C.); Comprehensive Cancer Centre (B.T., A.B.), Department of Thoracic Surgery (A.B.), and Department of Radiology (V.G.), Guy's and St Thomas' NHS Foundation Trust, London, UK; and School of Cancer and Pharmaceutical Sciences, King's College London, London, UK (J.S., S.P.)
| | - James Spicer
- From the Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, 4th Floor, Lambeth Wing, London SE1 7EH, UK (D.J.H., M.S., V.G., G.J.R.C.); King's College London and Guy's and St Thomas' PET Centre, London, UK (D.J.H., M.S., G.J.R.C.); Comprehensive Cancer Centre (B.T., A.B.), Department of Thoracic Surgery (A.B.), and Department of Radiology (V.G.), Guy's and St Thomas' NHS Foundation Trust, London, UK; and School of Cancer and Pharmaceutical Sciences, King's College London, London, UK (J.S., S.P.)
| | - Sophie Papa
- From the Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, 4th Floor, Lambeth Wing, London SE1 7EH, UK (D.J.H., M.S., V.G., G.J.R.C.); King's College London and Guy's and St Thomas' PET Centre, London, UK (D.J.H., M.S., G.J.R.C.); Comprehensive Cancer Centre (B.T., A.B.), Department of Thoracic Surgery (A.B.), and Department of Radiology (V.G.), Guy's and St Thomas' NHS Foundation Trust, London, UK; and School of Cancer and Pharmaceutical Sciences, King's College London, London, UK (J.S., S.P.)
| | - Vicky Goh
- From the Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, 4th Floor, Lambeth Wing, London SE1 7EH, UK (D.J.H., M.S., V.G., G.J.R.C.); King's College London and Guy's and St Thomas' PET Centre, London, UK (D.J.H., M.S., G.J.R.C.); Comprehensive Cancer Centre (B.T., A.B.), Department of Thoracic Surgery (A.B.), and Department of Radiology (V.G.), Guy's and St Thomas' NHS Foundation Trust, London, UK; and School of Cancer and Pharmaceutical Sciences, King's College London, London, UK (J.S., S.P.)
| | - Gary J R Cook
- From the Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, 4th Floor, Lambeth Wing, London SE1 7EH, UK (D.J.H., M.S., V.G., G.J.R.C.); King's College London and Guy's and St Thomas' PET Centre, London, UK (D.J.H., M.S., G.J.R.C.); Comprehensive Cancer Centre (B.T., A.B.), Department of Thoracic Surgery (A.B.), and Department of Radiology (V.G.), Guy's and St Thomas' NHS Foundation Trust, London, UK; and School of Cancer and Pharmaceutical Sciences, King's College London, London, UK (J.S., S.P.)
| |
Collapse
|
19
|
Chen M, Smith DA, Yoon JG, Vos D, Kikano EG, Tirumani SH, Ramaiya NH. A Decade of Success in Melanoma Immunotherapy and Targeted Therapy: What Every Radiologist Should Know. J Comput Assist Tomogr 2022; 46:621-632. [PMID: 35675685 DOI: 10.1097/rct.0000000000001315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Treatment strategies for malignant melanoma have rapidly evolved over the past decade. Because of its propensity to develop advanced stage and metastatic disease, melanoma has contributed to the majority of mortalities among patients with skin cancer. The development of novel therapeutics such as immunotherapy and targeted molecular therapies has revolutionized the treatment of patients with advanced stage and metastatic malignant melanoma. Immune checkpoint inhibitors, BRAF/MEK inhibitors, and other revolutionary therapies have demonstrated remarkable success in the treatment of this common malignancy. Along with these advancements in systemic therapies, imaging has continued to play a critical role in the diagnosis and follow-up of patients with malignant melanoma. As the use of these novel therapies continues to expand, knowledge of the evolving therapeutic landscape of melanoma is becoming critical for radiologists. In this review, we provide a primer for radiologists outlining the evolution of immunotherapy and targeted therapy in the treatment of melanoma. We discuss the critical role of imaging in evaluation of treatment response, including a summary of current imaging response guidelines. Last, we summarize the essential role of imaging in the evaluation of potential adverse events seen in patients with malignant melanoma undergoing treatment with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Mark Chen
- From the Case Western Reserve University School of Medicine
| | - Daniel A Smith
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Justin G Yoon
- From the Case Western Reserve University School of Medicine
| | - Derek Vos
- From the Case Western Reserve University School of Medicine
| | - Elias G Kikano
- Department of Radiology, Brigham & Women's Hospital, Boston, MA
| | - Sree Harsha Tirumani
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Nikhil H Ramaiya
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| |
Collapse
|
20
|
18FDG PET Assessment of Therapeutic Response in Patients with Advanced or Metastatic Melanoma Treated with First-Line Immune Checkpoint Inhibitors. Cancers (Basel) 2022; 14:cancers14133190. [PMID: 35804963 PMCID: PMC9264956 DOI: 10.3390/cancers14133190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary In a retrospective study of patients with advanced or metastatic melanoma treated with first-line immune checkpoint inhibitors, we investigated the value of metabolic criteria, PERCIST 5 (criteria used for conventional chemotherapy), and imPERCIST5 (criteria adapted for immunotherapy therapeutic evaluation). Responding patients according to both criteria had better overall survival than that of not-responding patients, with a 2 years OS of 91% versus 39%, respectively. Combining different approaches to assess response could help improve the confidence in the test aiming at evaluating the response to immunotherapy. Abstract Background: Immune checkpoint inhibitors (ICI) are currently the first-line treatment for patients with metastatic melanoma. We investigated the value of positron emission tomography (PET) response criteria to assess the therapeutic response to first-line ICI in this clinical context and explore the potential contribution of total tumor metabolic volume (TMTV) analysis. Methods: We conducted a retrospective study in patients treated with first-line ICI for advanced or metastatic melanoma, with 18F-FDG PET/CT performed at baseline and 3 months after starting treatment. Patients’ metabolic response was classified according to PERCIST5 and imPERCIST 5 criteria. TMTV was recorded for each examination. Results: Twenty-nine patients were included. The median overall survival (OS) was 51.2 months (IQR 13.6—not reached), and the OS rate at 2 years was 58.6%. Patients classified as responders (complete and partial response) had a 90.9% 2-year OS rate versus 38.9% for non-responders (stable disease and progressive disease) (p = 0.03), for PERCIST5 and imPERCIST 5 criteria. The median change in metabolic volume was 9.8% (IQR −59–+140%). No significant correlation between OS and changes in TMTV was found. Conclusion: The evaluation of response to immunotherapy using metabolic imaging with PERCIST5 and imPERCIST5 was significantly associated with OS in patients with advanced or metastatic melanoma.
Collapse
|
21
|
Yu H, Gu Y, Fan W, Gao Y, Wang M, Zhu X, Wu Z, Liu J, Li B, Wu H, Cheng Z, Wang S, Zhang Y, Xu B, Li S, Shi H. Expert consensus on oncological [ 18F]FDG total-body PET/CT imaging (version 1). Eur Radiol 2022; 33:615-626. [PMID: 35751696 DOI: 10.1007/s00330-022-08960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND [18F]FDG imaging on total-body PET/CT (TB PET/CT) scanners, with improved sensitivity, offers new potentials for cancer diagnosis, staging, and radiation treatment planning. This consensus provides the protocols for clinical practices with a goal of paving the way for future studies with the total-body scanners in oncological [18F]FDG TB PET/CT imaging. METHODS The consensus was summarized based on the published guidelines and peer-reviewed articles of TB PET/CT in the literature, along with the opinions of the experts from major research institutions with a total of 40,000 cases performed on the TB PET/CT scanners. RESULTS This consensus describes the protocols for routine and dynamic [18F]FDG TB PET/CT scanning focusing on the reduction of imaging acquisition time and FDG injected activity, which may serve as a reference for research and clinic oncological PET/CT studies. CONCLUSION This expert consensus focuses on the reduction of acquisition time and FDG injected activity with a TB PET/CT scanner, which may improve the patient throughput or reduce the radiation exposure in daily clinical oncologic imaging. KEY POINTS • [18F]FDG-imaging protocols for oncological total-body PET/CT with reduced acquisition time or with different FDG activity levels have been summarized from multicenter studies. • Total-body PET/CT provides better image quality and improved diagnostic insights. • Clinical workflow and patient management have been improved.
