1
|
Tang P, Liu Y, Peng S, Cai Z, Tang G, Zhou Z, Hu K, Zhong Y. Cerebral [ 18F]AIF-FAPI-42-Based PET Imaging of Fibroblast Activation Protein for Non-invasive Quantification of Fibrosis After Ischemic Stroke. Transl Stroke Res 2025; 16:848-858. [PMID: 38940873 DOI: 10.1007/s12975-024-01269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The development of fibrosis after injury to the brain or spinal cord limits the regeneration of the central nervous system in adult mammals. However, the extent of fibrosis in the injured brain has not been systematically investigated in mammals in vivo. This study aimed to assess whether [18F]AlF-FAPI-42-based cerebral positron emission tomography (PET) can be utilized to assess the extent of fibrosis in ischemic regions of the brain in vivo. Sprague-Dawley rats underwent permanent occlusion of the right middle cerebral artery (MCAO). On days 3, 7, 14, and 21 after MCAO, the uptake of [18F]AlF-FAPI-42 in the ischemic region of the brain in the MCAO groups surpassed that in the control group (day 0). The specific expression of fibroblast activation protein-α (FAP) in ischemic regions of the brain was also confirmed in immunohistofluorescence experiments in vitro. [18F]AlF-FAPI-42 intensity correlated with the density of collagen deposition in the ischemic hemisphere (p < 0.001). [18F]AlF-FAPI-42 PET/CT imaging demonstrated a specific uptake of radioactivity in the infarcted area in an ischemic stroke patient. PET imaging by using [18F]AlF-FAPI-42 offers a promising non-invasive method for monitoring the progression of cerebral fibrosis caused by ischemic stroke and may facilitate the clinical management of stroke patients. Trial registration: chictr.org.cn ChiCTR2200059004. Registered April 22, 2022.
Collapse
Affiliation(s)
- Peipei Tang
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yang Liu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Simin Peng
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhikai Cai
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ganghua Tang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhou Zhou
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kongzhen Hu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuhua Zhong
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Abdulrahman M, Al-Rasheed U, Dabous A, Al-Ibraheem A. Enhanced Detection of Recurrent Diffuse Malignant Peritoneal Mesothelioma Using 68 Ga-FAPI PET/CT Compared to 18 F-FDG PET/CT: A Case Report. World J Nucl Med 2025; 24:185-188. [PMID: 40336850 PMCID: PMC12055249 DOI: 10.1055/s-0045-1805043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Diffuse malignant peritoneal mesothelioma (DMPM) is a rare and aggressive subtype of epithelioid mesothelioma that arises from the lining of the abdominal cavity. While the applications of traditional fluorine-18 fluorodeoxyglucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) in diagnosis and staging of DMPM are well-established, the utility of gallium-68 fibroblast activating protein inhibitor ( 68 Ga-FAPI) PET/CT in detecting disease recurrence remains an area that requires further research and validation, with limited literature. Implementing FAPI PET/CT for these cases may provide superior lesion detectability and higher reporter confidence, prompting the need for further studies to investigate the potential future role of FAPI theranostics in guiding treatment decisions for DMPM. This case report describes a 49-year-old male patient diagnosed with DMPM, who underwent cytoreductive surgery and hyperthermic intraperitoneal chemotherapy but developed recurrent disease that was better visualized on 68 Ga-FAPI PET/CT compared with 18 F-FDG PET/CT.
