1
|
Peeters E, van Genugten EAJ, Heskamp S, de Vries IJM, van Herpen C, Koenen HJPM, Kneilling M, van der Post RS, van Dop WA, Westdorp H, Aarntzen E. Exploring molecular imaging to investigate immune checkpoint inhibitor-related toxicity. J Immunother Cancer 2025; 13:e011009. [PMID: 40341021 PMCID: PMC12060888 DOI: 10.1136/jitc-2024-011009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/18/2025] [Indexed: 05/10/2025] Open
Abstract
Immune checkpoint inhibitors (ICI) boost the endogenous anticancer immunity, evoking long-lasting anticancer responses in a subset of patients with solid tumors. Simultaneously, ICI are also associated with serious toxicities, impacting treatment duration and the quality of life. The proposed processes underlying ICI-related toxicity include T-cell activation and recruitment to non-tumor tissues, involvement of other immune cells and fibroblasts and the host' microbiome composition. However, the exact mechanisms of these processes remain incompletely understood, hindering clinicians' ability to predict and identify ICI-related toxicity in the early stages of treatment. Molecular imaging may play a role as a non-invasive biomarker, providing a tool to study ICI-related toxicity. This review discusses the applications of molecular imaging to answer questions regarding the mechanisms, detection, and prediction of ICI-related toxicity. Potential targets and the current state of development of suitable imaging techniques are discussed.
Collapse
Affiliation(s)
- Eva Peeters
- Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Sandra Heskamp
- Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carla van Herpen
- Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
| | - Manfred Kneilling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University of Tübingen, Tubingen, Baden-Württemberg, Germany
- Department of Dermatology, University of Tübingen, Tubingen, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls Universität Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Rachel S van der Post
- Department of Pathology, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
| | - Willemijn A van Dop
- Department of Gastroenterology, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
| | - Harm Westdorp
- Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik Aarntzen
- Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Nuclear Medicine, Eberhard Karls Universität Tübingen, Tübingen, Baden-Württemberg, Germany
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Gouda MA, Ballesteros PA, Garrido-Laguna I, Rodon J. Efficacy assessment in phase I clinical trials: endpoints and challenges. Ann Oncol 2025; 36:507-519. [PMID: 40049448 DOI: 10.1016/j.annonc.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/14/2025] Open
Abstract
The scope of phase I clinical trials in oncology goes beyond the conventional safety evaluation-only objectives of these trials in other specialties. Rather, most first-in-human oncology clinical trials have therapeutic intent, and efficacy signals observed in phase I trials can drive a go/no-go decision of advancing a new molecule to phase II testing. The complexity of efficacy assessment in the context of a small, heterogeneous patient population and a complex study design requires a more liberal perspective compared with later trial phases when looking into efficacy endpoints. Classically, in later-phase clinical trials, these endpoints would include the objective response rate, progression-free survival, and overall survival. However, new, evolving endpoints may be worth investigating when looking into the antitumor activity signals in phase I trials. Integration of all these endpoints into trial designs can improve the assessment of therapeutic efficacy during early drug development and guide decisions related to the further advancement of novel molecules into later phases. In this review, we discuss the advantages and pitfalls of different classic efficacy endpoints when evaluated as part of phase I trials in oncology and describe how challenges in assessing the antitumor activity of new drugs can be overcome through the incorporation of novel endpoints that have thus far proven successful in clinical trials.
Collapse
Affiliation(s)
- M A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - P A Ballesteros
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - I Garrido-Laguna
- Department of Medical Oncology, Huntsman Cancer Institute, Salt Lake City, USA
| | - J Rodon
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
3
|
Murad V, Metser U, Kohan A, Murad S, Veit-Haibach P, Ortega C. 18F-FDG PET/CT for the Detection of Immune-Related Adverse Events in Patients With Metastatic Melanoma Receiving Immunotherapy. Can Assoc Radiol J 2025:8465371251334929. [PMID: 40308072 DOI: 10.1177/08465371251334929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Purpose: To evaluate frequency and distribution of immune-related adverse events detected by 18F-FDG PET/CT in patients with metastatic melanoma undergoing immunotherapy. Materials and Methods: Retrospective observational cohort study evaluating 147 patients with metastatic melanoma treated with immunotherapy and referred for therapy response assessment with 18F-FDG PET/CT at our institution from January 2010 to August 2022. In total, 201 PET/CT scans performed at various time points were analyzed. IRAEs detected on PET/CT were compared against clinical reference standards, including physical examinations, laboratory tests, and biopsies. Diagnostic performance metrics (sensitivity, specificity, positive predictive value, negative predictive value), and diagnostic yields were calculated. Results: There were 36/147 patients (24.5%) with IRAEs recorded according to standard of reference, with 39 IRAEs in the entire cohort. At time point level, PET/CT identified 36/36 (100%) patients with IRAEs confirmed by the reference standard, while clinical suspicion identified 26/36 (72%) cases. At IRAE level, PET/CT identified 36/39 (92%) of IRAEs confirmed by the reference standard. Thirteen out of 39 (33.3%) cases identified on PET/CT were not suspected clinically but confirmed by the reference standard. The most frequent IRAEs, both suspected clinically and on PET/CT, corresponded to thyroiditis and colitis. Among the PET/CT positive cases, the majority corresponded to grade 2 severity. Conclusion: 18F-FDG PET/CT is highly effective in detecting IRAEs in patients with metastatic melanoma on immunotherapy, uncovering clinically unsuspected events in up to 33% of cases. These results highlight its important role in early detection, guiding timely interventions, and improving overall outcomes of immunotherapy-related toxicities.
Collapse
Affiliation(s)
- Vanessa Murad
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Ur Metser
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Andres Kohan
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Sarah Murad
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Claudia Ortega
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Wang Y, Zhou L, Wang N, Qiu B, Yao D, Yu J, He M, Li T, Xie Y, Yu X, Bi Z, Sun X, Ji X, Li Z, Mo D, Ge WP. Comprehensive characterization of metabolic consumption and production by the human brain. Neuron 2025:S0896-6273(25)00175-8. [PMID: 40147438 DOI: 10.1016/j.neuron.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 12/06/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Metabolism is vital for brain function. However, a systematic investigation to understand the metabolic exchange between the human brain and circulatory system has been lacking. Here, we compared metabolomes and lipidomes of blood samples from the cerebral venous sinus and femoral artery to profile the brain's uptake and release of metabolites and lipids (1,365 metabolites and 140 lipids). We observed a high net uptake of glucose, taurine, and hypoxanthine and identified glutamine and pyruvate as significantly released metabolites by the brain. Triacylglycerols are the most prominent class of lipid consumed by the brain. The brain with cerebral venous sinus stenosis (CVSS) consumed more glucose and lactate and released more glucose metabolism byproducts than the brain with cerebral venous sinus thrombosis (CVST). Our data also showed age-related alterations in the uptake and release of metabolites. These results provide a comprehensive view of metabolic consumption and production processes within the human brain.
Collapse
Affiliation(s)
- Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China; China National Clinical Research Center for Neurological Diseases, National Center for Neurological Disorders, Beijing 100070, China.
| | - Lebo Zhou
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Nan Wang
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Baoshan Qiu
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Di Yao
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Jie Yu
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Miaoqing He
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
| | - Tong Li
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Yufeng Xie
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Department of Biochemistry and Molecular Biology, Peking Union Medical College, Beijing 100730, China; Changping Laboratory, Beijing 102206, China
| | - Xiaoqian Yu
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Zhanying Bi
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiangli Sun
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Dapeng Mo
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Changping Laboratory, Beijing 102206, China; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
5
|
Yang R, Tang H, Xie Y, Cai D, He Y, Zheng Z, Lin Y, Gao H, Tang W, Yan Y, Tan L, Shi H. [ 18F]FDG PET/CT for predicting neoadjuvant PD-L1 blockade monotherapy treatment response in patients with locally advanced esophageal squamous cell carcinoma: a preliminary study. Eur J Nucl Med Mol Imaging 2025; 52:1422-1435. [PMID: 39743618 DOI: 10.1007/s00259-024-07051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE To investigate the predictive value of 2-[18F]-fluoro-2-deoxy-D-glucose ([18F]FDG) PET/CT for evaluating primary tumor (PT) and lymph node (LN) responses after neoadjuvant programmed death-ligand 1 (PD-L1) blockade monotherapy in patients with locally advanced esophageal squamous cell carcinoma (LA-ESCC). METHODS In the single-arm phase 1b NATION-1907 trial (NCT04215471), 23 patients with LA-ESCC received two cycles of neoadjuvant PD-L1 blockade Adebrelimab followed by surgery. Among these, 18 patients underwent [18F]FDG PET/CT scans both before immunotherapy and prior to surgery. Standardized uptake value corrected for lean body mass (SUL)-derived parameters, including SULmax and SULpeak, were documented for PTs and LNs. Lesions > 1cm3 were segmented using thresholds of 41% and 50% of SULmax, respectively, following European Association of Nuclear Medicine (EANM) guidelines, with metabolic tumor volume (MTV) and total lesion glycolysis (TLG) calculated. Percentage changes of all metabolic parameters were also recorded. Residual viable tumor ≤ 33% were classified as well-responders, whereas residual viable tumor > 33% were classified as poor-responders based on histological evaluation. RESULTS In the PT analysis, 10 patients were classified as PT well-responders and 8 as PT poor-responders. All post-treatment metabolic parameters, except MTV, were significantly lower in well-responders compared to poor-responders. The %ΔMTV, %ΔTLG were significantly higher in the poor-responder group (all P < 0.05). ROC curves indicated %ΔMTV41 exhibited optimum performance in predicting well-responders, with an AUC of 0.875 (cut-off: -31.01). Furthermore, %ΔMTV41 significantly predicted patients' recurrence-free survival (RFS) (P < 0.1). In the LN analysis, 7 LNs were classified as well-responders and 10 as poor-responders. Pre-treatment SULmax, SULpeak were significantly lower in poor-responders compared to well-responders. Post-treatment MTV50 and all percentage changes in parameters were significantly higher in the poor-responder group (all P < 0.05). Receiver operating characteristic curve (ROC) analysis indicated %ΔTLG50 had excellent predictive performance for well-responders, with an AUC of 1.000 (cut-off: -7.5). However, there was no significant correlation between the metabolic response evaluations for PTs and LNs. CONCLUSION The metabolic parameters of [18F]FDG PET/CT, particularly %ΔMTV and %ΔTLG, could effectively predict well-responders among both PTs and LNs to neoadjuvant PD-L1 blockade monotherapy in LA-ESCC, which may facilitate personalized immunotherapy and serve as a stratification tool in future larger-scale studies.
Collapse
Affiliation(s)
- Runjun Yang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Han Tang
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
| | - Yunze Xie
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Danjie Cai
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yibo He
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhe Zheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huaping Gao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenxin Tang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yihan Yan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lijie Tan
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China.
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Ayeni A, Evbuomwan O, Vangu MDTW. The Role of [ 18F]FDG PET/CT in Monitoring of Therapy Response in Lung Cancer. Semin Nucl Med 2025; 55:175-189. [PMID: 40021362 DOI: 10.1053/j.semnuclmed.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
Lung cancer remains a leading cause of cancer deaths worldwide, with an all stage 5-year relative survival rate of less than 30%. Multiple treatment strategies are available and continue to evolve, with therapy primarily tailored to the type and stage of the disease. Accurate monitoring of therapy response is crucial for optimizing treatment outcomes. PET/CT imaging with [18F]FDG has become the standard of care across various phases of lung cancer management due to its ability to assess metabolic activity. This review underscores the pivotal role of [18F]FDG PET/CT in evaluating therapy response in lung cancer, particularly in non-small cell lung cancer (NSCLC). It examines conventional response criteria and their adaptations in the era of immunotherapy, highlighting the value of integrating metabolic imaging with established criteria to improve treatment assessment and guide clinical decisions. The potential of non-[18F]FDG PET tracers targeting diverse biological pathways to provide deeper insights into tumor biology, therapy response and predictive outcomes is also explored. Additionally, the emerging role of radiomics in enhancing treatment efficacy assessment and improving patient management is briefly highlighted. Despite the challenges in the routine clinical application of various metabolic response criteria, [18F]FDG PET/CT remains a crucial tool in monitoring therapy response in lung cancer. Ongoing advancements in therapeutic strategies, radiopharmaceuticals, and imaging techniques continue to drive progress in lung cancer management, promising improved patient outcomes.
Collapse
Affiliation(s)
- Akinwale Ayeni
- Division of Nuclear Medicine, Department of Radiation Sciences, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa; Nuclear Medicine, Klerksdorp/Tshepong Hospital Complex, Klerksdorp, North West Province, South Africa; Division of Nuclear Medicine, Department of Radiation Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Osayande Evbuomwan
- Department of Nuclear Medicine, Faculty of Health Sciences, University of The Free State, Bloemfontein, South Africa
| | - Mboyo-Di-Tamba Willy Vangu
- Division of Nuclear Medicine, Department of Radiation Sciences, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Pakola SA, Clubb JHA, Kudling TV, van der Heijden M, Jirovec E, Arias V, Haybout L, Peltola K, Alanko T, Sormunen J, Pellinen T, Taipale K, Quixabeira DCA, Kistler C, Havunen R, Sorsa S, Santos JM, Cervera-Carrascon V, Hemminki A. Transient lymphocyte count decrease correlates with oncolytic adenovirus efficacy in humans: mechanistic and biomarker findings from TUNIMO phase I trial. J Immunother Cancer 2025; 13:e010493. [PMID: 39870491 PMCID: PMC11772932 DOI: 10.1136/jitc-2024-010493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/09/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Oncolytic viruses (OVs) are promising immunotherapeutics to treat immunologically cold tumors. However, research on the mechanism of action of OVs in humans and clinically relevant biomarkers is still sparse. To induce strong T-cell responses against solid tumors, TILT-123 (Ad5/3-E2F-d24-hTNFa-IRES-hIL2, igrelimogene litadenorepvec) was developed. TILT-123 encodes two transgenes: tumor necrosis alpha (TNFa) and interleukin-2 (IL-2). TUNIMO (NCT04695327) was a phase I clinical trial using TILT-123 in patients with advanced solid tumors aiming to assess the safety, efficacy, and immunological effects of TILT-123. Research presented in this study evaluated the immunological effects of TILT-123 in the TUNIMO trial by using biological samples collected from the patients during the study, with an objective to leverage the findings to develop possible biomarkers of response and gain insights into possible synergistic combination treatments. METHODS 20 patients with advanced solid tumors were treated with TILT-123. Response to therapy was assessed with contrast-enhanced CT and fluorodeoxyglucose positron emission tomography, along with overall survival (OS) calculation. Biological samples from patients were collected in the form of blood and tumor biopsies. Collected samples were analyzed with immunohistochemistry, transcriptomics, proteomics, and flow cytometry. RESULTS TILT-123 induced cyclical decreases in blood lymphocyte count, and more substantial blood lymphocyte count correlated with better radiographical response and longer OS. Lymphocyte count findings were confirmed with external control dataset of 96 patients. More substantial lymphocyte count change was linked to stronger immune activation in plasma proteome after intravenous TILT-123 and the presence of TILT-123 mRNA in tumors. Regarding other assays. tumor biopsies profiled showed increased amounts of CD8+ T cells, CD4+ T cells and NK cells after intravenous TILT-123, but not after intratumoral TILT-123. Transcriptional differences were seen in tumors after intravenous therapy and intratumoral therapy, with patients benefitting therapy showing stronger downregulation of immune activation at all time points. CONCLUSIONS TILT-123 therapy induced accumulation of effector lymphocytes in tumors. Peripheral lymphocyte count decrease is a promising biomarker for assessing oncolytic adenovirus therapy response.