Collapse
Affiliation(s)
- Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yushen Gu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfendong Road, Guangzhou, 510060, China
| | - Yongju Gao
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Henan Key Laboratory of Noval Molecular Probes and Clinical Translation in Nuclear Medicine, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Meiyun Wang
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Henan Key Laboratory of Noval Molecular Probes and Clinical Translation in Nuclear Medicine, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging Precision Medicine, Taiyuan, 030001, China
| | - Jianjun Liu
- Department of Nuclear Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 PuJian Road, Shanghai, 200127, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhaoping Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Shuxia Wang
- Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Baixuan Xu
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging Precision Medicine, Taiyuan, 030001, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. .,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
22
|
Lopci E, Hicks RJ, Dimitrakopoulou-Strauss A, Dercle L, Iravani A, Seban RD, Sachpekidis C, Humbert O, Gheysens O, Glaudemans AWJM, Weber W, Wahl RL, Scott AM, Pandit-Taskar N, Aide N. Joint EANM/SNMMI/ANZSNM practice guidelines/procedure standards on recommended use of [ 18F]FDG PET/CT imaging during immunomodulatory treatments in patients with solid tumors version 1.0. Eur J Nucl Med Mol Imaging 2022; 49:2323-2341. [PMID: 35376991 PMCID: PMC9165250 DOI: 10.1007/s00259-022-05780-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE The goal of this guideline/procedure standard is to assist nuclear medicine physicians, other nuclear medicine professionals, oncologists or other medical specialists for recommended use of [18F]FDG PET/CT in oncological patients undergoing immunotherapy, with special focus on response assessment in solid tumors. METHODS In a cooperative effort between the EANM, the SNMMI and the ANZSNM, clinical indications, recommended imaging procedures and reporting standards have been agreed upon and summarized in this joint guideline/procedure standard. CONCLUSIONS The field of immuno-oncology is rapidly evolving, and this guideline/procedure standard should not be seen as definitive, but rather as a guidance document standardizing the use and interpretation of [18F]FDG PET/CT during immunotherapy. Local variations to this guideline should be taken into consideration. PREAMBLE The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association founded in 1985 to facilitate worldwide communication among individuals pursuing clinical and academic excellence in nuclear medicine. The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote science, technology and practical application of nuclear medicine. The Australian and New Zealand Society of Nuclear Medicine (ANZSNM), founded in 1969, represents the major professional society fostering the technical and professional development of nuclear medicine practice across Australia and New Zealand. It promotes excellence in the nuclear medicine profession through education, research and a commitment to the highest professional standards. EANM, SNMMI and ANZSNM members are physicians, technologists, physicists and scientists specialized in the research and clinical practice of nuclear medicine. All three societies will periodically put forth new standards/guidelines for nuclear medicine practice to help advance the science of nuclear medicine and improve service to patients. Existing standards/guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each standard/guideline, representing a policy statement by the EANM/SNMMI/ANZSNM, has undergone a thorough consensus process, entailing extensive review. These societies recognize that the safe and effective use of diagnostic nuclear medicine imaging requires particular training and skills, as described in each document. These standards/guidelines are educational tools designed to assist practitioners in providing appropriate and effective nuclear medicine care for patients. These guidelines are consensus documents based on current knowledge. They are not intended to be inflexible rules or requirements of practice, nor should they be used to establish a legal standard of care. For these reasons and those set forth below, the EANM, SNMMI and ANZSNM caution against the use of these standards/guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by medical professionals considering the unique circumstances of each case. Thus, there is no implication that an action differing from what is laid out in the guidelines/procedure standards, standing alone, is below standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the standards/guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources or advances in knowledge or technology subsequent to publication of the guidelines/procedure standards. The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation and treatment of disease. The variety and complexity of human conditions make it impossible for general guidelines to consistently allow for an accurate diagnosis to be reached or a particular treatment response to be predicted. Therefore, it should be recognized that adherence to these standards/ guidelines will not ensure a successful outcome. All that should be expected is that practitioners follow a reasonable course of action, based on their level of training, current knowledge, clinical practice guidelines, available resources and the needs/context of the patient being treated. The sole purpose of these guidelines is to assist practitioners in achieving this objective. The present guideline/procedure standard was developed collaboratively by the EANM, the SNMMI and the ANZSNM, with the support of international experts in the field. They summarize also the views of the Oncology and Theranostics and the Inflammation and Infection Committees of the EANM, as well as the procedure standards committee of the SNMMI, and reflect recommendations for which the EANM and SNMMI cannot be held responsible. The recommendations should be taken into the context of good practice of nuclear medicine and do not substitute for national and international legal or regulatory provisions.
Collapse
Affiliation(s)
- E Lopci
- Nuclear Medicine Unit, IRCCS - Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milano, Italy.
| | - R J Hicks
- The Department of Medicine, St Vincent's Medical School, the University of Melbourne, Melbourne, Australia
| | - A Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - L Dercle
- Department of Radiology, New York Presbyterian, Columbia University Irving Medical Center, New York, NY, USA
| | - A Iravani
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - R D Seban
- Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, 92210, Saint-Cloud, France
- Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm, Institut Curie, 91401, Orsay, France
| | - C Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - O Humbert
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d'Azur, Nice, France
- TIRO-UMR E 4320, Université Côte d'Azur, Nice, France
| | - O Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - A W J M Glaudemans
- Nuclear Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W Weber
- Department of Nuclear Medicine, Klinikum Rechts Der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - R L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - A M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Studley Rd, Heidelberg, Victoria, 3084, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - N Pandit-Taskar
- Nuclear Medicine Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10021, USA
| | - N Aide
- Nuclear Medicine Department, University Hospital, Caen, France
- INSERM ANTICIPE, Normandie University, Caen, France
| |
Collapse
|
23
|
Rendl G, Schweighofer-Zwink G, Sorko S, Gallowitsch HJ, Hitzl W, Reisinger D, Pirich C. Assessment of Treatment Response to Lenvatinib in Thyroid Cancer Monitored by F-18 FDG PET/CT Using PERCIST 1.0, Modified PERCIST and EORTC Criteria-Which One Is Most Suitable? Cancers (Basel) 2022; 14:cancers14081868. [PMID: 35454777 PMCID: PMC9029268 DOI: 10.3390/cancers14081868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
Background: We aimed to compare the established metabolic response criteria PERCIST and EORTC for their applicability and predictive value in terms of clinical response assessment early after the initiation of lenvatinib therapy in patients with metastatic radioiodine-refractory (RAI) thyroid cancer (TC). Methods: In 25 patients treated with lenvatinib, baseline and 4-month follow-up F-18 FDG PET/CT images were analyzed using PERCIST 1.0, modified PERCIST (using SUVpeak or SUVmax) and EORTC criteria. Two groups were defined: disease control (DC) and progressive disease (PD), which were correlated with PFS and OS. Results: PERCIST, mPERCIST, PERCISTmax and EORTC could be applied in 80%, 80%, 88% and 100% of the patients based on the requirements of lesion assessment criteria, respectively. With PERCIST, mPERCIST, PERCISTmax and EORTC, the patients classified as DC and PD ranged from 65 to 68% and from 32 to 35%, respectively. Patients with DC exhibited a longer median PFS than patients with PD for EORTC (p < 0.014) and for PERCIST and mPERCIST (p = 0.037), respectively. Conclusion: EORTC and the different PERCIST criteria performed equally regarding the identification of patients with PD requiring treatment changes. However, the applicability of PERCIST 1.0 using SULpeak seems restricted due to the significant proportion of small tumor lesions.
Collapse
Affiliation(s)
- Gundula Rendl
- Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Müllner Hauptstr. 48, 5020 Salzburg, Austria; (G.S.-Z.); (D.R.); (C.P.)
- Correspondence: ; Tel.: +43-5-7255-58994
| | - Gregor Schweighofer-Zwink
- Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Müllner Hauptstr. 48, 5020 Salzburg, Austria; (G.S.-Z.); (D.R.); (C.P.)
| | - Stefan Sorko
- Department of Nuclear Medicine and Endocrinology, PET/CT Centre, Klinikum Klagenfurt am Wörthersee, 9020 Klagenfurt, Austria; (S.S.); (H.-J.G.)
| | - Hans-Jürgen Gallowitsch
- Department of Nuclear Medicine and Endocrinology, PET/CT Centre, Klinikum Klagenfurt am Wörthersee, 9020 Klagenfurt, Austria; (S.S.); (H.-J.G.)
| | - Wolfgang Hitzl
- Research and Innovation Management, Biostatistics and Publication of Clinical Trial Studies, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
- Department of Ophthalmology and Optometry, University Hospital Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Research Program Experimental Ophthalmology and Glaucoma Research, University Hospital Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Diana Reisinger
- Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Müllner Hauptstr. 48, 5020 Salzburg, Austria; (G.S.-Z.); (D.R.); (C.P.)
| | - Christian Pirich
- Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Müllner Hauptstr. 48, 5020 Salzburg, Austria; (G.S.-Z.); (D.R.); (C.P.)
| |
Collapse
|
24
|
Owaki Y, Minamishima K, Nakajima K. Optimization of pediatric FDG-PET/CT examinations based on physical indicators using the SiPM-PET/CT system. Nucl Med Commun 2022; 43:433-441. [PMID: 35045549 DOI: 10.1097/mnm.0000000000001527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to investigate the appropriate Silicon photomultiplier -PET/CT acquisition and image reconstruction conditions for each age group. METHODS The original phantom was developed to reflect the thickness and width of the torso in each age group (neonates, 1-year-olds, 5-year-olds, 10-year-olds, 15-year-olds, and adults). The ratio of hot spheres to background radioactivity was 4:1, and the radioactivity concentration was adjusted according to the Japanese consensus guidelines for appropriate implementation of pediatric nuclear medicine examinations. We evaluated the root mean square error (RMSE) as an assessment/function of the standardized uptake value of each hot sphere, the background variability (N10 mm), the % contrast of the hot sphere (QH, 10 mm/N10 mm), and the noise equivalent counts to determine the optimal reconstruction parameters and the appropriate acquisition time. RESULTS The minimum RMSE was obtained by setting the half-width of the Gaussian filter to 0-2 mm for iteration 1 or 2 and to 2-4 mm for iteration 3 or more. The acquisition times that satisfied the image quality equivalent to 120 s acquisitions in the adult phantoms were 30 s in the neonatal and 1-year-old phantoms, 60 s in the 5- and 10-year-old phantoms, and 75 s in the 15-year-old phantoms. CONCLUSION This study demonstrated that good PET images could be obtained with short acquisition times when the examination is performed under appropriate reconstruction conditions.
