1
|
Faist D, Gnesin S, Medici S, Khan A, Nicod Lalonde M, Schaefer N, Depeursinge A, Conti M, Schaefferkoetter J, Prior JO, Jreige M. Lung lesion detectability on images obtained from decimated and CNN-based denoised [ 18F]-FDG PET/CT scan: an observer-based study for lung-cancer screening. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07259-2. [PMID: 40278856 DOI: 10.1007/s00259-025-07259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/30/2025] [Indexed: 04/26/2025]
Abstract
PURPOSE To assess feasibility of lung cancer screening, we analysed lung lesion detectability simulating low-dose and convolutional neural network (CNN) denoised [18F]-FDG PET/CT reconstructions. METHODS Retrospectively, we analysed lung lesions on full statistics and decimated [18F]-FDG PET/CT. Reduced count PET data were emulated according to various percentage levels of total. Full and reduced statistics datasets were denoised using a CNN algorithm trained to recreate full statistics PET. Two readers assessed a detectability score from 3 to 0 for each lesion. The resulting detectability score and quantitative measurements were compared between full statistics and the different decimation levels (100%, 30%, 5%, 2%, 1%) with and without denoising. RESULTS We analysed 141 lung lesions from 49 patients across 588 reconstructions. The dichotomised lung lesion malignancy score was significantly different from 10% decimation without denoising (p < 0.029) and from 5% decimation with denoising (p < 0.001). Compared to full statistics, detectability score distribution differed significantly from 2% decimation without denoising (p < 0.001) and from 5% decimation with denoising (p < 0.001). Detectability scores at same decimation levels with or without denoising differed significantly at 10%, 2%, and 1% decimation (p < 0.019); dichotomised scores did not differ significantly. Denoising significantly increased the proportion of lung lesion scores with a high diagnostic confidence (3 and 0) (p < 0.038). CONCLUSION Lung lesion detectability was preserved down to 30% of injected activity without denoising and to 10% with denoising. These results support the feasibility of reduced-activity [18F]-FDG PET/CT as a potential tool for lung lesion detection. Further studies are warranted to compare this approach with low-dose CT in screening settings.
Collapse
Affiliation(s)
- Daphné Faist
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 21, CH- 1011, Lausanne, Switzerland
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 21, CH- 1011, Lausanne, Switzerland
| | - Siria Medici
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 21, CH- 1011, Lausanne, Switzerland
| | - Alysée Khan
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 21, CH- 1011, Lausanne, Switzerland
| | - Marie Nicod Lalonde
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 21, CH- 1011, Lausanne, Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 21, CH- 1011, Lausanne, Switzerland
| | - Adrien Depeursinge
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 21, CH- 1011, Lausanne, Switzerland
- Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Rue du Technopôle 3, CH-3960, Sierre, Switzerland
| | - Maurizio Conti
- Siemens Medical Solutions USA, Inc. 810 Innovation Drive, Knoxville, TN, 37932, USA
| | | | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 21, CH- 1011, Lausanne, Switzerland.
| | - Mario Jreige
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 21, CH- 1011, Lausanne, Switzerland
| |
Collapse
|
2
|
Mingels C, Madani MH, Sen F, Nalbant H, Riess JW, Abdelhafez YG, Ghasemiesfe A, Rominger A, Guindani M, Badawi RD, Spencer BA, Nardo L. Diagnostic accuracy in NSCLC lymph node staging with Total-Body and conventional PET/CT. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07177-3. [PMID: 40113643 DOI: 10.1007/s00259-025-07177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Our aim was to characterize the diagnostic accuracy indices for nodal (N)-staging with [18F]FDG Total-Body (TB) and short-axial field-of-view (SAFOV) PET/CT in non-small cell lung cancer (NSCLC) patients referred for staging or restaging. METHODS In this prospective single center cross-over head-to-head comparative study 48 patients underwent [18F]FDG TB and SAFOV PET/CT on the same day. In total 700 lymph node levels (1R/L, 2R/L, 3a/p, 4R/L, 5, 6, 7, 8R/L, 9R/L, 10-14R/L) of 28 patients could be correlated to a composite reference standard (histopathological correlation, imaging after localized or systemic treatment), which allowed determination of true positive (TP), false positive (FP), true negative (TN) and false negative (FN) lesions. Lymph nodes were characterized semi-quantitatively by maximum standardized uptake value (SUVmax), tumor-to-background ratio (TBR), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) leading to threshold for each scanner. RESULTS TB and SAFOV PET/CT showed high diagnostic accuracy indices for patient-based N-staging. Sensitivity and specificity were 86.0% (CI: 77.0-95.0%) and 98.3% (CI: 97.3-99.3%) for TB; 77.2% (CI: 66.3-88.1%) and 97.4% (CI: 96.1-98.6%) for SAFOV PET. Positive predictive value was higher for TB (81.7%, CI: 71.9-91.5%) compared to SAFOV PET (72.1%, CI: 60.9-83.4%). However, this finding was not statistically significant (p = 0.08). Negative predictive values for TB (98.6%, CI: 97.9-99.6%) and SAFOV PET/CT (98.0%, CI: 96.9-99.1%) were comparable. Overall, NSCLC N-staging was affected in six cases on SAFOV and only in one case on TB PET/CT. Semi-quantitative analysis revealed a threshold of SUVmax 3.0 to detect TP lesions on both scanners. However, TBR, MTV and TLG thresholds were lower on TB compared to SAFOV PET (TBR: 1.2 vs. 1.7, MTV: 0.5 ml vs. 1.0 ml and TLG: 1.0 ml vs. 3.0 ml). CONCLUSION TB and SAFOV PET/CT showed high diagnostic accuracy indices for N-staging in NSCLC patients. Sensitivity and PPV on TB PET/CT were slightly higher, compared to SAFOV PET/CT without statistical significance. However, TB PET/CT showed lower rate of incorrect N-staging and lower semi-quantitative thresholds for the detection positive mediastinal lymph nodes. Therefore, TB PET/CT might be advantageous in detecting small and low [18F]FDG-avidity mediastinal lymph node metastases in NSCLC patients.
Collapse
Affiliation(s)
- Clemens Mingels
- Department of Radiology, University of California Davis, Sacramento, CA, USA.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Mohammad H Madani
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Fatma Sen
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Hande Nalbant
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Jonathan W Riess
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis, Sacramento, CA, USA
- Nuclear Medicine Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | | | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michele Guindani
- Department of Biostatistics, University of California Los Angeles, Los Angeles, CA, USA
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
3
|
Zhang X, Xiang Z, Wang F, Pan X, Zhang Q, Wang P, Jiang L, Yuan H. 13N-NH 3 myocardial perfusion imaging with reduced scan duration: a feasibility study in the era of total-body PET/CT. EJNMMI Phys 2025; 12:18. [PMID: 40032742 DOI: 10.1186/s40658-025-00729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
PURPOSE To explore the feasibility of reducing scan duration of 13N-NH3 myocardial perfusion imaging (MPI) using a total-body PET/CT scanner. METHODS Forty-five patients with known or suspected coronary artery disease (CAD) performing rest 13N-NH3 MPI with total-body PET/CT were retrospectively included. PET data were acquired in list mode for 10 min, and reconstructed into sequence images of different scan duration: 10-min, 7-min, 5-min, 3-min, and 2-min (G10 to G2). Subjective visual evaluation including overall impression, image noise and lesion visibility was evaluated using 5-point Likert scale. Quantitative parameters including perfusion defect extent (Extent), total perfusion defect (TPD), summed rest score (SRS), end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), and myocardial blood flow (MBF) were analyzed. The full-time images (G10) were served as the reference. RESULTS There were no significant differences in subjective visual scores between G7-G5 and G10 groups (p > 0.05). A significant decrease in overall impression and image noise of G3-G2 was observed when compared to G10 (p < 0.05). However, no significant difference in lesion visibility was noted between G3 and G10 (p > 0.05). All G3 image quality was clinically acceptable (≥ 3 points). Except for EDV and ESV, other quantitative parameters showed no significant difference between G7-G3 and G10 (p > 0.05) and agreements were good (ICC = 0.974-0.998). For G2, only TPD exhibited no significant difference when compared to G10 (p > 0.05). CONCLUSION Regarding imaging quality and parametric quantification accuracy of 13N-NH3 MPI, a 3-min scan is clinically acceptable, while a 5-min scan is sufficiently reliable.
Collapse
Affiliation(s)
- Xiaochun Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Zeyin Xiang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Fanghu Wang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Xiaoqiang Pan
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Qing Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Peng Wang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Lei Jiang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China.
| | - Hui Yuan
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Wu H, Liu G, Ruan X, Zhang B, Zhe Z, Shi H. A low-dose protocol in pediatric 18F-FDG scans using 30-cm axis field of view PET/CT. Ann Nucl Med 2025:10.1007/s12149-025-02030-x. [PMID: 40019733 DOI: 10.1007/s12149-025-02030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
OBJECTIVE To explore the feasibility of a low-dose 18F-FDG protocol for the 30-cm standard axial field of view (SAFOV) PET/CT imaging in pediatric patients. METHODS A retrospective analysis was conducted on 112 pediatric patients who underwent a full-dose (3.7 MBq/kg) 18F-FDG PET/CT imaging, and a prospective analysis was performed on 55 patients who received a low-dose (2.5 MBq/kg) imaging. PET images were reconstructed at 1.0-min/bed intervals, and labeled as G1.0, G2.0, G3.0 for the full-dose imaging and G1.0', G2.0', G3.0' for the low-dose imaging. Patients were categorized into three age groups, and the image quality was assessed using the Likert scale and signal-to-noise ratio (SNR); Lesion detectability was evaluated using lesion detection rates and the target-to-liver ratio (TLR). RESULTS In G2.0 and G3.0, all cases (112/112) achieved an image score of ≥ 3 and a lesion detection rate of 100% (98/98). There were no significant differences in SNR between G2.0 and G3.0 (11.09 ± 2.31 vs. 11.88 ± 2.58, p = 0.39), nor between age groups ≤ 5 years and 6-10 years groups (9.52 ± 3.16 vs. 9.53 ± 3.19, p = 0.99). In G3.0', 98.2% of cases (54/55) had an image score ≥ 3 and a lesion detection rate of 100% (43/43). The SNR of every age group for G3.0' was comparable to that of G2.0, and no significant differences between ≤ 5 years and 6-10 years groups (9.32 ± 1.94 vs. 9.99 ± 2.28, p = 0.82). CONCLUSIONS A 2.5 MBq/kg dose with a 3.0 min/bed acquisition protocol is feasible for 18F-FDG 30-cm SAFOV PET/CT imaging in pediatric patients, and SNR and TLR demonstrated age-dependent discrepancies.
Collapse
Affiliation(s)
- Ha Wu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Nuclear Medicine, Children's Hospital, Fudan University, Shanghai, 201102, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiemei Ruan
- Department of Nuclear Medicine, Children's Hospital, Fudan University, Shanghai, 201102, China
| | - Biying Zhang
- Department of Nuclear Medicine, Children's Hospital, Fudan University, Shanghai, 201102, China
| | - Zheng Zhe
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China.
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Mingels C, Chung KJ, Pantel AR, Rominger A, Alberts I, Spencer BA, Nardo L, Pyka T. Total-Body PET/CT: Challenges and Opportunities. Semin Nucl Med 2025; 55:21-30. [PMID: 39341688 DOI: 10.1053/j.semnuclmed.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
Abstract
Long-axial field-of-view (LAFOV) systems have changed the field of molecular imaging. Since their introduction, many PET centers have installed these next-generation digital systems to provide more detailed imaging and acquire PET images in a single bed position. Indeed, vertex to thigh imaging for oncological indications can be obtained in most of the population with the currently available LAFOV systems. Moreover, Total Body (TB) PET, a subtype of LAFOV, enables imaging the entire patient-from vertex through the toes-with one bed-position for most of the population. This review aims to identify possible challenges and opportunities for PET-centers working with TB and LAFOV systems. Emphasis is placed on the strength and weaknesses in clinical routine of currently available and upcoming TB and LAFOV PET systems.
Collapse
Affiliation(s)
- Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Radiology, University of California Davis, Sacramento, CA.
| | - Kevin J Chung
- Department of Radiology, University of California Davis, Sacramento, CA
| | - Austin R Pantel
- Department of Nuclear Medicine Imaging and Therapy, University of Pennsylvania, Philadelphia, PA
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ian Alberts
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, British Columbia, Canada; University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; TUM School of Medicine and Health, Munich, Germany
| |
Collapse
|
6
|
Nanni C, Farolfi A, Castellucci P, Fanti S. Total Body Positron Emission Tomography/Computed Tomography: Current Status in Oncology. Semin Nucl Med 2025; 55:31-40. [PMID: 39516095 DOI: 10.1053/j.semnuclmed.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Positron Emission Tomography (PET) is a crucial imaging modality in oncology, providing functional insights by detecting metabolic activity in tissues. Total-body (TB) PET and large field-of-view PET have emerged as advanced techniques, offering whole-body imaging in a single acquisition. TB PET enables simultaneous imaging from head to toe, providing comprehensive information on tumor distribution, metastasis, and treatment response. This is particularly valuable in oncology, where metastatic spread often requires evaluation of multiple body areas. By covering the entire body, TB PET improves diagnostic accuracy, reduces scan time, and increases patient comfort. Furthermore, these new tomographs offer a marked increase in sensitivity, thanks to their ability to capture a larger volume of data simultaneously. This heightened sensitivity enables the detection of smaller lesions and more subtle metabolic changes, improving diagnostic accuracy in the early stages of cancer or in the evaluation of minimal residual disease. Moreover, the increased sensitivity allows for lower radiotracer doses without compromising image quality, reducing patient exposure to radiation or very quick acquisitions. Another significant advantage is the possibility of dynamic acquisitions, which allow for continuous monitoring of tracer kinetics over time. This provides critical information about tissue perfusion, metabolism, and receptor binding in real time. Dynamic imaging is particularly useful for assessing treatment response in oncology, as it enables the evaluation of tumor behavior over a period rather than a single static snapshot, offering insights into tumor aggressiveness and potential therapeutic targets. This review is focused on the current applications of TB and large field-of-view PET scanners in oncology.