Collapse
Affiliation(s)
- Santeri A Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - James H A Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Tatiana V Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Mirte van der Heijden
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Elise Jirovec
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Victor Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Lyna Haybout
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Katriina Peltola
- Comprehensive Cancer Center, HUS Helsinki University Hospital, Helsinki, Finland
| | | | | | - Teijo Pellinen
- Digital Microscopy and Molecular Pathology Unit, University of Helsinki Institute for Molecular Medicine, Helsinki, Finland
| | - Kristian Taipale
- Health and Hospital Services, Wellbeing Services County of North Karelia - Siun sote, Joensuu, Finland
| | - Dafne C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | | | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Joao M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Comprehensive Cancer Center, HUS Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Thunold S, Hernes E, Farooqi S, Öjlert ÅK, Francis RJ, Nowak AK, Szejniuk WM, Nielsen SS, Cedres S, Perdigo MS, Sørensen JB, Meltzer C, Mikalsen LTG, Helland Å, Malinen E, Haakensen VD. Outcome prediction based on [18F]FDG PET/CT in patients with pleural mesothelioma treated with ipilimumab and nivolumab +/- UV1 telomerase vaccine. Eur J Nucl Med Mol Imaging 2025; 52:693-707. [PMID: 39133306 PMCID: PMC11732904 DOI: 10.1007/s00259-024-06853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE The introduction of immunotherapy in pleural mesothelioma (PM) has highlighted the need for effective outcome predictors. This study explores the role of [18F]FDG PET/CT in predicting outcomes in PM treated with immunotherapy. METHODS Patients from the NIPU trial, receiving ipilimumab and nivolumab +/- telomerase vaccine in second-line, were included. [18F]FDG PET/CT was obtained at baseline (n = 100) and at week-5 (n = 76). Metabolic tumour volume (MTV) and peak standardised uptake value (SUVpeak) were evaluated in relation to survival outcomes. Wilcoxon rank-sum test was used to assess differences in MTV, total lesion glycolysis (TLG), maximum standardised uptake value (SUVmax) and SUVpeak between patients exhibiting an objective response, defined as either partial response or complete response according to the modified Response Criteria in Solid Tumours (mRECIST) and immune RECIST (iRECIST), and non-responders, defined as either stable disease or progressive disease as their best overall response. RESULTS Univariate Cox regression revealed significant associations of MTV with OS (HR 1.36, CI: 1.14, 1.62, p < 0.001) and PFS (HR 1.18, CI: 1.03, 1.34, p = 0.02), while multivariate analysis showed a significant association with OS only (HR 1.35, CI: 1.09, 1.68, p = 0.007). While SUVpeak was not significantly associated with OS or PFS in univariate analyses, it was significantly associated with OS in multivariate analysis (HR 0.43, CI: 0.23, 0.80, p = 0.008). Objective responders had significant reductions in TLG, SUVmax and SUVpeak at week-5. CONCLUSION MTV provides prognostic value in PM treated with immunotherapy. High SUVpeak was not associated with inferior outcomes, which could be attributed to the distinct mechanisms of immunotherapy. Early reductions in PET metrics correlated with treatment response. STUDY REGISTRATION The NIPU trial (NCT04300244) is registered at clinicaltrials.gov. https://classic. CLINICALTRIALS gov/ct2/show/NCT04300244?cond=Pleural+Mesothelioma&cntry=NO&draw=2&rank=4.
Collapse
Affiliation(s)
- Solfrid Thunold
- Dept of Oncology, Oslo University Hospital, Oslo, Norway.
- Dept of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Eivor Hernes
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Saima Farooqi
- Dept of Oncology, Oslo University Hospital, Oslo, Norway
- Dept of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Åsa Kristina Öjlert
- Dept of Oncology, Oslo University Hospital, Oslo, Norway
- Dept of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Roslyn J Francis
- Dept of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, Australia
- Medical School of The University of Western Australia, Perth, Australia
| | - Anna K Nowak
- Medical School of The University of Western Australia, Perth, Australia
- National Centre for Asbestos-Related Diseases, University of Western Australia, Perth, Australia
- Medical Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Weronika Maria Szejniuk
- Clinical Cancer Research Center & Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Søren Steen Nielsen
- Department of Nuclear Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Susana Cedres
- Vall d'Hebron Institute of Oncology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Marc Simo Perdigo
- Dept of Nuclear Medicine, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jens Benn Sørensen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Carin Meltzer
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Lars Tore Gyland Mikalsen
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Åslaug Helland
- Dept of Oncology, Oslo University Hospital, Oslo, Norway
- Dept of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Eirik Malinen
- Dept of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Vilde Drageset Haakensen
- Dept of Oncology, Oslo University Hospital, Oslo, Norway
- Dept of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Lee G, Moon SH, Kim JH, Jeong DY, Choi J, Choi JY, Lee HY. Multimodal Imaging Approach for Tumor Treatment Response Evaluation in the Era of Immunotherapy. Invest Radiol 2025; 60:11-26. [PMID: 39018248 DOI: 10.1097/rli.0000000000001096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
ABSTRACT Immunotherapy is likely the most remarkable advancement in lung cancer treatment during the past decade. Although immunotherapy provides substantial benefits, their therapeutic responses differ from those of conventional chemotherapy and targeted therapy, and some patients present unique immunotherapy response patterns that cannot be judged under the current measurement standards. Therefore, the response monitoring of immunotherapy can be challenging, such as the differentiation between real response and pseudo-response. This review outlines the various tumor response patterns to immunotherapy and discusses methods for quantifying computed tomography (CT) and 18 F-fluorodeoxyglucose positron emission tomography (PET) in the field of lung cancer. Emerging technologies in magnetic resonance imaging (MRI) and non-FDG PET tracers are also explored. With immunotherapy responses, the role for imaging is essential in both anatomical radiological responses (CT/MRI) and molecular changes (PET imaging). Multiple aspects must be considered when assessing treatment responses using CT and PET. Finally, we introduce multimodal approaches that integrate imaging and nonimaging data, and we discuss future directions for the assessment and prediction of lung cancer responses to immunotherapy.
Collapse
Affiliation(s)
- Geewon Lee
- From the Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (G.L., D.Y.J., J.C., H.Y.L.); Department of Radiology and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, South Korea (G.L.); Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (S.H.M., J.Y.C.); Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea (J.H.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.C.); and Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea (H.Y.L.)
| | | | | | | | | | | | | |
Collapse
|
10
|
Wu Q, Shao H, Zhai W, Huang G, Liu J, Calais J, Wei W. Molecular imaging of renal cell carcinomas: ready for prime time. Nat Rev Urol 2024:10.1038/s41585-024-00962-z. [PMID: 39543358 DOI: 10.1038/s41585-024-00962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
The clinical diagnosis of renal cell carcinoma (RCC) is constantly evolving. Diagnostic imaging of RCC relying on enhanced computed tomography (CT) and magnetic resonance imaging (MRI) is commonly used for renal mass characterization and assessment of tumour thrombosis, whereas pathology is the gold standard for establishing diagnosis. However, molecular imaging is rapidly improving the clinical management of RCC, particularly clear-cell RCC. Molecular imaging aids in the non-invasive visualization and characterization of specific biomarkers such as carbonic anhydrase IX and CD70 within the tumours, which help to assess tumour heterogeneity and status. Target-specific molecular imaging of RCCs will substantially improve the diagnostic landscape of RCC and will further facilitate clinical decision-making regarding initial staging and re-staging, monitoring of recurrence and metastasis, patient stratification and selection, and the prediction and evaluation of treatment responses.
Collapse
Affiliation(s)
- Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongda Shao
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
Kim H, Liu M, Park CH, Lee BI, Jang H, Choi Y. Activatable near-infrared fluorescence probe for real-time imaging of PD-L1 expression in tumors. J Mater Chem B 2024; 12:10877-10885. [PMID: 39206756 DOI: 10.1039/d4tb01148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In clinical practice, determining programmed death-ligand 1 (PD-L1) expression is crucial for selecting patients and monitoring immune checkpoint blockade therapies. Currently, PD-L1 expression is quantified using immunohistochemistry (IHC). However, IHC-based methods do not capture the heterogeneous and dynamic nature of PD-L1 expression. Thus, there is a pressing need for a rapid and efficient method for monitoring PD-L1 expression both in vitro and in vivo, which would considerably aid in prognosis and treatment selection. In this study, we present for the first time an activatable near-infrared (NIR) fluorescence imaging probe (Q-Atezol) for the real-time monitoring of PD-L1 expression in vitro and in vivo. The ability of Q-Atezol to detect PD-L1 expression quickly and in real-time was evaluated in both tumor spheroid and lung cancer xenograft models. An always-on optical probe (ON-Atezol) was synthesized and tested for comparison. In vivo NIR fluorescence imaging studies were conducted on A549 and H1975 tumor-bearing mice, and their tumor-to-background ratios (TBRs) were analyzed. The quenched NIR fluorescence of Q-Atezol is activated upon binding to PD-L1 proteins on the surface of cancer cells, thereby enabling PD-L1 detection in the three-dimensional (3D) tumor spheroids without a washing step. Notably, PD-L1-positive H1975 tumors were clearly visualized with a high TBR 6 hours after Q-Atezol injection, whereas ON-Atezol treatment could not detect H1975 tumors even 24 hours post-injection. The activatable fluorescence probe Q-Atezol demonstrated great potential as an exceptional sensor for assessing PD-L1 expression in 3D cell structures and for in vivo applications.
Collapse
Affiliation(s)
- Hyunjin Kim
- Division of Technology Convergence, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea.
| | - Maixian Liu
- Division of Technology Convergence, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea.
| | - Chan Hyeok Park
- Division of Rare and Refractory Cancer, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea
| | - Byung Il Lee
- Division of Rare and Refractory Cancer, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea
| | - Hyonchol Jang
- Division of Rare and Refractory Cancer, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea
| | - Yongdoo Choi
- Division of Technology Convergence, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea.
| |
Collapse
|
12
|
Masse M, Chardin D, Tricarico P, Ferrari V, Martin N, Otto J, Darcourt J, Comte V, Humbert O. [ 18F]FDG-PET/CT atypical response patterns to immunotherapy in non-small cell lung cancer patients: long term prognosis assessment and clinical management proposal. Eur J Nucl Med Mol Imaging 2024; 51:3696-3708. [PMID: 38896129 PMCID: PMC11457717 DOI: 10.1007/s00259-024-06794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
AIM To determine the long-term prognosis of immune-related response profiles (pseudoprogression and dissociated response), not covered by conventional PERCIST criteria, in patients with non-small-cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICPIs). METHODS 109 patients were prospectively included and underwent [18F]FDG-PET/CT at baseline, after 7 weeks (PETinterim1), and 3 months (PETinterim2) of treatment. On PETinterim1, tumor response was assessed using standard PERCIST criteria. In the event of PERCIST progression at this time-point, the study design provided for continued immunotherapy for 6 more weeks. Additional response patterns were then considered on PETinterim2: pseudo-progression (PsPD, subsequent metabolic response); dissociated response (DR, coexistence of responding and non-responding lesions), and confirmed progressive metabolic disease (cPMD, subsequent homogeneous progression of lesions). Patients were followed up for at least 12 months. RESULTS Median follow-up was 21 months. At PETinterim1, PERCIST progression was observed in 60% (66/109) of patients and ICPI was continued in 59/66. At the subsequent PETinterim2, 14% of patients showed PsPD, 11% DR, 35% cPMD, and 28% had a sustained metabolic response. Median overall survival (OS) and progression-free-survival (PFS) did not differ between PsPD and DR (27 vs 29 months, p = 1.0; 17 vs 12 months, p = 0.2, respectively). The OS and PFS of PsPD/DR patients were significantly better than those with cPMD (29 vs 9 months, p < 0.02; 16 vs 2 months, p < 0.001), but worse than those with sustained metabolic response (p < 0.001). This 3-group prognostic stratification enabled better identification of true progressors, outperforming the prognostic value of standard PERCIST criteria (p = 0.03). CONCLUSION [18F]FDG-PET/CT enables early assessment of response to immunotherapy. The new wsPERCIST ("wait and see") PET criteria proposed, comprising immune-related atypical response patterns, can refine conventional prognostic stratification based on PERCIST criteria. TRIAL REGISTRATION HDH F20230309081206. Registered 20 April 2023. Retrospectively registered.
Collapse
Affiliation(s)
- Mathilde Masse
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France.
- Université Côte D'Azur, CNRS, Inserm, iBV, Nice, France.
| | - David Chardin
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
- Université Côte D'Azur, CNRS, Inserm, iBV, Nice, France
| | - Pierre Tricarico
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
| | - Victoria Ferrari
- Centre Antoine Lacassagne, Oncology Department, 33 Avenue de Valombrose, 06100, Nice, France
| | - Nicolas Martin
- Centre Antoine Lacassagne, Oncology Department, 33 Avenue de Valombrose, 06100, Nice, France
| | - Josiane Otto
- Centre Antoine Lacassagne, Oncology Department, 33 Avenue de Valombrose, 06100, Nice, France
| | - Jacques Darcourt
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
- TIRO-UMR E 4320, UCA/CEA, 28 Avenue de Valombrose, 06100, Nice, France
| | - Victor Comte
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
- Université Côte D'Azur, CNRS, Inserm, iBV, Nice, France
| | - Olivier Humbert
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
- Université Côte D'Azur, CNRS, Inserm, iBV, Nice, France
| |
Collapse
|
13
|
Brezun J, Aide N, Peroux E, Lamboley JL, Gutman F, Lussato D, Helissey C. [18F]FDG PET/CT Integration in Evaluating Immunotherapy for Lung Cancer: A Clinician's Practical Approach. Diagnostics (Basel) 2024; 14:2104. [PMID: 39335783 PMCID: PMC11431382 DOI: 10.3390/diagnostics14182104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has revolutionized the treatment paradigm of lung cancer, resulting in notable enhancements in patient survival. Nevertheless, evaluating treatment response in patients undergoing immunotherapy poses distinct challenges due to unconventional response patterns like pseudoprogressive disease (PPD), dissociated response (DR), and hyperprogressive disease (HPD). Conventional response criteria such as the RECIST 1.1 may not adequately address these complexities. To tackle this issue, novel response criteria such as the iRECIST and imRECIST have been proposed, enabling a more comprehensive assessment of treatment response by incorporating additional scans and considering the best overall response even after radiologic progressive disease evaluation. Additionally, [18F]FDG PET/CT imaging has emerged as a valuable modality for evaluating treatment response, with various metabolic response criteria such as the PERCIMT, imPERCIST, and iPERCIST developed to overcome the limitations of traditional criteria, particularly in detecting pseudoprogression. A multidisciplinary approach involving oncologists, radiologists, and nuclear medicine specialists is crucial for effectively navigating these complexities and enhancing patient outcomes in the era of immunotherapy for lung cancer. In this review, we delineate the key components of these guidelines, summarizing essential aspects for radiologists and nuclear medicine physicians. Furthermore, we provide insights into how imaging can guide the management of individual lung cancer patients in real-world multidisciplinary settings.
