1
|
Vanderlinden G, Vandenberghe R, Vandenbulcke M, Van Laere K. The Current Role of Tau PET Imaging in Neurodegeneration. Semin Nucl Med 2025:S0001-2998(25)00031-5. [PMID: 40263023 DOI: 10.1053/j.semnuclmed.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025]
Abstract
Neurodegenerative tauopathies are characterized by the pathological hyperphosphorylation of tau proteins that subsequently form aggregates. Tau PET tracers with affinity to bind these pathological tau aggregates have been developed to measure disease progression and to support therapeutic drug development. In this review, we summarize the pathophysiology of tau throughout the range of neurodegenerative tauopathies. We outline the available first- and second-generation tau PET tracers, with a focus on new tau PET tracer developments, and discuss the quantification of tau PET images. Next, we summarize how tau PET relates to cerebrospinal fluid and plasma tau biomarkers. Finally, we review the current recommendations on the clinical use of tau PET versus fluid tau biomarkers in diagnosis, prognosis and treatment development.
Collapse
Affiliation(s)
- Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium; Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Research Group Psychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Geriatric Psychiatry, University Hospitals UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Division of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Thal DR, Poesen K, Vandenberghe R, De Meyer S. Alzheimer's disease neuropathology and its estimation with fluid and imaging biomarkers. Mol Neurodegener 2025; 20:33. [PMID: 40087672 PMCID: PMC11907863 DOI: 10.1186/s13024-025-00819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the extracellular deposition of the amyloid-β peptide (Aβ) and the intraneuronal accumulation of abnormal phosphorylated tau (τ)-protein (p-τ). Most frequently, these hallmark lesions are accompanied by other co-pathologies in the brain that may contribute to cognitive impairment, such as vascular lesions, intraneuronal accumulation of phosphorylated transactive-response DNA-binding protein 43 (TDP-43), and/or α-synuclein (αSyn) aggregates. To estimate the extent of these AD and co-pathologies in patients, several biomarkers have been developed. Specific tracers target and visualize Aβ plaques, p-τ and αSyn pathology or inflammation by positron emission tomography. In addition to these imaging biomarkers, cerebrospinal fluid, and blood-based biomarker assays reflecting AD-specific or non-specific processes are either already in clinical use or in development. In this review, we will introduce the pathological lesions of the AD brain, the related biomarkers, and discuss to what extent the respective biomarkers estimate the pathology determined at post-mortem histopathological analysis. It became evident that initial stages of Aβ plaque and p-τ pathology are not detected with the currently available biomarkers. Interestingly, p-τ pathology precedes Aβ deposition, especially in the beginning of the disease when biomarkers are unable to detect it. Later, Aβ takes the lead and accelerates p-τ pathology, fitting well with the known evolution of biomarker measures over time. Some co-pathologies still lack clinically established biomarkers today, such as TDP-43 pathology or cortical microinfarcts. In summary, specific biomarkers for AD-related pathologies allow accurate clinical diagnosis of AD based on pathobiological parameters. Although current biomarkers are excellent measures for the respective pathologies, they fail to detect initial stages of the disease for which post-mortem analysis of the brain is still required. Accordingly, neuropathological studies remain essential to understand disease development especially in early stages. Moreover, there is an urgent need for biomarkers reflecting co-pathologies, such as limbic predominant, age-related TDP-43 encephalopathy-related pathology, which is known to modify the disease by interacting with p-τ. Novel biomarker approaches such as extracellular vesicle-based assays and cryptic RNA/peptides may help to better detect these co-pathologies in the future.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Steffi De Meyer
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Ding J, Yang Q, Drossinos N, Guo Q. Advances in semantic dementia: Neuropsychology, pathology & neuroimaging. Ageing Res Rev 2024; 99:102375. [PMID: 38866186 DOI: 10.1016/j.arr.2024.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Semantic dementia is a kind of neurodegenerative disorder, characterized by prominent semantic impairments and anterior temporal lobe atrophy. Since 2010, more studies have devoted to this rare disorder, revealing that it is more complex than we think. Clinical advances include more specific findings of semantic impairments and other higher order cognitive deficits. Neuroimaging techniques can help revealing the different brain networks affected (both structurally and functionally) in this condition. Pathological and genetic studies have also found more complex situations of semantic dementia, which might explain the huge variance existing in semantic dementia. Moreover, the current diagnosis criteria mainly focus on semantic dementia's classical prototype. We further delineated the features of three subtypes of semantic dementia based on atrophy lateralization with three severity stages. In a broader background, as a part of the continuum of neurodegenerative disorders, semantic dementia is commonly compared with other resembling conditions. Therefore, we summarized the differential diagnosis between semantic dementia and them. Finally, we introduced the challenges and achievements of its diagnosis, treatment, care and cross cultural comparison. By providing a comprehensive picture of semantic dementia on different aspects of advances, we hope to deepen the understanding of semantic dementia and promote more inspirations on both clinical and theoretical studies about it.