Collapse
Affiliation(s)
- Marwah Abdulrahman
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Ula Al-Rasheed
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Ali Dabous
- Department of Transplant and Oncosurgery, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
- Department of Radiology and Nuclear Medicine, School of Medicine, the University of Jordan, Amman, Jordan
| |
Collapse
|
3
|
Brink A, Paez D, Estrada Lobato E, Delgado Bolton RC, Knoll P, Korde A, Calapaquí Terán AK, Haidar M, Giammarile F. New Targets for Imaging in Nuclear Medicine. Semin Nucl Med 2025:S0001-2998(25)00039-X. [PMID: 40335357 DOI: 10.1053/j.semnuclmed.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025]
Abstract
Nuclear medicine is rapidly evolving with new molecular imaging targets and advanced computational tools that promise to enhance diagnostic precision and personalized therapy. Recent years have seen a surge in novel PET and SPECT tracers, such as those targeting prostate-specific membrane antigen (PSMA) in prostate cancer, fibroblast activation protein (FAP) in tumor stroma, and tau protein in neurodegenerative disease. These tracers enable more specific visualization of disease processes compared to traditional agents, fitting into a broader shift toward precision imaging in oncology and neurology. In parallel, artificial intelligence (AI) and machine learning techniques are being integrated into tracer development and image analysis. AI-driven methods can accelerate radiopharmaceutical discovery, optimize pharmacokinetic properties, and assist in interpreting complex imaging datasets. This editorial provides an expanded overview of emerging imaging targets and techniques, including theranostic applications that pair diagnosis with radionuclide therapy, and examines how AI is augmenting nuclear medicine. We discuss the implications of these advancements within the field's historical trajectory and address the regulatory, manufacturing, and clinical challenges that must be navigated. Innovations in molecular targeting and AI are poised to transform nuclear medicine practice, enabling more personalized diagnostics and radiotheranostic strategies in the era of precision healthcare.
Collapse
Affiliation(s)
- Anita Brink
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.
| | - Diana Paez
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Enrique Estrada Lobato
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain; Servicio Cántabro de Salud, Santander, Spain
| | - Peter Knoll
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Aruna Korde
- Radioisotope Products and Radiation Technology Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Adriana K Calapaquí Terán
- Servicio Cántabro de Salud, Santander, Spain; Department of Pathology, University Hospital "Marqués de Valdecilla", Santander, Spain; Instituto de Investigación Sanitaria Valdecilla, IDIVAL, Santander, Spain
| | - Mohamad Haidar
- Department of Clinical diagnostic Radiology, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Francesco Giammarile
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.
| |
Collapse
|
4
|
Saber Tanha A, Raeisi N, Jafari Zarrin Ghabaei F, Aryana K, Aghaee A. Comparable Diagnostic Performance of 99mTc-FAPI Scintigraphy and Contrast-enhanced CT in Restaging a Rare Case of Metastatic Colon Adenocarcinoma to the Urachus. Clin Nucl Med 2025:00003072-990000000-01688. [PMID: 40302128 DOI: 10.1097/rlu.0000000000005830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/07/2025] [Indexed: 05/01/2025]
Abstract
We present a case of a 33-year-old man with gross hematuria and dysuria, leading to the discovery of a bladder and urachal mass. Imaging revealed significant bladder wall thickening and regional lymph node metastases. Following transurethral resection, histopathologic and immunohistochemical analyses were consistent with the urachal metastatic adenocarcinoma with colon origin. After chemotherapy, a 99mTc-FAPI-46 scintigraphy was performed, revealing favorable FAPI uptake in all tumoral lesions detected in the contrast-enhanced CT scan. This case highlights the diagnostic utility of FAPI-46, as a novel radiotracer, in evaluating urachal neoplasms and its potential for theranostic approaches.