Collapse
Affiliation(s)
- Juliette Brezun
- Department of Medical Oncology and Clinical Research Unit, Military Hospital Bégin, 94160 Saint-Mandé, France
| | - Nicolas Aide
- INSERM ANTICIPE U1086, Caen University, 14000 Caen, France;
| | - Evelyne Peroux
- Department of Radiology, Military Hospital Laveran, 13013 Marseille, France;
| | | | - Fabrice Gutman
- Department of Nuclear Medicine, Paul d’Egine Hospital, 94500 Champigny-sur-Marne, France;
| | - David Lussato
- Department of Nuclear Medicine, Centre Cardiologique du Nord, 93200 Saint-Denis, France;
| | - Carole Helissey
- Department of Medical Oncology and Clinical Research Unit, Military Hospital Bégin, 94160 Saint-Mandé, France
| |
Collapse
|
14
|
Wang R, Liu S, Chen B, Li Q, Cheng X, Zhu Y, Zhang L, Hu Y, Liu M, Hu Y, Xi M. Prognostic significance of PET/CT and its association with immuno-genomic profiling in oesophageal squamous cell carcinoma treated with immunotherapy plus chemoradiotherapy: results from a phase II study. Br J Cancer 2024; 131:709-717. [PMID: 38937623 PMCID: PMC11333745 DOI: 10.1038/s41416-024-02779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND A phase II trial (EC-CRT-001) demonstrated the promising efficacy of combining toripalimab (an anti-PD-1 antibody) with definitive chemoradiotherapy (CRT) for locally advanced oesophageal squamous cell carcinoma (ESCC). Biomarkers are key to identifying patients who may benefit from this therapeutic approach. METHODS Of the 42 patients with ESCC who received toripalimab combined with definitive CRT, 37 were included in this analysis. Baseline assessments included PET/CT metabolic parameters (SUVmax, SUVmean, SUVpeak, MTV, and TLG), RNA sequencing of tumour biopsies to quantify the tissue mutational burden (TMB), and multiplex immunofluorescence staining to estimate immune cell infiltration in the tumour microenvironment (TME). Frozen neoplastic samples were procured for RNA sequencing to further explore the immune-related TME. RESULTS Among the 37 patients, high baseline SUVmax (≥12.0; OR = 6.5, 95% CI 1.4-48.2, p = 0.032) and TLG (≥121.8; OR = 6.8, 95% CI 1.6-33.5, p = 0.012) were significantly correlated with lower complete response rates. All five PET/CT parameters were notably associated with overall survival; only SUVmax and TLG were associated with a significantly worse progression-free survival. A trend towards an inverse correlation was observed between SUVmax and TMB (R = -0.33, p = 0.062). PD-1 + CD8 + T cell infiltration was negatively correlated with MTV (R = -0.355, p = 0.034) and TLG (R = -0.385, p = 0.021). Moreover, RNA sequencing revealed that the high TLG subgroup exhibited low immune cell infiltration, indicating an immunosuppressive landscape. CONCLUSIONS High baseline SUVmax and TLG might predict poorer treatment response and worse survival in patients with ESCC undergoing immunotherapy combined with CRT. In addition, high PET/CT metabolic parameters, particularly TLG, were correlated with an immunosuppressive TME, which warrants further exploration.
Collapse
Affiliation(s)
- Ruixi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shiliang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Baoqing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiaoqiao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xingyuan Cheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yujia Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yonghong Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengzhong Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yingying Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mian Xi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Esophageal Cancer Institute, Guangzhou, China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
15
|
Guo S, Tan Z, Guan W, Yin Y. Early Hyperprogression of Rhabdomyosarcoma Detected by 18 F-FDG PET/CT Three Weeks after CAR-T Treatment. World J Nucl Med 2024; 23:212-216. [PMID: 39170844 PMCID: PMC11335383 DOI: 10.1055/s-0044-1787537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) treatment has been widely used in the treatment of hematological malignancies, and its application has been gradually expanded to the research and treatment of solid tumors. However, unconventional types of response may occur after CAR-T treatment, such as hyperprogression, resulting in terrible outcomes. Here, we report the case of a 13-year-old adolescent boy with relapsed and refractory rhabdomyosarcoma who developed early hyperprogression 3 weeks after CAR-T treatment (target: B7H3 and CD171), which was detected by fluorine-18 fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET)/computed tomography (CT). The patient eventually underwent amputation. Attention should be paid to the possibility of early hyperprogression after CAR-T treatment, and 18 F-FDG PET/CT has an absolute advantage in early evaluating treatment response to immunotherapy.
Collapse
Affiliation(s)
- Shenrui Guo
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Tan
- Department of Pediatric Hematology/Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Weyts K, Lequesne J, Johnson A, Curcio H, Parzy A, Coquan E, Lasnon C. The impact of introducing deep learning based [ 18F]FDG PET denoising on EORTC and PERCIST therapeutic response assessments in digital PET/CT. EJNMMI Res 2024; 14:72. [PMID: 39126532 DOI: 10.1186/s13550-024-01128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/06/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND [18F]FDG PET denoising by SubtlePET™ using deep learning artificial intelligence (AI) was previously found to induce slight modifications in lesion and reference organs' quantification and in lesion detection. As a next step, we aimed to evaluate its clinical impact on [18F]FDG PET solid tumour treatment response assessments, while comparing "standard PET" to "AI denoised half-duration PET" ("AI PET") during follow-up. RESULTS 110 patients referred for baseline and follow-up standard digital [18F]FDG PET/CT were prospectively included. "Standard" EORTC and, if applicable, PERCIST response classifications by 2 readers between baseline standard PET1 and follow-up standard PET2 as a "gold standard" were compared to "mixed" classifications between standard PET1 and AI PET2 (group 1; n = 64), or between AI PET1 and standard PET2 (group 2; n = 46). Separate classifications were established using either standardized uptake values from ultra-high definition PET with or without AI denoising (simplified to "UHD") or EANM research limited v2 (EARL2)-compliant values (by Gaussian filtering in standard PET and using the same filter in AI PET). Overall, pooling both study groups, in 11/110 (10%) patients at least one EORTCUHD or EARL2 or PERCISTUHD or EARL2 mixed vs. standard classification was discordant, with 369/397 (93%) concordant classifications, unweighted Cohen's kappa = 0.86 (95% CI: 0.78-0.94). These modified mixed vs. standard classifications could have impacted management in 2% of patients. CONCLUSIONS Although comparing similar PET images is preferable for therapy response assessment, the comparison between a standard [18F]FDG PET and an AI denoised half-duration PET is feasible and seems clinically satisfactory.
Collapse
Affiliation(s)
- Kathleen Weyts
- Nuclear Medicine Department, François Baclesse Comprehensive Cancer Centre, UNICANCER, Caen, 3 Avenue du General Harris, BP 45026, Caen Cedex 5, 14076, France.
| | - Justine Lequesne
- Biostatistics Department, François Baclesse Comprehensive Cancer Centre, UNICANCER, Caen, France
| | - Alison Johnson
- Medical Oncology Department, François Baclesse Comprehensive Cancer Centre, UNICANCER, Caen, France
| | - Hubert Curcio
- Medical Oncology Department, François Baclesse Comprehensive Cancer Centre, UNICANCER, Caen, France
| | - Aurélie Parzy
- Medical Oncology Department, François Baclesse Comprehensive Cancer Centre, UNICANCER, Caen, France
| | - Elodie Coquan
- Medical Oncology Department, François Baclesse Comprehensive Cancer Centre, UNICANCER, Caen, France
| | - Charline Lasnon
- Nuclear Medicine Department, François Baclesse Comprehensive Cancer Centre, UNICANCER, Caen, 3 Avenue du General Harris, BP 45026, Caen Cedex 5, 14076, France
- UNICAEN, INSERM 1086 ANTICIPE, Normandy University, Caen, France
| |
Collapse
|
17
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
18
|
Matsumoto A, Shimada Y, Nakano M, Ozeki H, Yamai D, Murata M, Ishizaki F, Nyuzuki H, Ikeuchi T, Wakai T. Conversion therapy with pembrolizumab for a peritoneal metastasis of rectal cancer causing hydronephrosis in a patient with Lynch syndrome. Clin J Gastroenterol 2024; 17:451-456. [PMID: 38393537 DOI: 10.1007/s12328-024-01931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
A 44-year-old woman with Lynch syndrome was referred to our hospital for treatment of recurrence of microsatellite instability-high rectal cancer. [18F]Fluorodeoxyglucose (18FDG)-positron emission tomography revealed a peritoneal metastasis with invasion to the small intestine and left ureter. The peritoneal metastasis was diagnosed initially as unresectable because of extensive invasion to the left ureter requiring nephrectomy. Hence, first-line treatment with pembrolizumab was started. After the first course of pembrolizumab, she developed hydronephrosis and a resulting urinary tract infection (UTI). A percutaneous nephrostomy was performed to control the UTI. After six courses of pembrolizumab, 18FDG-positron emission tomography showed that the peritoneal metastasis was smaller with significantly reduced 18FDG uptake, and it was then diagnosed as resectable without nephrectomy. She underwent R0 resection of the peritoneal metastasis with partial resection of the small intestine. Intraoperatively, the peritoneal metastasis showed no invasion of the left ureter, allowing its preservation. The percutaneous nephrostomy was removed postoperatively, and she has not developed any subsequent UTIs. Histopathologically, the tumor showed a pathological complete response to pembrolizumab. To the best of our knowledge, this is the first case of conversion therapy with pembrolizumab for peritoneal metastasis with hydronephrosis.
Collapse
Affiliation(s)
- Akio Matsumoto
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 9518510, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 9518510, Japan.
- Medical Genome Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata, Japan.
| | - Mae Nakano
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 9518510, Japan
- Medical Genome Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Hikaru Ozeki
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 9518510, Japan
| | - Daisuke Yamai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 9518510, Japan
| | - Masaki Murata
- Medical Genome Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata, Japan
- Division of Urology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Fumio Ishizaki
- Medical Genome Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata, Japan
- Division of Urology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Hiromi Nyuzuki
- Center for Medical Genetics, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Takeshi Ikeuchi
- Center for Medical Genetics, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 9518510, Japan
- Medical Genome Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata, Japan
| |
Collapse
|
19
|
Zhang L, Qiu M, Wang R, Li S, Liu X, Xu Q, Xiao L, Jiang ZX, Zhou X, Chen S. Monitoring ROS Responsive Fe 3O 4-based Nanoparticle Mediated Ferroptosis and Immunotherapy via 129Xe MRI. Angew Chem Int Ed Engl 2024; 63:e202403771. [PMID: 38551448 DOI: 10.1002/anie.202403771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 04/24/2024]
Abstract
The immune checkpoint blockade strategy has improved the survival rate of late-stage lung cancer patients. However, the low immune response rate limits the immunotherapy efficiency. Here, we report a ROS-responsive Fe3O4-based nanoparticle that undergoes charge reversal and disassembly in the tumor microenvironment, enhancing the uptake of Fe3O4 by tumor cells and triggering a more severe ferroptosis. In the tumor microenvironment, the nanoparticle rapidly disassembles and releases the loaded GOx and the immune-activating peptide Tuftsin under overexpressed H2O2. GOx can consume the glucose of tumor cells and generate more H2O2, promoting the disassembly of the nanoparticle and drug release, thereby enhancing the therapeutic effect of ferroptosis. Combined with Tuftsin, it can more effectively reverse the immune-suppressive microenvironment and promote the recruitment of effector T cells in tumor tissues. Ultimately, in combination with α-PD-L1, there is significant inhibition of the growth of lung metastases. Additionally, the hyperpolarized 129Xe method has been used to evaluate the Fe3O4 nanoparticle-mediated immunotherapy, where the ventilation defects in lung metastases have been significantly improved with complete lung structure and function recovered. The ferroptosis-enhanced immunotherapy combined with non-radiation evaluation methodology paves a new way for designing novel theranostic agents for cancer therapy.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maosong Qiu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruifang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sha Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoxun Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiuyi Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Long Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, P. R. China
| |
Collapse
|
20
|
Karlsen W, Akily L, Mierzejewska M, Teodorczyk J, Bandura A, Zaucha R, Cytawa W. Is 18F-FDG-PET/CT an Optimal Imaging Modality for Detecting Immune-Related Adverse Events after Immune-Checkpoint Inhibitor Therapy? Pros and Cons. Cancers (Basel) 2024; 16:1990. [PMID: 38893111 PMCID: PMC11171385 DOI: 10.3390/cancers16111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized contemporary oncology, presenting efficacy in various solid tumors and lymphomas. However, ICIs may potentially overstimulate the immune system, leading to immune-related adverse events (irAEs). IrAEs may affect multiple organs, such as the colon, stomach, small intestine, kidneys, skin, lungs, joints, liver, lymph nodes, bone marrow, brain, heart, and endocrine glands (e.g., pancreas, thyroid, or adrenal glands), exhibiting autoimmune inflammation. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is commonly used in oncology for staging and assessment of therapy responses, but it may also serve as a tool for detecting irAEs. This review aims to present various patterns of metabolic activation associated with irAEs due to ICI treatment, identifiable through 18F-FDG PET/CT. It describes the advantages of early detection of irAEs, but also presents the challenges in differentiating them from tumor progression. It also delves into aspects of molecular response assessment within the context of pseudoprogression and hyperprogression, along with typical imaging findings related to these phenomena. Lastly, it summarizes the role of functional PET imaging in oncological immunotherapy, speculating on its future significance and limitations.