Collapse
Affiliation(s)
- Junhua Ding
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Qing Yang
- Department of Rehabilitation, Hushan Hospital, Fudan University, Shanghai, China
| | - Niki Drossinos
- Division of Psychology, Communication and Human Neuroscience, University of Manchester, Manchester, UK
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
5
|
Costoya-Sánchez A, Moscoso A, Silva-Rodríguez J, Pontecorvo MJ, Devous MD, Aguiar P, Schöll M, Grothe MJ. Increased Medial Temporal Tau Positron Emission Tomography Uptake in the Absence of Amyloid-β Positivity. JAMA Neurol 2023; 80:1051-1061. [PMID: 37578787 PMCID: PMC10425864 DOI: 10.1001/jamaneurol.2023.2560] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 08/15/2023]
Abstract
Importance An increased tau positron emission tomography (PET) signal in the medial temporal lobe (MTL) has been observed in older individuals in the absence of amyloid-β (Aβ) pathology. Little is known about the longitudinal course of this condition, and its association with Alzheimer disease (AD) remains unclear. Objective To study the pathologic and clinical course of older individuals with PET-evidenced MTL tau deposition (TMTL+) in the absence of Aβ pathology (A-), and the association of this condition with the AD continuum. Design, Setting, and Participants A multicentric, observational, longitudinal cohort study was conducted using pooled data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Harvard Aging Brain Study (HABS), and the AVID-A05 study, collected between July 2, 2015, and August 23, 2021. Participants in the ADNI, HABS, and AVID-A05 studies (N = 1093) with varying degrees of cognitive performance were deemed eligible if they had available tau PET, Aβ PET, and magnetic resonance imaging scans at baseline. Of these, 128 participants did not meet inclusion criteria based on Aβ PET and tau PET biomarker profiles (A+ TMTL-). Exposures Tau and Aβ PET, magnetic resonance imaging, cerebrospinal fluid biomarkers, and cognitive assessments. Main Outcomes and Measures Cross-sectional and longitudinal measures for tau and Aβ PET, cortical atrophy, cognitive scores, and core AD cerebrospinal fluid biomarkers (Aβ42/40 and tau phosphorylated at threonine 181 p-tau181 available in a subset). Results Among the 965 individuals included in the study, 503 were women (52.1%) and the mean (SD) age was 73.9 (8.1) years. A total of 51% of A- individuals and 78% of A+ participants had increased tau PET signal in the entorhinal cortex (TMTL+) compared with healthy younger (aged <39 years) controls. Compared with A- TMTL-, A- TMTL+ participants showed statistically significant, albeit moderate, longitudinal (mean [SD], 1.83 [0.84] years) tau PET increases that were largely limited to the temporal lobe, whereas those with A+ TMTL+ showed faster and more cortically widespread tau PET increases. In contrast to participants with A+ TMTL+, those with A- TMTL+ did not show any noticeable Aβ accumulation over follow-up (mean [SD], 2.36 [0.76] years). Complementary cerebrospinal fluid analysis confirmed longitudinal p-tau181 increases in A- TMTL+ in the absence of increased Aβ accumulation. Participants with A- TMTL+ had accelerated MTL atrophy, whereas those with A+ TMTL+ showed accelerated atrophy in widespread temporoparietal brain regions. Increased MTL tau PET uptake in A- individuals was associated with cognitive decline, but at a significantly slower rate compared with A+ TMTL+. Conclusions and Relevance In this study, individuals with A- TMTL+ exhibited progressive tau accumulation and neurodegeneration, but these processes were comparably slow, remained largely restricted to the MTL, were associated with only subtle changes in global cognitive performance, and were not accompanied by detectable accumulation of Aβ biomarkers. These data suggest that individuals with A- TMTL+ are not on a pathologic trajectory toward AD.