Collapse
Affiliation(s)
- Amin Saber Tanha
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | |
Collapse
|
5
|
Florit A, de Koster EJ, Sassano S, Alic L, Pisano G, van Velden FHP, Annunziata S, Primac I, Ruggiero MR, Müller C, Sala E, Fendler WP, Scambia G, de Geus-Oei LF, Fagotti A, Rufini V, Collarino A. Head-to-head comparison of fibroblast activation protein inhibitors (FAPI) radiopharmaceuticals and [ 18F]FDG in gynaecological malignancies: systematic literature review and meta-analysis. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07277-0. [PMID: 40278857 DOI: 10.1007/s00259-025-07277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
PURPOSE This study aims to systematically review and perform a meta-analysis to compare the diagnostic performance of fibroblast activation protein inhibitors (FAPI) radiopharmaceuticals and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in gynaecological cancers. METHODS A comprehensive search of PubMed/MEDLINE and EMBASE was conducted and updated to October 25, 2024, to identify clinical studies evaluating FAPI and [18F]FDG PET/CT or PET/MR in patients with gynaecological cancer. Quality was assessed using the QUADAS-2 tool (Quality Assessment of Diagnostic Accuracy Studies). Per-lesion pooled estimates of sensitivity, specificity, positive predictive value, and negative predictive value were calculated with 95% confidence intervals. RESULTS Ten studies were included for qualitative assessment and five studies focusing on ovarian cancer were included in the meta-analysis. The detection rates of primary cervical cancer ranged from 96 to 100% for both radiopharmaceuticals. For the primary tumour in ovarian cancer, the pooled sensitivities of 68Ga-FAPI and [18F]FDG were 95% and 92%, and the pooled specificities were 81% for both radiopharmaceuticals. Nodal metastases detection was higher with 68Ga-FAPI compared with [18F]FDG in cervical cancer. Similarly, in ovarian cancer the estimated pooled sensitivities of 68Ga-FAPI and [18F]FDG were 97% and 88%, and the pooled specificities were 83% and 41%, respectively. At peritoneal metastases analysis in ovarian cancer, the pooled sensitivities of 68Ga-FAPI and [18F]FDG were 97% and 70%, and the pooled specificities were 93% and 88%, respectively. At the visual assessment of peritoneal cancer scores, such as peritoneal cancer index, 68Ga-FAPI detected a greater tumour burden compared with [18F]FDG. A comparative analysis of the PET semiquantitative parameters was also performed. CONCLUSION Despite limited literature data, radiopharmaceuticals based on FAPIs are a promising alternative to [18F]FDG for imaging gynaecological cancers, in particular for the detection of nodal metastases in cervical and ovarian cancers, as well as for detecting peritoneal metastases in ovarian cancers. Larger prospective studies are needed to confirm these results and promote the inclusion of FAPI radiopharmaceuticals in clinical practice. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Anita Florit
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli, 8, 00168, Rome, Italy
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - Elizabeth J de Koster
- Department of Surgery, Haaglanden Medical Centre, The Hague, The Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Serena Sassano
- Section of Nuclear Medicine, Department of Radiological Sciences and Haematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lejla Alic
- Magnetic Detection & Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Giusi Pisano
- Section of Nuclear Medicine, Department of Radiological Sciences and Haematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Floris H P van Velden
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Salvatore Annunziata
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Irina Primac
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | | | - Cristina Müller
- Centre for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Evis Sala
- Section of Radiology, University Department of Radiological Sciences and Haematology, Università Cattolica del Sacro Cuore, Rome, Italy
- Advanced Radiodiagnostics Centre, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, DKTK and NCT University Hospital Essen, Essen, Germany
| | - Giovanni Scambia
- Gynaecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Section of Obstetrics and Gynaecology, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lioe-Fee de Geus-Oei
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - Anna Fagotti
- Gynaecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Section of Obstetrics and Gynaecology, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vittoria Rufini
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli, 8, 00168, Rome, Italy.