Collapse
Affiliation(s)
- William Karlsen
- Students’ Scientific Circle Department of Nuclear Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (W.K.); (L.A.)
| | - Lin Akily
- Students’ Scientific Circle Department of Nuclear Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (W.K.); (L.A.)
| | - Monika Mierzejewska
- Department of Nuclear Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (M.M.); (J.T.)
| | - Jacek Teodorczyk
- Department of Nuclear Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (M.M.); (J.T.)
| | - Artur Bandura
- Department of Clinical Oncology and Radiotherapy, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (A.B.); (R.Z.)
| | - Renata Zaucha
- Department of Clinical Oncology and Radiotherapy, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (A.B.); (R.Z.)
| | - Wojciech Cytawa
- Department of Nuclear Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (M.M.); (J.T.)
| |
Collapse
|
21
|
Monick S, Rosenthal A. Circulating Tumor DNA as a Complementary Prognostic Biomarker during CAR-T Therapy in B-Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2024; 16:1881. [PMID: 38791959 PMCID: PMC11120115 DOI: 10.3390/cancers16101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The emergence of CD19-directed chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment paradigm for R/R B-cell NHLs. However, challenges persist in accurately evaluating treatment response and detecting early relapse, necessitating the exploration of novel biomarkers. Circulating tumor DNA (ctDNA) via liquid biopsy is a non-invasive tool for monitoring therapy efficacy and predicting treatment outcomes in B-NHL following CAR-T therapy. By overcoming the limitations of conventional imaging modalities, ctDNA assessments offer valuable insights into response dynamics, molecular mechanisms of resistance, and early detection of molecular relapse. Integration of ctDNA monitoring into clinical practice holds promise for personalized therapeutic strategies, guiding the development of novel targeted therapies, and enhancing patient outcomes. However, standardization of assay methodologies and consensus on clinical response metrics are imperative to unlock the full potential of ctDNA in the management of B-NHL. Prospective validation of ctDNA in clinical trials is necessary to establish its role as a complementary decision aid.
Collapse
Affiliation(s)
- Sarah Monick
- Department of Medicine, Mayo Clinic Arizona, Phoenix, AZ 85054, USA;
| | | |
Collapse
|
22
|
Besson FL, Nocturne G, Noël N, Gheysens O, Slart RHJA, Glaudemans AWJM. PET/CT in Inflammatory and Auto-immune Disorders: Focus on Several Key Molecular Concepts, FDG, and Radiolabeled Probe Perspectives. Semin Nucl Med 2024; 54:379-393. [PMID: 37973447 DOI: 10.1053/j.semnuclmed.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Chronic immune diseases mainly include autoimmune and inflammatory diseases. Managing chronic inflammatory and autoimmune diseases has become a significant public health concern, and therapeutic advancements over the past 50 years have been substantial. As therapeutic tools continue to multiply, the challenge now lies in providing each patient with personalized care tailored to the specifics of their condition, ushering in the era of personalized medicine. Precise and holistic imaging is essential in this context to comprehensively map the inflammatory processes in each patient, identify prognostic factors, and monitor treatment responses and complications. Imaging of patients with inflammatory and autoimmune diseases must provide a comprehensive view of the body, enabling the whole-body mapping of systemic involvement. It should identify key cellular players in the pathology, involving both innate immunity (dendritic cells, macrophages), adaptive immunity (lymphocytes), and microenvironmental cells (stromal cells, tissue cells). As a highly sensitive imaging tool with vectorized molecular probe capabilities, PET/CT can be of high relevance in the management of numerous inflammatory and autoimmune diseases. Relying on key molecular concepts of immunity, the clinical usefulness of FDG-PET/CT in several relevant inflammatory and immune-inflammatory conditions, validated or emerging, will be discussed in this review, together with radiolabeled probe perspectives.
Collapse
Affiliation(s)
- Florent L Besson
- Department of Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris-Saclay, AP-HP, DMU SMART IMAGING, CHU Bicêtre, Paris, France; Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; Université Paris-Saclay, Commissariat à l'énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), INSERM, BioMaps, Le Kremlin-Bicêtre, France.
| | - Gaetane Nocturne
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; Department of Rheumatology, Hôpital Bicêtre Assistance Publique -Hôpitaux de Paris, Le Kremlin-Bicêtre, France; Center for Immunology of Viral Infections and Auto-Immune Diseases (IMVA), Université Paris-Saclay, Institut pour la Santé et la Recherche Médicale (INSERM) UMR 1184, Le Kremlin Bicêtre, Paris, France
| | - Nicolas Noël
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; Center for Immunology of Viral Infections and Auto-Immune Diseases (IMVA), Université Paris-Saclay, Institut pour la Santé et la Recherche Médicale (INSERM) UMR 1184, Le Kremlin Bicêtre, Paris, France; Department of Internal Medicine, Hôpital Bicêtre Assistance Publique -Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires St-Luc and Institute for Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands; Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Roshardt Prieto NM, Turko P, Zellweger C, Nguyen-Kim TDL, Staeger R, Bellini E, Levesque MP, Dummer R, Ramelyte E. Patterns of radiological response to tebentafusp in patients with metastatic uveal melanoma. Melanoma Res 2024; 34:166-174. [PMID: 38126339 PMCID: PMC10906186 DOI: 10.1097/cmr.0000000000000952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Metastatic uveal melanoma (mUM) is a rare type of melanoma with poor outcomes. The first systemic treatment to significantly prolong overall survival (OS) in patients with mUM was tebentafusp, a bispecific protein that can redirect T-cells to gp-100 positive cells. However, the objective response rate according to Response Evaluation Criteria in Solid Tumors (RECIST) may underestimate the clinical impact of tebentafusp. As metabolic response assessed by PET Response Criteria in Solid Tumors (PERCIST) has been reported to better correlate with clinical outcome, we here compared the patterns of radiological and morphological responses in HLA-A*02:01-positive patients with mUM treated with tebentafusp. In the 19 enrolled patients, RECIST showed an overall response rate (ORR) of 10%, median progression-free survival of 2.8 months (95% CI 2.5-8.4), and median OS (mOS) of 18.8 months. In 10 patients, where both RECIST and PERCIST evaluation was available, the ORR was 10% for both; however, the PFS was longer for PERCIST compared to RECIST, 3.1 and 2.4 months, respectively. A poor agreement between the criteria was observed at all assessments (Cohen's kappa ≤0), yet they differed significantly only at the first on-treatment imaging ( P = 0.037). Elevated baseline LDH and age were associated with an increased risk for RECIST progression, while lymphocyte decrease after the first infusions correlated to reduced risk of RECIST progression. Detectable ctDNA at baseline did not correlate with progression. Early response to tebentafusp may be incompletely captured by conventional imaging, leading to a need to consider both tumor morphology and metabolism.
Collapse
Affiliation(s)
| | - Patrick Turko
- Department of Dermatology, University Hospital Zurich
- Medical Faculty, University of Zurich
| | - Caroline Zellweger
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich
| | - Thi Dan Linh Nguyen-Kim
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich
- Institute for Radiology and Nuclear Medicine Waid Municipal Hospital, Zurich, Switzerland
| | - Ramon Staeger
- Department of Dermatology, University Hospital Zurich
- Medical Faculty, University of Zurich
| | | | - Mitchell P. Levesque
- Department of Dermatology, University Hospital Zurich
- Medical Faculty, University of Zurich
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich
- Medical Faculty, University of Zurich
| | - Egle Ramelyte
- Department of Dermatology, University Hospital Zurich
- Medical Faculty, University of Zurich
| |
Collapse
|
24
|
Homburg S, Christensen CB, Pedersen M, Sørensen SG, Donia M, Svane IM, Hendel HW, Ellebaek E. Prospective Assessment of Fluorine-18-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography (FDG-PET/CT) for Early Identification of Checkpoint-Inhibitor-Induced Pseudoprogression. Cancers (Basel) 2024; 16:964. [PMID: 38473325 DOI: 10.3390/cancers16050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The activity of immune checkpoint inhibitors (ICIs) in patients with metastatic melanoma is often monitored using fluorine-18-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) scans. However, distinguishing disease progression (PD) from pseudoprogression (PsPD), where increased FDG uptake might reflect immune cell activity rather than tumor growth, remains a challenge. This prospective study compared the efficacy of dual-time point (DTP) FDG-PET/CT with modified response criteria (PERCIMT) in differentiating PsPD from PD. From July 2017-January 2021, 41 patients suspected to have PsPD on an evaluation scan were prospectively included (29 evaluable). A subsequent DTP FDG-PET/CT scan was conducted within 14 days, followed by a confirmatory FDG-PET/CT scan. Additionally, PERCIMT were applied. DTP FDG-PET/CT identified 24% with PsPD and 76% with PD. Applying PERCIMT criteria, 69% showed PsPD, while 31% had PD. On follow-up, 10 patients (34%) demonstrated confirmed PsPD, while 19 (66%) exhibited PD. The sensitivity and specificity of DTP FDG-PET/CT were 20% and 74%, respectively, and for PERCIMT this was 80% and 37%, respectively. Our findings suggest limited efficacy of DTP FDG-PET/CT in distinguishing PsPD from PD in ICI-treated patients with metastatic melanoma. The use of PERCIMT could complement clinical assessment and be incorporated in multidisciplinary team conferences for enhanced decision-making.
Collapse
Affiliation(s)
- Sif Homburg
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Charlotte Birk Christensen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Magnus Pedersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Simon Grund Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Helle Westergren Hendel
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Eva Ellebaek
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| |
Collapse
|
25
|
Calabretta R, Beer L, Prosch H, Kifjak D, Zisser L, Binder P, Grünert S, Langsteger W, Li X, Hacker M. Induction of Arterial Inflammation by Immune Checkpoint Inhibitor Therapy in Lung Cancer Patients as Measured by 2-[ 18F]FDG Positron Emission Tomography/Computed Tomography Depends on Pre-Existing Vascular Inflammation. Life (Basel) 2024; 14:146. [PMID: 38276275 PMCID: PMC10817655 DOI: 10.3390/life14010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) are one of the most effective therapies in oncology, albeit associated with various immune-related adverse events also affecting the cardiovascular system. METHODS We aimed to investigate the effect of ICI on arterial 2-[18F]FDG uptake by using 2-[18F]FDG PET/CT imaging pre/post treatment in 47 patients with lung cancer. Maximum 2-[18F]FDG standardized uptake values (SUVmax) and target-to-background ratios (TBRs) were calculated along six arterial segments. We classified the arterial PET lesions by pre-existing active inflammation (cut-off: TBRpre ≥ 1.6). 2-[18F]FDG metabolic activity pre/post treatment was also quantified in bone marrow, spleen, and liver. Circulating blood biomarkers were additionally collected at baseline and after immunotherapy. RESULTS ICI treatment resulted in significantly increased arterial inflammatory activity, detected by increased TBRs, in all arterial PET lesions analyzed. In particular, a significant elevation of arterial 2-[18F]FDG uptake was only recorded in PET lesions without pre-existing inflammation, in calcified as well as in non-calcified lesions. Furthermore, a significant increase in arterial 2-[18F]FDG metabolic activity after immunotherapy was solely observed in patients not previously treated with chemotherapy or radiotherapy as well as in those without CV risk factors. No significant changes were recorded in either 2-[18F]FDG uptake of bone marrow, spleen and liver after treatment, or the blood biomarkers. CONCLUSIONS ICI induces vascular inflammation in lung cancer patients lacking pre-existing arterial inflammation.
Collapse
Affiliation(s)
- Raffaella Calabretta
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (P.B.)
| | - Lucian Beer
- Division of Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Helmut Prosch
- Division of Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Daria Kifjak
- Division of Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Department of Radiology, UMass Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Lucia Zisser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (P.B.)
| | - Patrick Binder
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (P.B.)
| | - Stefan Grünert
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (P.B.)
| | - Werner Langsteger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (P.B.)
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (P.B.)
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (P.B.)
| |
Collapse
|
26
|
García-Cabo B, Reig N, Rami-Porta R, Call S, Esteban L, Barreiro B, Reyes E, Obiols C, Ochoa JM, Morlius X, Tarroch X, Serra M, Sanz-Santos J. Endobronchial ultrasound-guided transbronchial needle aspiration validated with video-assisted mediastinoscopic lymphadenectomy in the mediastinal restaging of patients with stage IIIA non-small cell lung cancer after induction therapy. Ther Adv Respir Dis 2024; 18:17534666241301284. [PMID: 39604280 PMCID: PMC11603456 DOI: 10.1177/17534666241301284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The role of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) validated with video-assisted mediastinoscopic lymphadenectomy (VAMLA) for mediastinal restaging of patients with non-small cell lung cancer (NSCLC) after induction therapy has never been described. OBJECTIVE To report on our experience in this clinical setting. DESIGN Retrospective analysis of a prospectively built database. METHODS Patients with stage IIIA (N2) NSCLC who underwent EBUS-TBNA for mediastinal restaging after induction therapy were included. The sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and diagnostic accuracy of EBUS-TBNA and VAMLA for mediastinal restaging were calculated. The number of patients needed to undergo confirmatory VAMLA (NNT) after a negative EBUS-TBNA for mediastinal restaging to avoid a case of pathologic (p) N2 disease after resection was also calculated. RESULTS Forty-six patients underwent EBUS-TBNA which was positive in 12 patients and negative in 34. Patients with a negative EBUS-TBNA underwent VAMLA which was positive in seven cases. Of the other 27 patients with a negative VAMLA, 26 underwent resection that did not show N2 disease. The sensitivity, specificity, NPV, PPV, and diagnostic accuracy of EBUS-TBNA for restaging were 63.1%, 100%, 79.4%, 100%, and 84.7%, respectively. The sensitivity, specificity, NPV, PPV, and diagnostic accuracy of confirmatory VAMLA after EBUS-TBNA was 100%. The NNT confirmatory VAMLA after a negative EBUS-TBNA to avoid a case of pN2 disease at resection was five patients. CONCLUSION EBUS-TBNA must remain as the first-choice test for invasive mediastinal restaging. However, the results of our study in terms of sensitivity and NPV, even considering the small size of our population, suggest that negative results of EBUS-TBNA should be interpreted with caution and surgical exploration of the mediastinum (specially VAMLA, if available) should be considered in these patients.