Collapse
Affiliation(s)
- Alejandro Costoya-Sánchez
- Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostel, Travesía da Choupana s/n, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Jesús Silva-Rodríguez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Michael J. Pontecorvo
- Avid Radiopharmaceuticals, Philadelphia, Pennsylvania
- Eli Lilly and Company, Indianapolis, Indiana
| | - Michael D. Devous
- Avid Radiopharmaceuticals, Philadelphia, Pennsylvania
- Eli Lilly and Company, Indianapolis, Indiana
| | - Pablo Aguiar
- Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostel, Travesía da Choupana s/n, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | - Michel J. Grothe
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
6
|
Alosco ML, Su Y, Stein TD, Protas H, Cherry JD, Adler CH, Balcer LJ, Bernick C, Pulukuri SV, Abdolmohammadi B, Coleman MJ, Palmisano JN, Tripodis Y, Mez J, Rabinovici GD, Marek KL, Beach TG, Johnson KA, Huber BR, Koerte I, Lin AP, Bouix S, Cummings JL, Shenton ME, Reiman EM, McKee AC, Stern RA. Associations between near end-of-life flortaucipir PET and postmortem CTE-related tau neuropathology in six former American football players. Eur J Nucl Med Mol Imaging 2023; 50:435-452. [PMID: 36152064 PMCID: PMC9816291 DOI: 10.1007/s00259-022-05963-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Flourine-18-flortaucipir tau positron emission tomography (PET) was developed for the detection for Alzheimer's disease. Human imaging studies have begun to investigate its use in chronic traumatic encephalopathy (CTE). Flortaucipir-PET to autopsy correlation studies in CTE are needed for diagnostic validation. We examined the association between end-of-life flortaucipir PET and postmortem neuropathological measurements of CTE-related tau in six former American football players. METHODS Three former National Football League players and three former college football players who were part of the DIAGNOSE CTE Research Project died and agreed to have their brains donated. The six players had flortaucipir (tau) and florbetapir (amyloid) PET prior to death. All brains from the deceased participants were neuropathologically evaluated for the presence of CTE. On average, the participants were 59.0 (SD = 9.32) years of age at time of PET. PET scans were acquired 20.33 (SD = 13.08) months before their death. Using Spearman correlation analyses, we compared flortaucipir standard uptake value ratios (SUVRs) to digital slide-based AT8 phosphorylated tau (p-tau) density in a priori selected composite cortical, composite limbic, and thalamic regions-of-interest (ROIs). RESULTS Four brain donors had autopsy-confirmed CTE, all with high stage disease (n = 3 stage III, n = 1 stage IV). Three of these four met criteria for the clinical syndrome of CTE, known as traumatic encephalopathy syndrome (TES). Two did not have CTE at autopsy and one of these met criteria for TES. Concomitant pathology was only present in one of the non-CTE cases (Lewy body) and one of the CTE cases (motor neuron disease). There was a strong association between flortaucipir SUVRs and p-tau density in the composite cortical (ρ = 0.71) and limbic (ρ = 0.77) ROIs. Although there was a strong association in the thalamic ROI (ρ = 0.83), this is a region with known off-target binding. SUVRs were modest and CTE and non-CTE cases had overlapping SUVRs and discordant p-tau density for some regions. CONCLUSIONS Flortaucipir-PET could be useful for detecting high stage CTE neuropathology, but specificity to CTE p-tau is uncertain. Off-target flortaucipir binding in the hippocampus and thalamus complicates interpretation of these associations. In vivo biomarkers that can detect the specific p-tau of CTE across the disease continuum are needed.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yi Su