Collapse
Affiliation(s)
- Yoshiki Owaki
- Office of Radiation Technology, Keio University Hospital
- Department of Radiological Sciences, Tokyo Metropolitan University, Japan
| | | | | |
Collapse
|
25
|
van Genugten EAJ, Weijers JAM, Heskamp S, Kneilling M, van den Heuvel MM, Piet B, Bussink J, Hendriks LEL, Aarntzen EHJG. Imaging the Rewired Metabolism in Lung Cancer in Relation to Immune Therapy. Front Oncol 2022; 11:786089. [PMID: 35070990 PMCID: PMC8779734 DOI: 10.3389/fonc.2021.786089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming is recognized as one of the hallmarks of cancer. Alterations in the micro-environmental metabolic characteristics are recognized as important tools for cancer cells to interact with the resident and infiltrating T-cells within this tumor microenvironment. Cancer-induced metabolic changes in the micro-environment also affect treatment outcomes. In particular, immune therapy efficacy might be blunted because of somatic mutation-driven metabolic determinants of lung cancer such as acidity and oxygenation status. Based on these observations, new onco-immunological treatment strategies increasingly include drugs that interfere with metabolic pathways that consequently affect the composition of the lung cancer tumor microenvironment (TME). Positron emission tomography (PET) imaging has developed a wide array of tracers targeting metabolic pathways, originally intended to improve cancer detection and staging. Paralleling the developments in understanding metabolic reprogramming in cancer cells, as well as its effects on stromal, immune, and endothelial cells, a wave of studies with additional imaging tracers has been published. These tracers are yet underexploited in the perspective of immune therapy. In this review, we provide an overview of currently available PET tracers for clinical studies and discuss their potential roles in the development of effective immune therapeutic strategies, with a focus on lung cancer. We report on ongoing efforts that include PET/CT to understand the outcomes of interactions between cancer cells and T-cells in the lung cancer microenvironment, and we identify areas of research which are yet unchartered. Thereby, we aim to provide a starting point for molecular imaging driven studies to understand and exploit metabolic features of lung cancer to optimize immune therapy.
Collapse
Affiliation(s)
- Evelien A J van Genugten
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Jetty A M Weijers
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Manfred Kneilling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Tuebingen, Germany.,Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | | | - Berber Piet
- Department of Respiratory Diseases, Radboudumc, Nijmegen, Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre (UMC), Maastricht, Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| |
Collapse
|
26
|
Fournier L, de Geus-Oei LF, Regge D, Oprea-Lager DE, D’Anastasi M, Bidaut L, Bäuerle T, Lopci E, Cappello G, Lecouvet F, Mayerhoefer M, Kunz WG, Verhoeff JJC, Caruso D, Smits M, Hoffmann RT, Gourtsoyianni S, Beets-Tan R, Neri E, deSouza NM, Deroose CM, Caramella C. Twenty Years On: RECIST as a Biomarker of Response in Solid Tumours an EORTC Imaging Group - ESOI Joint Paper. Front Oncol 2022; 11:800547. [PMID: 35083155 PMCID: PMC8784734 DOI: 10.3389/fonc.2021.800547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Response evaluation criteria in solid tumours (RECIST) v1.1 are currently the reference standard for evaluating efficacy of therapies in patients with solid tumours who are included in clinical trials, and they are widely used and accepted by regulatory agencies. This expert statement discusses the principles underlying RECIST, as well as their reproducibility and limitations. While the RECIST framework may not be perfect, the scientific bases for the anticancer drugs that have been approved using a RECIST-based surrogate endpoint remain valid. Importantly, changes in measurement have to meet thresholds defined by RECIST for response classification within thus partly circumventing the problems of measurement variability. The RECIST framework also applies to clinical patients in individual settings even though the relationship between tumour size changes and outcome from cohort studies is not necessarily translatable to individual cases. As reproducibility of RECIST measurements is impacted by reader experience, choice of target lesions and detection/interpretation of new lesions, it can result in patients changing response categories when measurements are near threshold values or if new lesions are missed or incorrectly interpreted. There are several situations where RECIST will fail to evaluate treatment-induced changes correctly; knowledge and understanding of these is crucial for correct interpretation. Also, some patterns of response/progression cannot be correctly documented by RECIST, particularly in relation to organ-site (e.g. bone without associated soft-tissue lesion) and treatment type (e.g. focal therapies). These require specialist reader experience and communication with oncologists to determine the actual impact of the therapy and best evaluation strategy. In such situations, alternative imaging markers for tumour response may be used but the sources of variability of individual imaging techniques need to be known and accounted for. Communication between imaging experts and oncologists regarding the level of confidence in a biomarker is essential for the correct interpretation of a biomarker and its application to clinical decision-making. Though measurement automation is desirable and potentially reduces the variability of results, associated technical difficulties must be overcome, and human adjudications may be required.
Collapse
Affiliation(s)
- Laure Fournier
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Université de Paris, Assistance Publique–Hôpitaux de Paris (AP-HP), Hopital europeen Georges Pompidou, Department of Radiology, Paris Cardiovascular Research Center (PARCC) Unité Mixte de Recherche (UMRS) 970, Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | - Lioe-Fee de Geus-Oei
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Daniele Regge
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia-Istituto Di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Turin, Italy
| | - Daniela-Elena Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers [Vrije Universiteit (VU) University], Amsterdam, Netherlands
| | - Melvin D’Anastasi
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Medical Imaging Department, Mater Dei Hospital, University of Malta, Msida, Malta
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, United Kingdom
| | - Tobias Bäuerle
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Egesta Lopci
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine Unit, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) – Humanitas Research Hospital, Milan, Italy
| | - Giovanni Cappello
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia-Istituto Di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Turin, Italy
| | - Frederic Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marius Mayerhoefer
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang G. Kunz
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Joost J. C. Verhoeff
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Damiano Caruso
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Marion Smits
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
- Brain Tumour Centre, Erasmus Medical Centre (MC) Cancer Institute, Rotterdam, Netherlands
| | - Ralf-Thorsten Hoffmann
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital, Carl-Gustav-Carus Technical University Dresden, Dresden, Germany
| | - Sofia Gourtsoyianni
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital, Athens, Greece
| | - Regina Beets-Tan
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- School For Oncology and Developmental Biology (GROW) School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Emanuele Neri
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Nandita M. deSouza
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, United States
| | - Christophe M. Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Caroline Caramella
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Radiology Department, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph Centre International des Cancers Thoraciques, Université Paris-Saclay, Le Plessis-Robinson, France
| |
Collapse
|
27
|
Alipour R, Iravani A, Hicks RJ. PET Imaging of Melanoma. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Schweighofer-Zwink G, Manafi-Farid R, Kölblinger P, Hehenwarter L, Harsini S, Pirich C, Beheshti M. Prognostic value of 2-[ 18F]FDG PET-CT in metastatic melanoma patients receiving immunotherapy. Eur J Radiol 2021; 146:110107. [PMID: 34922117 DOI: 10.1016/j.ejrad.2021.110107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE The 2-fluorodeoxyglucose positron emission tomography/computed tomography (2-[18F]FDG PET/CT) is used for the evaluation of response to immunotherapy in malignant melanoma. Here, we evaluated the prognostic value of various metabolic parameters in baseline and different time points after therapy. METHODS In this retrospective study, 51 metastatic melanoma patients, who had received immunotherapy, were included. Patients with baseline and two follow-up 2-[18F]FDG PET/CT studies (3 and 6 months after therapy) were selected. Multiple metabolic parameters and tumor-to-background ratios (TBRs) were extracted and correlated with OS. RESULTS The 3- and 5-year OS rates were 49% and 43.1%, respectively. On baseline 2-[18F]FDG PET/CT, only standardized uptake value corrected for lean body mass (SULmax and SULpeak), as well as most of the TBRs were predictive for 3- and 5-year OS rates. Metabolic tumor volume (MTV), total lesion glycolysis (TLG), and most of the TBRs were predictive on both follow-up studies. Also, the changes in values of MTV, TLG and most of the TBRs from the baseline to the 3-month and 6- month follow-up studies were prognostic. On multivariate analysis, all of the most predictive parameters for OS were derived from the 3-month follow-up study. The ratio of TBRmean to the mediastinum was the best factor (cutoff value of 2.15, sensitivity of 88.5% and specificity of 68.0% for 3-year survival). CONCLUSION Metabolic parameters derived from 2-[18F]FDG PET/CT are valuable tools for the prediction of 3- and 5-year OS rates in metastatic melanoma patients undergoing immunotherapy. The 3-month follow-up 2-[18F]FDG PET/CT is of particular importance in this regard.
Collapse
Affiliation(s)
- Gregor Schweighofer-Zwink
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical sciences, 1411713135 Tehran, Iran
| | - Peter Kölblinger
- Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Lukas Hehenwarter
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sara Harsini
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical sciences, 1411713135 Tehran, Iran; Association of Nuclear Medicine and Molecular Imaging (ANMMI), Universal Scientific Education and Research Network (USERN), 1419733151 Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
29
|
Lopci E. Immunotherapy Monitoring with Immune Checkpoint Inhibitors Based on [ 18F]FDG PET/CT in Metastatic Melanomas and Lung Cancer. J Clin Med 2021; 10:jcm10215160. [PMID: 34768681 PMCID: PMC8584484 DOI: 10.3390/jcm10215160] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy with checkpoint inhibitors has prompted a major change not only in cancer treatment but also in medical imaging. In parallel with the implementation of new drugs modulating the immune system, new response criteria have been developed, aiming to overcome clinical drawbacks related to the new, unusual, patterns of response characterizing both solid tumors and lymphoma during the course of immunotherapy. The acknowledgement of pseudo-progression, hyper-progression, immune-dissociated response and so forth, has become mandatory for all imagers dealing with this clinical scenario. A long list of acronyms, i.e., irRC, iRECIST, irRECIST, imRECIST, PECRIT, PERCIMT, imPERCIST, iPERCIST, depicts the enormous effort made by radiology and nuclear medicine physicians in the last decade to optimize imaging parameters for better prediction of clinical benefit in immunotherapy regimens. Quite frequently, a combination of clinical-laboratory data with imaging findings has been tested, proving the ability to stratify patients into various risk groups. The next steps necessarily require a large scale validation of the most robust criteria, as well as the clinical implementation of immune-targeting tracers for immuno-PET or the exploitation of radiomics and artificial intelligence as complementary tools during the course of immunotherapy administration. For the present review article, a summary of PET/CT role for immunotherapy monitoring will be provided. By scrolling into various cancer types and applied response criteria, the reader will obtain necessary information for better understanding the potentials and limitations of the modality in the clinical setting.