Collapse
Affiliation(s)
- Bruno García-Cabo
- Pulmonology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
- Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Terrassa, Barcelona, Spain
| | - Nina Reig
- Thoracic Surgery Department, Hospital Universitari Mútua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Ramón Rami-Porta
- Thoracic Surgery Department, Hospital Universitari Mútua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
- Network of Centers for Biomedical Research on Respiratory Diseases (CIBERES), Lung Cancer Group, Terrassa, Barcelona, Spain
| | - Sergi Call
- Thoracic Surgery Department, Hospital Universitari Mútua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
- Department of Morphological Sciences, Medical School, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Lluís Esteban
- Pulmonology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Bienvenido Barreiro
- Pulmonology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Efraín Reyes
- Pulmonology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Carme Obiols
- Thoracic Surgery Department, Hospital Universitari Mútua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Juan Manuel Ochoa
- Thoracic Surgery Department, Hospital Universitari Mútua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Xavier Morlius
- Pathology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Xavier Tarroch
- Pathology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Mireia Serra
- Thoracic Surgery Department, Hospital Universitari Mútua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - José Sanz-Santos
- Pulmonology Department, Hospital Universitari Mútua Terrassa, University of Barcelona, Plaça Dr Robert 5, Terrassa, Barcelona 08221, Spain
- Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Terrassa, Barcelona, Spain
| |
Collapse
|
27
|
Pavoine M, Thuillier P, Karakatsanis N, Legoupil D, Amrane K, Floch R, Le Pennec R, Salaün PY, Abgral R, Bourhis D. Clinical application of a population-based input function (PBIF) for a shortened dynamic whole-body FDG-PET/CT protocol in patients with metastatic melanoma treated by immunotherapy. EJNMMI Phys 2023; 10:79. [PMID: 38062278 PMCID: PMC10703763 DOI: 10.1186/s40658-023-00601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
BACKGROUND The aim was to investigate the feasibility of a shortened dynamic whole-body (dWB) FDG-PET/CT protocol and Patlak imaging using a population-based input function (PBIF), instead of an image-derived input function (IDIF) across the 60-min post-injection period, and study its effect on the FDG influx rate (Ki) quantification in patients with metastatic melanoma (MM) undergoing immunotherapy. METHODS Thirty-seven patients were enrolled, including a PBIF modeling group (n = 17) and an independent validation cohort (n = 20) of MM from the ongoing prospective IMMUNOPET2 trial. All dWB-PET data were acquired on Vision 600 PET/CT systems. The PBIF was fitted using a Feng's 4-compartments model and scaled to the individual IDIF tail's section within the shortened acquisition time. The area under the curve (AUC) of PBIFs was compared to respective IDIFs AUC within 9 shortened time windows (TW) in terms of linear correlation (R2) and Bland-Altman tests. Ki metrics calculated with PBIF vs IDIF on 8 organs with physiological tracer uptake, 44 tumoral lesions of MM and 11 immune-induced inflammatory sites of pseudo-progression disease were also compared (Mann-Whitney test). RESULTS The mean ± SD relative AUC bias was calculated at 0.5 ± 3.8% (R2 = 0.961, AUCPBIF = 1.007 × AUCIDIF). In terms of optimal use in routine practice and statistical results, the 5th-7th pass (R2 = 0.999 for both Ki mean and Ki max) and 5th-8th pass (mean ± SD bias = - 4.9 ± 6.5% for Ki mean and - 4.8% ± 5.6% for Ki max) windows were selected. There was no significant difference in Ki values from PBIF5_7 vs IDIF5_7 for physiological uptakes (p > 0.05) as well as for tumor lesions (mean ± SD Ki IDIF5_7 3.07 ± 3.27 vs Ki PBIF5_7 2.86 ± 2.96 100ml/ml/min, p = 0.586) and for inflammatory sites (mean ± SD Ki IDIF5_7 1.13 ± 0.59 vs Ki PBIF5_7 1.13 ± 0.55 100ml/ml/min, p = 0.98). CONCLUSION Our study showed the feasibility of a shortened dWB-PET imaging protocol with a PBIF approach, allowing to reduce acquisition duration from 70 to 20 min with reasonable bias. These findings open perspectives for its clinical use in routine practice such as treatment response assessment in oncology.
Collapse
Affiliation(s)
- Mathieu Pavoine
- Department of Nuclear Medicine, University Hospital, 2 Avenue Foch, 29200, Brest, France
| | - Philippe Thuillier
- UMR INSERM 1304 GETBO, Brest, France
- Department of Endocrinology, University Hospital, Brest, France
| | - Nicolas Karakatsanis
- Department of Radiology, Weil Cornell Medical College of Cornell University, New York, NY, USA
| | | | - Karim Amrane
- Department of Oncology, Regional Hospital, Morlaix, France
| | - Romain Floch
- Department of Nuclear Medicine, University Hospital, 2 Avenue Foch, 29200, Brest, France
| | - Romain Le Pennec
- Department of Nuclear Medicine, University Hospital, 2 Avenue Foch, 29200, Brest, France
- UMR INSERM 1304 GETBO, Brest, France
| | - Pierre-Yves Salaün
- Department of Nuclear Medicine, University Hospital, 2 Avenue Foch, 29200, Brest, France
- UMR INSERM 1304 GETBO, Brest, France
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital, 2 Avenue Foch, 29200, Brest, France
- UMR INSERM 1304 GETBO, Brest, France
| | - David Bourhis
- Department of Nuclear Medicine, University Hospital, 2 Avenue Foch, 29200, Brest, France.
- UMR INSERM 1304 GETBO, Brest, France.
| |
Collapse
|
28
|
Hackett JB, Ramos N, Barr S, Bross M, Viola NT, Gibson HM. Interferon gamma immunoPET imaging to evaluate response to immune checkpoint inhibitors. Front Oncol 2023; 13:1285117. [PMID: 38130991 PMCID: PMC10735274 DOI: 10.3389/fonc.2023.1285117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction We previously developed a 89Zr-labeled antibody-based immuno-positron emission tomography (immunoPET) tracer targeting interferon gamma (IFNγ), a cytokine produced predominantly by activated T and natural killer (NK) cells during pathogen clearance, anti-tumor immunity, and various inflammatory and autoimmune conditions. The current study investigated [89Zr]Zr-DFO-anti-IFNγ PET as a method to monitor response to immune checkpoint inhibitors (ICIs). Methods BALB/c mice bearing CT26 colorectal tumors were treated with combined ICI (anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death 1 (PD-1)). The [89Zr]Zr-DFO-anti-IFNγ PET tracer, generated with antibody clone AN18, was administered on the day of the second ICI treatment, with PET imaging 72 hours later. Tumor mRNA was analyzed by quantitative reverse-transcribed PCR (qRT-PCR). Results We detected significantly higher intratumoral localization of [89Zr]Zr-DFO-anti-IFNγ in ICI-treated mice compared to untreated controls, while uptake of an isotype control tracer remained similar between treated and untreated mice. Interestingly, [89Zr]Zr-DFO-anti-IFNγ uptake was also elevated relative to the isotype control in untreated mice, suggesting that the IFNγ-specific tracer might be able to detect underlying immune activity in situ in this immunogenic model. In an efficacy experiment, a significant inverse correlation between tracer uptake and tumor burden was also observed. Because antibodies to cytokines often exhibit neutralizing effects which might alter cellular communication within the tumor microenvironment, we also evaluated the impact of AN18 on downstream IFNγ signaling and ICI outcomes. Tumor transcript analysis using interferon regulatory factor 1 (IRF1) expression as a readout of IFNγ signaling suggested there may be a marginal disruption of this pathway. However, compared to a 250 µg dose known to neutralize IFNγ, which diminished ICI efficacy, a tracer-equivalent 50 µg dose did not reduce ICI response rates. Discussion These results support the use of IFNγ PET as a method to monitor immune activity in situ after ICI, which may also extend to additional T cell-activating immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Heather M. Gibson
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
29
|
Subtirelu RC, Teichner EM, Ashok A, Parikh C, Talasila S, Matache IM, Alnemri AG, Anderson V, Shahid O, Mannam S, Lee A, Werner T, Revheim ME, Alavi A. Advancements in dendritic cell vaccination: enhancing efficacy and optimizing combinatorial strategies for the treatment of glioblastoma. Front Neurol 2023; 14:1271822. [PMID: 38020665 PMCID: PMC10644823 DOI: 10.3389/fneur.2023.1271822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Glioblastomas (GBM) are highly invasive, malignant primary brain tumors. The overall prognosis is poor, and management of GBMs remains a formidable challenge, necessitating novel therapeutic strategies such as dendritic cell vaccinations (DCVs). While many early clinical trials demonstrate an induction of an antitumoral immune response, outcomes are mixed and dependent on numerous factors that vary between trials. Optimization of DCVs is essential; the selection of GBM-specific antigens and the utilization of 18F-fludeoxyglucose Positron Emission Tomography (FDG-PET) may add significant value and ultimately improve outcomes for patients undergoing treatment for glioblastoma. This review provides an overview of the mechanism of DCV, assesses previous clinical trials, and discusses future strategies for the integration of DCV into glioblastoma treatment protocols. To conclude, the review discusses challenges associated with the use of DCVs and highlights the potential of integrating DCV with standard therapies.
Collapse
Affiliation(s)
- Robert C. Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Eric M. Teichner
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Arjun Ashok
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chitra Parikh
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sahithi Talasila
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Irina-Mihaela Matache
- Department of Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ahab G. Alnemri
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Victoria Anderson
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Osmaan Shahid
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Sricharvi Mannam
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew Lee
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Mona-Elisabeth Revheim
- Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
30
|
Prendergast CM, Lopci E, Seban RD, De Jong D, Ammari S, Aneja S, Lévy A, Sajan A, Salvatore MM, Cappacione KM, Schwartz LH, Deutsch E, Dercle L. Integrating [ 18F]-Fluorodeoxyglucose Positron Emission Tomography with Computed Tomography with Radiation Therapy and Immunomodulation in Precision Therapy for Solid Tumors. Cancers (Basel) 2023; 15:5179. [PMID: 37958353 PMCID: PMC10648321 DOI: 10.3390/cancers15215179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
[18F]-FDG positron emission tomography with computed tomography (PET/CT) imaging is widely used to enhance the quality of care in patients diagnosed with cancer. Furthermore, it holds the potential to offer insight into the synergic effect of combining radiation therapy (RT) with immuno-oncological (IO) agents. This is achieved by evaluating treatment responses both at the RT and distant tumor sites, thereby encompassing the phenomenon known as the abscopal effect. In this context, PET/CT can play an important role in establishing timelines for RT/IO administration and monitoring responses, including novel patterns such as hyperprogression, oligoprogression, and pseudoprogression, as well as immune-related adverse events. In this commentary, we explore the incremental value of PET/CT to enhance the combination of RT with IO in precision therapy for solid tumors, by offering supplementary insights to recently released joint guidelines.
Collapse
Affiliation(s)
- Conor M. Prendergast
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Romain-David Seban
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud, France
- Laboratory of Translational Imaging in Oncology, Inserm, Institut Curie, 91401 Orsay, France
| | - Dorine De Jong
- RefleXion Medical, Inc., Hayward, CA 94545, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samy Ammari
- Department of Medical Imaging, Institut Gustave Roussy, 94805 Villejuif, France
| | - Sanjay Aneja
- Department of Radiation Oncology, Smilow Cancer Hospital, Yale School of Medicine, New Haven, CT 06519, USA
| | - Antonin Lévy
- Department of Radiation Oncology, Gustave Roussy, 94805 Villejuif, France
| | - Abin Sajan
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Mary M. Salvatore
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Kathleen M. Cappacione
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Lawrence H. Schwartz
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, 94805 Villejuif, France
| | - Laurent Dercle
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| |
Collapse
|
31
|
Puyalto A, Rodríguez-Remírez M, López I, Iribarren F, Simón JA, Ecay M, Collantes M, Vilalta-Lacarra A, Francisco-Cruz A, Solórzano JL, Sandiego S, Peñuelas I, Calvo A, Ajona D, Gil-Bazo I. A novel [ 89Zr]-anti-PD-1-PET-CT to assess response to PD-1/PD-L1 blockade in lung cancer. Front Immunol 2023; 14:1272570. [PMID: 37841258 PMCID: PMC10569300 DOI: 10.3389/fimmu.2023.1272570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Background Harnessing the anti-tumor immune system response by targeting the program cell death protein (PD-1) and program cell death ligand protein (PD-L1) axis has been a major breakthrough in non-small cell lung cancer (NSCLC) therapy. Nonetheless, conventional imaging tools cannot accurately assess response in immunotherapy-treated patients. Using a lung cancer syngeneic mouse model responder to immunotherapy, we aimed to demonstrate that [89Zr]-anti-PD-1 immuno-PET is a safe and feasible imaging modality to assess the response to PD-1/PD-L1 blockade in NSCLC. Materials and methods A syngeneic mouse model responder to anti-PD-1 therapy was used. Tumor growth and response to PD-1 blockade were monitored by conventional 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) PET scans. Additionally, tumor lymphocyte infiltration was analyzed by the use of an [89Zr]-labeled anti-PD-1 antibody and measured as 89Zr tumor uptake. Results Conventional [18F]-FDG-PET scans failed to detect the antitumor activity exerted by anti-PD-1 therapy. However, [89Zr]-anti-PD-1 uptake was substantially higher in mice that responded to PD-1 blockade. The analysis of tumor-infiltrating immune cell populations and interleukins demonstrated an increased anti-tumor effect elicited by activation of effector immune cells in PD-1-responder mice. Interestingly, a positive correlation between [89Zr]-anti-PD-1 uptake and the proportion of tumor-infiltrating lymphocytes (TILs) was found (Cor = 0.8; p = 0.001). Conclusion Our data may support the clinical implementation of immuno-PET as a promising novel imaging tool to predict and assess the response of PD-1/PD-L1 inhibitors in patients with NSCLC.
Collapse
Affiliation(s)
- Ander Puyalto
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - María Rodríguez-Remírez
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Inés López
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Fabiola Iribarren
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
| | - Jon Ander Simón
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain
- Translational Molecular Imaging Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marga Ecay
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain
- Translational Molecular Imaging Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - María Collantes
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain
- Translational Molecular Imaging Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Anna Vilalta-Lacarra
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
| | | | - Jose Luis Solórzano
- Departamento de Anatomía Patológica y Diagnóstico Molecular, Md Anderson Cancer Center, Madrid, Spain
- Unidad de Investigación Clínica de Cáncer de Pulmón Hospital Universitario 12 de octubre- Centro Nacional de Investigaciones Oncologicas (H12O-CNIO), Madrid, Spain
| | - Sergio Sandiego
- Department of Oncology, Fundación Instituto Valenciano de Oncología (FIVO), Valencia, Spain
| | - Iván Peñuelas
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain
- Translational Molecular Imaging Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Alfonso Calvo
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red - Cáncer (CIBERONC), Madrid, Spain
| | - Daniel Ajona
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red - Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Gil-Bazo
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Department of Oncology, Fundación Instituto Valenciano de Oncología (FIVO), Valencia, Spain
- Centro de Investigación Biomédica en Red - Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
32
|
Ma G, You S, Xie Y, Gu B, Liu C, Hu X, Song S, Wang B, Yang Z. Pretreatment 18F-FDG uptake heterogeneity may predict treatment outcome of combined Trastuzumab and Pertuzumab therapy in patients with metastatic HER2 positive breast cancer. Cancer Imaging 2023; 23:90. [PMID: 37726862 PMCID: PMC10510219 DOI: 10.1186/s40644-023-00608-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE Intra-tumoral heterogeneity of 18F-fluorodeoxyglucose (18F-FDG) uptake has been proven to be a surrogate marker for predicting treatment outcome in various tumors. However, the value of intra-tumoral heterogeneity in metastatic Human epidermal growth factor receptor 2(HER2) positive breast cancer (MHBC) remains unknown. The aim of this study was to evaluate 18F-FDG uptake heterogeneity to predict the treatment outcome of the dual target therapy with Trastuzumab and Pertuzumab(TP) in MHBC. METHODS Thirty-two patients with MHBC who underwent 18F-FDG positron emission tomography/computed tomography (PET/CT) scan before TP were enrolled retrospectively. The region of interesting (ROI) of the lesions were drawn, and maximum standard uptake value (SUVmax), mean standard uptake value (SUVmean), total lesion glycolysis (TLG), metabolic tumor volume (MTV) and heterogeneity index (HI) were recorded. Correlation between PET/CT parameters and the treatment outcome was analyzed by Spearman Rank Test. The ability to predict prognosis were determined by time-dependent survival receiver operating characteristic (ROC) analysis. And the survival analyses were then estimated by Kaplan-Meier method and compared by log-rank test. RESULTS The survival analysis showed that HI50% calculated by delineating the lesion with 50%SUVmax as threshold was a significant predictor of patients with MHBC treated by the treatment with TP. Patients with HI50% (≥ 1.571) had a significantly worse prognosis of progression free survival (PFS) (6.87 vs. Not Reach, p = 0.001). The area under curve (AUC), the sensitivity and the specificity were 0.88, 100% and 63.6% for PFS, respectively. CONCLUSION 18F-FDG uptake heterogeneity may be useful for predicting the prognosis of MHBC patients treated by TP.