Collapse
Affiliation(s)
- Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Andrea Farolfi
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paolo Castellucci
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Zoghi S, Mingels C, Badawi RD, Spencer BA, Yarbrough TL, Nardo L, Chaudhari AJ. Role of Total Body PET/CT in Inflammatory Disorders. Semin Nucl Med 2025; 55:41-51. [PMID: 39578110 PMCID: PMC11645246 DOI: 10.1053/j.semnuclmed.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Inflammatory disorders historically have been difficult to monitor with conventional PET imaging due to limitations including radiation exposure, lack of validated imaging biomarkers, low spatial resolution, and long acquisition durations. However, the recent development of long-axial field-of-view (LAFOV) PET/CT scanners may allow utilization of novel noninvasive biomarkers to diagnose, predict outcomes, and monitor therapeutic response of inflammatory conditions. LAFOV PET scanners can image most of the human body (if not the entire body) simultaneously in one bed position, with improved signal collection efficiency compared to conventional PET scanners. This allows for imaging with shorter acquisition durations, decreased injected radiotracer dose, prolonged uptake times, or a combination of any of these. In addition, LAFOV PET scanners enable whole-body dynamic imaging. Altogether, these intrinsically superior capabilities in assessing both local and systemic diseases, have allowed these scanners to make increasingly significant contributions to the assessment of inflammatory conditions. This review aims to further explore the role and benefits of LAFOV scanners for imaging various inflammatory conditions while addressing future developments and challenges faced by this technology.
Collapse
Affiliation(s)
- Shervin Zoghi
- Department of Radiology, University of California Davis, Sacramento, CA, USA.
| | - Clemens Mingels
- Department of Radiology, University of California Davis, Sacramento, CA, USA; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Tracy L Yarbrough
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Abhijit J Chaudhari
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
8
|
Wu H, Liu G, Yu H, Zheng Z, He Y, Shi H. Feasibility of ultra-low-activity 18F-FDG PET/CT imaging in children. Br J Radiol 2025; 98:136-142. [PMID: 39423099 DOI: 10.1093/bjr/tqae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/26/2023] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVES To investigate the feasibility of paediatric 18F-FDG total-body PET/CT imaging with an ultra-low activity and explore an optimized acquisition time range. METHODS A total of 38 paediatric patients were prospectively enrolled and underwent dynamic total-body PET/CT imaging using ultra-low 18F-FDG activity (0.37 MBq/kg). The 60-minute list-mode raw data were acquired and then reconstructed as static PET images by using 50-51, 50-52, 50-53, 50-54, 50-55, 50-58, 50-60, and 45-60 minutes data, which were noted as G1, G2, G3, G4, G5, G8, G10, and G15, respectively. Image qualities were subjectively evaluated using the Likert scale and were objectively evaluated by the quantitative metrics including standard uptake value (SUV), signal-to-noise ratio (SNR), target-to-background ratio (TBR), and contrast-to-noise ratio (CNR). RESULTS The injected activity of FDG was 13.38 ± 5.68 MBq (4.40-28.16 MBq) and produced 0.58 ± 0.19 mSv (0.29-1.04 mSv) of effective dose. The inter-reader agreement of subjective image quality was excellent (kappa = 0.878; 95% CI, 0.845-0.910). The average scores of image quality for G1-G15 were 1.10 ± 0.20, 2.03 ± 0.26, 2.66 ± 0.35, 3.00 ± 0.27, 3.32 ± 0.34, 4.25 ± 0.30, 4.49 ± 0.36, and 4.70 ± 0.37, respectively. All image scores are above 3, and all lesions are detectable starting from G8. SNRs of backgrounds, TBRs, and CNRs were significant differences from the control group before G8 (all P < 0.05). CONCLUSION The image quality of the 8 min acquisition for paediatric 18F-FDG total-body PET/CT with an ultra-low activity could meet the diagnostic requirements. ADVANCES IN KNOWLEDGE This study confirms the feasibility of ultra-low dose PET imaging in children, and its methods and findings may guide clinical practice. Paediatric patients will benefit from reduced radiation doses.
Collapse
Affiliation(s)
- Ha Wu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Nuclear Medicine, Children's Hospital, Fudan University, Shanghai, 201102, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhe Zheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yibo He
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
9
|
Dias AH, Andersen KF, Fosbøl MØ, Gormsen LC, Andersen FL, Munk OL. Long Axial Field-of-View PET/CT: New Opportunities for Pediatric Imaging. Semin Nucl Med 2025; 55:76-85. [PMID: 39542815 DOI: 10.1053/j.semnuclmed.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
The combined use of Positron Emission Tomography (PET) and Computed Tomography (CT) has become increasingly vital for diagnosing and managing oncological and infectious diseases in pediatric patients. The introduction of long axial field-of-view (LAFOV) PET/CT scanners, also known as "Total Body PET/CT," marks a significant advancement in nuclear medicine. This new technology enables faster pediatric imaging with substantially reduced radiation exposure and essentially eliminates the need for sedation, addressing previous critical concerns in pediatric imaging. This review will explore the applications and challenges of LAFOV PET/CT in pediatric imaging, highlight the benefits observed at two Danish hospitals, and evaluate its potential to transform the management of pediatric patients.
Collapse
Affiliation(s)
- André Henrique Dias
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark.
| | - Kim Francis Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Marie Øbro Fosbøl
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Montgomery ME, Andersen FL, Mathiasen R, Borgwardt L, Andersen KF, Ladefoged CN. CT-Free Attenuation Correction in Paediatric Long Axial Field-of-View Positron Emission Tomography Using Synthetic CT from Emission Data. Diagnostics (Basel) 2024; 14:2788. [PMID: 39767149 PMCID: PMC11727418 DOI: 10.3390/diagnostics14242788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Paediatric PET/CT imaging is crucial in oncology but poses significant radiation risks due to children's higher radiosensitivity and longer post-exposure life expectancy. This study aims to minimize radiation exposure by generating synthetic CT (sCT) images from emission PET data, eliminating the need for attenuation correction (AC) CT scans in paediatric patients. Methods: We utilized a cohort of 128 paediatric patients, resulting in 195 paired PET and CT images. Data were acquired using Siemens Biograph Vision 600 and Long Axial Field-of-View (LAFOV) Siemens Vision Quadra PET/CT scanners. A 3D parameter transferred conditional GAN (PT-cGAN) architecture, pre-trained on adult data, was adapted and trained on the paediatric cohort. The model's performance was evaluated qualitatively by a nuclear medicine specialist and quantitatively by comparing sCT-derived PET (sPET) with standard PET images. Results: The model demonstrated high qualitative and quantitative performance. Visual inspection showed no significant (19/23) or minor clinically insignificant (4/23) differences in image quality between PET and sPET. Quantitative analysis revealed a mean SUV relative difference of -2.6 ± 5.8% across organs, with a high agreement in lesion overlap (Dice coefficient of 0.92 ± 0.08). The model also performed robustly in low-count settings, maintaining performance with reduced acquisition times. Conclusions: The proposed method effectively reduces radiation exposure in paediatric PET/CT imaging by eliminating the need for AC CT scans. It maintains high diagnostic accuracy and minimises motion-induced artifacts, making it a valuable alternative for clinical application. Further testing in clinical settings is warranted to confirm these findings and enhance patient safety.
Collapse
Affiliation(s)
- Maria Elkjær Montgomery
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.E.M.); (F.L.A.); (L.B.); (K.F.A.)
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.E.M.); (F.L.A.); (L.B.); (K.F.A.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - René Mathiasen
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lise Borgwardt
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.E.M.); (F.L.A.); (L.B.); (K.F.A.)
| | - Kim Francis Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.E.M.); (F.L.A.); (L.B.); (K.F.A.)
| | - Claes Nøhr Ladefoged
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.E.M.); (F.L.A.); (L.B.); (K.F.A.)
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Zhou X, Xue S, Li L, Seifert R, Dong S, Chen R, Huang G, Rominger A, Liu J, Shi K. Sedation-free pediatric [ 18F]FDG imaging on totalbody PET/CT with the assistance of artificial intelligence. Eur J Nucl Med Mol Imaging 2024; 51:4062-4072. [PMID: 38958680 DOI: 10.1007/s00259-024-06818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE While sedation is routinely used in pediatric PET examinations to preserve diagnostic quality, it may result in side effects and may affect the radiotracer's biodistribution. This study aims to investigate the feasibility of sedation-free pediatric PET imaging using ultra-fast total-body (TB) PET scanners and deep learning (DL)-based attenuation and scatter correction (ASC). METHODS This retrospective study included TB PET (uExplorer) imaging of 35 sedated pediatric patients under four years old to determine the minimum effective scanning time. A DL-based ASC method was applied to enhance PET quantification. Both quantitative and qualitative assessments were conducted to evaluate the image quality of ultra-fast DL-ASC PET. Five non-sedated pediatric patients were subsequently used to validate the proposed approach. RESULTS Comparisons between standard 300-second and ultra-fast 15-second imaging, CT-ASC and DL-ASC ultra-fast 15-second images, as well as DL-ASC ultra-fast 15-second images in non-sedated and sedated patients, showed no significant differences in qualitative scoring, lesion detectability, and quantitative Standard Uptake Value (SUV) (P = ns). CONCLUSIONS This study demonstrates that pediatric PET imaging can be effectively performed without sedation by combining ultra-fast imaging techniques with a DL-based ASC. This advancement in sedation-free ultra-fast PET imaging holds potential for broader clinical adoption.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Song Xue
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street Freiburgstr. 18, Bern, 3010, Switzerland
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Lianghua Li
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Robert Seifert
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street Freiburgstr. 18, Bern, 3010, Switzerland
| | - Shunjie Dong
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruohua Chen
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street Freiburgstr. 18, Bern, 3010, Switzerland
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street Freiburgstr. 18, Bern, 3010, Switzerland
| |
Collapse
|
12
|
Zhang X, Xiang Z, Wang F, Han C, Zhang Q, Liu E, Yuan H, Jiang L. Feasibility of shortening scan duration of 18F-FDG myocardial metabolism imaging using a total-body PET/CT scanner. EJNMMI Phys 2024; 11:83. [PMID: 39390229 PMCID: PMC11467154 DOI: 10.1186/s40658-024-00689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
PURPOSE To evaluate 18F-FDG myocardial metabolism imaging (MMI) using a total-body PET/CT scanner and explore the feasible scan duration to guide the clinical practice. METHODS A retrospective analysis was conducted on 41 patients who underwent myocardial perfusion-metabolism imaging to assess myocardial viability. The patients underwent 18F-FDG MMI with a total-body PET/CT scanner using a list-mode for 600 s. PET data were trimmed and reconstructed to simulate images of 600-s, 300-s, 120-s, 60-s, and 30-s acquisition time (G600-G30). Images among different groups were subjectively evaluated using a 5-point Likert scale. Semi-quantitative evaluation was performed using standardized uptake value (SUV), myocardial to background activity ratio (M/B), signal to noise ratio (SNR), contrast to noise ratio (CNR), contrast ratio (CR), and coefficient of variation (CV). Myocardial viability analysis included indexes of Mismatch and Scar. G600 served as the reference. RESULTS Subjective visual evaluation indicated a decline in the scores of image quality with shortening scan duration. All the G600, G300, and G120 images were clinically acceptable (score ≥ 3), and their image quality scores were 4.9 ± 0.3, 4.8 ± 0.4, and 4.5 ± 0.8, respectively (P > 0.05). Moreover, as the scan duration reduced, the semi-quantitative parameters M/B, SNR, CNR, and CR decreased, while SUV and CV increased, and significant difference was observed in G300-G30 groups when comparing to G600 group (P < 0.05). For myocardial viability analysis of left ventricular and coronary segments, the Mismatch and Scar values of G300-G30 groups were almost identical to G600 group (ICC: 0.968-1.0, P < 0.001). CONCLUSION Sufficient image quality for clinical diagnosis could be achieved at G120 for MMI using a total-body PET/CT scanner, while the image quality of G30 was acceptable for myocardial viability analysis.
Collapse
Affiliation(s)
- Xiaochun Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Zeyin Xiang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Fanghu Wang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Chunlei Han
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Qing Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Entao Liu
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Hui Yuan
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China.
| | - Lei Jiang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.
| |
Collapse
|
13
|
Mingels C, Nalbant H, Sari H, Godinez F, Sen F, Spencer B, Esteghamat NS, Tuscano JM, Nardo L. Long-Axial Field-of-View PET Imaging in Patients with Lymphoma: Challenges and Opportunities. PET Clin 2024; 19:495-504. [PMID: 38969563 PMCID: PMC11433941 DOI: 10.1016/j.cpet.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
[18F]fluoro-2-deoxy-d-glucose PET/computed tomography has been implemented in the management of patients with lymphoma, offering real-time metabolic information on lymphoma with the promise of more accurate staging, treatment response assessment, prognostication, and early detection of disease recurrence. The clinical management of lymphoproliferative disease has recently, rapidly evolved from initial chemotherapeutic to the use of immunotherapy, targeted agents, and to the use of chimeric antigen receptor T-cell therapies. The implementation of these new systems and imaging protocols together with new tracer development creates, in the field of lymphoproliferative disease, both opportunities and challenges that will be detailed in this comprehensive literature review.
Collapse
Affiliation(s)
- Clemens Mingels
- Department of Radiology, University of California Davis, Sacramento, CA, USA; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Hande Nalbant
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Siemens Healthineers International AG, Zurich, Switzerland
| | - Felipe Godinez
- Department of Radiology, University of California Davis, Sacramento, CA, USA; UC Cavis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Fatma Sen
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Benjamin Spencer
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Naseem S Esteghamat
- Division of Malignant Hematology, Cellular Therapy & Transplantation, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Joseph M Tuscano
- Division of Malignant Hematology, Cellular Therapy & Transplantation, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
14
|
Mingels C, Spencer BA, Nalbant H, Omidvari N, Rokni M, Rominger A, Sen F, Cherry SR, Badawi RD, Abdelhafez YG, Nardo L. Dose Reduction in Pediatric Oncology Patients with Delayed Total-Body [ 18F]FDG PET/CT. J Nucl Med 2024; 65:1101-1106. [PMID: 38664017 PMCID: PMC11218730 DOI: 10.2967/jnumed.124.267521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 07/03/2024] Open
Abstract
Our aim was to define a lower limit of reduced injected activity in delayed [18F]FDG total-body (TB) PET/CT in pediatric oncology patients. Methods: In this single-center prospective study, children were scanned for 20 min with TB PET/CT, 120 min after intravenous administration of a 4.07 ± 0.49 MBq/kg dose of [18F]FDG. Five randomly subsampled low-count reconstructions were generated using ¼, ⅛, [Formula: see text], and [Formula: see text] of the counts in the full-dose list-mode reference standard acquisition (20 min), to simulate dose reduction. For the 2 lowest-count reconstructions, smoothing was applied. Background uptake was measured with volumes of interest placed on the ascending aorta, right liver lobe, and third lumbar vertebra body (L3). Tumor lesions were segmented using a 40% isocontour volume-of-interest approach. Signal-to-noise ratio, tumor-to-background ratio, and contrast-to-noise ratio were calculated. Three physicians identified malignant lesions independently and assessed the image quality using a 5-point Likert scale. Results: In total, 113 malignant lesions were identified in 18 patients, who met the inclusion criteria. Of these lesions, 87.6% were quantifiable. Liver SUVmean did not change significantly, whereas a lower signal-to-noise ratio was observed in all low-count reconstructions compared with the reference standard (P < 0.0001) because of higher noise rates. Tumor uptake (SUVmax), tumor-to-background ratio, and total lesion count were significantly lower in the reconstructions with [Formula: see text] and [Formula: see text] of the counts of the reference standard (P < 0.001). Contrast-to-noise ratio and clinical image quality were significantly lower in all low-count reconstructions than with the reference standard. Conclusion: Dose reduction for delayed [18F]FDG TB PET/CT imaging in children is possible without loss of image quality or lesion conspicuity. However, our results indicate that to maintain comparable tumor uptake and lesion conspicuity, PET centers should not reduce the injected [18F]FDG activity below 0.5 MBq/kg when using TB PET/CT in pediatric imaging at 120 min after injection.