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, MI, Italy
| |
Collapse
|
30
|
Eze C, Schmidt-Hegemann NS, Sawicki LM, Kirchner J, Roengvoraphoj O, Käsmann L, Mittlmeier LM, Kunz WG, Tufman A, Dinkel J, Ricke J, Belka C, Manapov F, Unterrainer M. PET/CT imaging for evaluation of multimodal treatment efficacy and toxicity in advanced NSCLC-current state and future directions. Eur J Nucl Med Mol Imaging 2021; 48:3975-3989. [PMID: 33760957 PMCID: PMC8484219 DOI: 10.1007/s00259-021-05211-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The advent of immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced NSCLC, leading to a string of approvals in recent years. Herein, a narrative review on the role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) in the ever-evolving treatment landscape of advanced NSCLC is presented. METHODS This comprehensive review will begin with an introduction into current treatment paradigms incorporating ICIs; the evolution of CT-based criteria; moving onto novel phenomena observed with ICIs and the current state of hybrid imaging for diagnosis, treatment planning, evaluation of treatment efficacy and toxicity in advanced NSCLC, also taking into consideration its limitations and future directions. CONCLUSIONS The advent of ICIs marks the dawn of a new era bringing forth new challenges particularly vis-à-vis treatment response assessment and observation of novel phenomena accompanied by novel systemic side effects. While FDG PET/CT is widely adopted for tumor volume delineation in locally advanced disease, response assessment to immunotherapy based on current criteria is of high clinical value but has its inherent limitations. In recent years, modifications of established (PET)/CT criteria have been proposed to provide more refined approaches towards response evaluation. Not only a comprehensive inclusion of PET-based response criteria in prospective randomized controlled trials, but also a general harmonization within the variety of PET-based response criteria is pertinent to strengthen clinical implementation and widespread use of hybrid imaging for response assessment in NSCLC.
Collapse
Affiliation(s)
- Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| | | | - Lino Morris Sawicki
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, D-40225, Dusseldorf, Germany
| | - Julian Kirchner
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, D-40225, Dusseldorf, Germany
| | - Olarn Roengvoraphoj
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Lena M Mittlmeier
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Amanda Tufman
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V, Thoracic Oncology Center Munich, University of Munich (LMU), Munich, Germany
| | - Julien Dinkel
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, Asklepios Lung Center Munich-Gauting, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
31
|
Liu Y, Zhou Q, Song S, Tang S. Integrating metabolic reprogramming and metabolic imaging to predict breast cancer therapeutic responses. Trends Endocrinol Metab 2021; 32:762-775. [PMID: 34340886 DOI: 10.1016/j.tem.2021.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/26/2021] [Accepted: 07/04/2021] [Indexed: 01/10/2023]
Abstract
Metabolic reprogramming is not only an emerging hallmark of cancer, but also an essential regulator of cancer cell adaptation to the microenvironment. Metabolic imaging targeting metabolic signatures has been widely used for breast cancer diagnosis. However, limited implications have been explored for monitoring breast cancer therapy response, although metabolic plasticity is notably associated with therapy resistance. In this review, we focus on the metabolic alterations upon breast cancer therapy and their potential for evaluating breast cancer therapeutic responses. We summarize the metabolic network and regulatory changes upon breast cancer therapy in terms of cancer pathological and genetic differences and discuss the implications of metabolic imaging with various probes in selecting target beneficiaries for precision treatment.
Collapse
Affiliation(s)
- Yi Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Qian Zhou
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China.
| | - Shuang Tang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 201321, PR China.
| |
Collapse
|
32
|
Sachpekidis C, Kopp-Schneider A, Hassel JC, Dimitrakopoulou-Strauss A. Assessment of early metabolic progression in melanoma patients under immunotherapy: an 18F-FDG PET/CT study. EJNMMI Res 2021; 11:89. [PMID: 34495433 PMCID: PMC8426446 DOI: 10.1186/s13550-021-00832-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The usage of immune checkpoint inhibitors (ICIs) is the standard practice for the treatment of metastatic melanoma. However, a significant amount of patients show no response to immunotherapy, while issues on its reliable response interpretation exist. Aim of this study was to investigate the phenomenon of early disease progression in 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in melanoma patients treated with ICIs. METHODS Thirty-one patients under ICIs serially monitored with 18F-FDG PET/CT were enrolled. All patients exhibited progressive metabolic disease (PMD) after two ICIs' cycles according to the European Organization for Research and Treatment of Cancer (EORTC) criteria, and were characterized as unconfirmed PMD (uPMD). They were further followed with at least one PET/CT for either confirmation of PMD (cPMD) or demonstration of pseudoprogression remission. Patients were also evaluated with the PET Response Evaluation Criteria for Immunotherapy (PERCIMT). Moreover, in an attempt to investigate immune activation, the spleen to liver ratios (SLRmean, SLRmax) of 18F-FDG uptake were measured. RESULTS Median follow up was 69.7 months [64.6-NA]. According to EORTC, 26/31 patients with uPMD eventually showed cPMD (83.9%) and 5/31 patients showed pseudoprogression (16.1%). Patients with cPMD (n = 26) had a median OS of 10.9 months [8.5-NA], while those with pseudoprogression (n = 5) did not reach a median OS [40.9-NA]. Respectively, after application of PERCIMT, 2/5 patients of the pseudoprogression group were correctly classified as non-PMD, reducing the uPMD cohort to 29 patients; eventually, 26/29 patients demonstrated cPMD (89.7%) and 3/29 pseudoprogression (10.3%). One further patient with pseudoprogression exhibited transient, sarcoid-like, mediastinal/hilar lymphadenopathy, a known immune-related adverse event (irAE). Finally, patients eventually showing cPMD exhibited a significantly higher SLRmean than those showing pseudoprogression after two ICIs' cycles (p = 0.038). CONCLUSION PET/CT, performed already after administration of two ICIs' cycles, can identify the majority of non-responders in melanoma immunotherapy. In order to tackle however, the non-negligible phenomenon of pseudoprogression, another follow-up PET/CT, the usage of novel response criteria and vigilance over emergence of radiological irAEs are recommended. Moreover, the investigation of spleen glucose metabolism may offer further prognostic information in melanoma patients under ICIs.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.
| | | | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| |
Collapse
|
33
|
Seith F, Forschner A, Weide B, Gückel B, Schwartz M, Schwenck J, Othman AE, Fenchel M, Garbe C, Nikolaou K, Schwenzer N, la Fougère C, Pfannenberg C. Is there a link between very early changes of primary and secondary lymphoid organs in 18F-FDG-PET/MRI and treatment response to checkpoint inhibitor therapy? J Immunother Cancer 2021; 8:jitc-2020-000656. [PMID: 32753543 PMCID: PMC7406110 DOI: 10.1136/jitc-2020-000656] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Response assessment or prediction to checkpoint inhibitor therapy (CIT) is an unsolved problem in current routine diagnostics of patients with melanoma. Here, we evaluated very early changes of primary and secondary lymphoid organs under CIT in multiparametric [18F]-labeled fluorodeoxyglucose-positron emission tomography (18F-FDG-PET)/MRI as possible predictors of treatment response and investigated their correlation with baseline blood immune biomarkers. Between October 2014 and November 2017, 17 patients with unresectable melanoma (8 females; 65±11 years) undergoing CIT were prospectively evaluated using whole-body 18F-FDG-PET/MRI before CIT start (t0), 2 weeks (t1) and 3 months after CIT initiation (t2). At each time point, the volume, the 18F-FDG-uptake and the mean apparent diffusion coefficient (ADC) of the spleen as well as the 18F-FDG uptake of the bone marrow were assessed. Relative lymphocyte count (RLC), relative eosinophil count (REC) and neutrophil-lymphocyte ratio (NLR) were assessed at baseline. Response Evaluation Criteria in Solid Tumours modified for immune-based therapeutics (iRECIST) and decisions from an interdisciplinary tumor board were used for treatment response evaluation at t2. iRECIST was compared with PET response criteria in solid tumors for image-based response evaluation at different time points. Comparative analysis was conducted with Mann-Whitney U test with false discovery rate correction for multiple testing and correlation coefficients were computed. In lymphoid organs, significant differences (p<0.05) between responders (9/17) and non-responders were found for the 18F-FDG-uptake in the spleen at t1 and the increase of the uptake t1-t0 (responders/non-responders: standardized uptake value lean body mass 1.19/0.93; +49%/−1%). The best correlation coefficients to baseline biomarkers were found for the 18F-FDG-uptake in the spleen at t1: NLR, r=−0.46; RLC, r=0.43; REC, r=0.58 (p<0.05), respectively. Compared with the non-responder group, the responder group showed marked increases also in the volume of the spleen (+22%/+10%), the 18F-FDG-uptake of bone marrow (+31%/−9%) at t1 and the ADCmean at t2 (+46%/+15%) compared with t0, however, not reaching significance. Our findings indicate that an effective systemic immune response in patients undergoing CIT can be detected as a significantly increased spleen activity in 18F-FDG-PET as early as 2 weeks after treatment initiation.