- Section of Nuclear Medicine, Department of Radiological Sciences and Haematology, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Angela Collarino
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli, 8, 00168, Rome, Italy
| |
Collapse
|
6
|
Wang L, Pan X, Ye S, Huang Y, Wang M, Chen L, Zhou K, Han Y, Wu H. [ 18F]F-FAPI-42 PET dynamic imaging characteristics and multiparametric quantification of lung cancer: an exploratory study using uEXPLORER PET/CT. Eur J Nucl Med Mol Imaging 2025; 52:1685-1694. [PMID: 39760863 DOI: 10.1007/s00259-024-07064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE To explore the dynamic and parametric characteristics of [18F]F-FAPI-42 PET/CT in lung cancers. METHODS Nineteen participants with newly diagnosed lung cancer underwent 60-min dynamic [18F]F-FAPI-42 PET/CT. Time-activity curves (TAC) were generated for tumors and normal organs, with kinetic parameters (K1, K2, K3, K4, Ki) calculated. A new parameter, the K ratio (K1 + K3)/(K2 + K4), was introduced to measure net uptake efficiency. RESULTS In primary tumor (PT), [18F]F-FAPI-42 uptake showed a gradual increase followed by a plateau, contrasting with organs like the thyroid and pancreas, which showed rapid uptake and continuous washout. Compared to non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC) lesions reached the plateau earlier (11 min vs. 14 min) but had a lower uptake. During the plateau phase, [18F]F-FAPI-42 demonstrated slight washout in SCLC, whereas its uptake increased slightly in NSCLC. Lymph node and distant metastases exhibited similar TAC profiles to primary tumors. Kinetic modeling revealed that an irreversible two-compartment model (irre-2TCM) best represented the pharmacokinetics of [18F]F-FAPI-42 in lung cancer, whereas re-2TCM was better suited for the pancreas and thyroid. Lower K1, K2, K3 and K4 were observed in PT compared to those in the pancreas and thyroid (P < 0.05), however, the K ratio in PT was found to be 2-3 times higher. SCLC had lower Ki and SUVmean than NSCLC (P < 0.05). Kinetic parameter differences were also observed between PT and metastatic lesions. Larger metastatic lymph nodes exhibited higher K1, Ki, and K ratio than smaller ones. CONCLUSION Lung cancers exhibit distinct [18F]F-FAPI-42 dynamic and kinetic characteristics compared to the thyroid gland and pancreas. Differences were also observed between SCLC and NSCLC, primary and metastatic lesions, as well as larger versus smaller lesions. These findings provide valuable insights into the in vivo pharmacokinetics of [18F]F-FAPI-42, potentially improving the diagnosis of lung cancer. TRIAL REGISTRATION ChiCTR2100045757. Registered April 24, 2021 retrospectively registered, http//www.chictr.org.cn.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
- Department of Nuclear Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Xingzhu Pan
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Shimin Ye
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Yanchao Huang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Meng Wang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Li Chen
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Kemin Zhou
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Yanjiang Han
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Hubing Wu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China.
| |
Collapse
|
7
|
Wang R, Wang J, Xiang J, Sui H, Li L, Jia C, Peng X, Chen X, Zhu Z, Zhang J. Comparison of [ 68Ga]Ga-Fibroblast Activation Protein Inhibitor-04 and [ 18F]FDG PET Imaging for Solitary Fibrous Tumor and Preliminary Application of FAP-Targeted Radiopharmaceutical Therapy. J Nucl Med 2025; 66:585-591. [PMID: 40049742 DOI: 10.2967/jnumed.124.268258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/03/2025] [Indexed: 04/03/2025] Open
Abstract
Solitary fibrous tumor (SFT) is a rare sarcoma of mesenchymal origin. Although generally benign, SFTs carry the risk of recurrence and metastasis, with limited effective treatment options. The aims of this study are to compare the performance of fibroblast activation protein inhibitor (FAPI), [68Ga]Ga-DOTA-FAPI-04 (denoted as [68Ga]Ga-FAPI-04), and conventional [18F]FDG PET/CT in patients with recurrent or metastatic SFTs head to head and to preliminarily explore the value of FAP-targeted radiopharmaceutical therapy with 177Lu for SFT patients. Methods: Thirty-one participants (21 men, 44 ± 13 y) with suspected recurrent or metastatic SFTs underwent both [18F]FDG and [68Ga]Ga-FAPI-04 PET/CT within 1 wk. The positive-lesion rates of the 2 PET/CT scans in the different organs involved and the uptake values (SUVmax) were compared. Four patients with high [68Ga]Ga-FAPI-04 uptake received single-cycle therapy of 2.22 GBq of a [177Lu]Lu-labeled, FAP-targeted radiopharmaceutical, [177Lu]Lu-Evans blue-FAPI, and were followed up for 4 mo. Results: In 522 local recurrences and distant metastases in the 31 patients, [68Ga]Ga-FAPI-04 PET detected significantly more lesions than did [18F]FDG (87.0% vs. 45.4%, P < 0.001). In terms of lesion uptake values, [68Ga]Ga-FAPI-04 PET showed a mean SUVmax higher than that of [18F]FDG in most recurrence or metastatic organs (bone, lung, central nervous system, pancreas, and pleura, P < 0.001; kidney and abdominopelvic cavity, P = 0.001; muscle and pericardium, P < 0.05). Four patients tolerated [177Lu]Lu-Evans blue-FAPI well. The total-body absorbed dose and the effective dose were 4.02E-01 ± 3.54E-02 Gy and 4.01E+02 ± 4.18E+01 mSv, respectively. Subsequent follow-up with [68Ga]Ga-FAPI-04 PET showed that these patients were in stable condition. Conclusion: [68Ga]Ga-FAPI-04 may be a promising PET agent for the assessment of SFTs. Given the lack of effective treatments for advanced SFTs, high FAP expression in this type of tumor is expected to become a potential treatment target.