Collapse
Affiliation(s)
- Clemens Mingels
- Department of Radiology, University of California Davis, Sacramento, California;
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis, Sacramento, California
| | - Hande Nalbant
- Department of Radiology, University of California Davis, Sacramento, California
| | - Negar Omidvari
- Department of Biomedical Engineering, University of California Davis, Davis, California; and
| | - Mehrad Rokni
- Department of Radiology, University of California Davis, Sacramento, California
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fatma Sen
- Department of Radiology, University of California Davis, Sacramento, California
| | - Simon R Cherry
- Department of Radiology, University of California Davis, Sacramento, California
- Department of Biomedical Engineering, University of California Davis, Davis, California; and
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, California
- Department of Biomedical Engineering, University of California Davis, Davis, California; and
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis, Sacramento, California
- Nuclear Medicine Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, California
| |
Collapse
|
15
|
Honoré d’Este S, Andersen FL, Schulze C, Saxtoft E, Fischer BM, Andersen KF. QUALIPAED-A retrospective quality control study evaluating pediatric long axial field-of-view low-dose FDG-PET/CT. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1398773. [PMID: 39355209 PMCID: PMC11440848 DOI: 10.3389/fnume.2024.1398773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/27/2024] [Indexed: 10/03/2024]
Abstract
Introduction Pediatric patients have an increased risk of radiation-induced malignancies due to their ongoing development and long remaining life span. Thus, optimization of PET protocols is an important task in pediatric nuclear medicine. Long axial field-of-view (LAFOV) PET/CT has shown a significant increase in sensitivity, which provides an ideal opportunity for reduction of injected tracer activity in the pediatric population. In this study we aim to evaluate the clinical performance of a 2-[18F]FDG-tracer reduction from 3 MBq/kg to 1.5 MBq/kg on the Biograph Vision Quadra LAFOV PET/CT. Materials and methods The first 50 pediatric patients referred for clinical whole-body PET/CT with 1.5 MBq/kg 2-[18F]FDG, were included. A standard pediatric protocol was applied. Five reconstructions were created with various time, filter and iteration settings. Image noise was computed as coefficient-of-variance (COV = SD/mean standardized-uptake-value) calculated from a spherical 20-50 mm (diameter) liver volume-of-interest. Sets of reconstructions were reviewed by one nuclear medicine physicians, who reported image lesions on a pre-defined list of sites. Paired comparison analysis was performed with significance at PB < 0.05 (Bonferroni corrected). Results All reconstructions, except one, achieved a COVmean (0.08-0.15) equal to or lower than current clinical acceptable values (COVref ≤ 0.15). Image noise significantly improved with increasing acquisition time, lowering iterations (i) from 6i to 4i (both with five subsets) and when applying a 2 mm Gauss filter (PB < 0.001). Significant difference in lesion detection was seen from 150s to 300s and from 150s to 600s (PB = 0.006-0.007). 99% of all lesions rated as malignant could be found on the 150s reconstruction, while 100% was found on the 300s, when compared to the 600s reconstruction. Conclusion Injected activity and scan time can be reduced to 1.5 MBq/kg 2-[18F]FDG with 5 min acquisition time on LAFOV PET/CT, while maintaining clinical performance in the pediatric population. These results can help limit radiation exposure to patients and personnel as well as shorten total scan time, which can help increase patient comfort, lessen the need for sedation and provide individually tailored scans.
Collapse
Affiliation(s)
- Sabrina Honoré d’Este
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina Schulze
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eunice Saxtoft
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- King’s College London & Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
| | - Kim Francis Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
16
|
Chen W, Li Y, Li Z, Jiang Y, Cui Y, Zeng J, Mo Y, Tang S, Li S, Liu L, Zhao Y, Hu Y, Fan W. Advantages and Challenges of Total-Body PET/CT at a Tertiary Cancer Center: Insights from Sun Yat-sen University Cancer Center. J Nucl Med 2024; 65:54S-63S. [PMID: 38719233 DOI: 10.2967/jnumed.123.266948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
In recent decades, researchers worldwide have directed their efforts toward enhancing the quality of PET imaging. The detection sensitivity and image resolution of conventional PET scanners with a short axial field of view have been constrained, leading to a suboptimal signal-to-noise ratio. The advent of long-axial-field-of-view PET scanners, exemplified by the uEXPLORER system, marked a significant advancement. Total-body PET imaging possesses an extensive scan range of 194 cm and an ultrahigh detection sensitivity, and it has emerged as a promising avenue for improving image quality while reducing the administered radioactivity dose and shortening acquisition times. In this review, we elucidate the application of the uEXPLORER system at the Sun Yat-sen University Cancer Center, including the disease distribution, patient selection workflow, scanning protocol, and several enhanced clinical applications, along with encountered challenges. We anticipate that this review will provide insights into routine clinical practice and ultimately improve patient care.
Collapse
Affiliation(s)
- Wanqi Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yinghe Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Zhijian Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yongluo Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yingpu Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Jiling Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yiwen Mo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Si Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Shatong Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Lei Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yumo Zhao
- United Imaging Healthcare Co. Ltd., Shanghai, China
| | - Yingying Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China;
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China;
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| |
Collapse
|
17
|
Yang W, Kang F, Chen Y, Zhu Z, Wang F, Qin C, Du J, Lan X, Wang J. Landscape of Nuclear Medicine in China and Its Progress on Theranostics. J Nucl Med 2024; 65:29S-37S. [PMID: 38719237 DOI: 10.2967/jnumed.123.266968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/25/2024] [Indexed: 07/16/2024] Open
Abstract
Nuclear medicine in China started in 1956 and, with the rapid development of the economy and continuous breakthroughs in precision medicine, has made significant progress in recent years. Almost 13,000 staff members in nearly 1,200 hospitals serve more than 3.9 million patients each year. Over the past decade, the radiopharmaceutical industry has developed rapidly, with the initial formation of a complete industrial chain of production of various radiopharmaceuticals for both clinical use and basic research. Advanced equipment such as PET/CT scanners is being manufactured domestically and even installed abroad. Recently, research into screening and synthesizing new target probes and their translation into the clinic has gained more attention, with various new tracers with potential clinical value being thoroughly studied. Simultaneously, 68Ga- and 177Lu-labeled tumor-targeted probes and others have been implemented for theranostics in an increasing number of hospitals and would be helped by approval from the National Medical Products Administration. Over the next 10-20 y, with the launch of the Mid- and Long-Term Development Plan for Medical Isotopes (2021-2035) by the Chinese government, there is great potential for nuclear medicine in China. With the rise in independent innovation in manufacturing, the shortage of radiopharmaceuticals will be effectively curtailed. We anticipate that the scale of nuclear medicine will at least double by 2035, covering all high-grade hospitals and leading to the aim of "one county, one department" in China.
Collapse
Affiliation(s)
- Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Jin Du
- China Isotope and Radiation Corporation, Beijing, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China;
| |
Collapse
|
18
|
Wu Y, Sun T, Ng YL, Liu J, Zhu X, Cheng Z, Xu B, Meng N, Zhou Y, Wang M. Clinical Implementation of Total-Body PET in China. J Nucl Med 2024; 65:64S-71S. [PMID: 38719242 DOI: 10.2967/jnumed.123.266977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/13/2024] [Indexed: 07/16/2024] Open
Abstract
Total-body (TB) PET/CT is a groundbreaking tool that has brought about a revolution in both clinical application and scientific research. The transformative impact of TB PET/CT in the realms of clinical practice and scientific exploration has been steadily unfolding since its introduction in 2018, with implications for its implementation within the health care landscape of China. TB PET/CT's exceptional sensitivity enables the acquisition of high-quality images in significantly reduced time frames. Clinical applications have underscored its effectiveness across various scenarios, emphasizing the capacity to personalize dosage, scan duration, and image quality to optimize patient outcomes. TB PET/CT's ability to perform dynamic scans with high temporal and spatial resolution and to perform parametric imaging facilitates the exploration of radiotracer biodistribution and kinetic parameters throughout the body. The comprehensive TB coverage offers opportunities to study interconnections among organs, enhancing our understanding of human physiology and pathology. These insights have the potential to benefit applications requiring holistic TB assessments. The standard topics outlined in The Journal of Nuclear Medicine were used to categorized the reviewed articles into 3 sections: current clinical applications, scan protocol design, and advanced topics. This article delves into the bottleneck that impedes the full use of TB PET in China, accompanied by suggested solutions.
Collapse
Affiliation(s)
- Yaping Wu
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| | - Tao Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yee Ling Ng
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoping Cheng
- Department of Nuclear Medicine, First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; and
| | - Baixuan Xu
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, China
| | - Nan Meng
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China;
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| |
Collapse
|
19
|
Sun X, Tan X, Zhang Q, He S, Wang S, Zhou Y, Huang Q, Jiang L. 11C-CFT PET brain imaging in Parkinson's disease using a total-body PET/CT scanner. EJNMMI Phys 2024; 11:40. [PMID: 38662044 PMCID: PMC11045706 DOI: 10.1186/s40658-024-00640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE This study aimed to evaluate the feasibility of 11C-CFT PET brain imaging in Parkinson's Disease using a total-body PET/CT scanner and explore the optimal scan duration to guide the clinical practice. METHODS Thirty-two patients with Parkinson's disease (PD) performing 11C-CFT PET/CT brain imaging using a total-body PET/CT scanner were retrospectively enrolled. The PET data acquired over a period of 900 s were reconstructed into groups of different durations: 900-s, 720-s, 600-s, 480-s, 300-s, 180-s, 120-s, 60-s, and 30-s (G900 to G30). The subjective image quality analysis was performed using 5-point scales. Semi-quantitative measurements were analyzed by SUVmean and dopamine transporter (DAT) binding of key brain regions implicated in PD, including the caudate nucleus and putamen. The full-time images (G900) were served as reference. RESULTS The overall G900, G720, and G600 image quality scores were 5.0 ± 0.0, 5.0 ± 0.0, and 4.9 ± 0.3 points, respectively, and there was no significant difference among these groups (P > 0.05). A significant decrease in these scores at durations shorter than 600 s was observed when compared to G900 images (P < 0.05). However, all G300 image quality was clinically acceptable (≥ 3 points). As the scan duration reduced, the SUVmean and DAT binding of caudate nucleus and putamen decreased progressively, while there were no statistically significant variations in the SUVmean of the background among the different groups. Moreover, the changes in the lesion DAT binding (ΔDAT-binding) between the full-time reference G900 image and other reconstructed group G720 to G30 images generally increased along with the reduced scan time. CONCLUSION Sufficient image quality and lesion conspicuity could be achieved at 600-s scan duration for 11C-CFT PET brain imaging in PD assessment using a total-body PET/CT scanner, while the image quality of G300 was acceptable to meet clinical diagnosis, contributing to improve patient compliance and throughput of PET brain imaging.
Collapse
Affiliation(s)
- Xiaolin Sun
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, 510080, Guangzhou, China
| | - Xiaoyue Tan
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, 510080, Guangzhou, China
| | - Qing Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, 510080, Guangzhou, China
| | - Shanzhen He
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, 510080, Guangzhou, China
| | - Siyun Wang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, 510080, Guangzhou, China
| | - Yongrong Zhou
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, 510080, Guangzhou, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 518 Wuzhongdong Road, 200030, Shanghai, China.
| | - Lei Jiang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, 510080, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.
| |
Collapse
|
20
|
Sun Y, Cheng Z, Qiu J, Lu W. Performance and application of the total-body PET/CT scanner: a literature review. EJNMMI Res 2024; 14:38. [PMID: 38607510 PMCID: PMC11014840 DOI: 10.1186/s13550-023-01059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND The total-body positron emission tomography/computed tomography (PET/CT) system, with a long axial field of view, represents the state-of-the-art PET imaging technique. Recently, the total-body PET/CT system has been commercially available. The total-body PET/CT system enables high-resolution whole-body imaging, even under extreme conditions such as ultra-low dose, extremely fast imaging speed, delayed imaging more than 10 h after tracer injection, and total-body dynamic scan. The total-body PET/CT system provides a real-time picture of the tracers of all organs across the body, which not only helps to explain normal human physiological process, but also facilitates the comprehensive assessment of systemic diseases. In addition, the total-body PET/CT system may play critical roles in other medical fields, including cancer imaging, drug development and immunology. MAIN BODY Therefore, it is of significance to summarize the existing studies of the total-body PET/CT systems and point out its future direction. This review collected research literatures from the PubMed database since the advent of commercially available total-body PET/CT systems to the present, and was divided into the following sections: Firstly, a brief introduction to the total-body PET/CT system was presented, followed by a summary of the literature on the performance evaluation of the total-body PET/CT. Then, the research and clinical applications of the total-body PET/CT were discussed. Fourthly, deep learning studies based on total-body PET imaging was reviewed. At last, the shortcomings of existing research and future directions for the total-body PET/CT were discussed. CONCLUSION Due to its technical advantages, the total-body PET/CT system is bound to play a greater role in clinical practice in the future.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Zhaoping Cheng
- Department of PET-CT, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250014, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Taishan Street, Taian, 271000, China.