Collapse
Affiliation(s)
- Ferdinand Seith
- Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andrea Forschner
- Dermatology, Eberhard Karls University Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Benjamin Weide
- Dermatology, Eberhard Karls University Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Brigitte Gückel
- Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Schwartz
- Section on Experimental Radiology, Eberhard Karls University Tübingen, Tubingen, Germany
| | - Johannes Schwenck
- Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tübingen, Tubingen, Baden-Württemberg, Germany.,Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Tübingen, Baden-Württemberg, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, 72076 Tübingen, Germany
| | - Ahmed E Othman
- Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Matthias Fenchel
- Diagnostic Imaging, Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Bayern, Germany
| | - Claus Garbe
- Dermatology, Eberhard Karls University Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Konstantin Nikolaou
- Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany .,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, 72076 Tübingen, Germany
| | - Nina Schwenzer
- Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tübingen, Tubingen, Baden-Württemberg, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, 72076 Tübingen, Germany
| | - Christina Pfannenberg
- Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Ellingson BM, Wen PY, Cloughesy TF. Therapeutic Response Assessment of High-Grade Gliomas During Early-Phase Drug Development in the Era of Molecular and Immunotherapies. Cancer J 2021; 27:395-403. [PMID: 34570454 PMCID: PMC8480435 DOI: 10.1097/ppo.0000000000000543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Several new therapeutic strategies have emerged over the past decades to address unmet clinical needs in high-grade gliomas, including targeted molecular agents and various forms of immunotherapy. Each of these strategies requires addressing fundamental questions, depending on the stage of drug development, including ensuring drug penetration into the brain, engagement of the drug with the desired target, biologic effects downstream from the target including metabolic and/or physiologic changes, and identifying evidence of clinical activity that could be expanded upon to increase the likelihood of a meaningful survival benefit. The current review article highlights these strategies and outlines how imaging technology can be used for therapeutic response evaluation in both targeted and immunotherapies in early phases of drug development in high-grade gliomas.
Collapse
Affiliation(s)
- Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - Timothy F. Cloughesy
- UCLA Neuro Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
35
|
Iyalomhe O, Farwell MD. Immune PET Imaging. Radiol Clin North Am 2021; 59:875-886. [PMID: 34392924 PMCID: PMC8371717 DOI: 10.1016/j.rcl.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fluorodeoxyglucose (FDG) PET/CT is sensitive to metabolic, immune-related, and structural changes that can occur in tumors in cancer immunotherapy. Unique mechanisms of immune checkpoint inhibitors (ICIs) occasionally make response evaluation challenging, because tumors and inflammatory changes are both FDG avid. These response patterns and sequelae of ICI immunotherapy, such as immune-related adverse events, are discussed. Immune-specific PET imaging probes at preclinical stage or in early clinical trials, which may help guide clinical management of cancer patients treated with immunotherapy and likely have applications outside of oncology for other diseases in which the immune system plays a role, are reviewed.
Collapse
Affiliation(s)
- Osigbemhe Iyalomhe
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D. Farwell
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Ke L, Wu L, Yu J, Meng X. Feasibility of semiquantitative 18F-fluorodeoxyglucose PET/computed tomography in patients with advanced lung cancer for interim treatment evaluation of combining immunotherapy and chemotherapy. Nucl Med Commun 2021; 42:1017-1023. [PMID: 33899782 PMCID: PMC8357040 DOI: 10.1097/mnm.0000000000001428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to investigate the prognosis value of 18F-fluorodeoxyglucose PET/computed tomography (18F-FDG PET/CT) in advanced lung cancer patients with immunotherapy combined with chemotherapy. METHODS Fifty-one advanced lung cancer patients were included in this retrospective study, who underwent 18F-FDG PET/CT imaging before four cycles of immunotherapy combined with chemotherapy at our institution between January 2018 and January 2020. The following PET/CT parameters were calculated: standardized uptake value SUVmax, SUVmean, SUVpeak, SUVsd, metabolic tumor volume (MTV), total lesion glycolysis (TLG), MTV25%, MTV42%, MTV50%, MTV75%, global lung glycolysis (GLG), target-to-background ratio (TBR), SUVpeakwb, MTVwb, TLGwb, SUVmeanwb, SUVmaxwb. Logistics regression analyses were used for assessing the association between baseline metabolic parameters and response to treatment. Kaplan-Meier estimator curves and the log-rank test were constructed for survival analyses. RESULTS According to RECIST, nine patients (18%) showed partial response, 25 (49%) had SD, and 17 (33%) had progressive disease. The mean ± SD of SUVmax, SUVpeak, MTV were lower in clinical benefit (CB) group than no-clinical benefit (no-CB) group (all P < 0.05). Median PFS was 3.7 months in no-CB group and 9.9 months in CB group (P < 0.001). Multivariate logistic analysis indicated that SUVmax and histology were independent factors significantly related to the evaluation of therapeutic efficiency. Furthermore, SUVmax is an independent predictor of efficacy in non-small cell lung cancer. CONCLUSION SUVmax can be used to predict interim treatment response of immunotherapy combination with chemotherapy for advanced lung cancer. Moreover, the combination of SUVmax and histology may predict treatment response with acceptable reliability. However, a large prospective multicenter trial is still needed to examine the above finding for lacking limited evidence.
Collapse
Affiliation(s)
- Linping Ke
- Department of Clinical Medicine, Weifang Medical University, Weifang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Leilei Wu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
- Department of Radiation Oncology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| |
Collapse
|
37
|
Wright CL, Miller ED, Contreras C, Knopp MV. Precision Nuclear Medicine: The Evolving Role of PET in Melanoma. Radiol Clin North Am 2021; 59:755-772. [PMID: 34392917 DOI: 10.1016/j.rcl.2021.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The clinical management of melanoma patients has been rapidly evolving with the introduction of new targeted immuno-oncology (IO) therapeutics. The current diagnostic paradigms for melanoma patients begins with the histopathologic confirmation of melanoma, initial staging of disease burden with imaging and surgical approaches, treatment monitoring during systemic cytotoxic chemotherapy or IO therapeutics, restaging after completion of adjuvant systemic, surgical, and/or external radiation therapy, and the detection of recurrent malignancy/metastatic disease following therapy. New and evolving imaging approaches with positron-emission tomography (PET) imaging technologies, imaging methodologies, image reconstruction, and image analytics will likely continue to improve tumor detection, tumor characterization, and diagnostic confidence, enabling novel precision nuclear medicine practices for managing melanoma patients. This review will examine current concepts and challenges with existing PET imaging diagnostics for melanoma patients and introduce exciting new opportunities for PET in the current era of IO therapeutics.
Collapse
Affiliation(s)
- Chadwick L Wright
- Department of Radiology, Wright Center of Innovation in Biomedical Imaging, The Ohio State University Wexner Medical Center, 395 W. 12th Avenue, Suite 460, Columbus, OH 43210, USA.
| | - Eric D Miller
- Department of Radiation Oncology, James Cancer Center, The Ohio State University Wexner Medical Center, 460 W. 10th Avenue, 2nd Floor, Columbus, OH 43210, USA
| | - Carlo Contreras
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, 2050 Kenny Road, Tower 4th Floor, Columbus, OH 43221, USA
| | - Michael V Knopp
- Department of Radiology, Wright Center of Innovation in Biomedical Imaging, The Ohio State University Wexner Medical Center, 395 W. 12th Avenue, Suite 460, Columbus, OH 43210, USA
| |
Collapse
|
38
|
Zukotynski KA, Hasan OK, Lubanovic M, Gerbaudo VH. Update on Molecular Imaging and Precision Medicine in Lung Cancer. Radiol Clin North Am 2021; 59:693-703. [PMID: 34392913 DOI: 10.1016/j.rcl.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Precision medicine integrates molecular pathobiology, genetic make-up, and clinical manifestations of disease in order to classify patients into subgroups for the purposes of predicting treatment response and suggesting outcome. By identifying those patients who are most likely to benefit from a given therapy, interventions can be tailored to avoid the expense and toxicity of futile treatment. Ultimately, the goal is to offer the right treatment, to the right patient, at the right time. Lung cancer is a heterogeneous disease both functionally and morphologically. Further, over time, clonal proliferations of cells may evolve, becoming resistant to specific therapies. PET is a sensitive imaging technique with an important role in the precision medicine algorithm of lung cancer patients. It provides anatomo-functional insight during diagnosis, staging, and restaging of the disease. It is a prognostic biomarker in lung cancer patients that characterizes tumoral heterogeneity, helps predict early response to therapy, and may direct the selection of appropriate treatment.
Collapse
Affiliation(s)
- Katherine A Zukotynski
- Department of Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario L9G 4X5, Canada; Department of Radiology, McMaster University, 1200 Main Street West, Hamilton, Ontario L9G 4X5, Canada
| | - Olfat Kamel Hasan
- Department of Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario L9G 4X5, Canada; Department of Radiology, McMaster University, 1200 Main Street West, Hamilton, Ontario L9G 4X5, Canada
| | - Matthew Lubanovic
- Department of Radiology, McMaster University, 1200 Main Street West, Hamilton, Ontario L9G 4X5, Canada
| | - Victor H Gerbaudo
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02492, USA.
| |
Collapse
|
39
|
The Role of the Immune Metabolic Prognostic Index in Patients with Non-Small Cell Lung Cancer (NSCLC) in Radiological Progression during Treatment with Nivolumab. Cancers (Basel) 2021; 13:cancers13133117. [PMID: 34206545 PMCID: PMC8268031 DOI: 10.3390/cancers13133117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/08/2021] [Accepted: 06/20/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Identifying reliable prognostic biomarkers of progression in the early phases of treatment is crucial in patients undergoing immune checkpoints inhibitors (ICI) administration for advanced non-small cell lung cancer (NSCLC). With this aim, in this study we combined the prognostic power of the degree of systemic inflammation (depicted by peripheral inflammation indexes), the quantification of the metabolically active tumor burden (estimated using 18F-fluorodeoxyglucose positron emission tomography/computed tomography) as well as their combination in NSCLC patients receiving immune checkpoints inhibitors. This combined approach could be used to improve the risk stratification and the subsequent clinical management in NSCLC patients treated with immune checkpoints inhibitors. Abstract An emerging clinical need is represented by identifying reliable biomarkers able to discriminate between responders and non-responders among patients showing imaging progression during the administration of immune checkpoints inhibitors for advanced non-small cell lung cancer (NSCLC). In the present study, we analyzed the prognostic power of peripheral-blood systemic inflammation indexes and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) in this clinical setting. In 45 patients showing radiological progression (defined as RECIST 1.1 progressive disease) during Nivolumab administration, the following lab and imaging parameters were collected: neutrophil-to-lymphocyte ratio (NLR), derived-NLR (dNLR), lymphocyte-to-monocyte ratio (LMR), platelets-to-lymphocyte ratio (PLR), systemic inflammation index (SII), maximum standardized uptake value, metabolic tumor volume (MTV), and total lesion glycolysis (TLG). MTV and SII independently predicted OS. Their combination in the immune metabolic prognostic index (IMPI) allowed the identification of patients who might benefit from immunotherapy continuation, despite radiological progression. The combination of FDG PET/CT volumetric data with SII also approximates the immune-metabolic response with respect to baseline, providing additional independent prognostic insights. In conclusion, the degree of systemic inflammation, the quantification of the metabolically active tumor burden, and their combination might disclose the radiological progression in NSCLC patients receiving Nivolumab.