- Banner Alzheimer's Institute, Arizona State University, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Hillary Protas
- Banner Alzheimer's Institute, Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Surya Vamsi Pulukuri
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Gil D Rabinovici
- Memory & Aging Center, Departments of Neurology, Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth L Marek
- Institute for Neurodegenerative Disorders, Invicro, LLC, New Haven, CT, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Keith A Johnson
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Bertrand Russell Huber
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, MA, USA
| | - Inga Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig Maximilians University, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University, Munich, Germany
- NICUM (NeuroImaging Core Unit Munich), Ludwig Maximilians University, Munich, Germany
| | - Alexander P Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Martha E Shenton
- VA Boston Healthcare System, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
- Departments of Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
Fu L, Zhang J, Zhou K, Zhang X, Xie H, Zhu M, Cui M, Wang R. In vivo imaging of tau deposition in Alzheimer’s disease using both [18F]-THK5317 and [18F]-S16: A pilot human study. Front Aging Neurosci 2022; 14:994750. [PMID: 36092808 PMCID: PMC9459225 DOI: 10.3389/fnagi.2022.994750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate the effectiveness of a new tracer (S)-1-(4-(6-(dimethylamino)quinoxalin-2-yl)phenoxy)-3-fluoropropan-2-ol ([18F]-S16), in distinguishing patients with AD from HCs. Methods Paired [18F]-S16 and [18F]-THK5317 scans were acquired in five patients with AD, six HCs, one subject with a semantic variant of primary progressive aphasia (sv-PPA) and one subject with probable progressive supranuclear palsy (PSP). Dynamic PET scanning was performed over 90 min after injection of the tracers. Standardized uptake values (SUV) and cortical-to-cerebellum standardized uptake value ratios (SUVRs) were used for tau deposition semi-quantization. A voxel-based analysis was employed to assess the uptake difference between populations. Results [18F]-S16 exhibited excellent blood-brain-barrier penetration. AD patients showed increased cortical [18F]-THK5317 and [18F]-S16 binding. Compared to HCs, AD patients showed significantly increased cortical [18F]-S16 uptake in the bilateral occipital cortex, posterior cingulated cortex/precuneus, and lateral frontal cortex. Notable [18F]-S16 uptake was observed in the basal ganglia and brainstem compared to the neocortex. A substantial [18F]-S16 signal was detected in the basal ganglia and midbrain in a patient with probable PSP and in the bilateral anterior temporal cortex in a sv-PPA patient. Conclusion [18F]-S16 might be of help to detect tau protein in vivo.