| |
Collapse
|
21
|
Li M, Cui X, Yue H, Ma C, Li K, Chai L, Ge M, Li H, Ng YL, Zhou Y, Shi J, Duan Y, Cheng Z. The efficacy of short acquisition time using 18F-FDG total-body PET/CT for the identification of pediatric epileptic foci. EJNMMI Res 2024; 14:21. [PMID: 38409511 PMCID: PMC10897067 DOI: 10.1186/s13550-024-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND 18F-FDG positron emission tomography (PET) plays a crucial part in the evaluation for pediatric epileptic patients prior to therapy. Short-term scanning holds significant importance, especially for pediatrics epileptic individuals who exhibited involuntary movements. The aim was to evaluate the effects of short acquisition time on image quality and lesion detectability in pediatric epileptic patients using total-body (TB) PET/CT. A total of 25 pediatric patients who underwent TB PET/CT using uEXPLORER scanner with an 18F-FDG administered dose of 3.7 MBq/kg and an acquisition time of 600 s were retrospectively enrolled. Short acquisition times (60 s, 150 and 300 s) were simulated by truncating PET data in list mode to reduce count density. Subjective image quality was scored on a 5-point scale. Regions of interest analysis of suspected epileptogenic zones (EZs), corresponding locations contralateral to EZs, and healthy cerebellar cortex were used to compare the semi-quantitative uptake indices of short-time images and then were compared with 600 s images. The comparison of EZs detectability based on time-dependent PET images was performed. RESULTS Our study demonstrated that a short acquisition time of 150 s is sufficient to maintain subjective image quality and lesion significance. Statistical analysis revealed no significant difference in subjective PET image quality between imaging at 300 s and 150 s (P > 0.05). The overall impression scores of image quality and lesion conspicuity in G60s were both greater than 3 (overall quality, 3.21 ± 0.46; lesion conspicuity, 4.08 ± 0.74). As acquisition time decreased, the changes of SUVmax and SD in the cerebellar cortex gradually increased (P < 0.01). There was no significant difference in asymmetry index (AI) difference between the groups and the AIs of EZs were > 15% in all groups. In 26 EZs of 25 patients, the lesion detection rate was still 100% when the time was reduced to 60 s. CONCLUSIONS This study proposed that TB PET/CT acquisition time could be reduced to 60 s with acceptable lesion detectability. Furthermore, it was suggested that a 150 s acquisition time would be sufficient to achieve diagnostic performance and image quality for children with epilepsy.
Collapse
Affiliation(s)
- Min Li
- Postgraduate Department, Shandong First Medical University, Shandong Academy of Medical Sciences), Jinan, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiao Cui
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Huixin Yue
- Postgraduate Department, Shandong First Medical University, Shandong Academy of Medical Sciences), Jinan, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chao Ma
- Postgraduate Department, Shandong First Medical University, Shandong Academy of Medical Sciences), Jinan, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Leiying Chai
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Min Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Hui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yee Ling Ng
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Jianguo Shi
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, China.
| | - Yanhua Duan
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| | - Zhaoping Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| |
Collapse
|
22
|
Yu X, Xu L, Huang G, Liu J, Chen R, Chen Y. The image quality and feasibility of solitary delayed [ 68 Ga]Ga-PSMA-11 PET/CT using long field-of-view scanning in patients with prostate cancer. EJNMMI Res 2024; 14:14. [PMID: 38319452 PMCID: PMC10847078 DOI: 10.1186/s13550-024-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Previous studies have demonstrated that delayed [68 Ga]Ga-PSMA PET/CT imaging improves lesion detection compared to early [68 Ga]Ga-PSMA PET/CT in patients with prostate cancer. However, the sole use of delayed [68 Ga]Ga-PSMA PET/CT has been limited due to the insufficient number of photons obtained with standard PET/CT scanners. The combination of early and delayed [68 Ga]Ga-PSMA standard PET/CT may be considered, and it is challenging to incorporate into a high-demand clinical setting. Long field-of-view (LFOV) PET/CT scanners have higher sensitivity compared to standard PET/CT. However, it remains unknown whether the image quality of solitary delayed [68 Ga]Ga-PSMA LFOV PET/CT imaging is adequate to satisfy clinical diagnostic requirements. Therefore, the purpose of this study was to evaluate the image quality of delayed [68 Ga]Ga-PSMA LFOV PET/CT and examine the feasibility of utilizing delayed [68 Ga]Ga-PSMA LFOV PET/CT imaging alone in patients with prostate cancer. METHODS The study sample consisted of 56 prostate cancer patients who underwent [68 Ga]Ga-PSMA-11 LFOV PET/CT scanning between December 2020 and July 2021. All patients were subjected to early LFOV PET/CT imaging at 1-h post-injection as well as delayed LFOV PET/CT imaging at 3-h post-injection using [68 Ga]Ga-PSMA-11. The image quality and diagnostic efficiency of solitary delayed [68 Ga]Ga-PSMA-11 LFOV PET/CT imaging was analyzed. RESULTS The results showed that delayed [68 Ga]Ga-PSMA-11 LFOV PET/CT yielded satisfactory image quality that fulfilled clinical diagnostic benchmarks. Compared to early imaging, delayed [68 Ga]Ga-PSMA-11 LFOV PET/CT demonstrated heightened lesion SUVmax values (11.0 [2.3-193.6] vs. 7.0 [2.0-124.3], P < 0.001) and superior tumor-to-background ratios (3.3 [0.5-62.2] vs. 1.7 [0.3-30.7], P < 0.001). Additionally, delayed [68 Ga]Ga-PSMA-11 LFOV PET/CT detected supplementary lesions in 14 patients (25%) compared to early imaging, resulting in modifications to disease staging and management plans. CONCLUSIONS In summary, the findings indicate that the image quality of delayed [68 Ga]Ga-PSMA-11 LFOV PET/CT is satisfactory for meeting clinical diagnostic prerequisites. The use of solitary delayed [68 Ga]Ga-PSMA-11 LFOV PET/CT imaging in prostate cancer simplifies the examination protocol and improves patient compliance, compared to [68 Ga]Ga-PSMA-11 standard PET/CT which necessitates both early and delayed imaging.
Collapse
Affiliation(s)
- Xiaofeng Yu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Lian Xu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Ruohua Chen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China.
| | - Yumei Chen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
23
|
Zhang Q, Hu Y, Zhou C, Zhao Y, Zhang N, Zhou Y, Yang Y, Zheng H, Fan W, Liang D, Hu Z. Reducing pediatric total-body PET/CT imaging scan time with multimodal artificial intelligence technology. EJNMMI Phys 2024; 11:1. [PMID: 38165551 PMCID: PMC10761657 DOI: 10.1186/s40658-023-00605-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024] Open
Abstract
OBJECTIVES This study aims to decrease the scan time and enhance image quality in pediatric total-body PET imaging by utilizing multimodal artificial intelligence techniques. METHODS A total of 270 pediatric patients who underwent total-body PET/CT scans with a uEXPLORER at the Sun Yat-sen University Cancer Center were retrospectively enrolled. 18F-fluorodeoxyglucose (18F-FDG) was administered at a dose of 3.7 MBq/kg with an acquisition time of 600 s. Short-term scan PET images (acquired within 6, 15, 30, 60 and 150 s) were obtained by truncating the list-mode data. A three-dimensional (3D) neural network was developed with a residual network as the basic structure, fusing low-dose CT images as prior information, which were fed to the network at different scales. The short-term PET images and low-dose CT images were processed by the multimodal 3D network to generate full-length, high-dose PET images. The nonlocal means method and the same 3D network without the fused CT information were used as reference methods. The performance of the network model was evaluated by quantitative and qualitative analyses. RESULTS Multimodal artificial intelligence techniques can significantly improve PET image quality. When fused with prior CT information, the anatomical information of the images was enhanced, and 60 s of scan data produced images of quality comparable to that of the full-time data. CONCLUSION Multimodal artificial intelligence techniques can effectively improve the quality of pediatric total-body PET/CT images acquired using ultrashort scan times. This has the potential to decrease the use of sedation, enhance guardian confidence, and reduce the probability of motion artifacts.
Collapse
Affiliation(s)
- Qiyang Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yingying Hu
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chao Zhou
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yumo Zhao
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Na Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yun Zhou
- United Imaging Healthcare Group, Central Research Institute, Shanghai, 201807, China
| | - Yongfeng Yang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hairong Zheng
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
24
|
Sagara H, Inoue K, Yaku H, Ohsawa A, Mano C, Morita T, Hiyama T, Muramatsu Y, Inaki A, Fujii H. A new simpler image quality index based on body size for FDG-PET/CT. Nucl Med Commun 2024; 45:93-101. [PMID: 37901919 DOI: 10.1097/mnm.0000000000001787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Noise equivalent count density (NEC density ) is often used to evaluate the image quality of whole-body fluorodeoxyglucose tomography tests. However, this index is calculated using the patient volume, which is difficult to obtain at every facility. In this study, we proposed new image quality indices that can be evaluated at all facilities. In total, 94 patients were enrolled in the study. The correlations of patients' body weight and BMI with volume were examined. New image quality indices normalized by body weight and BMI were defined as NEC bw and NEC bmi , respectively. Correlations between NEC bw , NEC bmi , and NEC density were examined. Further, the correlations between these two new indices and visual scores were evaluated. Good correlations were observed between volume and body weight (r = 0.861, P < 0.001) and between volume and BMI (r = 0.728, P < 0.001). NEC bw and NEC bmi correlated well with NEC density (r = 0.954 for NEC bw and r = 0.897 for NEC bmi , P < 0.001). These correlations improved when the examined bed positions were set to the same number. Additionally, the correlations of visual scores with NEC bw and NEC bmi were similar to those between the visual score and NEC density . Our investigation indicated that the newly proposed image quality metrics, NEC bw and NEC bmi , were easily calculated and as useful as NEC density for evaluating image quality when subjects had similar physiques.
Collapse
Affiliation(s)
- Hiroaki Sagara
- Division of Functional Imaging, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center,
- Department of Radiologic Technology, National Cancer Center Hospital East, Kashiwa,
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo,
| | - Kazumasa Inoue
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo,
| | - Hideki Yaku
- RYUKYU ISG Co., Ltd, Kyoto,
- Optical Information Engineering, Systems Innovation Engineering, Graduate School of Advanced Technology and Science, Tokushima University 2-1 Minamijyousanjima-cho, Tokushima and
| | - Amon Ohsawa
- Department of Radiologic Technology, National Cancer Center Hospital East, Kashiwa,
| | - Chikara Mano
- Department of Radiologic Technology, National Cancer Center Hospital East, Kashiwa,
| | - Takahiro Morita
- Department of Diagnostic Radiology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takashi Hiyama
- Department of Diagnostic Radiology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshihisa Muramatsu
- Department of Radiologic Technology, National Cancer Center Hospital East, Kashiwa,
| | - Anri Inaki
- Division of Functional Imaging, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center,
| | - Hirofumi Fujii
- Division of Functional Imaging, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center,
| |
Collapse
|
25
|
Huang Z, Li W, Wu Y, Guo N, Yang L, Zhang N, Pang Z, Yang Y, Zhou Y, Shang Y, Zheng H, Liang D, Wang M, Hu Z. Short-axis PET image quality improvement based on a uEXPLORER total-body PET system through deep learning. Eur J Nucl Med Mol Imaging 2023; 51:27-39. [PMID: 37672046 DOI: 10.1007/s00259-023-06422-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
PURPOSE The axial field of view (AFOV) of a positron emission tomography (PET) scanner greatly affects the quality of PET images. Although a total-body PET scanner (uEXPLORER) with a large AFOV is more sensitive, it is more expensive and difficult to widely use. Therefore, we attempt to utilize high-quality images generated by uEXPLORER to optimize the quality of images from short-axis PET scanners through deep learning technology while controlling costs. METHODS The experiments were conducted using PET images of three anatomical locations (brain, lung, and abdomen) from 335 patients. To simulate PET images from different axes, two protocols were used to obtain PET image pairs (each patient was scanned once). For low-quality PET (LQ-PET) images with a 320-mm AFOV, we applied a 300-mm FOV for brain reconstruction and a 500-mm FOV for lung and abdomen reconstruction. For high-quality PET (HQ-PET) images, we applied a 1940-mm AFOV during the reconstruction process. A 3D Unet was utilized to learn the mapping relationship between LQ-PET and HQ-PET images. In addition, the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) were employed to evaluate the model performance. Furthermore, two nuclear medicine doctors evaluated the image quality based on clinical readings. RESULTS The generated PET images of the brain, lung, and abdomen were quantitatively and qualitatively compatible with the HQ-PET images. In particular, our method achieved PSNR values of 35.41 ± 5.45 dB (p < 0.05), 33.77 ± 6.18 dB (p < 0.05), and 38.58 ± 7.28 dB (p < 0.05) for the three beds. The overall mean SSIM was greater than 0.94 for all patients who underwent testing. Moreover, the total subjective quality levels of the generated PET images for three beds were 3.74 ± 0.74, 3.69 ± 0.81, and 3.42 ± 0.99 (the highest possible score was 5, and the minimum score was 1) from two experienced nuclear medicine experts. Additionally, we evaluated the distribution of quantitative standard uptake values (SUV) in the region of interest (ROI). Both the SUV distribution and the peaks of the profile show that our results are consistent with the HQ-PET images, proving the superiority of our approach. CONCLUSION The findings demonstrate the potential of the proposed technique for improving the image quality of a PET scanner with a 320 mm or even shorter AFOV. Furthermore, this study explored the potential of utilizing uEXPLORER to achieve improved short-axis PET image quality at a limited economic cost, and computer-aided diagnosis systems that are related can help patients and radiologists.
Collapse
Affiliation(s)
- Zhenxing Huang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenbo Li
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yaping Wu
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Nannan Guo
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Mathematics and Statistics, Henan University, Kaifeng, 475004, China
| | - Lin Yang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Mathematics and Statistics, Henan University, Kaifeng, 475004, China
| | - Na Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhifeng Pang
- School of Mathematics and Statistics, Henan University, Kaifeng, 475004, China
| | - Yongfeng Yang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group, Shanghai, 201807, China
| | - Yue Shang
- Performance Strategy & Analytics, UCLA Health, Los Angeles, CA, 90001, USA
| | - Hairong Zheng
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Meiyun Wang
- School of Mathematics and Statistics, Henan University, Kaifeng, 475004, China.