Collapse
|
40
|
Sachpekidis C, Kopp-Schneider A, Pan L, Papamichail D, Haberkorn U, Hassel JC, Dimitrakopoulou-Strauss A. Interim [ 18F]FDG PET/CT can predict response to anti-PD-1 treatment in metastatic melanoma. Eur J Nucl Med Mol Imaging 2021; 48:1932-1943. [PMID: 33336264 PMCID: PMC8113306 DOI: 10.1007/s00259-020-05137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE In an attempt to identify biomarkers that can reliably predict long-term outcomes to immunotherapy in metastatic melanoma, we investigated the prognostic role of [18F]FDG PET/CT, performed at baseline and early during the course of anti-PD-1 treatment. METHODS Twenty-five patients with stage IV melanoma, scheduled for treatment with PD-1 inhibitors, were enrolled in the study (pembrolizumab, n = 8 patients; nivolumab, n = 4 patients; nivolumab/ipilimumab, 13 patients). [18F]FDG PET/CT was performed before the start of treatment (baseline PET/CT) and after the initial two cycles of PD-1 blockade administration (interim PET/CT). Seventeen patients underwent also a third PET/CT scan after administration of four cycles of treatment. Evaluation of patients' response by means of PET/CT was performed after application of the European Organization for Research and Treatment of Cancer (EORTC) 1999 criteria and the PET Response Evaluation Criteria for IMmunoTherapy (PERCIMT). Response to treatment was classified into 4 categories: complete metabolic response (CMR), partial metabolic response (PMR), stable metabolic disease (SMD), and progressive metabolic disease (PMD). Patients were further grouped into two groups: those demonstrating metabolic benefit (MB), including patients with SMD, PMR, and CMR, and those demonstrating no MB (no-MB), including patients with PMD. Moreover, patterns of [18F]FDG uptake suggestive of radiologic immune-related adverse events (irAEs) were documented. Progression-free survival (PFS) was measured from the date of interim PET/CT until disease progression or death from any cause. RESULTS Median follow-up from interim PET/CT was 24.2 months (19.3-41.7 months). According to the EORTC criteria, 14 patients showed MB (1 CMR, 6 PMR, and 7 SMD), while 11 patients showed no-MB (PMD). Respectively, the application of the PERCIMT criteria revealed that 19 patients had MB (1 CMR, 6 PMR, and 12 SMD), and 6 of them had no-MB (PMD). With regard to PFS, no significant difference was observed between patients with MB and no-MB on interim PET/CT according to the EORTC criteria (p = 0.088). In contrary, according to the PERCIMT criteria, patients demonstrating MB had a significantly longer PFS than those showing no-MB (p = 0.045). The emergence of radiologic irAEs (n = 11 patients) was not associated with a significant survival benefit. Regarding the sub-cohort undergoing also a third PET/CT, 14/17 patients (82%) showed concordant responses and 3/17 (18%) had a mismatch of response assessment between interim and late PET/CT. CONCLUSION PET/CT-based response of metastatic melanoma to PD-1 blockade after application of the recently proposed PERCIMT criteria is significantly correlated with PFS. This highlights the potential ability of [18F]FDG PET/CT for early stratification of response to anti-PD-1 agents, a finding with possible significant clinical and financial implications. Further studies including larger numbers of patients are necessary to validate these results.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.
| | | | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Dimitrios Papamichail
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Uwe Haberkorn
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
- Department of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| |
Collapse
|
41
|
Duclos V, Iep A, Gomez L, Goldfarb L, Besson FL. PET Molecular Imaging: A Holistic Review of Current Practice and Emerging Perspectives for Diagnosis, Therapeutic Evaluation and Prognosis in Clinical Oncology. Int J Mol Sci 2021; 22:4159. [PMID: 33923839 PMCID: PMC8073681 DOI: 10.3390/ijms22084159] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
PET/CT molecular imaging has been imposed in clinical oncological practice over the past 20 years, driven by its two well-grounded foundations: quantification and radiolabeled molecular probe vectorization. From basic visual interpretation to more sophisticated full kinetic modeling, PET technology provides a unique opportunity to characterize various biological processes with different levels of analysis. In clinical practice, many efforts have been made during the last two decades to standardize image analyses at the international level, but advanced metrics are still under use in practice. In parallel, the integration of PET imaging with radionuclide therapy, also known as radiolabeled theranostics, has paved the way towards highly sensitive radionuclide-based precision medicine, with major breakthroughs emerging in neuroendocrine tumors and prostate cancer. PET imaging of tumor immunity and beyond is also emerging, emphasizing the unique capabilities of PET molecular imaging to constantly adapt to emerging oncological challenges. However, these new horizons face the growing complexity of multidimensional data. In the era of precision medicine, statistical and computer sciences are currently revolutionizing image-based decision making, paving the way for more holistic cancer molecular imaging analyses at the whole-body level.
Collapse
Affiliation(s)
- Valentin Duclos
- Department of Biophysics and Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France; (V.D.); (A.I.); (L.G.)
| | - Alex Iep
- Department of Biophysics and Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France; (V.D.); (A.I.); (L.G.)
| | - Léa Gomez
- Department of Biophysics and Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France; (V.D.); (A.I.); (L.G.)
| | - Lucas Goldfarb
- Service Hospitalier Frédéric Joliot-CEA, 91401 Orsay, France;
| | - Florent L. Besson
- Department of Biophysics and Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France; (V.D.); (A.I.); (L.G.)
- Université Paris Saclay, CEA, CNRS, Inserm, BioMaps, 91401 Orsay, France
- School of Medicine, Université Paris Saclay, 94720 Le Kremlin-Bicêtre, France
| |
Collapse
|
42
|
[ 18F]-C-SNAT4: an improved caspase-3-sensitive nanoaggregation PET tracer for imaging of tumor responses to chemo- and immunotherapies. Eur J Nucl Med Mol Imaging 2021; 48:3386-3399. [PMID: 33712870 DOI: 10.1007/s00259-021-05297-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/28/2021] [Indexed: 12/23/2022]
Abstract
Positron emission tomography (PET) imaging of apoptosis can noninvasively detect cell death in vivo and assist in monitoring tumor response to treatment in patients. While extensive efforts have been devoted to addressing this important need, no apoptosis PET imaging agents have yet been approved for clinical use. This study reports an improved 18F-labeled caspase-sensitive nanoaggregation tracer ([18F]-C-SNAT4) for PET imaging of tumor response to chemo- and immunotherapies in preclinical mouse models. METHODS We rationally designed and synthesized a new PET tracer [18F]-C-SNAT4 to detect cell death both in vitro and in vivo. In vitro radiotracer uptake studies were performed on drug-sensitive and -resistant NSCLC cell lines (NCI-H460 and NCI-H1299, respectively) treated with cisplatin at different doses. In vivo therapy response monitoring by [18F]-C-SNAT4 PET imaging was evaluated with two treatment modalities-chemotherapy and immunotherapy in two tumor xenografts in mice. Radiotracer uptake in the tumors was validated ex vivo using γ-counting and cleaved caspase-3 immunofluorescence. RESULTS This [18F]-C-SNAT4 PET tracer was facilely synthesized and displayed improved serum stability profiles. [18F]-C-SNAT4 cellular update was elevated in NCI-H460 cells in a time- and dose-dependent manner, which correlated well with cell death. A significant increase in [18F]-C-SNAT4 uptake was measured in NCI-H460 tumor xenografts in mice. In contrast, a rapid clearance of [18F]-C-SNAT4 was observed in drug-resistant NCI-H1299 in vitro and in tumor xenografts. Moreover, in BALB/C mice bearing murine colon cancer CT26 tumor xenografts receiving checkpoint inhibitors, [18F]-C-SNAT4 showed its ability for monitoring immunotherapy-induced apoptosis and reporting treatment-responding mice from non-responding. CONCLUSION The uptake of [18F]-C-SNAT4 in tumors received chemotherapy and immunotherapy is positively correlated with the tumor apoptotic level and the treatment efficacy. [18F]-C-SNAT4 PET imaging can monitor tumor response to two different treatment modalities and predict the therapeutic efficacy in preclinical mouse models.
Collapse
|
43
|
Abstract
With the ongoing advances in imaging techniques, increasing volumes of anatomical and functional data are being generated as part of the routine clinical workflow. This surge of available imaging data coincides with increasing research in quantitative imaging, particularly in the domain of imaging features. An important and novel approach is radiomics, where high-dimensional image properties are extracted from routine medical images. The fundamental principle of radiomics is the hypothesis that biomedical images contain predictive information, not discernible to the human eye, that can be mined through quantitative image analysis. In this review, a general outline of radiomics and artificial intelligence (AI) will be provided, along with prominent use cases in immunotherapy (e.g. response and adverse event prediction) and targeted therapy (i.e. radiogenomics). While the increased use and development of radiomics and AI in immuno-oncology is highly promising, the technology is still in its early stages, and different challenges still need to be overcome. Nevertheless, novel AI algorithms are being constructed with an ever-increasing scope of applications.