Collapse
Affiliation(s)
- Liping Fu
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liping Fu,
| | - Jinming Zhang
- Department of Nuclear Medicine, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kaixiang Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hengge Xie
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingwei Zhu
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Ruimin Wang
- Department of Nuclear Medicine, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Ruimin Wang,
| |
Collapse
|
8
|
Wright JP, Goodman JR, Lin YG, Lieberman BP, Clemens J, Gomez LF, Liang Q, Hoye AT, Pontecorvo MJ, Conway KA. Monoamine oxidase binding not expected to significantly affect [ 18F]flortaucipir PET interpretation. Eur J Nucl Med Mol Imaging 2022; 49:3797-3808. [PMID: 35596745 PMCID: PMC9399028 DOI: 10.1007/s00259-022-05822-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Purpose [18F]-labeled positron emission tomography (PET) radioligands permit in vivo assessment of Alzheimer’s disease biomarkers, including aggregated neurofibrillary tau (NFT) with [18F]flortaucipir. Due to structural similarities of flortaucipir with some monoamine oxidase A (MAO-A) inhibitors, this study aimed to evaluate flortaucipir binding to MAO-A and MAO-B and any potential impact on PET interpretation. Methods [18F]Flortaucipir autoradiography was performed on frozen human brain tissue slices, and PET imaging was conducted in rats. Dissociation constants were determined by saturation binding, association and dissociation rates were measured by kinetic binding experiments, and IC50 values were determined by competition binding. Results Under stringent wash conditions, specific [18F]flortaucipir binding was observed on tau NFT-rich Alzheimer’s disease tissue and not control tissue. In vivo PET experiments in rats revealed no evidence of [18F]flortaucipir binding to MAO-A; pre-treatment with MAO inhibitor pargyline did not impact uptake or wash-out of [18F]flortaucipir. [18F]Flortaucipir bound with low nanomolar affinity to human MAO-A in a microsomal preparation in vitro but with a fast dissociation rate relative to MAO-A ligand fluoroethyl-harmol, consistent with no observed in vivo binding in rats of [18F]flortaucipir to MAO-A. Direct binding of flortaucipir to human MAO-B was not detected in a microsomal preparation. A high concentration of flortaucipir (IC50 of 1.3 μM) was found to block binding of the MAO-B ligand safinamide to MAO-B on microsomes suggesting that, at micromolar concentrations, flortaucipir weakly binds to MAO-B in vitro. Conclusion These data suggest neither MAO-A nor MAO-B binding will contribute significantly to the PET signal in cortical target areas relevant to the interpretation of [18F]flortaucipir. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05822-9.
Collapse
Affiliation(s)
- Justin P Wright
- Avid Radiopharmaceuticals, Eli Lilly & Company, Philadelphia, PA, USA
| | - Jason R Goodman
- Avid Radiopharmaceuticals, Eli Lilly & Company, Philadelphia, PA, USA
| | - Yin-Guo Lin
- Avid Radiopharmaceuticals, Eli Lilly & Company, Philadelphia, PA, USA
| | - Brian P Lieberman
- Avid Radiopharmaceuticals, Eli Lilly & Company, Philadelphia, PA, USA
| | - Jennifer Clemens
- Avid Radiopharmaceuticals, Eli Lilly & Company, Philadelphia, PA, USA
| | - Luis F Gomez
- Avid Radiopharmaceuticals, Eli Lilly & Company, Philadelphia, PA, USA
| | - Qianwa Liang
- Avid Radiopharmaceuticals, Eli Lilly & Company, Philadelphia, PA, USA
| | - Adam T Hoye
- Avid Radiopharmaceuticals, Eli Lilly & Company, Philadelphia, PA, USA
| | | | - Kelly A Conway
- Avid Radiopharmaceuticals, Eli Lilly & Company, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Levy JP, Bezgin G, Savard M, Pascoal TA, Finger E, Laforce R, Sonnen JA, Soucy JP, Gauthier S, Rosa-Neto P, Ducharme S. 18F-MK-6240 tau-PET in genetic frontotemporal dementia. Brain 2021; 145:1763-1772. [PMID: 34664612 PMCID: PMC9166561 DOI: 10.1093/brain/awab392] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022] Open
Abstract