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
26
|
Chaudhari AJ, Abdelhafez YG, Nardo L, Raychaudhuri SP. EXPLORing Arthritis with Total-body Positron Emission Tomography. Semin Musculoskelet Radiol 2023; 27:632-640. [PMID: 37935209 PMCID: PMC10689025 DOI: 10.1055/s-0043-1775746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Arthritis has significant adverse consequences on musculoskeletal tissues and often other organs of the body. Current methods for clinical evaluation of arthritis are suboptimal, and biomarkers that are objective and measurable indicators for monitoring of arthritis disease activity are in critical demand. Recently, total-body positron emission tomography (PET) has been developed that can collect imaging signals synchronously from the entire body at ultra-low doses and reduced scan times. These scanners have increased signal collection efficiency that overcomes several limitations of standard PET scanners in the evaluation of arthritis, and they may potentially provide biomarkers to assess local and systemic impact of the arthritis disease process. This article reviews current results from using total-body PET in the assessment of common arthritic conditions, and it outlines future opportunities and challenges.
Collapse
Affiliation(s)
| | - Yasser G. Abdelhafez
- Department of Radiology, University of California, Davis, Davis, California
- Nuclear Medicine Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Lorenzo Nardo
- Department of Radiology, University of California, Davis, Davis, California
| | - Siba P. Raychaudhuri
- Department of Internal Medicine – Rheumatology, University of California, Davis, Davis, California
- Northern California Veterans Affairs Medical Center, Mather, California
| |
Collapse
|
27
|
Zhao M, Zan K, Cui X, Chai L, Ge M, Cheng Z, Sun H, Duan Y. Investigation of the quarter-dose 18 F-FDG total-body PET in routine clinical practice and its clinical value. Nucl Med Commun 2023; 44:1176-1183. [PMID: 37901913 DOI: 10.1097/mnm.0000000000001777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
OBJECTIVE The purpose of the study was to evaluate the routine clinical application of total-body PET with quarter-dose 18 F-FDG. METHODS The contrast recovery coefficient (CRC) and coefficient of variation (COV) were evaluated among full-, half-, and quarter-dose groups with an acquisition duration of 10-, 5-, 3-, and 1-min in the NEMA (IQ) phantom test. Fifty patients undergoing total-body PET/CT with quarter-dose (0.925MBq/kg) of 18 F-FDG were included in the prospective study. The acquisition time was 10 min, divided into duration groups of 5-, 3-, and 1-min, referred to as G10, G5, G3, and G1. Visual scores were assessed based on overall visual assessment, noise scoring, and lesion conspicuity. Lesion SUV max and TBR were evaluated in semi-quantitative analysis. G10 was used as the gold reference to evaluate lesion detectability. RESULTS In the phantom study, the COV value of the images with quarter-dose 18 F-FDG and 10-min acquisition time was 11.52%. For spheres with 10 mm diameter, the CRC of quarter-dose PET images was relatively stable compared to that of full-dose groups with all acquisition durations. In the human study, the visual score in G10, G5, and G3 was significantly higher than that in G1. The differences in lesion SUV max and TBR for G1-G10 were significantly higher than that for G5-G10 and G3-G10. All lesions in G10 could be identified in G5 and G3. CONCLUSION The phantom and human findings demonstrated the feasibility of quarter-dose 18 F-FDG PET with 3-min acquisition time, which can maintain image quality with reduced radiation dose.
Collapse
Affiliation(s)
- Minjie Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan and
| | - Keyu Zan
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan and
| | - Xiao Cui
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan and
| | - Leiying Chai
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan and
| | - Min Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan and
| | - Zhaoping Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan and
| | | | - Yanhua Duan
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan and
| |
Collapse
|
28
|
Camoni L, Santos A, Luporsi M, Grilo A, Pietrzak A, Gear J, Zucchetta P, Bar-Sever Z. EANM procedural recommendations for managing the paediatric patient in diagnostic nuclear medicine. Eur J Nucl Med Mol Imaging 2023; 50:3862-3879. [PMID: 37555902 PMCID: PMC10611649 DOI: 10.1007/s00259-023-06357-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE The manuscript aims to characterize the principles of best practice in performing nuclear medicine procedures in paediatric patients. The paper describes all necessary technical skills that should be developed by the healthcare professionals to ensure the best possible care in paediatric patients, as it is particularly challenging due to psychological and physical conditions of children. METHODS We performed a comprehensive literature review to establish the most relevant elements of nuclear medicine studies in paediatric patients. We focused the attention to the technical aspects of the study, such as patient preparation, imaging protocols, and immobilization techniques, that adhere to best practice principles. Furthermore, we considered the psychological elements of working with children, including comforting and distraction strategies. RESULTS The extensive literature review combined with practical conclusions and recommendations presented and explained by the authors summarizes the most important principles of the care for paediatric patient in the nuclear medicine field. CONCLUSION Nuclear medicine applied to the paediatric patient is a very special and challenging area, requiring proper education and experience in order to be performed at the highest level and with the maximum safety for the child.
Collapse
Affiliation(s)
- Luca Camoni
- University of Brescia, 25123, Brescia, Italy.
- Nuclear Medicine Department, University of Brescia, ASST Spedali Civili Di Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
| | - Andrea Santos
- Nuclear Medicine Department, CUF Descobertas Hospital, Lisbon, Portugal
| | - Marie Luporsi
- Department of Nuclear Medicine, Institut Curie, PSL Research University, 75005, Paris, France
- LITO Laboratory INSERM U1288, Institut Curie, 91440, Orsay, France
| | - Ana Grilo
- H&TRC - Health and Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, Lisbon, Portugal
| | - Agata Pietrzak
- Electroradiology Department, Poznan University of Medical Sciences, Poznan, Poland
- Nuclear Medicine Department, Greater Poland Cancer Centre, Poznan, Poland
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research, Sutton, UK
| | - Pietro Zucchetta
- Nuclear Medicine Department, Padova University Hospital, 35128, Padua, Italy
| | - Zvi Bar-Sever
- Department of Nuclear Medicine, Schneider Children's Medical Center, Tel-Aviv University, Petach Tikva, Israel
| |
Collapse
|
29
|
Chen X, Hu P, Yu H, Tan H, He Y, Cao S, Zhou Y, Shi H. Head-to-head intra-individual comparison of total-body 2-[ 18F]FDG PET/CT and digital PET/CT in patients with malignant tumor: how sensitive could it be? Eur Radiol 2023; 33:7890-7898. [PMID: 37338551 DOI: 10.1007/s00330-023-09825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES To comparatively evaluate the lesion-detecting ability of 2-[18F]FDG total-body PET/CT (TB PET/CT) and conventional digital PET/CT. METHODS This study enrolled 67 patients (median age, 65 years; 24 female and 43 male patients) who underwent a TB PET/CT scan and a conventional digital PET/CT scan after a single 2-[18F]FDG injection (3.7 MBq/kg). Raw PET data for TB PET/CT were acquired over the course of 5 min, and images were reconstructed using data from the first 1, 2, 3, and 4 min and the entire 5 min (G1, G2, G3, G4, and G5, respectively). The conventional digital PET/CT scan acquired in 2-3 min per bed (G0). Two nuclear medicine physicians independently assessed subjective image quality using a 5-point Likert scale and recorded the number of 2-[18F]FDG-avid lesions. RESULTS A total of 241 lesions (69 primary lesions; 32 liver, lung, and peritoneum metastases; and 140 regional lymph nodes) among 67 patients with various types of cancer were analyzed. The subjective image quality score and SNR (signal-to-noise ratio) increased gradually from G1 to G5, and these values were significantly higher than the values at G0 (all p < 0.05). Compared to conventional PET/CT, G4 and G5 of TB PET/CT detected an additional 15 lesions (2 primary lesions; 5 liver, lung, and peritoneum lesions; and 8 lymph node metastases). CONCLUSION TB PET/CT was more sensitive than conventional whole-body PET/CT in detecting small (4.3 mm, maximum standardized uptake value (SUVmax) of 1.0) or low-uptake (tumor-to-liver ratio of 1.6, SUVmax of 4.1) lesions. CLINICAL RELEVANCE STATEMENT This study explored the gain of the image quality and lesion detectability of TB PET/CT, compared to conventional PET/CT, and recommended the appropriate acquisition time for TB PET/CT in clinical practice with an ordinary 2-[18F] FDG dose. KEY POINTS • TB PET/CT increases the effective sensitivity to approximately 40 times that of conventional PET scanners. • The subjective image quality score and signal-to-noise ratio of TB PET/CT from G1 to G5 were better than those of conventional PET/CT. • 2-[18F]FDG TB PET/CT with a 4-min acquisition time at a regular tracer dose detected an additional 15 lesions compared to conventional PET/CT.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Yibo He
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Shuangliang Cao
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, 201807, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, 201807, China
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
30
|
Wang Y, Chen Z, Zhu Y, Zhao H, Li L, Huang G, Xue W, Chen R, Liu J. Total-body [ 68 Ga]Ga-PSMA-11 PET/CT improves detection rate compared with conventional [ 68 Ga]Ga-PSMA-11 PET/CT in patients with biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2023; 50:4096-4106. [PMID: 37578502 DOI: 10.1007/s00259-023-06355-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE The purpose of this study was to assess whether total-body [68 Ga]Ga-PSMA-11 PET/CT could improve the detection rate compared with conventional [68 Ga]Ga-PSMA-11 PET/CT in patients with biochemical recurrent prostate cancer. METHODS Two hundred biochemical recurrent prostate cancer patients with similar clinicopathological characteristics were included, of whom 100 patients underwent early total-body [68 Ga]Ga-PSMA-11 PET/CT and diuretic-delayed total-body [68 Ga]Ga-PSMA-11 PET/CT, and the other 100 patients received early conventional [68 Ga]Ga-PSMA-11 PET/CT and diuretic-delayed conventional [68 Ga]Ga-PSMA-11 PET/CT. The detection rates of total-body [68 Ga]Ga-PSMA-11 PET/CT and conventional [68 Ga]Ga-PSMA-11 PET/CT were compared using a chi-square test and stratified analysis. The image quality of total-body [68 Ga]Ga-PSMA PET/CT and conventional [68 Ga]Ga-PSMA-11 PET/CT was compared based on subjective scoring and objective parameters. Subjective scoring was conducted from background noise and lesion prominence using a 5-point scale. Objective parameters were evaluated by SUVmax, SUVmean, the standard deviation (SD) of SUV, and the signal-to-noise ratio (SNR) of liver and gluteus maximus. The SUVmax of the recurrent lesions was also measured. RESULTS The liver SD of the total-body [68 Ga]Ga-PSMA-11 PET/CT was significantly lower than that of conventional [68 Ga]Ga-PSMA-11 PET/CT, the SNR was significantly higher than that of conventional [68 Ga]Ga-PSMA-11 PET/CT, and the subjective evaluation was significantly better than that of conventional [68 Ga]Ga-PSMA-11 PET/CT. The detection rate of total-body [68 Ga]Ga-PSMA PET/CT for biochemical recurrence of prostate cancer was significantly higher than that of conventional [68 Ga]Ga-PSMA-11 PET/CT (91.0% vs. 74.0%, P = 0.003). Total-body [68 Ga]Ga-PSMA-11 PET/CT had better detection efficiency for patients with a Gleason score ≤ 8 or PSA ≤ 2 ng/ml. The advantages of diuretic-delayed total-body [68 Ga]Ga-PSMA-11 PET/CT were more obvious. CONCLUSION Total-body [68 Ga]Ga-PSMA-11 PET/CT could significantly improve the detection rate compared with conventional [68 Ga]Ga-PSMA-11 PET/CT in patients with biochemical recurrent prostate cancer.
Collapse
Affiliation(s)
- Yining Wang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Zijun Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yinjie Zhu
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Haitao Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lianghua Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Ruohua Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
31
|
Chen Z, Wang Y, Yang X, Li L, Huo Y, Yu X, Xiao X, Zhang C, Chen Y, Zhao H, Zhou Y, Huang G, Liu J, Chen R. Feasibility of acquisitions using total-body PET/CT with a half-dose [ 68Ga]Ga-FAPI-04 activity in oncology patients. Eur J Nucl Med Mol Imaging 2023; 50:3961-3969. [PMID: 37535107 DOI: 10.1007/s00259-023-06354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND [68Ga]Ga-FAPI-04 (gallium-68-labeled fibroblast activation protein inhibitor-04) PET/CT has been widely used in diagnosing malignant tumors. Total-body PET/CT has a long axial field of view and provides higher sensitivity compared to traditional PET/CT. However, whether the reduced injected dose of [68Ga]Ga-FAPI-04 could obtain qualified imaging has not been evaluated. PURPOSE To explore the effect of half-dose [68Ga]Ga-FAPI-04 on image quality and tumor detectability in oncology patients. METHODS A total of twenty-seven patients with tumors or clinically suspected tumors were included, and all patients were scanned with total-body PET/CT after an injected dose of 0.84-1.14 MBq/kg [68Ga]Ga-FAPI-04. All patients obtained superior image quality with 300 s original acquisition time. Images were reconstructed using 180 s, 120 s, 60 s, 40 s, 30 s, 20 s scanning duration by ordered subset expectation maximization algorithm. The subjective image quality of all patients in each time group was scored using 5-point Likert scale. Mediastinal blood pool, liver, spleen, and muscle were analyzed as background using semi-quantitative parameters maximum standardized uptake values (SUVmax), mean standardized uptake values (SUVmean), standard deviation (SD), and signal to noise ratio (SNR). The lesion detection rate, SUVmax, and tumor-to-background ratio (TBR) were calculated for tumors confirmed by pathology. RESULTS The subjective image quality score decreased with the shortening of scanning time; however, both 180 s and 120 s images met the diagnostic requirements in terms of overall quality, lesion conspicuity, and image noise. The SUVmax of background increased with the reduction of scanning time, while the SUVmean was relatively stable. With the shortening of scanning time, the SD gradually increased, and the SNR gradually decreased, which was consistent with subjective image quality scores. In 180 s and 120 s images, all 11 primary lesions and 79 metastatic lesions were detected. The SUVmax of tumor focus showed an increasing trend as same as the background. Compared with 300 s, the TBR muscle had no statistical difference in 180 s and 120 s. CONCLUSIONS Half-dose [68Ga]Ga-FAPI-04 in total-body PET/CT imaging can shorten the acquisition time to 120 s with acceptable subjective image quality and 100% tumor detection rate. Total-body PET/CT imaging with a half-dose [68Ga]Ga-FAPI-04 and reduced acquisition time can be used in radiation-sensitive and poor tolerant to prolong horizontal positioning and waiting time populations such as children and gravidas.