Collapse
Affiliation(s)
- Z. Bodalal
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - I. Wamelink
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Technical Medicine, University of Twente, Enschede, The Netherlands
| | - S. Trebeschi
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - R.G.H. Beets-Tan
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
44
|
Ayati N, Sadeghi R, Kiamanesh Z, Lee ST, Zakavi SR, Scott AM. The value of 18F-FDG PET/CT for predicting or monitoring immunotherapy response in patients with metastatic melanoma: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2021; 48:428-448. [PMID: 32728798 DOI: 10.1007/s00259-020-04967-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/19/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To investigate the ability of 18F-FDG PET/CT to assess the response of patients with metastatic melanoma to immunotherapy. METHODS A comprehensive search of the literature for studies examining the prognostic value of 18F-FDG PET/CT in monitoring the response of patients with metastatic melanoma to immunotherapy was performed. We also screened the references of the selected articles to identify any other relevant studies. Detailed data were extracted and categorized. Comprehensive meta-analysis software was used for analysis. RESULTS Twenty four eligible articles were included in the systematic review. Based on the baseline 18F-FDG PET/CT imaging, the pooled hazard ratios of MTV, SLR, SUV/SULmax, SUV/SULpeak, and TLG for overall survival (OS) were 1.777 (95%CI: 1.389-2.275, p < 0.001), 3.425 (95%CI: 1.707-6.869, p = 0.001), 0.941 (95%CI: 0.599-1.477, p = 0.791), 1.704 (95%CI: 1.253-2.316, p = 0.016), and 1.755 (95%CI: 1.315-2.342, p < 0.001), respectively. The conventional and modified response assessment criteria exhibited a pooled sensitivity of 64% (95%CI: 46-79%) and 94% (95%CI: 81-99%) and a pooled specificity of 80% (95%CI: 59-93%) and 84% (95%CI: 64-95%), respectively, for the early 18F-FDG PET/CT scan. On the other hand, based on the late 18F-FDG PET/CT scan, the pooled sensitivity of 67% (95%CI: 35-90%) and 92% (95%CI: 73-99%) and pooled specificity of 77% (95%CI: 56-91%) and 76% (95%CI: 50-93%) were observed for the conventional and modified criteria, respectively. PET-detectable immune-related adverse events (irAEs) were associated with the response to therapy. CONCLUSIONS The baseline SUVpeak, MTV, and TLG parameters represent promising predictors of the final response of metastatic melanoma patients to immunotherapy. Modified response assessment criteria are potentially an appropriate method for monitoring immunotherapy. irAEs are also valuable for predicting eventual clinical benefit of treatment.
Collapse
Affiliation(s)
- Narjess Ayati
- Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Road, Heidelberg, Victoria, 3084, Australia
- Olivia Newton-John Cancer Research Institute; and School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Sadeghi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Kiamanesh
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sze Ting Lee
- Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Road, Heidelberg, Victoria, 3084, Australia
- Olivia Newton-John Cancer Research Institute; and School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - S Rasoul Zakavi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Andrew M Scott
- Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Road, Heidelberg, Victoria, 3084, Australia.
- Olivia Newton-John Cancer Research Institute; and School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia.
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
45
|
Veerasuri S, Little D, De Paepe KN, Andreou A, Bowen R, Beresford M, Tillett T, Gangadhara S, Loughborough WW. Radiological assessment of response and adverse events associated with novel systemic oncological therapies. Clin Radiol 2021; 76:247-261. [PMID: 33423761 DOI: 10.1016/j.crad.2020.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022]
Abstract
The last decade has seen a paradigm shift in medical oncology treatment with the rise of novel systemic agents, principally molecular targeted therapy and immunotherapy. These new groups of anti-cancer treatment have revolutionised the prognostic landscape for certain patient cohorts with advanced disease, and it is hoped that through ongoing extensive clinical research, significant survival benefits may be demonstrated in the majority of tumour types. However, radiological response assessment of these new agents has become more nuanced for radiologists, as the behaviour of both responding and progressing tumour burden can be more diverse than with conventional chemotherapy. Additionally, radiologists need to be aware of adverse events associated with these treatments as some side effects carry a high morbidity/mortality and may manifest radiologically before they become clinically apparent. This review discusses radiological response assessment and adverse events associated with these novel agents, which have become fundamental aspects of systemic oncological therapy.
Collapse
Affiliation(s)
- S Veerasuri
- Department of Radiology, Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath, Avon, BA1 3NG, UK
| | - D Little
- Department of Radiology, Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath, Avon, BA1 3NG, UK
| | - K N De Paepe
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge, CB2 0QQ, UK
| | - A Andreou
- Department of Radiology, Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath, Avon, BA1 3NG, UK
| | - R Bowen
- Department of Oncology, Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath, Avon, BA1 3NG, UK
| | - M Beresford
- Department of Oncology, Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath, Avon, BA1 3NG, UK
| | - T Tillett
- Department of Oncology, Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath, Avon, BA1 3NG, UK
| | - S Gangadhara
- Department of Oncology, Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath, Avon, BA1 3NG, UK
| | - W W Loughborough
- Department of Radiology, Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath, Avon, BA1 3NG, UK.
| |
Collapse
|
46
|
Costa LB, Queiroz MA, Barbosa FG, Nunes RF, Zaniboni EC, Ruiz MM, Jardim D, Gomes Marin JF, Cerri GG, Buchpiguel CA. Reassessing Patterns of Response to Immunotherapy with PET: From Morphology to Metabolism. Radiographics 2020; 41:120-143. [PMID: 33275541 DOI: 10.1148/rg.2021200093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer demands precise evaluation and accurate and timely assessment of response to treatment. Imaging must be performed early during therapy to allow adjustments to the course of treatment. For decades, cross-sectional imaging provided these answers, showing responses to the treatment through changes in tumor size. However, with the emergence of immune checkpoint inhibitors, complex immune response patterns were revealed that have quickly highlighted the limitations of this approach. Patterns of response beyond tumor size have been recognized and include cystic degeneration, necrosis, hemorrhage, and cavitation. Furthermore, new unique patterns of response have surfaced, like pseudoprogression and hyperprogression, while other patterns were shown to be deceptive, such as unconfirmed progressive disease. This evolution led to new therapeutic evaluation criteria adapted specifically for immunotherapy. Moreover, inflammatory adverse effects of the immune checkpoint blockade were identified, many of which were life threatening and requiring prompt intervention. Given complex concepts like tumor microenvironment and novel therapeutic modalities in the era of personalized medicine, increasingly sophisticated imaging techniques are required to address the intricate patterns of behavior of different neoplasms. Fluorine 18-fluorodeoxyglucose PET/CT has rapidly emerged as one such technique that spans both molecular biology and immunology. This imaging technique is potentially capable of identifying and tracking prognostic biomarkers owing to its combined use of anatomic and metabolic imaging, which enables it to characterize biologic processes in vivo. This tailored approach may provide whole-body quantification of the metabolic burden of disease, providing enhanced prediction of treatment response and improved detection of adverse events. ©RSNA, 2020.
Collapse
Affiliation(s)
- Larissa B Costa
- From the Departments of Radiology (L.B.C., M.A.Q., F.G.B., R.F.N., E.C.Z., M.M.R., J.F.G.M., G.G.C., C.A.B.) and Oncology (D.J.), Hospital Sírio-Libanês, Rua Dona Adma Jafet 115, 01308-060 São Paulo, SP, Brazil; and Department of Radiology and Oncology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil (M.A.Q., J.F.G.M., G.G.C., C.A.B.)
| | - Marcelo A Queiroz
- From the Departments of Radiology (L.B.C., M.A.Q., F.G.B., R.F.N., E.C.Z., M.M.R., J.F.G.M., G.G.C., C.A.B.) and Oncology (D.J.), Hospital Sírio-Libanês, Rua Dona Adma Jafet 115, 01308-060 São Paulo, SP, Brazil; and Department of Radiology and Oncology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil (M.A.Q., J.F.G.M., G.G.C., C.A.B.)
| | - Felipe G Barbosa
- From the Departments of Radiology (L.B.C., M.A.Q., F.G.B., R.F.N., E.C.Z., M.M.R., J.F.G.M., G.G.C., C.A.B.) and Oncology (D.J.), Hospital Sírio-Libanês, Rua Dona Adma Jafet 115, 01308-060 São Paulo, SP, Brazil; and Department of Radiology and Oncology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil (M.A.Q., J.F.G.M., G.G.C., C.A.B.)
| | - Rafael F Nunes
- From the Departments of Radiology (L.B.C., M.A.Q., F.G.B., R.F.N., E.C.Z., M.M.R., J.F.G.M., G.G.C., C.A.B.) and Oncology (D.J.), Hospital Sírio-Libanês, Rua Dona Adma Jafet 115, 01308-060 São Paulo, SP, Brazil; and Department of Radiology and Oncology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil (M.A.Q., J.F.G.M., G.G.C., C.A.B.)
| | - Elaine C Zaniboni
- From the Departments of Radiology (L.B.C., M.A.Q., F.G.B., R.F.N., E.C.Z., M.M.R., J.F.G.M., G.G.C., C.A.B.) and Oncology (D.J.), Hospital Sírio-Libanês, Rua Dona Adma Jafet 115, 01308-060 São Paulo, SP, Brazil; and Department of Radiology and Oncology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil (M.A.Q., J.F.G.M., G.G.C., C.A.B.)
| | - Mariana Mazo Ruiz
- From the Departments of Radiology (L.B.C., M.A.Q., F.G.B., R.F.N., E.C.Z., M.M.R., J.F.G.M., G.G.C., C.A.B.) and Oncology (D.J.), Hospital Sírio-Libanês, Rua Dona Adma Jafet 115, 01308-060 São Paulo, SP, Brazil; and Department of Radiology and Oncology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil (M.A.Q., J.F.G.M., G.G.C., C.A.B.)