Tau is one of several proteins associated with frontotemporal dementia. While knowing which protein is causing a patient’s disease is crucial, no biomarker currently exists for identifying tau in vivo in frontotemporal dementia. The objective of this study was to investigate the potential for the promising 18F-MK-6240 PET tracer to bind to tau in vivo in genetic frontotemporal dementia. We enrolled subjects with genetic frontotemporal dementia, who constitute an ideal population for testing because their pathology is already known based on their mutation. Ten participants (three with symptomatic P301L and R406W MAPT mutations expected to show tau binding, three with presymptomatic MAPT mutations and four with non-tau mutations who acted as disease controls) underwent clinical characterization, tau-PET scanning with 18F-MK-6240, amyloid-PET imaging with 18F-NAV-4694 to rule out confounding Alzheimer’s pathology, and high-resolution structural MRI. Tau-PET scans of all three symptomatic MAPT carriers demonstrated at least mild 18F-MK-6240 binding in expected regions, with particularly strong binding in a subject with an R406W MAPT mutation (known to be associated with Alzheimer’s like neurofibrillary tangles). Two asymptomatic MAPT carriers estimated to be 5 years from disease onset both showed modest 18F-MK-6240 binding, while one ∼30 years from disease onset did not exhibit any binding. Additionally, four individuals with symptomatic frontotemporal dementia caused by a non-tau mutation were scanned (two C9orf72; one GRN; one VCP): 18F-MK-6240 scans were negative for three subjects, while one advanced C9orf72 case showed minimal regionally non-specific binding. All 10 amyloid-PET scans were negative. Furthermore, a general linear model contrasting genetic frontotemporal dementia subjects to a set of 83 age-matched controls showed significant binding only in the MAPT carriers in selected frontal, temporal and subcortical regions. In summary, our findings demonstrate mild but significant binding of MK-6240 in amyloid-negative P301L and R406W MAPT mutation subjects, with higher standardized uptake value ratio in the R406W mutation associated with the presence of NFTs, and little non-specific binding. These results highlight that a positive 18F-MK-6240 tau-PET does not necessarily imply a diagnosis of Alzheimer’s disease and point towards a potential use for 18F-MK-6240 as a biomarker in certain tauopathies beyond Alzheimer’s, although further patient recruitment and autopsy studies will be necessary to determine clinical applicability.
Collapse
Affiliation(s)
- Jake P Levy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Parkwood Institute, Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques du CHU de Québec, Faculté de Médecine, Université Laval, QC, Canada
| | - Joshua A Sonnen
- Departments of Pathology, Neurology and Neurosurgery, Montreal Neurological Institute, McGill University
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Pedro Rosa-Neto
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Douglas Mental Health University Institute, Department of Psychiatry, Montreal, QC H4H 1R3, Canada
| |
Collapse
|
10
|
Ossenkoppele R, Hansson O. Towards clinical application of tau PET tracers for diagnosing dementia due to Alzheimer's disease. Alzheimers Dement 2021; 17:1998-2008. [PMID: 33984177 DOI: 10.1002/alz.12356] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 11/07/2022]
Abstract
The recent development of several tau positron emission tomography (PET) tracers represents a major milestone for the Alzheimer's disease (AD) field. These tau PET tracers bind tau neurofibrillary tangles, a key neuropathological characteristic of AD that is tightly linked to synaptic loss, brain atrophy, and cognitive decline. It is notable that these tau PET tracers show low uptake in most non-AD tauopathies and other neurodegenerative disorders, resulting in a diagnostic specificity that is superior to that of amyloid beta (Aβ) PET and biofluid markers, especially at an older age when incidental Aβ pathology is common. Furthermore, tau PET tracers diagnostically outperform widely used MRI markers. Given its excellent diagnostic performance due to the combination of high sensitivity and specificity for detecting tau pathology in AD dementia, we hypothesize that tau PET can become an important diagnostic tool in specialized clinics for the differential diagnosis of dementia syndromes where AD is among the major possible underlying diseases.