Collapse
Affiliation(s)
- Guang Ma
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Shuhui You
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yizhao Xie
- Department of Medical Oncology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Cheng Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Xichun Hu
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China.
| |
Collapse
|
33
|
Cufer T, Kosty MP. ESMO/ASCO Recommendations for a Global Curriculum in Medical Oncology Edition 2023. JCO Glob Oncol 2023; 9:e2300277. [PMID: 37867478 PMCID: PMC10664856 DOI: 10.1200/go.23.00277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 10/24/2023] Open
Abstract
The European Society for Medical Oncology (ESMO) and ASCO are publishing a new edition of the ESMO/ASCO Global Curriculum (GC) with contributions from more than 150 authors. The purpose of the GC is to provide recommendations for the training of physicians in medical oncology and to establish a set of educational standards for trainees to qualify as medical oncologists. This edition builds on prior ones in 2004, 2010, and 2016 and incorporates scientific advances and input from an ESMO ASCO survey on GC adoption conducted in 2019, which revealed that GC has been adopted or adapted in as many as two thirds of the countries surveyed. To make GC even more useful and applicable, certain subchapters were rearranged into stand-alone chapters, that is, cancer epidemiology, diagnostics, and research. In line with recent progress in the field of multidisciplinary cancer care new (sub)chapters, such as image-guided therapy, cell-based therapy, and nutritional support, were added. Moreover, this edition includes an entirely new chapter dedicated to cancer control principles, aiming to ensure that medical oncologists are able to identify and implement sustainable and equitable cancer care, tailored to local needs and resources. Besides content renewal, modern didactic principles were introduced. GC content is presented using two chapter templates (cancer-specific and non-cancer-specific), with three didactic points (objectives, key concepts, and skills). The next step is promoting GC as a contemporary and comprehensive document applicable all over the world, particularly due to its capacity to harmonize education in medical oncology and, in so doing, help to reduce global disparities in cancer care.
Collapse
Affiliation(s)
- Tanja Cufer
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michael P. Kosty
- Division of Hematology and Oncology, Scripps MD Anderson Cancer Center, La Jolla, CA
| |
Collapse
|
34
|
Li X, Younis MH, Wei W, Cai W. PD-L1 - targeted magnetic fluorescent hybrid nanoparticles: Illuminating the path of image-guided cancer immunotherapy. Eur J Nucl Med Mol Imaging 2023; 50:2240-2243. [PMID: 36943430 PMCID: PMC10272096 DOI: 10.1007/s00259-023-06202-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Affiliation(s)
- Xiaoyan Li
- Departments of Radiology and Medical Physics, University of WI - Madison, Madison, WI, USA
| | - Muhsin H Younis
- Departments of Radiology and Medical Physics, University of WI - Madison, Madison, WI, USA
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of WI - Madison, Madison, WI, USA.
| |
Collapse
|
35
|
Holzgreve A, Taugner J, Käsmann L, Müller P, Tufman A, Reinmuth N, Li M, Winkelmann M, Unterrainer LM, Nieto AE, Bartenstein P, Kunz WG, Ricke J, Belka C, Eze C, Unterrainer M, Manapov F. Metabolic patterns on [ 18F]FDG PET/CT in patients with unresectable stage III NSCLC undergoing chemoradiotherapy ± durvalumab maintenance treatment. Eur J Nucl Med Mol Imaging 2023; 50:2466-2476. [PMID: 36951991 PMCID: PMC10250493 DOI: 10.1007/s00259-023-06192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE In patients with unresectable stage III non-small-cell lung cancer (NSCLC), durvalumab maintenance treatment after chemoradiotherapy (CRT) significantly improves survival. So far, however, metabolic changes of tumoral lesions and secondary lymphoid organs under durvalumab are unknown. Hence, we assessed changes on [18F]FDG PET/CT in comparison to patients undergoing CRT alone. METHODS Forty-three patients with [18F]FDG PET/CT both before and after standard CRT for unresectable stage III NSCLC were included, in 16/43 patients durvalumab maintenance treatment was initiated (CRT-IO) prior to the second PET/CT. Uptake of tumor sites and secondary lymphoid organs was compared between CRT and CRT-IO. Also, readers were blinded for durvalumab administration and reviewed scans for findings suspicious for immunotherapy-related adverse events (irAE). RESULTS Initial uptake characteristics were comparable. However, under durvalumab, diverging metabolic patterns were noted: There was a significantly higher reduction of tumoral uptake intensity in CRT-IO compared to CRT, e.g. median decrease of SUVmax -70.0% vs. -24.8%, p = 0.009. In contrast, the spleen uptake increased in CRT-IO while it dropped in CRT (median + 12.5% vs. -4.4%, p = 0.029). Overall survival was significantly longer in CRT-IO compared to CRT with few events (progression/death) noted in CRT-IO. Findings suggestive of irAE were present on PET/CT more often in CRT-IO (12/16) compared to CRT (8/27 patients), p = 0.005. CONCLUSION Durvalumab maintenance treatment after CRT leads to diverging tumoral metabolic changes, but also increases splenic metabolism and leads to a higher proportion of findings suggestive of irAE compared to patients without durvalumab. Due to significantly prolonged survival with durvalumab, survival analysis will be substantiated in correlation to metabolic changes as soon as more clinical events are present.
Collapse
Affiliation(s)
- Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Julian Taugner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Philipp Müller
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Amanda Tufman
- Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- Department of Internal Medicine V, University Hospital, LMU Munich, Munich, Germany
| | | | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Michael Winkelmann
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Lena M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Alexander E Nieto
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
36
|
Smith HG, Bodilsen A, Rose L, Altaf R, Iversen LH, Walker LR. Challenges presented by complete response to immune checkpoint blockade in patients with dMMR colorectal cancer: A case report. Int J Surg Case Rep 2023; 106:108286. [PMID: 37146556 DOI: 10.1016/j.ijscr.2023.108286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023] Open
Abstract
INTRODUCTION Early clinical trials have demonstrated remarkable responses to immune checkpoint blockade (ICB) in patients with colorectal cancers with deficient mismatch repair (dMMR) mechanisms. The precise role immunotherapy will play in the treatment of these patients is undefined, with these agents likely to produce new challenges as well as opportunities. PRESENTATION OF CASE A 74-year-old patient was diagnosed with a locally advanced dMMR adenocarcinoma in the transverse colon with clinical suspicion of peritoneal metastases (cT4N2M1). The burden of disease was assessed as incurable, and a referral was made for palliative oncological treatment. After 5 months of treatment with pembrolizumab, a complete radiological response in the primary tumour was seen although there was still radiological suspicion of peritoneal and lymph node metastases. The patient underwent cytoreductive surgery and hyperthermic intraperitoneal chemotherapy but unfortunately died 6 weeks later due to complications. Final histology of the surgical specimen showed no evidence of residual disease (ypT0N0M0). DISCUSSION This case highlights the opportunities and challenges presented by the efficacy of ICB in dMMR colorectal cancer. These agents were able to cure a patient who had disseminated disease presumed to be incurable at the time of diagnosis. However, due to current limitations in determining the degree of response to ICB, this result could only be confirmed after major surgery, which ultimately led to the patient's death. CONCLUSION ICB can lead to dramatic responses in patients with dMMR colorectal cancers. Major challenges remain in differentiating complete and partial responders and determining the indications for conventional surgery.
Collapse
Affiliation(s)
- Henry G Smith
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospitals, University of Copenhagen, Denmark; Department of Surgery, Slagelse Hospital, Denmark.
| | - Anne Bodilsen
- Department of Surgery, Aarhus University Hospital, Denmark
| | - Lisbeth Rose
- Department of Radiology, Slagelse Hospital, Denmark
| | - Rahim Altaf
- Department of Oncology, Zealand's University Hospital Roskilde, Denmark
| | - Lene H Iversen
- Department of Surgery, Aarhus University Hospital, Denmark
| | | |
Collapse
|
37
|
Zanoni L, Bezzi D, Nanni C, Paccagnella A, Farina A, Broccoli A, Casadei B, Zinzani PL, Fanti S. PET/CT in Non-Hodgkin Lymphoma: An Update. Semin Nucl Med 2023; 53:320-351. [PMID: 36522191 DOI: 10.1053/j.semnuclmed.2022.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022]
Abstract
Non-Hodgkin lymphomas represents a heterogeneous group of lymphoproliferative disorders characterized by different clinical courses, varying from indolent to highly aggressive. 18F-FDG-PET/CT is the current state-of-the-art diagnostic imaging, for the staging, restaging and evaluation of response to treatment in lymphomas with avidity for 18F-FDG, despite it is not routinely recommended for surveillance. PET-based response criteria (using five-point Deauville Score) are nowadays uniformly applied in FDG-avid lymphomas. In this review, a comprehensive overview of the role of 18F-FDG-PET in Non-Hodgkin lymphomas is provided, at each relevant point of patient management, particularly focusing on recent advances on diffuse large B-cell lymphoma and follicular lymphoma, with brief updates also on other histotypes (such as marginal zone, mantle cell, primary mediastinal- B cell lymphoma and T cell lymphoma). PET-derived semiquantitative factors useful for patient stratification and prognostication and emerging radiomics research are also presented.
Collapse
Affiliation(s)
- Lucia Zanoni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Davide Bezzi
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Paccagnella
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy; Nuclear Medicine Unit, AUSL Romagna, Cesena, Italy
| | - Arianna Farina
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Alessandro Broccoli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
38
|
Prediction of outcomes in patients with local recurrent nasopharyngeal carcinoma: development and validation of a four-factor prognostic model integrating baseline characteristics and [ 18F]FDG PET/CT parameters. Eur Radiol 2023; 33:2840-2849. [PMID: 36422647 PMCID: PMC10017585 DOI: 10.1007/s00330-022-09232-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To investigate the prognostic value of [18F]FDG PET/CT parameters in local recurrent nasopharyngeal carcinoma (lrNPC) and establish a prognostic tool for lrNPC patients based on these [18F]FDG PET/CT parameters. METHODS A total of 358 lrNPC patients seen from 2010 to 2019 at Sun Yat-sen University Cancer Center with complete baseline characteristics and [18F]FDG PET/CT data were retrospectively analyzed. Maximal standardized uptake value (SUVmax), SUVmean, SUVpeak, metabolic tumor volume (MTV), total lesion glycolysis (TLG), and heterogeneity index (HI) for recurrent nasopharynx tumors were included. Cox regression analysis was performed to select candidate variables. Subsequently, a nomogram for predicting overall survival (OS) for lrNPC patients was developed and internally validated. RESULTS Multivariate Cox analysis results suggested that age ≥ 47 years (hazard ratio (HR), 1.62 (1.18-2.24); p = 0.003),with smoking history (HR, 1.41 (1.01-1.98); p = 0.046), recurrent T stage {[rT3 vs rT1/2: HR, 1.81 (1.04-3.12); p = 0.037]; [rT4 vs rT1/2: HR, 2.46 (1.32-4.60); p = 0.005]}, and TLG {[37.1-184.3 vs ≤ 37.1: HR, 2.26 (1.49-3.42); p < 0.001]; [>184.3 vs ≤ 37.1: HR, 4.31 (2.50-7.43); p < 0.001]) were independent predictors of OS. A 4-factor nomogram was generated to stratify patients into 3 risk groups. This novel model showed good discrimination with a high C-index (0.752, 95%CI: 0.714-0.790). In addition, the calibration curves showed good agreement between the predicted probabilities and actual observations and decision curve analysis (DCA) suggested that the nomogram was useful for clinical decision-making. CONCLUSIONS Our study confirmed that [18F]FDG PET/CT parameters were valuable in predicting OS and PFS for lrNPC patients. The 4-factor prognostic model combing baseline patient characteristics with [18F]FDG PET/CT parameters for lrNPC patients had good discrimination, agreement, and clinical application potential. KEY POINTS • [18F]FDG PET/CT parameters were valuable in predicting OS and PFS for lrNPC patients. • The novel 4-factor nomogram for lrNPC patients had good discrimination, agreement, and potential for clinical application.
Collapse
|
39
|
Lazzari C, Spagnolo CC, Ciappina G, Di Pietro M, Squeri A, Passalacqua MI, Marchesi S, Gregorc V, Santarpia M. Immunotherapy in Early-Stage Non-Small Cell Lung Cancer (NSCLC): Current Evidence and Perspectives. Curr Oncol 2023; 30:3684-3696. [PMID: 37185393 PMCID: PMC10136903 DOI: 10.3390/curroncol30040280] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/12/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the world. Surgery is the most potentially curative therapeutic option for patients with early-stage non-small cell lung cancer (NSCLC). The five-year survival for these patients remains poor and variable, depending on the stage of disease at diagnosis, and the risk of recurrence following tumor resection is high. During the last 20 years, there has been a modest improvement in the therapeutic strategies for resectable NSCLC. Immune checkpoint inhibitors (ICIs), alone or in combination with chemotherapy, have become the cornerstone for the treatment of metastatic NSCLC patients. Recently, their clinical development has been shifted in the neoadjuvant and adjuvant settings where they have demonstrated remarkable efficacy, leading to improved clinical outcomes. Based on the positive results from phase III trials, ICIs have become a therapeutic option in neoadjuvant and adjuvant settings. On October 2021 the Food and Drug Administration (FDA) approved atezolizumab as an adjuvant treatment following surgery and platinum-based chemotherapy for patients with NSCLC whose tumors express PD-L1 ≥ 1%. In March 2022, nivolumab in combination with platinum-doublet chemotherapy was approved for adult patients with resectable NSCLC in the neoadjuvant setting. The current review provides an updated overview of the clinical trials exploring the role of immunotherapy in patients with early-stage NSCLC, focusing on the biological rationale for their use in the perioperative setting. We will also discuss the role of potential predictive biomarkers to personalize therapy and optimize the incorporation of immunotherapy into the multimodality management of stage I-III NSCLC.