| | - Denis Jardim
- From the Departments of Radiology (L.B.C., M.A.Q., F.G.B., R.F.N., E.C.Z., M.M.R., J.F.G.M., G.G.C., C.A.B.) and Oncology (D.J.), Hospital Sírio-Libanês, Rua Dona Adma Jafet 115, 01308-060 São Paulo, SP, Brazil; and Department of Radiology and Oncology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil (M.A.Q., J.F.G.M., G.G.C., C.A.B.)
| | - Jose Flavio Gomes Marin
- From the Departments of Radiology (L.B.C., M.A.Q., F.G.B., R.F.N., E.C.Z., M.M.R., J.F.G.M., G.G.C., C.A.B.) and Oncology (D.J.), Hospital Sírio-Libanês, Rua Dona Adma Jafet 115, 01308-060 São Paulo, SP, Brazil; and Department of Radiology and Oncology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil (M.A.Q., J.F.G.M., G.G.C., C.A.B.)
| | - Giovanni G Cerri
- From the Departments of Radiology (L.B.C., M.A.Q., F.G.B., R.F.N., E.C.Z., M.M.R., J.F.G.M., G.G.C., C.A.B.) and Oncology (D.J.), Hospital Sírio-Libanês, Rua Dona Adma Jafet 115, 01308-060 São Paulo, SP, Brazil; and Department of Radiology and Oncology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil (M.A.Q., J.F.G.M., G.G.C., C.A.B.)
| | - Carlos A Buchpiguel
- From the Departments of Radiology (L.B.C., M.A.Q., F.G.B., R.F.N., E.C.Z., M.M.R., J.F.G.M., G.G.C., C.A.B.) and Oncology (D.J.), Hospital Sírio-Libanês, Rua Dona Adma Jafet 115, 01308-060 São Paulo, SP, Brazil; and Department of Radiology and Oncology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil (M.A.Q., J.F.G.M., G.G.C., C.A.B.)
| |
Collapse
|
47
|
Unterrainer M, Ruzicka M, Fabritius MP, Mittlmeier LM, Winkelmann M, Rübenthaler J, Brendel M, Subklewe M, von Bergwelt-Baildon M, Ricke J, Kunz WG, Cyran CC. PET/CT imaging for tumour response assessment to immunotherapy: current status and future directions. Eur Radiol Exp 2020; 4:63. [PMID: 33200246 PMCID: PMC7669926 DOI: 10.1186/s41747-020-00190-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Recent immunotherapeutic approaches have evolved as powerful treatment options with high anti-tumour responses involving the patient's own immune system. Passive immunotherapy applies agents that enhance existing anti-tumour responses, such as antibodies against immune checkpoints. Active immunotherapy uses agents that direct the immune system to attack tumour cells by targeting tumour antigens. Active cellular-based therapies are on the rise, most notably chimeric antigen receptor T cell therapy, which redirects patient-derived T cells against tumour antigens. Approved treatments are available for a variety of solid malignancies including melanoma, lung cancer and haematologic diseases. These novel immune-related therapeutic approaches can be accompanied by new patterns of response and progression and immune-related side-effects that challenge established imaging-based response assessment criteria, such as Response Evaluation Criteria in Solid tumours (RECIST) 1.1. Hence, new criteria have been developed. Beyond morphological information of computed tomography (CT) and magnetic resonance imaging, positron emission tomography (PET) emerges as a comprehensive imaging modality by assessing (patho-)physiological processes such as glucose metabolism, which enables more comprehensive response assessment in oncological patients. We review the current concepts of response assessment to immunotherapy with particular emphasis on hybrid imaging with 18F-FDG-PET/CT and aims at describing future trends of immunotherapy and additional aspects of molecular imaging within the field of immunotherapy.
Collapse
Affiliation(s)
- Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Michael Ruzicka
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Matthias P Fabritius
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lena M Mittlmeier
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Winkelmann
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Johannes Rübenthaler
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | | | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- DIE RADIOLOGIE, Munich, Germany
| |
Collapse
|
48
|
Castello A, Lopci E. The Role of PET/CT in the Era of Immune Checkpoint Inhibitors: State of Art. Curr Radiopharm 2020; 13:24-31. [PMID: 31749440 DOI: 10.2174/1874471012666191015100106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/09/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) have achieved astonishing results and improved overall survival (OS) in several types of malignancies, including advanced melanoma. However, due to a peculiar type of anti-cancer activity provided by these drugs, the response patterns during ICI treatment are completely different from that with "old" chemotherapeutic agents. OBJECTIVE To provide an overview of the available literature and potentials of 18F-FDG PET/CT in advanced melanoma during the course of therapy with ICI in the context of treatment response evaluation. METHOD Morphologic criteria, expressed by Response Evaluation Criteria in Solid Tumors (RECIST), immune-related response criteria (irRC), irRECIST, and, more recently, immune-RECIST (iRECIST), along with response criteria based on the metabolic parameters with 18F-Fluorodeoxyglucose (18FFDG), have been explored. RESULTS To overcome the limits of traditional response criteria, new metabolic response criteria have been introduced on time and are being continuously updated, such as the PET/CT Criteria for the early prediction of Response to Immune checkpoint inhibitor Therapy (PECRIT), the PET Response Evaluation Criteria for Immunotherapy (PERCIMT), and "immunotherapy-modified" PET Response Criteria in Solid Tumors (imPERCIST). The introduction of new PET radiotracers, based on monoclonal antibodies combined with radioactive elements ("immune-PET"), are of great interest. CONCLUSION Although the role of 18F-FDG PET/CT in malignant melanoma has been widely validated for detecting distant metastases and recurrences, evidences in course of ICI are still scarce and larger multicenter clinical trials are needed.
Collapse
Affiliation(s)
- Angelo Castello
- Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Italy
| | - Egesta Lopci
- Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Italy
| |
Collapse
|
49
|
Cho SY, Huff DT, Jeraj R, Albertini MR. FDG PET/CT for Assessment of Immune Therapy: Opportunities and Understanding Pitfalls. Semin Nucl Med 2020; 50:518-531. [PMID: 33059821 PMCID: PMC8201415 DOI: 10.1053/j.semnuclmed.2020.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune checkpoint blockade has demonstrated the ability to modulate the immune system to produce durable responses in a wide range of cancers and has significantly impacted the standard of care. However, many cancer patients still do not respond to immune checkpoint blockade or have a limited duration of antitumor responses. Moreover, immune-related adverse events caused by immune checkpoint blockade can be severe and debilitating for some patients, limiting continuation of therapy and resulting in severe autoimmune conditions. Standard-of-care conventional anatomic imaging modalities and tumor response criteria have limitations to adequately assess tumor responses, especially early in the course of therapy, for risk-adapted clinical management to inform care of patients treated with immunotherapy. Molecular imaging with position emission tomography (PET) provides a noninvasive functional biomarker of tumor response, and of immune activation, for patients on immune-based therapies to help address these needs. 18F-FDG (FDG) PET/CT is readily available clinically and a number of studies have evaluated the use of this agent for assessment of prognosis, treatment response and immune activation for patients treated with immune checkpoint blockade. In this review paper, we discuss the current oncologic applications and imaging needs of cancer immunotherapy, recent studies applying FDG PET/CT for tumor response assessment, and evaluation of immune-related adverse events for improving clinical management. We largely focus on metastatic melanoma; however, we generalize where applicable to immunotherapy in other tumor types. We also briefly discuss PET imaging and quantitation as well as emerging non-FDG PET imaging radiotracers for cancer immunotherapy imaging.
Collapse
Affiliation(s)
- Steve Y Cho
- University of Wisconsin Carbone Cancer Center, Madison, WI; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| | - Daniel T Huff
- University of Wisconsin Carbone Cancer Center, Madison, WI; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Robert Jeraj
- University of Wisconsin Carbone Cancer Center, Madison, WI; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Mark R Albertini
- University of Wisconsin Carbone Cancer Center, Madison, WI; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI; Medical Service, William S. Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|
50
|
García-Figueiras R, Baleato-González S, Luna A, Muñoz-Iglesias J, Oleaga L, Vallejo Casas JA, Martín-Noguerol T, Broncano J, Areses MC, Vilanova JC. Assessing Immunotherapy with Functional and Molecular Imaging and Radiomics. Radiographics 2020; 40:1987-2010. [PMID: 33035135 DOI: 10.1148/rg.2020200070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy is changing the treatment paradigm for cancer and has introduced new challenges in medical imaging. Because not all patients benefit from immunotherapy, pretreatment imaging should be performed to identify not only prognostic factors but also factors that allow prediction of response to immunotherapy. Follow-up studies must allow detection of nonresponders, without confusion of pseudoprogression with real progression to prevent premature discontinuation of treatment that can benefit the patient. Conventional imaging techniques and classic tumor response criteria are limited for the evaluation of the unusual patterns of response that arise from the specific mechanisms of action of immunotherapy, so advanced imaging methods must be developed to overcome these shortcomings. The authors present the fundamentals of the tumor immune microenvironment and immunotherapy and how they influence imaging findings. They also discuss advances in functional and molecular imaging techniques for the assessment of immunotherapy in clinical practice, including their use to characterize immune phenotypes, assess patient prognosis and response to therapy, and evaluate immune-related adverse events. Finally, the development of radiomics and radiogenomics in these therapies and the future role of imaging biomarkers for immunotherapy are discussed. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - Sandra Baleato-González
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - Antonio Luna
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - José Muñoz-Iglesias
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - Laura Oleaga
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - Juan Antonio Vallejo Casas
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - Teodoro Martín-Noguerol
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - Jordi Broncano
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - María Carmen Areses
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - Joan C Vilanova
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| |
Collapse
|