Collapse
Affiliation(s)
- Rongxi Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiarou Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jialin Xiang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Huimin Sui
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Linlin Li
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chenhao Jia
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xingtong Peng
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore;
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore; and
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China;
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore;
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Shi Z, Hu C, Li Q, Sun C. Cancer-Associated Fibroblasts as the "Architect" of the Lung Cancer Immune Microenvironment: Multidimensional Roles and Synergistic Regulation with Radiotherapy. Int J Mol Sci 2025; 26:3234. [PMID: 40244052 PMCID: PMC11989671 DOI: 10.3390/ijms26073234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs), as the "architect" of the immune microenvironment in lung cancer, play a multidimensional role in tumor progression and immune regulation. In this review, we summarize the heterogeneity of the origin and the molecular phenotype of CAFs in lung cancer, and explore the complex interactions between CAFs and multiple components of the tumor microenvironment, including the regulatory relationships with innate immune cells (e.g., tumor-associated macrophages, tumor-associated neutrophils), adaptive immune cells (e.g., T cells), and extracellular matrix (ECM). CAFs significantly influence tumor progression and immunomodulation through the secretion of cytokines, remodeling of the ECM, and the regulation of immune cell function significantly affects the immune escape and treatment resistance of tumors. In addition, this review also deeply explored the synergistic regulatory relationship between CAF and radiotherapy, revealing the key role of CAF in radiotherapy-induced remodeling of the immune microenvironment, which provides a new perspective for optimizing the comprehensive treatment strategy of lung cancer. By comprehensively analyzing the multidimensional roles of CAF and its interaction with radiotherapy, this review aims to provide a theoretical basis for the precise regulation of the immune microenvironment and clinical treatment of lung cancer.
Collapse
Affiliation(s)
- Zheng Shi
- School of Biopharmaceutical and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
9
|
Müller G, Veit DA, Becker P, Thiem DGE, Kämmerer PW, Diekmeyer B, Werkmeister R, Heimes D, Pabst A. Correlation of preoperative 18F-FDG-PET/CT tumor staging and maximum standardized uptake values with preoperative CT, postoperative tumor classification, and histopathological parameters of oral squamous cell carcinoma. Clin Oral Investig 2025; 29:189. [PMID: 40100406 DOI: 10.1007/s00784-025-06252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION This study aimed to correlate preoperative 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT) tumor staging, and maximum standardized uptake values (SUVmax) with preoperative CT data, postoperative tumor classification, and histopathological parameters of oral squamous cell carcinoma (OSCC). MATERIAL AND METHODS Thirty-seven