Collapse
Affiliation(s)
- Zijun Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yining Wang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinlan Yang
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Lianghua Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yanmiao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Xiaofeng Yu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Chenpeng Zhang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yumei Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Haitao Zhao
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Ruohua Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
32
|
Roya M, Mostafapour S, Mohr P, Providência L, Li Z, van Snick JH, Brouwers AH, Noordzij W, Willemsen ATM, Dierckx RAJO, Lammertsma AA, Glaudemans AWJM, Tsoumpas C, Slart RHJA, van Sluis J. Current and Future Use of Long Axial Field-of-View Positron Emission Tomography/Computed Tomography Scanners in Clinical Oncology. Cancers (Basel) 2023; 15:5173. [PMID: 37958347 PMCID: PMC10648837 DOI: 10.3390/cancers15215173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The latest technical development in the field of positron emission tomography/computed tomography (PET/CT) imaging has been the extension of the PET axial field-of-view. As a result of the increased number of detectors, the long axial field-of-view (LAFOV) PET systems are not only characterized by a larger anatomical coverage but also by a substantially improved sensitivity, compared with conventional short axial field-of-view PET systems. In clinical practice, this innovation has led to the following optimization: (1) improved overall image quality, (2) decreased duration of PET examinations, (3) decreased amount of radioactivity administered to the patient, or (4) a combination of any of the above. In this review, novel applications of LAFOV PET in oncology are highlighted and future directions are discussed.
Collapse
Affiliation(s)
- Mostafa Roya
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Samaneh Mostafapour
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Philipp Mohr
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Laura Providência
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Zekai Li
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Johannes H. van Snick
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Adrienne H. Brouwers
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Antoon T. M. Willemsen
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Adriaan A. Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Andor W. J. M. Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, 7522 NB Enchede, The Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| |
Collapse
|
33
|
Schmidt FP, Mannheim JG, Linder PM, Will P, Kiefer LS, Conti M, la Fougère C, Rausch I. Impact of the maximum ring difference on image quality and noise characteristics of a total-body PET/CT scanner. Z Med Phys 2023:S0939-3889(23)00113-7. [PMID: 37867050 DOI: 10.1016/j.zemedi.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/14/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
The sensitivity of a PET system highly depends on the axial acceptance angle or maximum ring difference (MRD), which can be particularly high for total-body scanners due to their larger axial field of views (aFOVs). This study aims to evaluate the impact on image quality (IQ) and noise performance when MRD85 (18°), the current standard for clinical use, is increased to MRD322 (52°) for the Biograph Vision Quadra (Siemens Healthineers). METHODS Studies with a cylindrical phantom covering the 106 cm aFOV and an IEC phantom filled with 18F, 68Ga and 89Zr were performed for acquisition times from 60 to 1800 s and activity concentrations from 0.4 to 3 kBq/ml to assess uniformity, contrast recovery coefficients (CRCs) and to characterize noise by coefficient of variation (CV). Spatial resolution was compared for both MRDs by sampling a quadrant of the FOV with a point source. Further IQ, CV, liver SUVmean and SUVmax were compared for a cohort of 5 patients scanned with [18F]FDG (3 MBq/kg, 1 h p.i.) from 30 to 300 s. RESULTS CV was improved by a factor of up to 1.49 and is highest for short acquisition times, peaks at the center field of view and mitigates parabolic in axial direction with no difference to MRD85 beyond the central 80 cm. No substantial differences between the two evaluated MRDs in regards to uniformity, SUVmean or CRC for the different isotopes were observed. A degradation of the average spatial resolution of 0.9 ± 0.2 mm in the central 40 cm FOV was determined with MRD322. Depending on the acquisition time MRD322 resulted in a decrease of SUVmax between 23.8% (30 s) and 9.0% (300 s). CONCLUSION Patient and phantom studies revealed that scan time could be lowered by approximately a factor of two with MRD322 while maintaining similar noise performance. The moderate degradation in spatial resolution for MRD322 is worth to exploit the full potential of the Quadra by either shorten scan times or leverage noise performance in particular for low count scenarios such as ultra-late imaging or dynamic studies with high temporal resolution.
Collapse
Affiliation(s)
- F P Schmidt
- Department of Nuclear Medicine and Clinical Molecular Imaging, University hospital Tuebingen, Tuebingen, Germany; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tuebingen, Germany.
| | - J G Mannheim
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - P M Linder
- Department of Nuclear Medicine and Clinical Molecular Imaging, University hospital Tuebingen, Tuebingen, Germany
| | - P Will
- Department of Nuclear Medicine and Clinical Molecular Imaging, University hospital Tuebingen, Tuebingen, Germany
| | - L S Kiefer
- Department of Nuclear Medicine and Clinical Molecular Imaging, University hospital Tuebingen, Tuebingen, Germany
| | - M Conti
- Siemens Medical Solutions USA Inc., Molecular Imaging, Knoxville, TN, USA
| | - C la Fougère
- Department of Nuclear Medicine and Clinical Molecular Imaging, University hospital Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - I Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Gu F, Wu Q. Quantitation of dynamic total-body PET imaging: recent developments and future perspectives. Eur J Nucl Med Mol Imaging 2023; 50:3538-3557. [PMID: 37460750 PMCID: PMC10547641 DOI: 10.1007/s00259-023-06299-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/05/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Positron emission tomography (PET) scanning is an important diagnostic imaging technique used in disease diagnosis, therapy planning, treatment monitoring, and medical research. The standardized uptake value (SUV) obtained at a single time frame has been widely employed in clinical practice. Well beyond this simple static measure, more detailed metabolic information can be recovered from dynamic PET scans, followed by the recovery of arterial input function and application of appropriate tracer kinetic models. Many efforts have been devoted to the development of quantitative techniques over the last couple of decades. CHALLENGES The advent of new-generation total-body PET scanners characterized by ultra-high sensitivity and long axial field of view, i.e., uEXPLORER (United Imaging Healthcare), PennPET Explorer (University of Pennsylvania), and Biograph Vision Quadra (Siemens Healthineers), further stimulates valuable inspiration to derive kinetics for multiple organs simultaneously. But some emerging issues also need to be addressed, e.g., the large-scale data size and organ-specific physiology. The direct implementation of classical methods for total-body PET imaging without proper validation may lead to less accurate results. CONCLUSIONS In this contribution, the published dynamic total-body PET datasets are outlined, and several challenges/opportunities for quantitation of such types of studies are presented. An overview of the basic equation, calculation of input function (based on blood sampling, image, population or mathematical model), and kinetic analysis encompassing parametric (compartmental model, graphical plot and spectral analysis) and non-parametric (B-spline and piece-wise basis elements) approaches is provided. The discussion mainly focuses on the feasibilities, recent developments, and future perspectives of these methodologies for a diverse-tissue environment.
Collapse
Affiliation(s)
- Fengyun Gu
- School of Mathematics and Physics, North China Electric Power University, 102206, Beijing, China.
- School of Mathematical Sciences, University College Cork, T12XF62, Cork, Ireland.
| | - Qi Wu
- School of Mathematical Sciences, University College Cork, T12XF62, Cork, Ireland
| |
Collapse
|
35
|
Hu H, Huang Y, Sun H, Zhou K, Jiang L, Zhong J, Chen L, Wang L, Han Y, Wu H. A proper protocol for routine 18F-FDG uEXPLORER total-body PET/CT scans. EJNMMI Phys 2023; 10:51. [PMID: 37695324 PMCID: PMC10495295 DOI: 10.1186/s40658-023-00573-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Conventional clinical PET scanners typically have an axial field of view (AFOV) of 15-30 cm, resulting in limited coverage and relatively low photon detection efficiency. Taking advantage of the development of long-axial PET/CT, the uEXPLORER PET/CT scanner with an axial coverage of 194 cm increases the effective count rate by approximately 40 times compared to that of conventional PET scanners. Ordered subset expectation maximization (OSEM) is the most widely used iterative algorithm in PET. The major drawback of OSEM is that the iteration process must be stopped before convergence to avoid image degradation due to excessive noise. A new Bayesian penalized-likelihood iterative PET reconstruction, named HYPER iterative, was developed and is now available on the uEXPLORER total-body PET/CT, which incorporates a noise control component by using a penalty function in each iteration and finds the maximum likelihood solution through repeated iterations. To date, its impact on lesion visibility in patients with a full injected dose or half injected dose is unclear. The goal of this study was to determine a proper protocol for routine 18F-FDG uEXPLORER total-body PET/CT scans. RESULTS The uEXPLORER total-body PET/CT images reconstructed using both OSEM and HYPER iterative algorithms of 20 tumour patients were retrospectively reviewed. The quality of the 5 min PET image was excellent (score 5) for all of the dose and reconstruction methods. Using the HYPER iterative method, the PET images reached excellent quality at 1 min with full-dose PET and at 2 min with half-dose PET. The PET image reached a similar excellent quality at 2 min with a full dose and at 3 min with a half dose using OSEM. The noise in the OSEM reconstruction was higher than that in the HYPER iterative. Compared to OSEM, the HYPER iterative had a slightly higher SUVmax and TBR of the lesions for large positive lesions (≥ 2 cm) (SUVmax: up to 9.03% higher in full dose and up to 12.52% higher in half dose; TBR: up to 8.69% higher in full dose and up to 23.39% higher in half dose). For small positive lesions (≤ 10 mm), the HYPER iterative had an obviously higher SUVmax and TBR of the lesions (SUVmax: up to 45.21% higher in full dose and up to 74.96% higher in half dose; TBR: up to 44.91% higher in full dose and up to 93.73% higher in half dose). CONCLUSIONS A 1 min scan with a full dose and a 2 min scan with a half dose are optimal for clinical diagnosis using the HYPER iterative and 2 min and 3 min for OSEM. For quantification of the small lesions, HYPER iterative reconstruction is preferred.
Collapse
Affiliation(s)
- Huiran Hu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yanchao Huang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Hongyan Sun
- United Imaging Healthcare, Shanghai, People's Republic of China
| | - Kemin Zhou
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Li Jiang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Jinmei Zhong
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Li Chen
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Lijuan Wang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yanjiang Han
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| |
Collapse
|
36
|
Liu L, Chen X, Wan L, Zhang N, Hu R, Li W, Liu S, Zhu Y, Pang H, Liang D, Chen Y, Hu Z. Feasibility of a deep learning algorithm to achieve the low-dose 68Ga-FAPI/the fast-scan PET images: a multicenter study. Br J Radiol 2023; 96:20230038. [PMID: 37393527 PMCID: PMC10461288 DOI: 10.1259/bjr.20230038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/26/2023] [Accepted: 06/04/2023] [Indexed: 07/03/2023] Open
Abstract
OBJECTIVES Our work aims to study the feasibility of a deep learning algorithm to reduce the 68Ga-FAPI radiotracer injected activity and/or shorten the scanning time and to investigate its effects on image quality and lesion detection ability. METHODS The data of 130 patients who underwent 68Ga-FAPI positron emission tomography (PET)/CT in two centers were studied. Predicted full-dose images (DL-22%, DL-28% and DL-33%) were obtained from three groups of low-dose images using a deep learning method and compared with the standard-dose images (raw data). Injection activity for full-dose images was 2.16 ± 0.61 MBq/kg. The quality of the predicted full-dose PET images was subjectively evaluated by two nuclear physicians using a 5-point Likert scale, and objectively evaluated by the peak signal-to-noise ratio, structural similarity index and root mean square error. The maximum standardized uptake value and the mean standardized uptake value (SUVmean) were used to quantitatively analyze the four volumes of interest (the brain, liver, left lung and right lung) and all lesions, and the lesion detection rate was calculated. RESULTS Data showed that the DL-33% images of the two test data sets met the clinical diagnosis requirements, and the overall lesion detection rate of the two centers reached 95.9%. CONCLUSION Through deep learning, we demonstrated that reducing the 68Ga-FAPI injected activity and/or shortening the scanning time in PET/CT imaging was feasible. In addition, 68Ga-FAPI dose as low as 33% of the standard dose maintained acceptable image quality. ADVANCES IN KNOWLEDGE This is the first study of low-dose 68Ga-FAPI PET images from two centers using a deep learning algorithm.
Collapse
Affiliation(s)
| | | | - Liwen Wan
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Ruibao Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenbo Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengping Liu
- Chongqing University of Technology, Chongqing, China
| | | | - Hua Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | | |
Collapse
|
37
|
Li Y, Wang J, Hu J, Jia J, Sun H, Zhao Y, Hu Y. PET/CT scan without sedation: how to use total-body PET/CT to salvage child's involuntary movement? Eur J Nucl Med Mol Imaging 2023; 50:2912-2913. [PMID: 36973518 DOI: 10.1007/s00259-023-06208-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Affiliation(s)
- Yongjiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, No.651 Dongfeng East Road, Guangzhou, Guangdong, China
| | - Juan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Junfeng Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, No.651 Dongfeng East Road, Guangzhou, Guangdong, China
| | - Jin Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, No.651 Dongfeng East Road, Guangzhou, Guangdong, China
| | - Hongyan Sun
- Central Research Institute, United Imaging Healthcare Group Co, Ltd, Shanghai, China
| | - Yumo Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, No.651 Dongfeng East Road, Guangzhou, Guangdong, China
| | - Yingying Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, No.651 Dongfeng East Road, Guangzhou, Guangdong, China.
| |
Collapse
|
38
|
Mannheim JG, Rausch I, Conti M, la Fougère C, Schmidt FP. Characterization of the partial volume effect along the axial field-of-view of the Biograph Vision Quadra total-body PET/CT system for multiple isotopes. EJNMMI Phys 2023; 10:33. [PMID: 37243869 DOI: 10.1186/s40658-023-00554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Total-body PET scanners with axial field of views (FOVs) longer than 1 m enable new applications to study multiple organs (e.g., the brain-gut-axis) simultaneously. As the spatial resolution and the associated partial volume effect (PVE) can vary significantly along the FOV, detailed knowledge of the contrast recovery coefficients (CRCs) is a prerequisite for image analysis and interpretation of quantitative results. The aim of this study was to determine the CRCs, as well as voxel noise, for multiple isotopes throughout the 1.06 m axial FOV of the Biograph Vision Quadra PET/CT system (Siemens Healthineers). MATERIALS AND METHODS Cylindrical phantoms equipped with three different sphere sizes (inner diameters 7.86 mm, 28 and 37 mm) were utilized for the PVE evaluation. The 7.86 mm sphere was filled with F-18 (8:1 and 4:1), Ga-68 (8:1) and Zr-89 (8:1). The 28 mm and 37 mm spheres were filled with F-18 (8:1). Background concentration in the respective phantoms was of ~ 3 kBq/ml. The phantoms were measured at multiple positions in the FOV (axial: 0, 10, 20, 30, 40 and 50 cm, transaxial: 0, 10, 20 cm). The data were reconstructed with the standard clinical protocol, including PSF correction and TOF information with up to 10 iterations for maximum ring differences (MRDs) of 85 and 322; CRCs, as well as voxel noise levels, were determined for each position. RESULTS F-18 CRCs (SBR 8:1 and 4:1) of the 7.86 mm sphere decreased up to 18% from the center FOV (cFOV) toward the transaxial edge and increased up to 17% toward the axial edge. Noise levels were below 15% for the default clinical reconstruction parameters. The larger spheres exhibited a similar pattern. Zr-89 revealed ~ 10% lower CRCs than F-18 but larger noise (9.1% (F-18), 19.1% (Zr-89); iteration 4, cFOV) for the default reconstruction. Zr-89 noise levels in the cFOV significantly decreased (~ 28%) when reconstructing the data with MRD322 compared with MRD85 along with a slight decrease in CRC values. Ga-68 exhibited the lowest CRCs for the three isotopes and noise characteristics comparable to those of F-18. CONCLUSIONS Distinct differences in the PVE within the FOV were detected for clinically relevant isotopes F-18, Ga-68 and Zr-89, as well as for different sphere sizes. Depending on the positions inside the FOV, the sphere-to-background ratios, count statistics and isotope used, this can result in an up to 50% difference between CRCs. Hence, these changes in PVE can significantly affect the quantitative analysis of patient data. MRD322 resulted in slightly lower CRC values, especially in the center FOV, whereas the voxel noise significantly decreased compared with MRD85.