Collapse
Affiliation(s)
- Rik Ossenkoppele
- Lund University, Clinical Memory Research Unit, Lund, Sweden.,Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Oskar Hansson
- Lund University, Clinical Memory Research Unit, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
11
|
Pascual B, Funk Q, Zanotti-Fregonara P, Cykowski MD, Veronese M, Rockers E, Bradbury K, Yu M, Nakawah MO, Román GC, Schulz PE, Arumanayagam AS, Beers D, Faridar A, Fujita M, Appel SH, Masdeu JC. Neuroinflammation is highest in areas of disease progression in semantic dementia. Brain 2021; 144:1565-1575. [PMID: 33824991 DOI: 10.1093/brain/awab057] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Despite epidemiological and genetic data linking semantic dementia to inflammation, the topography of neuroinflammation in semantic dementia, also known as the semantic variant of primary progressive aphasia, remains unclear. The pathology starts at the tip of the left temporal lobe where, in addition to cortical atrophy, a strong signal appears with the tau PET tracer 18F-flortaucipir, even though the disease is not typically associated with tau but with TDP-43 protein aggregates. Here, we characterized the topography of inflammation in semantic variant primary progressive aphasia using high-resolution PET and the tracer 11C-PBR28 as a marker of microglial activation. We also tested the hypothesis that inflammation, by providing non-specific binding targets, could explain the 18F-flortaucipir signal in semantic variant primary progressive aphasia. Eight amyloid-PET-negative patients with semantic variant primary progressive aphasia underwent 11C-PBR28 and 18F-flortaucipir PET. Healthy controls underwent 11C-PBR28 PET (n = 12) or 18F-flortaucipir PET (n = 12). Inflammation in PET with 11C-PBR28 was analysed using Logan graphical analysis with a metabolite-corrected arterial input function. 18F-flortaucipir standardized uptake value ratios were calculated using the cerebellum as the reference region. Since monoamine oxidase B receptors are expressed by astrocytes in affected tissue, selegiline was administered to one patient with semantic variant primary progressive aphasia before repeating 18F-flortaucipir scanning to test whether monoamine oxidase B inhibition blocked flortaucipir binding, which it did not. While 11C-PBR28 uptake was mostly cortical, 18F-flortaucipir uptake was greatest in the white matter. The uptake of both tracers was increased in the left temporal lobe and in the right temporal pole, as well as in regions adjoining the left temporal pole such as insula and orbitofrontal cortex. However, peak uptake of 18F-flortaucipir localized to the left temporal pole, the epicentre of pathology, while the peak of inflammation 11C-PBR28 uptake localized to a more posterior, mid-temporal region and left insula and orbitofrontal cortex, in the periphery of the damage core. Neuroinflammation, greatest in the areas of progression of the pathological process in semantic variant primary progressive aphasia, should be further studied as a possible therapeutic target to slow disease progression.
Collapse
Affiliation(s)
- Belen Pascual
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Quentin Funk
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Paolo Zanotti-Fregonara
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA.,Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, King's College London, London, UK
| | - Elijah Rockers
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Kathleen Bradbury
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Meixiang Yu
- Cyclotron and Radiopharmaceutical Core, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Mohammad O Nakawah
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Gustavo C Román
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Paul E Schulz
- Department of Neurology, McGovern Medical School of UT Health, Houston, TX, USA
| | - Anithachristy S Arumanayagam
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - David Beers
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Alireza Faridar
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Masahiro Fujita
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Stanley H Appel
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Joseph C Masdeu
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Peet BT, Spina S, Mundada N, La Joie R. Neuroimaging in Frontotemporal Dementia: Heterogeneity and Relationships with Underlying Neuropathology. Neurotherapeutics 2021; 18:728-752. [PMID: 34389969 PMCID: PMC8423978 DOI: 10.1007/s13311-021-01101-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia encompasses a group of clinical syndromes defined pathologically by degeneration of the frontal and temporal lobes. Historically, these syndromes have been challenging to diagnose, with an average of about three years between the time of symptom onset and the initial evaluation and diagnosis. Research in the field of neuroimaging has revealed numerous biomarkers of the various frontotemporal dementia syndromes, which has provided clinicians with a method of narrowing the differential diagnosis and improving diagnostic accuracy. As such, neuroimaging is considered a core investigative tool in the evaluation of neurodegenerative disorders. Furthermore, patterns of neurodegeneration correlate with the underlying neuropathological substrates of the frontotemporal dementia syndromes, which can aid clinicians in determining the underlying etiology and improve prognostication. This review explores the advancements in neuroimaging and discusses the phenotypic and pathologic features of behavioral variant frontotemporal dementia, semantic variant primary progressive aphasia, and nonfluent variant primary progressive aphasia, as seen on structural magnetic resonance imaging and positron emission tomography.