OSCC patients staged via full-body 18F-FDG-PET/CT, including contrast agent CT of the head and neck in 2020 and 2021, were enclosed. Patients received tumor resection and stage-dependent neck dissection. Preoperative clinical (c) 18F-FDG-PET/CT UICC tumor stages and TNM classifications were correlated to corresponding CT and to postoperative histopathological (p) UICC tumor stages and TNM classifications. SUVmax of the primary tumor was associated with pUICC and pTNM, including extranodal extension (ENE), perineural invasion (Pn), lymphatic spread (L), vascular invasion (V), tumor grading (G), and -thickness. RESULTS Comparing 18F-FDG-PET/CT and CT, cUICC, cT, and cN differed in 32.3%, 16.7%, and 37.8% of the cases, respectively. For 18F-FDG-PET/CT, a moderate correlation was found between c- and pUICC (0.494; p = 0.0018) with a misestimation of c- compared to pUICC in 43.2% of the cases. Comparing c- and pTNM, misestimations concerning c- and pT were seen in 51.4% and concerning c- and pN in 37.8% of the cases. An increased SUVmax significantly correlated with increased pT- and pUICC (adjusted Odds ratio 1.103; p = 0.042 and 1.126; p = 0.021, respectively). The predictive quality of an SUVmax cutoff value for detecting cervical lymph node metastases and G was poor, as indicated by the low AUC values from the ROC analysis. No correlations were found between SUVmax and ENE, Pn-, L-, and V-status. A strong correlation was found between SUVmax and tumor thickness with an adjusted coefficient of 1.034 (p = 0.01). CONCLUSION The predictive value of 18F-FDG-PET/CT and SUVmax on histopathological tumor classification and parameters appears limited. CLINICAL RELEVANCE 18F-FDG-PET/CT can not unreservedly be recommended for primary OSCC staging. There is an urgent need to specify its indications in detail further.
Collapse
Affiliation(s)
- Gunnar Müller
- Department of Pathology, German Armed Forces Central Hospital, Rübenacherstr. 170, 56072, Koblenz, Germany
- Department of Pathology, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
- Head and Neck Cancer Center Koblenz (KHTK), Koblenz, Germany
| | - Daniel A Veit
- Department of Nuclear Medicine, German Armed Forces Central Hospital, Rübenacherstr. 170, 56072, Koblenz, Germany
- Head and Neck Cancer Center Koblenz (KHTK), Koblenz, Germany
| | - Philipp Becker
- Department of Oral and Maxillofacial Surgery, German Armed Forces Central Hospital, Rübenacherstr. 170, 56072, Koblenz, Germany
- Head and Neck Cancer Center Koblenz (KHTK), Koblenz, Germany
| | - Daniel G E Thiem
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Birte Diekmeyer
- Department of Nuclear Medicine, German Armed Forces Central Hospital, Rübenacherstr. 170, 56072, Koblenz, Germany
- Head and Neck Cancer Center Koblenz (KHTK), Koblenz, Germany
| | - Richard Werkmeister
- Department of Oral and Maxillofacial Surgery, German Armed Forces Central Hospital, Rübenacherstr. 170, 56072, Koblenz, Germany
- Head and Neck Cancer Center Koblenz (KHTK), Koblenz, Germany
| | - Diana Heimes
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Andreas Pabst
- Department of Oral and Maxillofacial Surgery, German Armed Forces Central Hospital, Rübenacherstr. 170, 56072, Koblenz, Germany.
- Head and Neck Cancer Center Koblenz (KHTK), Koblenz, Germany.