Collapse
Affiliation(s)
- Julia G Mannheim
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard-Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
| | - Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Maurizio Conti
- Molecular Imaging, Siemens Medical Solutions USA, Inc., Knoxville, TN, USA
| | - Christian la Fougère
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
| | - Fabian P Schmidt
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard-Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
39
|
Cheng Z, Chen L, Wang X, Wang Y, Zhao M, Zan K, Liu W, Cui X, Chai L, Ge M, Li K, Duan Y. Role of breath-hold lung PET in stage IA pulmonary adenocarcinoma. Insights Imaging 2023; 14:100. [PMID: 37227573 DOI: 10.1186/s13244-023-01446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Respiratory motion during PET acquisition may result in image blurring and resolution loss, reduced measurement of radiotracer uptake, and consequently, inaccurate lesion quantification and description. With the introduction of the total-body PET system, short-time PET acquisition is feasible due to its high sensitivity and spatial resolution. The purpose of this study was to evaluate the additional value of 20-s breath-hold (BH) lung PET in patients with stage IA pulmonary adenocarcinoma. METHODS Forty-seven patients with confirmed stage IA pulmonary adenocarcinoma were enrolled in this retrospective study. All patients underwent a 300-s FB whole-body PET, followed by a BH lung PET. The SUVmax, TBR of the lesions and the percentage difference in nodule SUVmax (%ΔSUVmax) and TBR (%ΔTBR) between the two acquisitions was also calculated. The lesions were further divided by distance from pleura for subgroup analysis. The lesion detectability on PET images was the percentage of FDG-positive lesions. RESULTS Among 47 patients, the BH lung PET images identified all lung nodules, and there was a significant difference in overall nodule SUVmax and TBR between BH PET and FB PET (both p < 0.01). The %ΔSUVmax and %ΔTBR were significantly higher in nodules adjacent to pleura (≤ 10 mm in distance) than those away from pleura (both p < 0.05). The lesion detectability of BH lung PET was significantly higher than that of FB PET (p < 0.01). CONCLUSION BH PET acquisition is a practical way to minimize motion artifacts in PET which has the potential to improve lesion detection for stage IA pulmonary adenocarcinoma. CRITICAL RELEVANCE STATEMENT BH PET acquisition is a practical way to minimize motion artifacts in PET which has the potential to improve lesion detection for stage IA pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Zhaoping Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Li Chen
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Ying Wang
- Central Research Institute, United Imaging Healthcare, Shanghai, People's Republic of China
| | - Minjie Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Keyu Zan
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Wen Liu
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Xiao Cui
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Leiying Chai
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Min Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Yanhua Duan
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China.
| |
Collapse
|
40
|
Qi C, Wang S, Yu H, Zhang Y, Hu P, Tan H, Shi Y, Shi H. An artificial intelligence-driven image quality assessment system for whole-body [ 18F]FDG PET/CT. Eur J Nucl Med Mol Imaging 2023; 50:1318-1328. [PMID: 36529840 DOI: 10.1007/s00259-022-06078-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Image quality control is a prerequisite for applying PET/CT. This study aimed to develop an artificial intelligence-driven real-time and accurate whole-body [18F]FDG PET/CT image quality assessment system. METHODS This study included 173 patients (age, 59 ± 12 years; 66.3% males) with whole-body [18F]FDG PET/CT imaging. Images of ten patients were used as an educational set. Images of the rest 163 patients were reconstructed to 952 images by simulating several scanning times and randomly split into training (60%, 98 patients, 578 images), validation (20%, 33 patients, 192 images), and test (20%, 32 patients,182 images) sets. Two experienced physicians (R1 and R2) independently assessed the image quality of thorax, abdomen, and pelvis region twice (R1a and b; R2a and b), 1 month apart, using a 5-point Likert scale. Objective image quality metrics were extracted from the mediastinal blood pool, three liver levels, and the bilateral gluteus maximus. The developed convolutional neural networks for image quality assessment (IQA-CNNs) generated the subjective quality scores and objective image metrics. The IQA-CNNs and physicians' performances were compared for localization accuracy, score agreement, and process time. RESULTS The physicians demonstrated good inter- and intra-rater subjective assessment agreement, with kappa coefficients (R1a vs. R2a, R1a vs. R1b, R2a vs. R2b, and R1a vs. R2b) of 0.78, 0.77, 0.76, and 0.80. The IQA-CNNs and R1 or R2 agreed in the subjective assessments, with kappa coefficients of 0.79 and 0.78. IQA-CNNs and R1 or R2 also agreed in their objective image quality assessment (ICC > 0.60). The IQA-CNNs evaluation speed was 200 times faster than the manual assessment. CONCLUSION An automated system for rapid assessment of [18F]FDG PET/CT image quality was developed, showing comparable performance to senior physicians. The system generates a comprehensive and detailed image quality assessment report, including subjective visual scores and objective image metrics for various anatomical regions.
Collapse
Affiliation(s)
- Chi Qi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, No. 180 in Fenglin Road, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuo Wang
- Digital Medical Research Center of School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, China
- Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, No. 180 in Fenglin Road, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, No. 180 in Fenglin Road, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, No. 180 in Fenglin Road, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, No. 180 in Fenglin Road, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yonghong Shi
- Digital Medical Research Center of School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, China.
- Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institute of Nuclear Medicine, Fudan University, No. 180 in Fenglin Road, Shanghai, China.
- Shanghai Institute of Medical Imaging, Shanghai, China.
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Significant CT dose reduction of 2-[ 18F]FDG PET/CT in pretreatment pediatric lymphoma without compromising the diagnostic and staging efficacy. Eur Radiol 2023; 33:2248-2257. [PMID: 36166086 DOI: 10.1007/s00330-022-09145-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To compare the diagnostic and staging efficacy of PET/diagnostic-level CT (PET/DxCT) and PET/low-dose CT (PET/LDCT) in pretreatment pediatric lymphoma patients and to estimate the reduction of the CT effective dose in the PET/CT scan. METHODS One hundred and five pediatric patients who underwent total-body PET/CT examination were enrolled and divided into the DxCT group (n = 47) and LDCT group (n = 58) according to their dose levels. The sensitivity, specificity, PPV, and NPV of PET/DxCT and PET/LDCT for detecting the involvement of lymph node, spleen, bone marrow, and other extranodal organs in pretreatment lymphoma were compared. ROC analysis was performed to evaluate the integral efficiency. The staging accuracies based on PET/DxCT and PET/LDCT were also evaluated. Dosimetry was calculated for DxCT and LDCT, and the reduction in the effective dose was estimated. RESULTS In the diagnosis of nodal, splenic, bone marrow, and other extranodal involvement, the differences in sensitivity, specificity, PPV, and NPV between PET/LDCT and PET/DxCT were not significant (all p values ∈ [0.332, 1.000]). Both modalities had accuracies above 90% and the ROC analysis indicated good or high efficiency in diagnosing all patterns of lymphoma involvement. PET/LDCT and PET/DxCT each had a staging accuracy of 89.7% and 89.4%, respectively. LDCT had a comparable image quality score with DxCT, with a significant increase in noise (p < 0.001) and a 66.1% reduction in effective dose. CONCLUSIONS PET/LDCT allowed for a 66.1% CT effective dose reduction compared to PET/DxCT in pediatric lymphoma patients without compromising the diagnostic and staging efficacy. KEY POINTS • Pediatric lymphoma patients can benefit from a reduced effective dose of PET/CT. • This retrospective study showed that the diagnostic and staging efficacies of PET/low-dose CT are comparable to those of PET/diagnostic-level CT, both with satisfactory efficiency in diagnosing all patterns of lymphoma involvement. • PET/low-dose CT allowed for a 66.1% CT effective dose reduction compared to PET/diagnostic-level CT.
Collapse
|
42
|
Clinical applications of long axial field-of-view PET/CT scanners in oncology. Clin Transl Imaging 2023. [DOI: 10.1007/s40336-023-00547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
43
|
Huang Y, Wang M, Jiang L, Wang L, Chen L, Wang Q, Feng J, Wang J, Xu W, Wu H, Han Y. Optimal clinical protocols for total-body 18F-FDG PET/CT examination under different activity administration plans. EJNMMI Phys 2023; 10:14. [PMID: 36808378 PMCID: PMC9938848 DOI: 10.1186/s40658-023-00533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/10/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Highly sensitive digital total-body PET/CT scanners (uEXPLORER) have great potential for clinical applications and fundamental research. Given their increasing sensitivity, low-dose scanning or snapshot imaging is now possible in clinics. However, a standardized total-body 18F-FDG PET/CT protocol is still lacking. Establishing a standard clinical protocol for total-body 18F-FDG PET/CT examination under different activity administration plans can help provide a theoretical reference for nuclear radiologists. METHODS The NEMA image quality (IQ) phantom was used to evaluate the biases of various total-body 18F-FDG PET/CT protocols related to the administered activity, scan duration, and iterations. Several objective metrics, including contrast recovery (CR), background variability (BV), and contrast-to-noise ratio (CNR), were measured from different protocols. In line with the European Association of Nuclear Medicine Research Ltd. (EARL) guidelines, optimized protocols were suggested and evaluated for total-body 18F-FDG PET/CT imaging for three different injected activities. RESULTS Our NEMA IQ phantom evaluation resulted in total-body PET/CT images with excellent contrast and low noise, suggesting great potential for reducing administered activity or shortening the scan duration. Different to the iteration number, prolonging the scan duration was the first choice for achieving higher image quality regardless of the activity administered. In light of image quality, tolerance of oncological patients, and the risk of ionizing radiation damage, the 3-min acquisition and 2-iteration (CNR = 7.54), 10-min acquisition and 3-iteration (CNR = 7.01), and 10-min acquisition and 2-iteration (CNR = 5.49) protocols were recommended for full-dose (3.70 MBq/kg), half-dose (1.95 MBq/kg), and quarter-dose (0.98 MBq/kg) activity injection schemes, respectively. Those protocols were applied in clinical practices, and no significant differences were observed for the SUVmax of large/small lesions or the SUVmean of different healthy organs/tissues. CONCLUSION These findings support that digital total-body PET/CT scanners can generate PET images with a high CNR and low-noise background, even with a short acquisition time and low administered activity. The proposed protocols for different administered activities were determined to be valid for clinical examination and can maximize the value of this imaging type.
Collapse
Affiliation(s)
- Yanchao Huang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Wang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Jiang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Wang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Chen
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiaoyu Wang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiatai Feng
- grid.497849.fCentral Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jingyi Wang
- grid.497849.fCentral Research Institute, United Imaging Healthcare, Shanghai, China
| | - Wanbang Xu
- grid.506955.aDepartment of Traditional Chinese Medicine, Guangdong Institute for Drug Control, Guangzhou, China
| | - Hubing Wu
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjiang Han
- Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
44
|
Du J, Jones T. Technical opportunities and challenges in developing total-body PET scanners for mice and rats. EJNMMI Phys 2023; 10:2. [PMID: 36592266 PMCID: PMC9807733 DOI: 10.1186/s40658-022-00523-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
Positron emission tomography (PET) is the most sensitive in vivo molecular imaging technique available. Small animal PET has been widely used in studying pharmaceutical biodistribution and disease progression over time by imaging a wide range of biological processes. However, it remains true that almost all small animal PET studies using mouse or rat as preclinical models are either limited by the spatial resolution or the sensitivity (especially for dynamic studies), or both, reducing the quantitative accuracy and quantitative precision of the results. Total-body small animal PET scanners, which have axial lengths longer than the nose-to-anus length of the mouse/rat and can provide high sensitivity across the entire body of mouse/rat, can realize new opportunities for small animal PET. This article aims to discuss the technical opportunities and challenges in developing total-body small animal PET scanners for mice and rats.