Collapse
|
40
|
Shankar LK, Schöder H, Sharon E, Wolchok J, Knopp MV, Wahl RL, Ellingson BM, Hall NC, Yaffe MJ, Towbin AJ, Farwell MD, Pryma D, Poussaint TY, Wright CL, Schwartz L, Harisinghani M, Mahmood U, Wu AM, Leung D, de Vries EGE, Tang Y, Beach G, Reeves SA. Harnessing imaging tools to guide immunotherapy trials: summary from the National Cancer Institute Cancer Imaging Steering Committee workshop. Lancet Oncol 2023; 24:e133-e143. [PMID: 36858729 PMCID: PMC10119769 DOI: 10.1016/s1470-2045(22)00742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 03/02/2023]
Abstract
As the immuno-oncology field continues the rapid growth witnessed over the past decade, optimising patient outcomes requires an evolution in the current response-assessment guidelines for phase 2 and 3 immunotherapy clinical trials and clinical care. Additionally, investigational tools-including image analysis of standard-of-care scans (such as CT, magnetic resonance, and PET) with analytics, such as radiomics, functional magnetic resonance agents, and novel molecular-imaging PET agents-offer promising advancements for assessment of immunotherapy. To document current challenges and opportunities and identify next steps in immunotherapy diagnostic imaging, the National Cancer Institute Clinical Imaging Steering Committee convened a meeting with diverse representation among imaging experts and oncologists to generate a comprehensive review of the state of the field.
Collapse
Affiliation(s)
- Lalitha K Shankar
- Clinical Trials Branch, National Cancer Institute, Rockville, MD, USA.
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elad Sharon
- Investigational Drug Branch, National Cancer Institute, Rockville, MD, USA
| | - Jedd Wolchok
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Michael V Knopp
- Department of Radiology, Ohio State University, Columbus, OH, USA
| | - Richard L Wahl
- Department of Radiology, Washington University, St Louis, MO, USA
| | - Benjamin M Ellingson
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Nathan C Hall
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin J Yaffe
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Alexander J Towbin
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Michael D Farwell
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Pryma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Anna M Wu
- Department of Immunology & Theranostics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | | | | | - Steven A Reeves
- Coordinating Center for Clinical Trials, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
41
|
Russo GM, Russo A, Urraro F, Cioce F, Gallo L, Belfiore MP, Sangiovanni A, Napolitano S, Troiani T, Verolino P, Sica A, Brancaccio G, Briatico G, Nardone V, Reginelli A. Management of Non-Melanoma Skin Cancer: Radiologists Challenging and Risk Assessment. Diagnostics (Basel) 2023; 13:diagnostics13040793. [PMID: 36832281 PMCID: PMC9955870 DOI: 10.3390/diagnostics13040793] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Basal cell carcinoma, squamous cell carcinoma, and Merkel cell carcinoma are the three main types of nonmelanoma skin cancers and their rates of occurrence and mortality have been steadily rising over the past few decades. For radiologists, it is still difficult to treat patients with advanced nonmelanoma skin cancer. Nonmelanoma skin cancer patients would benefit greatly from an improved diagnostic imaging-based risk stratification and staging method that takes into account patient characteristics. The risk is especially elevated among those who previously received systemic treatment or phototherapy. Systemic treatments, including biologic therapies and methotrexate (MTX), are effective in managing immune-mediated diseases; however, they may increase susceptibility to NMSC due to immunosuppression or other factors. Risk stratification and staging tools are crucial in treatment planning and prognostic evaluation. PET/CT appears more sensitive and superior to CT and MRI for nodal and distant metastasis as well as in surveillance after surgery. The patient treatment response improved with advent and utilization of immunotherapy and different immune-specific criteria are established to standardized evaluation criteria of clinical trials but none of them have been utilized routinely with immunotherapy. The advent of immunotherapy has also arisen new critical issues for radiologists, such as atypical response pattern, pseudo-progression, as well as immune-related adverse events that require early identification to optimize and improve patient prognosis and management. It is important for radiologists to have knowledge of the radiologic features site of the tumor, clinical stage, histological subtype, and any high-risk features to assess immunotherapy treatment response and immune-related adverse events.
Collapse
Affiliation(s)
- Gaetano Maria Russo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80123 Naples, Italy
- Correspondence:
| | - Anna Russo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80123 Naples, Italy
| | - Fabrizio Urraro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80123 Naples, Italy
| | - Fabrizio Cioce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80123 Naples, Italy
| | - Luigi Gallo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80123 Naples, Italy
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80123 Naples, Italy
| | - Angelo Sangiovanni
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80123 Naples, Italy
| | - Stefania Napolitano
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80123 Naples, Italy
| | - Teresa Troiani
- Unit of Plastic Surgery, Multidisciplinary Department of Medical Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 80120 Naples, Italy
| | - Pasquale Verolino
- Unit of Plastic Surgery, Multidisciplinary Department of Medical Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 80120 Naples, Italy
| | - Antonello Sica
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80123 Naples, Italy
| | - Gabriella Brancaccio
- Unit of Dermatology, University of Campania “Luigi Vanvitelli”, 80123 Naples, Italy
| | - Giulia Briatico
- Unit of Dermatology, University of Campania “Luigi Vanvitelli”, 80123 Naples, Italy
| | - Valerio Nardone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80123 Naples, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80123 Naples, Italy
| |
Collapse
|
42
|
Huang Y, Wang M, Jiang L, Wang L, Chen L, Wang Q, Feng J, Wang J, Xu W, Wu H, Han Y. Optimal clinical protocols for total-body 18F-FDG PET/CT examination under different activity administration plans. EJNMMI Phys 2023; 10:14. [PMID: 36808378 PMCID: PMC9938848 DOI: 10.1186/s40658-023-00533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/10/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Highly sensitive digital total-body PET/CT scanners (uEXPLORER) have great potential for clinical applications and fundamental research. Given their increasing sensitivity, low-dose scanning or snapshot imaging is now possible in clinics. However, a standardized total-body 18F-FDG PET/CT protocol is still lacking. Establishing a standard clinical protocol for total-body 18F-FDG PET/CT examination under different activity administration plans can help provide a theoretical reference for nuclear radiologists. METHODS The NEMA image quality (IQ) phantom was used to evaluate the biases of various total-body 18F-FDG PET/CT protocols related to the administered activity, scan duration, and iterations. Several objective metrics, including contrast recovery (CR), background variability (BV), and contrast-to-noise ratio (CNR), were measured from different protocols. In line with the European Association of Nuclear Medicine Research Ltd. (EARL) guidelines, optimized protocols were suggested and evaluated for total-body 18F-FDG PET/CT imaging for three different injected activities. RESULTS Our NEMA IQ phantom evaluation resulted in total-body PET/CT images with excellent contrast and low noise, suggesting great potential for reducing administered activity or shortening the scan duration. Different to the iteration number, prolonging the scan duration was the first choice for achieving higher image quality regardless of the activity administered. In light of image quality, tolerance of oncological patients, and the risk of ionizing radiation damage, the 3-min acquisition and 2-iteration (CNR = 7.54), 10-min acquisition and 3-iteration (CNR = 7.01), and 10-min acquisition and 2-iteration (CNR = 5.49) protocols were recommended for full-dose (3.70 MBq/kg), half-dose (1.95 MBq/kg), and quarter-dose (0.98 MBq/kg) activity injection schemes, respectively. Those protocols were applied in clinical practices, and no significant differences were observed for the SUVmax of large/small lesions or the SUVmean of different healthy organs/tissues. CONCLUSION These findings support that digital total-body PET/CT scanners can generate PET images with a high CNR and low-noise background, even with a short acquisition time and low administered activity. The proposed protocols for different administered activities were determined to be valid for clinical examination and can maximize the value of this imaging type.
Collapse
Affiliation(s)
- Yanchao Huang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Wang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Jiang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Wang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Chen
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiaoyu Wang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiatai Feng
- grid.497849.fCentral Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jingyi Wang
- grid.497849.fCentral Research Institute, United Imaging Healthcare, Shanghai, China
| | - Wanbang Xu
- grid.506955.aDepartment of Traditional Chinese Medicine, Guangdong Institute for Drug Control, Guangzhou, China
| | - Hubing Wu
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjiang Han
- Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
43
|
Al-Ibraheem A, Abdlkadir AS, Juweid ME, Al-Rabi K, Ma’koseh M, Abdel-Razeq H, Mansour A. FDG-PET/CT in the Monitoring of Lymphoma Immunotherapy Response: Current Status and Future Prospects. Cancers (Basel) 2023; 15:1063. [PMID: 36831405 PMCID: PMC9954669 DOI: 10.3390/cancers15041063] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer immunotherapy has been extensively investigated in lymphoma over the last three decades. This new treatment modality is now established as a way to manage and maintain several stages and subtypes of lymphoma. The establishment of this novel therapy has necessitated the development of new imaging response criteria to evaluate and follow up with cancer patients. Several FDG PET/CT-based response criteria have emerged to address and encompass the various most commonly observed response patterns. Many of the proposed response criteria are currently being used to evaluate and predict responses. The purpose of this review is to address the efficacy and side effects of cancer immunotherapy and to correlate this with the proposed criteria and relevant patterns of FDG PET/CT in lymphoma immunotherapy as applicable. The latest updates and future prospects in lymphoma immunotherapy, as well as PET/CT potentials, will be discussed.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center, Al-Jubeiha, Amman 11941, Jordan
- Department of Radiology and Nuclear Medicine, Division of Nuclear Medicine, University of Jordan, Amman 11942, Jordan
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center, Al-Jubeiha, Amman 11941, Jordan
| | - Malik E. Juweid
- Department of Radiology and Nuclear Medicine, Division of Nuclear Medicine, University of Jordan, Amman 11942, Jordan
| | - Kamal Al-Rabi
- Department of Medical Oncology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Mohammad Ma’koseh
- Department of Medical Oncology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Hikmat Abdel-Razeq
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan
- Department of Internal Medicine, School of Medicine, University of Jordan, Amman 11942, Jordan
| | - Asem Mansour
- Department of Diagnostic Radiology, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
44
|
Chokr N, Gomez-Arteaga A. Measurable Residual Disease After CAR T-Cell Therapy. Semin Hematol 2023; 60:34-41. [PMID: 37080709 DOI: 10.1053/j.seminhematol.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/21/2023]
Abstract
Testing for measurable residual disease (MRD) provides important prognostic and predictive implications on survival and management of many hematologic diseases. Among the many clinical uses of MRD is post-therapy response assessment and risk stratification. With the integration of precision medicine in routine clinical care and the development of novel and innovative therapies resulting in deeper responses, it is necessary to refine the role of MRD, standardize available methodologies and define its role as a surrogate endpoint for relapse and time-to-next treatment in clinical studies. Chimeric Antigen Receptor (CAR) T-cell therapy is an approved treatment for various hematologic malignancies. Even though it produces high rates of remission, the durability of response is still a consideration as almost 40% to 50% of patients eventually relapse. MRD testing as a prognostic and surrogate marker is being explored in patients after CAR T-cell therapy to predict early relapse. In this chapter, we review the various tools available for MRD detection and monitoring post-CAR T-cell therapy. We later discuss disease-specific MRD assessment and its application in recent studies in the post-CAR T setting.
Collapse
|
45
|
Evangelista L, Bianchi A, Annovazzi A, Sciuto R, Di Traglia S, Bauckneht M, Lanfranchi F, Morbelli S, Nappi AG, Ferrari C, Rubini G, Panareo S, Urso L, Bartolomei M, D’Arienzo D, Valente T, Rossetti V, Caroli P, Matteucci F, Aricò D, Bombaci M, Caponnetto D, Bertagna F, Albano D, Dondi F, Gusella S, Spimpolo A, Carriere C, Balma M, Buschiazzo A, Gallicchio R, Storto G, Ruffini L, Cervati V, Ledda RE, Cervino AR, Cuppari L, Burei M, Trifirò G, Brugola E, Zanini CA, Alessi A, Fuoco V, Seregni E, Deandreis D, Liberini V, Moreci AM, Ialuna S, Pulizzi S, De Rimini ML. ITA-IMMUNO-PET: The Role of [18F]FDG PET/CT for Assessing Response to Immunotherapy in Patients with Some Solid Tumors. Cancers (Basel) 2023; 15:cancers15030878. [PMID: 36765835 PMCID: PMC9913289 DOI: 10.3390/cancers15030878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
AIM To examine the role of [18F]FDG PET/CT for assessing response to immunotherapy in patients with some solid tumors. METHODS Data recorded in a multicenter (n = 17), retrospective database between March and November 2021 were analyzed. The sample included patients with a confirmed diagnosis of a solid tumor who underwent serial [18F]FDG PET/CT (before and after one or more cycles of immunotherapy), who were >18 years of age, and had a follow-up of at least 12 months after their first PET/CT scan. Patients enrolled in clinical trials or without a confirmed diagnosis of cancer were excluded. The authors classified cases as having a complete or partial metabolic response to immunotherapy, or stable or progressive metabolic disease, based on a visual and semiquantitative analysis according to the EORTC criteria. Clinical response to immunotherapy was assessed at much the same time points as the serial PET scans, and both the obtained responses were compared. RESULTS The study concerned 311 patients (median age: 67; range: 31-89 years) in all. The most common neoplasm was lung cancer (56.9%), followed by malignant melanoma (32.5%). Nivolumab was administered in 46.3%, and pembrolizumab in 40.5% of patients. Baseline PET and a first PET scan performed at a median 3 months after starting immunotherapy were available for all 311 patients, while subsequent PET scans were obtained after a median 6, 12, 16, and 21 months for 199 (64%), 102 (33%), 46 (15%), and 23 (7%) patients, respectively. Clinical response to therapy was recorded at around the same time points after starting immunotherapy for 252 (81%), 173 (56%), 85 (27%), 40 (13%), and 22 (7%) patients, respectively. After a median 18 (1-137) months, 113 (36.3%) patients had died. On Kaplan-Meier analysis, metabolic responders on the first two serial PET scans showed a better prognosis than non-responders, while clinical response became prognostically informative from the second assessment after starting immunotherapy onwards. CONCLUSIONS [18F]FDG PET/CT could have a role in the assessment of response to immunotherapy in patients with some solid tumors. It can provide prognostic information and thus contribute to a patient's appropriate treatment. Prospective randomized controlled trials are mandatory.