Collapse
Affiliation(s)
- Bradley T Peet
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
Li CH, Chen TF, Chiu MJ, Yen RF, Shih MC, Lin CH. Integrated 18F-T807 Tau PET, Structural MRI, and Plasma Tau in Tauopathy Neurodegenerative Disorders. Front Aging Neurosci 2021; 13:646440. [PMID: 33854426 PMCID: PMC8039308 DOI: 10.3389/fnagi.2021.646440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background and Objective: Tau-specific positron emission topography (PET) imaging enables in vivo assessment of Alzheimer's disease (AD). We aimed to investigate its performance in combination with plasma tau levels in patients with non-AD tauopathy. Methods: A total of 47 participants were enrolled, including 10 healthy controls, 16 with tauopathy parkinsonism syndromes (9 with corticobasal syndrome [CBS], 7 with progressive supranuclear palsy [PSP]), 9 with frontotemporal dementia (FTD), 4 with AD, and 8 with Parkinson's disease (PD). All participants underwent clinical assessments, 18F-T807 tau PET, brain MRI, and plasma tau assay. Results: The global cortical standard uptake value ratio (SUVR) of 18F-T807 PET was comparable between PD and control (p = 0.088). The cortical SUVR was significantly higher in AD group (p = 0.002) but was modestly increased in PSP group compared to the PD group (p = 0.044), especially in parietal and pallidal regions. Asymmetric 18F-T807 uptake at the pallidum was noted in patients with CBS and FTD. Cortical tau tracer uptake was associated with increased plasma total tau level (p = 0.016), especially in frontal and parietal regions. Regional tracer uptake was correlated with cortical thinning in patients with CBS and PSP (CBS: r = -0.092, p = 0.025; PSP: r = -0.114, p = 0.015). Conclusions: The 18F-T807 tau tracer uptake was only modestly increased in patients with PSP. Although the cortical tau tracer uptake correlated with regional cortical atrophy and plasma tau levels, a four-repeated tau-specific tracer is needed for future classifying tauopathy parkinsonism syndromes.
Collapse
Affiliation(s)
- Cheng-Hsuan Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Neurology, National Taiwan University Biomedical Park Hospital, Hsinchu, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Psychology, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Chieh Shih
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Tau PET imaging with 18F-PI-2620 in aging and neurodegenerative diseases. Eur J Nucl Med Mol Imaging 2020; 48:2233-2244. [PMID: 32572562 DOI: 10.1007/s00259-020-04923-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE In vivo measurement of the spatial distribution of neurofibrillary tangle pathology is critical for early diagnosis and disease monitoring of Alzheimer's disease (AD). METHODS Forty-nine participants were scanned with 18F-PI-2620 PET to examine the distribution of this novel PET ligand throughout the course of AD: 36 older healthy controls (HC) (age range 61 to 86), 11 beta-amyloid+ (Aβ+) participants with cognitive impairment (CI; clinical diagnosis of either mild cognitive impairment or AD dementia, age range 57 to 86), and 2 participants with semantic variant primary progressive aphasia (svPPA, age 66 and 78). Group differences in brain regions relevant in AD (medial temporal lobe, posterior cingulate cortex, and lateral parietal cortex) were examined using standardized uptake value ratios (SUVRs) normalized to the inferior gray matter of the cerebellum. RESULTS SUVRs in target regions were relatively stable 60 to 90 min post-injection, with the exception of very high binders who continued to show increases over time. Robust elevations in 18F-PI-2620 were observed between HC and Aβ+ CI across all AD regions. Within the HC group, older age was associated with subtle elevations in target regions. Mildly elevated focal uptake was observed in the anterior temporal pole in one svPPA patient. CONCLUSION Preliminary results suggest strong differences in the medial temporal lobe and cortical regions known to be impacted in AD using 18F-PI-2620 in patients along the AD trajectory. This work confirms that 18F-PI-2620 holds promise as a tool to visualize tau aggregations in AD.
Collapse
|