Collapse
Affiliation(s)
- Junwei Du
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616 USA
| | - Terry Jones
- grid.27860.3b0000 0004 1936 9684Department of Radiology, University of California at Davis, Davis, CA 95616 USA
| |
Collapse
|
45
|
Simulated Reduced-Count Whole-Body FDG PET: Evaluation in Children and Young Adults Imaged on a Digital PET Scanner. AJR Am J Roentgenol 2022; 219:952-961. [PMID: 35731102 DOI: 10.2214/ajr.22.27894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND. Digital PET scanners with increased sensitivity may allow shorter scan acquisition times or reductions in administered radiopharmaceutical activities. OBJECTIVE. The purpose of this study was to evaluate in children and young adults the impact of shorter simulated acquisition times on the quality of whole-body FDG PET images obtained using a digital PET/CT system. METHODS. This retrospective study included 27 children and young adults (nine male and 18 female patients) who underwent clinically indicated whole-body FDG PET/CT examinations performed using a 25-cm axial FOV PET/CT system at 90 s per bed position (expressed hereafter as seconds per bed). Raw list-mode data were reprocessed to simulate acquisition times of 60, 55, 50, 45, 40, and 30 s/bed. Three radiologists independently reviewed reconstructed images and assigned Likert scores for lesion conspicuity, normal structure conspicuity, image quality, and image noise. A separate observer recorded the SUVmax, SUVmean, and SD of the SUV (SUVSD) for liver, thigh, and the most FDG-avid lesion. The SUVSD/SUVmean (the SUVSD divided by the SUVmean) was calculated as a surrogate of image noise. ANOVA, the Friedman test, and the Dunn test were used to compare qualitative measures (combining reader scores) and SUV measurements. RESULTS. The mean patient age was 10.8 ± 8.3 (SD) years, mean BMI was 18.7 ± 2.9, and mean administered FDG activity was 4.44 ± 0.37 MBq/kg (0.12 ± 0.01 mCi/kg). No qualitative measure showed a significant difference versus 90 s/bed for the simulated acquisition at 60 s/bed (all p > .05). Significant differences (all p < .05) versus 90 s/bed were observed for lesion conspicuity at at most 40 s/bed, conspicuity of normal structures and overall image quality at at most 45 s/bed, and image noise at at most 55 s/bed. SUVmean was not significantly different from 90 s/bed for any site for any reduced-count simulation (all p > .05). SUVSD/SUVmean and SUVmax showed gradual increases with decreasing acquisition times and were significantly different from 90 s/bed only for liver at 60 s/bed (for SUVmax: 1.00 ± 0.00 vs 1.05 ± 0.03, p = .02; for SUVSD/SUVmean: 0.09 ± 0.02 vs 0.11 ± 0.02, p = .04). CONCLUSION. Favorable findings for the simulated acquisition at 60 s/bed suggest that, in children and young adults who undergo imaging performed using a 25-cm FOV digital PET scanner, acquisition time or administered FDG activity may be decreased by approximately 33% from the clinical standard without significantly impacting image quality. CLINICAL IMPACT. A 25-cm axial FOV digital scanner may allow FDG PET/CT examinations to be performed with reduced radiation exposure or faster scan acquisition times.
Collapse
|
46
|
Wang T, Qiao W, Wang Y, Wang J, Lv Y, Dong Y, Qian Z, Xing Y, Zhao J. Deep progressive learning achieves whole-body low-dose 18F-FDG PET imaging. EJNMMI Phys 2022; 9:82. [DOI: 10.1186/s40658-022-00508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract
Objectives
To validate a total-body PET-guided deep progressive learning reconstruction method (DPR) for low-dose 18F-FDG PET imaging.
Methods
List-mode data from the retrospective study (n = 26) were rebinned into short-duration scans and reconstructed with DPR. The standard uptake value (SUV) and tumor-to-liver ratio (TLR) in lesions and coefficient of variation (COV) in the liver in the DPR images were compared to the reference (OSEM images with full-duration data). In the prospective study, another 41 patients were injected with 1/3 of the activity based on the retrospective results. The DPR images (DPR_1/3(p)) were generated and compared with the reference (OSEM images with extended acquisition time). The SUV and COV were evaluated in three selected organs: liver, blood pool and muscle. Quantitative analyses were performed with lesion SUV and TLR, furthermore on small lesions (≤ 10 mm in diameter). Additionally, a 5-point Likert scale visual analysis was performed on the following perspectives: contrast, noise and diagnostic confidence.
Results
In the retrospective study, the DPR with one-third duration can maintain the image quality as the reference. In the prospective study, good agreement among the SUVs was observed in all selected organs. The quantitative results showed that there was no significant difference in COV between the DPR_1/3(p) group and the reference, while the visual analysis showed no significant differences in image contrast, noise and diagnostic confidence. The lesion SUVs and TLRs in the DPR_1/3(p) group were significantly enhanced compared with the reference, even for small lesions.
Conclusions
The proposed DPR method can reduce the administered activity of 18F-FDG by up to 2/3 in a real-world deployment while maintaining image quality.
Collapse
|
47
|
Yu S, Qian Z, Liu H, Fan R, Long X, Li B, Zhang Q, Wang Y, Cao L, Zhou R, Hou D, Gao D, Liu L, Chen X. Optimized low-dose positron emission tomography/computed tomography schemes in pediatric tumor patients: a randomized clinical trial. Transl Pediatr 2022; 11:1510-1520. [PMID: 36247895 PMCID: PMC9561506 DOI: 10.21037/tp-22-371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/14/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND It's clinically relevant to reduce the radiation dose to children while ensuring their positron emission tomography/computed tomography (PET/CT) image quality. The optimal protocol for whole-body PET/CT imaging in children (non-model) has been less studied. In this study, we investigated the optimal protocol for PET/CT imaging of pediatric oncology by analyzing the radiation dose and image quality in18F-fluoro-2-deoxy-D-glucose (18F-FDG) PET/CT imaging of children with oncology. METHODS One hundred children with tumors who underwent 18F-FDG PET/CT were included. CT grouping: randomly divided into 18 groups A-R according to the combination of three parameters: tube voltage (80/120 kV), automatic milliamp range (20-39/40-59/60-80 mA), and noise index (NI) (8/12/14). PET grouping: randomly divided into 9 groups a-i according to the combination of two parameters: the pharmaceuticals injection dose (0.08/0.12/0.15 mCi/kg) and time per bed (120/150/180 s). The effective radiation dose (ED) was calculated separately for each group and the image quality of CT and PET was evaluated subjectively using standard deviation (SD) and coefficient of variation (CV) objective evaluation and 5-point evaluation method, respectively. RESULTS Ninety-seven images in CT and 57 images in PET were included. The best quality of CT images was in group K (120 kV/40-59 mA/8); there are 9 groups had good image quality and lower dose length product (DLP) than group K (SD ±10), while the difference in DLP between groups was large. The Kruskal-Wallis (K-W) test showed that the difference in image quality between the 9 groups was not statistically significant. The best PET image quality was in group i [0.15 (mCi/kg)/180 s]; there are four groups had good image quality and lower EDPET than group i (CV ±3.5%), while the difference in EDPET between groups was large (4.4-6.5 mSv), and the K-W test showed that the difference in image quality between the four groups was not statistically significant (P>0.05), with the lowest EDPET being in the g group. CONCLUSIONS The optimal protocols for CT scanning and PET imaging in this experiment were group H (80 kV/40-59 mA/14) and group g [0.08 (mCi/kg)/180 s], respectively.Trial Registration: Chinese Clinical Trial Registry ChiCTR2200061386.
Collapse
Affiliation(s)
- Songke Yu
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhongjie Qian
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Hongli Liu
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Rongqin Fan
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Xueqin Long
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Bo Li
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Qian Zhang
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Yumei Wang
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Lin Cao
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Rui Zhou
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Dingyou Hou
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Daiqiang Gao
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Lisheng Liu
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaoliang Chen
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
48
|
Sari H, Teimoorisichani M, Mingels C, Alberts I, Panin V, Bharkhada D, Xue S, Prenosil G, Shi K, Conti M, Rominger A. Quantitative evaluation of a deep learning-based framework to generate whole-body attenuation maps using LSO background radiation in long axial FOV PET scanners. Eur J Nucl Med Mol Imaging 2022; 49:4490-4502. [PMID: 35852557 PMCID: PMC9606046 DOI: 10.1007/s00259-022-05909-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/10/2022] [Indexed: 12/19/2022]
Abstract
Purpose Attenuation correction is a critically important step in data correction in positron emission tomography (PET) image formation. The current standard method involves conversion of Hounsfield units from a computed tomography (CT) image to construct attenuation maps (µ-maps) at 511 keV. In this work, the increased sensitivity of long axial field-of-view (LAFOV) PET scanners was exploited to develop and evaluate a deep learning (DL) and joint reconstruction-based method to generate µ-maps utilizing background radiation from lutetium-based (LSO) scintillators. Methods Data from 18 subjects were used to train convolutional neural networks to enhance initial µ-maps generated using joint activity and attenuation reconstruction algorithm (MLACF) with transmission data from LSO background radiation acquired before and after the administration of 18F-fluorodeoxyglucose (18F-FDG) (µ-mapMLACF-PRE and µ-mapMLACF-POST respectively). The deep learning-enhanced µ-maps (µ-mapDL-MLACF-PRE and µ-mapDL-MLACF-POST) were compared against MLACF-derived and CT-based maps (µ-mapCT). The performance of the method was also evaluated by assessing PET images reconstructed using each µ-map and computing volume-of-interest based standard uptake value measurements and percentage relative mean error (rME) and relative mean absolute error (rMAE) relative to CT-based method. Results No statistically significant difference was observed in rME values for µ-mapDL-MLACF-PRE and µ-mapDL-MLACF-POST both in fat-based and water-based soft tissue as well as bones, suggesting that presence of the radiopharmaceutical activity in the body had negligible effects on the resulting µ-maps. The rMAE values µ-mapDL-MLACF-POST were reduced by a factor of 3.3 in average compared to the rMAE of µ-mapMLACF-POST. Similarly, the average rMAE values of PET images reconstructed using µ-mapDL-MLACF-POST (PETDL-MLACF-POST) were 2.6 times smaller than the average rMAE values of PET images reconstructed using µ-mapMLACF-POST. The mean absolute errors in SUV values of PETDL-MLACF-POST compared to PETCT were less than 5% in healthy organs, less than 7% in brain grey matter and 4.3% for all tumours combined. Conclusion We describe a deep learning-based method to accurately generate µ-maps from PET emission data and LSO background radiation, enabling CT-free attenuation and scatter correction in LAFOV PET scanners. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05909-3.
Collapse
Affiliation(s)
- Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland.
| | | | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | | | | | - Song Xue
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - George Prenosil
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | | | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
49
|
Chen W, Liu L, Li Y, Li S, Li Z, Zhang W, Zhang X, Wu R, Hu D, Sun H, Zhou Y, Fan W, Zhao Y, Zhang Y, Hu Y. Evaluation of pediatric malignancies using total-body PET/CT with half-dose [ 18F]-FDG. Eur J Nucl Med Mol Imaging 2022; 49:4145-4155. [PMID: 35788704 DOI: 10.1007/s00259-022-05893-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To explore the impact of a true half dose of [18F]-FDG on image quality in pediatric oncological patients undergoing total-body PET/CT and investigate short acquisition times with half-dose injected activity. METHODS One hundred pediatric oncological patients who underwent total-body PET/CT using the uEXPLORER scanner after receiving a true half dose of [18F]-FDG (1.85 MBq/kg) were retrospectively enrolled. The PET images were first reconstructed using complete 600-s data and then split into 300-s, 180-s, 60-s, 40-s, and 20-s duration groups (G600 to G20). The subjective analysis was performed using 5-point Likert scales. Objective quantitative metrics included the maximum standard uptake value (SUVmax), SUVmean, standard deviation (SD), signal-to-noise ratio (SNR), and SNRnorm of the background. The variabilities in lesion SUVmean, SUVmax, and tumor-to-background ratio (TBR) were also calculated. RESULTS The overall image quality scores in the G600, G300, G180, and G60 groups were 4.9 ± 0.2, 4.9 ± 0.3, 4.4 ± 0.5, and 3.5 ± 0.5 points, respectively. All the lesions identified in the half-dose images were localized in the G60 images, while 56% of the lesions could be clearly identified in the G20 images. With reduced acquisition time, the SUVmax and SD of the backgrounds were gradually increased, while the TBR values showed no statistically significant differences among the groups (all p > 0.1). Using the half-dose images as a reference, the variability in the lesion SUVmax gradually increased from the G180 to G20 images, while the lesion SUVmean remained stable across all age groups. SNRnorm was highly negatively correlated with age. CONCLUSION Total-body PET/CT with a half dose of [18F]-FDG (1.85 MBq/kg, estimated whole-body effective dose: 1.76-2.57 mSv) achieved good performance in pediatric patients, with sufficient image quality and good lesion conspicuity. Sufficient image quality and lesion conspicuity could be maintained at a fast scanning time of 60 s with half-dose activity.
Collapse
Affiliation(s)
- Wanqi Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lei Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yinghe Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shatong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhijian Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Weiguang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Runze Wu
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Debin Hu
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Hongyan Sun
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yumo Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Yizhuo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Yingying Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
50
|
Yu H, Gu Y, Fan W, Gao Y, Wang M, Zhu X, Wu Z, Liu J, Li B, Wu H, Cheng Z, Wang S, Zhang Y, Xu B, Li S, Shi H. Expert consensus on oncological [ 18F]FDG total-body PET/CT imaging (version 1). Eur Radiol 2022; 33:615-626. [PMID: 35751696 DOI: 10.1007/s00330-022-08960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND [18F]FDG imaging on total-body PET/CT (TB PET/CT) scanners, with improved sensitivity, offers new potentials for cancer diagnosis, staging, and radiation treatment planning. This consensus provides the protocols for clinical practices with a goal of paving the way for future studies with the total-body scanners in oncological [18F]FDG TB PET/CT imaging. METHODS The consensus was summarized based on the published guidelines and peer-reviewed articles of TB PET/CT in the literature, along with the opinions of the experts from major research institutions with a total of 40,000 cases performed on the TB PET/CT scanners. RESULTS This consensus describes the protocols for routine and dynamic [18F]FDG TB PET/CT scanning focusing on the reduction of imaging acquisition time and FDG injected activity, which may serve as a reference for research and clinic oncological PET/CT studies. CONCLUSION This expert consensus focuses on the reduction of acquisition time and FDG injected activity with a TB PET/CT scanner, which may improve the patient throughput or reduce the radiation exposure in daily clinical oncologic imaging. KEY POINTS • [18F]FDG-imaging protocols for oncological total-body PET/CT with reduced acquisition time or with different FDG activity levels have been summarized from multicenter studies. • Total-body PET/CT provides better image quality and improved diagnostic insights. • Clinical workflow and patient management have been improved.
Collapse
Affiliation(s)
- Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yushen Gu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfendong Road, Guangzhou, 510060, China
| | - Yongju Gao
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Henan Key Laboratory of Noval Molecular Probes and Clinical Translation in Nuclear Medicine, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Meiyun Wang
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Henan Key Laboratory of Noval Molecular Probes and Clinical Translation in Nuclear Medicine, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging Precision Medicine, Taiyuan, 030001, China
| | - Jianjun Liu
- Department of Nuclear Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 PuJian Road, Shanghai, 200127, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhaoping Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Shuxia Wang
- Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Baixuan Xu
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging Precision Medicine, Taiyuan, 030001, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. .,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|