Collapse
Affiliation(s)
- Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine DIMED, University of Padua, 35129 Padua, Italy
- Correspondence:
| | - Andrea Bianchi
- Nuclear Medicine Unit, ASO S.Croce e Carle Cuneo, 12100 Cuneo, Italy
| | - Alessio Annovazzi
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Rosa Sciuto
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Silvia Di Traglia
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Matteo Bauckneht
- Department of Health Sciences (DISSAL), University of Genova, 16126 Genova, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Lanfranchi
- Department of Health Sciences (DISSAL), University of Genova, 16126 Genova, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Morbelli
- Department of Health Sciences (DISSAL), University of Genova, 16126 Genova, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Anna Giulia Nappi
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Cristina Ferrari
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Giuseppe Rubini
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| | - Luca Urso
- Nuclear Medicine Unit, University of Ferrara, 44121 Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, University of Ferrara, 44121 Ferrara, Italy
| | - Davide D’Arienzo
- Nuclear Medicine Unit, Dept Servizi Sanitari, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Tullio Valente
- Radiology Department, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Virginia Rossetti
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), 47014 Meldola, Italy
| | - Paola Caroli
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), 47014 Meldola, Italy
| | - Federica Matteucci
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), 47014 Meldola, Italy
| | - Demetrio Aricò
- Nuclear Medicine Unit, Humanitas Istituto Clinico Catanese, 95045 Misterbianco, Italy
| | - Michelangelo Bombaci
- Nuclear Medicine Unit, Humanitas Istituto Clinico Catanese, 95045 Misterbianco, Italy
| | - Domenica Caponnetto
- Nuclear Medicine Unit, Humanitas Istituto Clinico Catanese, 95045 Misterbianco, Italy
| | | | - Domenico Albano
- Nuclear Medicine Unit, University of Brescia, 25123 Brescia, Italy
| | - Francesco Dondi
- Nuclear Medicine Unit, University of Brescia, 25123 Brescia, Italy
| | - Sara Gusella
- Nuclear Medicine Department, Central Hospital Bolzano (SABES-ASDAA), 39100 Bolzano-Bozen, Italy
| | - Alessandro Spimpolo
- Nuclear Medicine Department, Central Hospital Bolzano (SABES-ASDAA), 39100 Bolzano-Bozen, Italy
| | - Cinzia Carriere
- Dermatology Department, Central Hospital Bolzano (SABES-ASDAA), 39100 Bolzano-Bozen, Italy
| | - Michele Balma
- Nuclear Medicine Unit, ASO S.Croce e Carle Cuneo, 12100 Cuneo, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine Unit, ASO S.Croce e Carle Cuneo, 12100 Cuneo, Italy
| | - Rosj Gallicchio
- Nuclear Medicine Unit, IRCCS CROB Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Giovanni Storto
- Nuclear Medicine Unit, IRCCS CROB Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Livia Ruffini
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Veronica Cervati
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Roberta Eufrasia Ledda
- Department of Medicine and Surgery, Unit of Radiological Sciences, University of Parma, 43126 Parma, Italy
| | - Anna Rita Cervino
- Nuclear Medicine Unit, Veneto Institute Of Oncology IOV—IRCSS, 35128 Padua, Italy
| | - Lea Cuppari
- Nuclear Medicine Unit, Veneto Institute Of Oncology IOV—IRCSS, 35128 Padua, Italy
| | - Marta Burei
- Nuclear Medicine Unit, Veneto Institute Of Oncology IOV—IRCSS, 35128 Padua, Italy
| | - Giuseppe Trifirò
- Nuclear Medicine Unit, ICS MAUGERI SPA SB—IRCCS, 35128 Padua, Italy
| | | | | | - Alessandra Alessi
- Nuclear Medicine Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Valentina Fuoco
- Nuclear Medicine Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Ettore Seregni
- Nuclear Medicine Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Désirée Deandreis
- Nuclear Medicine Division, Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Virginia Liberini
- Nuclear Medicine Unit, ASO S.Croce e Carle Cuneo, 12100 Cuneo, Italy
- Nuclear Medicine Division, Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Antonino Maria Moreci
- Nuclear Medicine Unit, Az. Ospedaliera Ospedali Riuniti Villa Sofia-Cervello di Palermo, 90100 Palermo, Italy
| | - Salvatore Ialuna
- Nuclear Medicine Unit, Az. Ospedaliera Ospedali Riuniti Villa Sofia-Cervello di Palermo, 90100 Palermo, Italy
| | - Sabina Pulizzi
- Nuclear Medicine Unit, Az. Ospedaliera Ospedali Riuniti Villa Sofia-Cervello di Palermo, 90100 Palermo, Italy
| | - Maria Luisa De Rimini
- Nuclear Medicine Unit, Dept Servizi Sanitari, AORN Ospedali dei Colli, 80131 Naples, Italy
| |
Collapse
|
46
|
Keeling G, Man F. Nuclear Imaging of Inflammation. PROGRESS IN INFLAMMATION RESEARCH 2023:23-90. [DOI: 10.1007/978-3-031-23661-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
47
|
FDG-PET findings associated with various medical procedures and treatments. Jpn J Radiol 2022; 41:459-476. [PMID: 36575286 PMCID: PMC9794480 DOI: 10.1007/s11604-022-01376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a well-established modality with high sensitivity for the diagnosis and staging of oncologic patients. FDG is taken up by the glucose transporter of the cell membrane and becomes trapped within the cell. In addition to malignant neoplasms, active inflammatory lesions and some kinds of benign tumors also accumulate FDG. Moreover, the degree of uptake into normal organs and tissues depends on various physiological conditions, which is affected by various medical procedures, treatments, and drugs. To avoid misleading interpretations, it is important to recognize possible situations of unexpected abnormal accumulation that mimic tumor lesions. In this review, we present various FDG findings associated with surgical or medical procedures and treatments. Some findings reflect the expected physiological reaction to treatment, and some show inflammation due to prior procedures. Occasionally, FDG-PET visualizes other disorders that are unrelated to the malignancy, which may be associated with the adverse effects of certain drugs that the patient is taking. Careful review of medical records and detailed interviews of patients are thus necessary.
Collapse
|
48
|
Lopci E, Aide N, Dimitrakopoulou-Strauss A, Dercle L, Iravani A, Seban RD, Sachpekidis C, Humbert O, Gheysens O, Glaudemans AWJM, Weber WA, Van den Abbeele AD, Wahl RL, Scott AM, Pandit-Taskar N, Hicks RJ. Perspectives on joint EANM/SNMMI/ANZSNM practice guidelines/procedure standards for [ 18F]FDG PET/CT imaging during immunomodulatory treatments in patients with solid tumors. Cancer Imaging 2022; 22:73. [PMID: 36539908 PMCID: PMC9769012 DOI: 10.1186/s40644-022-00512-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Response assessment in the context of immunomodulatory treatments represents a major challenge for the medical imaging community and requires a multidisciplinary approach with involvement of oncologists, radiologists, and nuclear medicine specialists. There is evolving evidence that [18F]FDG PET/CT is a useful diagnostic modality for this purpose. The clinical indications for, and the principal aspects of its standardization in this context have been detailed in the recently published "Joint EANM/SNMMI/ANZSNM practice guidelines/procedure standards on recommended use of [18F]FDG PET/CT imaging during immunomodulatory treatments in patients with solid tumors version 1.0". These recommendations arose from a fruitful collaboration between international nuclear medicine societies and experts in cancer treatment. In this perspective, the key elements of the initiative are reported, summarizing the core aspects of the guidelines for radiologists and nuclear medicine physicians. Beyond the previous guidelines, this perspective adds further commentary on how this technology can advance development of novel therapeutic approaches and guide management of individual patients.
Collapse
Affiliation(s)
- E. Lopci
- grid.417728.f0000 0004 1756 8807Nuclear Medicine Unit, IRCCS – Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, MI Italy
| | - N. Aide
- grid.411149.80000 0004 0472 0160Nuclear Medicine Department, University Hospital, Caen, France ,grid.460771.30000 0004 1785 9671INSERM ANTICIPE, Normandie University, Caen, France
| | - A. Dimitrakopoulou-Strauss
- grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210 Heidelberg, Germany
| | - L. Dercle
- grid.239585.00000 0001 2285 2675Department of Radiology, New York Presbyterian, Columbia University Irving Medical Center, New York, NY USA
| | - A. Iravani
- grid.34477.330000000122986657Department of Radiology, The University of Washington, Seattle, USA ,grid.270240.30000 0001 2180 1622Fred Hutchinson Cancer Center, Seattle, USA
| | - R. D. Seban
- grid.418596.70000 0004 0639 6384Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, 92210 Saint-Cloud, France ,Laboratoire d’Imagerie Translationnelle en Oncologie, Inserm, Institut Curie, 91401 Orsay, France
| | - C. Sachpekidis
- grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210 Heidelberg, Germany
| | - O. Humbert
- grid.460782.f0000 0004 4910 6551Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d’Azur, Nice, France ,grid.460782.f0000 0004 4910 6551TIRO-UMR E 4320, Université Côte d’Azur, Nice, France
| | - O. Gheysens
- grid.48769.340000 0004 0461 6320Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - A. W. J. M. Glaudemans
- grid.4494.d0000 0000 9558 4598Nuclear Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W. A. Weber
- grid.6936.a0000000123222966Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - A. D. Van den Abbeele
- grid.38142.3c000000041936754XDepartment of Imaging, Dana-Farber Cancer Institute and Department of Radiology, Mass General Brigham Hospitals, Harvard Medical School, Boston, MA USA
| | - R. L. Wahl
- grid.4367.60000 0001 2355 7002Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - A. M. Scott
- grid.410678.c0000 0000 9374 3516Department of Molecular Imaging and Therapy, Austin Health, Studley Rd, Heidelberg, VIC 3084 Australia ,grid.482637.cOlivia Newton-John Cancer Research Institute, Heidelberg, Australia ,grid.1008.90000 0001 2179 088XFaculty of Medicine, University of Melbourne, Melbourne, Australia ,grid.1018.80000 0001 2342 0938School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - N. Pandit-Taskar
- grid.51462.340000 0001 2171 9952Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA ,grid.5386.8000000041936877XWeill Cornell Medical College, New York, NY 10065 USA
| | - R. J. Hicks
- grid.1008.90000 0001 2179 088XThe Department of Medicine, St Vincent’s Medical School, the University of Melbourne, Melbourne, Australia
| |
Collapse
|
49
|
Litière S, Bogaerts J. Imaging endpoints for clinical trial use: a RECIST perspective. J Immunother Cancer 2022; 10:jitc-2022-005092. [PMID: 36424032 PMCID: PMC9693866 DOI: 10.1136/jitc-2022-005092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Twenty years after its initial introduction, Response Evaluation Criteria in Solid Tumors (RECIST) remains today a unique standardized tool allowing uniform objective evaluation of response in solid tumors in clinical trials across different treatment indications. Several attempts have been made to update or replace RECIST, but none have realized the general traction or uptake seen with RECIST. This communication provides an overview of some challenges faced by RECIST in the rapidly changing oncology landscape, including the incorporation of PET with 18F-fluorodeoxyglucose tracer as a tool for response assessment and the validation of criteria for use in trials involving immunotherapeutics. The latter has mainly been slow due to lack of data sharing. Work is ongoing to try to address this.We also aim to share our view as statistician representatives on the RECIST Working Group on what would be needed to validate new imaging endpoints for clinical trial use, with a specific focus on RECIST. Whether this could lead to an update of RECIST or replace RECIST altogether, depends on the changes being proposed. The ultimate goal remains to have a well defined, repeatable, confirmable and objective standard as provided by RECIST today.
Collapse
Affiliation(s)
- Saskia Litière
- European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| | - Jan Bogaerts
- European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| |
Collapse
|
50
|
De Re V, Repetto O, Mussolin L, Brisotto G, Elia C, Lopci E, d’Amore ESG, Burnelli R, Mascarin M. Promising drugs and treatment options for pediatric and adolescent patients with Hodgkin lymphoma. Front Cell Dev Biol 2022; 10:965803. [PMID: 36506094 PMCID: PMC9729954 DOI: 10.3389/fcell.2022.965803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Currently-available therapies for newly-diagnosed pediatric and adolescent patients with Hodgkin lymphoma result in >95% survival at 5 years. Long-term survivors may suffer from long-term treatment-related side effects, however, so the past 20 years have seen clinical trials for children and adolescents with HL gradually abandon the regimens used in adults in an effort to improve this situation. Narrower-field radiotherapy can reduce long-term toxicity while maintaining good tumor control. Various risk-adapted chemo-radiotherapy strategies have been used. Early assessment of tumor response with interim positron emission tomography and/or measuring metabolic tumor volume has been used both to limit RT in patients with favorable characteristics and to adopt more aggressive therapies in patients with a poor response. Most classical Hodgkin's lymphoma relapses occur within 3 years of initial treatment, while relapses occurring 5 years or more after diagnosis are rare. As the outcome for patients with relapsed/refractory classical Hodgkin lymphoma remains unsatisfactory, new drugs have been proposed for its prevention or treatment. This review summarizes the important advances made in recent years in the management of pediatric and adolescent with classical Hodgkin lymphoma, and the novel targeted treatments for relapsed and refractory classical Hodgkin lymphoma.
Collapse
Affiliation(s)
- Valli De Re
- Immunopatologia e Biomarcatori Oncologici, Dipartimento di Ricerca e Diagnostica Avanzata dei Tumori, CRO Aviano, National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Aviano, Italy,*Correspondence: Valli De Re, ; Maurizio Mascarin,
| | - Ombretta Repetto
- Immunopatologia e Biomarcatori Oncologici, Dipartimento di Ricerca e Diagnostica Avanzata dei Tumori, CRO Aviano, National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Aviano, Italy
| | - Lara Mussolin
- Pediatric Hemato-Oncology Unit, Department of Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Giulia Brisotto
- Immunopatologia e Biomarcatori Oncologici, Dipartimento di Ricerca e Diagnostica Avanzata dei Tumori, CRO Aviano, National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Aviano, Italy
| | - Caterina Elia
- AYA Oncology and Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico IRCCS, Aviano, Italy
| | - Egesta Lopci
- Nuclear Medicine, IRCCS—Humanitas Research Hospital, Rozzano, MI, Italy
| | | | - Roberta Burnelli
- Pediatric Hematology-Oncology Unit, Azienda Ospedaliera Universitaria, Ospedale Sant’Anna, Ferrara, Italy
| | - Maurizio Mascarin
- AYA Oncology and Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico IRCCS, Aviano, Italy,*Correspondence: Valli De Re, ; Maurizio Mascarin,
| |
Collapse
|