| |
Collapse
|
10
|
Chen X, Liu Y, Zhao X, Jing F, Wang B, Chen X, Pang X, Zhang J, Wang J, Zhang Z, Han J, Wang M. Same-Day Positron Emission Tomography/Computed Tomography with 68Ga-Radiolabeled Fibroblast Activation Protein Inhibitors and 18F-Fluorodeoxyglucose Imaging for Gastrointestinal Cancers. Cancer Biother Radiopharm 2025; 40:130-138. [PMID: 39466063 DOI: 10.1089/cbr.2024.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Objective: We investigated the clinical practicability of same-day 68Ga-radiolabeled fibroblast activation protein inhibitors (68Ga-FAPI)-first and 18F-fluorodeoxyglucose (18F-FDG) imaging and compared it with same-day 18F-FDG-first or 2-day procedures in diagnosing gastrointestinal cancers. Materials and Methods: Sixty-five patients with confirmed gastrointestinal cancers were divided into same-day 68Ga-FAPI-first group (Group A), same-day 18F-FDG-first group (Group B), and 2-day group (Group C). Low-dose CT and low injection activity were performed on 68Ga-FAPI positron emission tomography/computed tomography (PET/CT). Interval times, radiation dose, diagnostic performance, and detectability were assessed among groups. Additionally, the uptake, tumor-to-liver ratio (TLR), diagnostic efficacy, and TNM stage were compared between the two modalities. Results: The total waiting time for Group C was significantly longer than that for Group A or B (both p < 0.001). The total dose-length product and effective dose decreased in all groups. There were comparable detectability and diagnostic performance among groups (all p > 0.05). The within-group analysis in Group B indicated that 68Ga-FAPI PET/CT had higher uptake in the primary and recurrent lesions than 18F-FDG without differences in TLR, due to higher liver background on 68Ga-FAPI PET than Group A or C (both p < 0.001).68Ga-FAPI PET/CT possessed higher accuracy than 18F-FDG and changed staging in 14 patients (14/65, 21.54%). Conclusions: The same-day 68Ga-FAPI-first and 18F-FDG imaging reduced examination waiting time without increased radiation dose, simultaneously achieving excellent diagnostic performance and improving clinical staging in diagnosing gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiaoshan Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunuan Liu
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, China
| | - Fenglian Jing
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolin Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiao Pang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingmian Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, China
| | - Jianfang Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhaoqi Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingya Han
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, China
| | - Mengjiao Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Watanabe M, Fendler WP, Grafe H, Hirmas N, Hamacher R, Lanzafame H, Pabst KM, Hautzel H, Aigner C, Kasper S, von Tresckow B, Stuschke M, Kümmel S, Lugnier C, Hadaschik B, Grünwald V, Zarrad F, Kersting D, Siveke JT, Herrmann K, Weber M. Head-to-head comparison of 68 Ga-FAPI-46 PET/CT, 18F-FDG PET/CT, and contrast-enhanced CT for the detection of various tumors. Ann Nucl Med 2025; 39:255-265. [PMID: 39443386 DOI: 10.1007/s12149-024-01993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE FAPI-PET/CT exhibits high tumor uptake and low background accumulation, enabling high-sensitivity tumor detection. We compared the diagnostic performance of 68 Ga-FAPI-46 PET/CT plus contrast-enhanced CT (CE-CT), 18F-FDG PET/CT plus CE-CT, and standalone CE-CT in patients with various malignancies. METHODS 232 patients underwent 68 Ga-FAPI-46 PET/CT,18F-FDG PET/CT, and CE-CT each within 4 weeks. Detection rates were assessed by a blinded reader, with ≥ 2 weeks between scans of the same patient to avoid recall bias. A sub-analysis of diagnostic performance was performed for 490 histopathologically validated lesions. Detection rates were compared using McNemar's test. RESULTS Lesion-based detection rates in 68 Ga-FAPI-46 PET/CT plus CE-CT, 18F-FDG PET/CT plus CE-CT, and CE-CT alone were 91.2% (1540/1688), 82.5% (1393/1688) and 60.2% (1016/1688). The detection rates were significantly higher for 68 Ga-FAPI-46 PET/CT plus CE-CT than for 18F-FDG PET/CT plus CE-CT (p < 0.02 for primary lesions and p < 0.001 for total, abdominopelvic nodal, liver and other visceral lesions) and CE-CT (p < 0.0001 for total, primary, cervicothoracic nodal, abdominopelvic nodal, liver, other visceral, and bone lesions). In the sub-analysis, sensitivity, specificity, positive and negative predictive value, and accuracy were 61.3%, 96.7%, 81.4%, 91.4% and 90.0% for 68 Ga-FAPI-46 PET/CT plus CE-CT, 57.0%, 95.7%, 75.7%, 90.5% and 88.4% for 18F-FDG PET/CT plus CE-CT, and 51.6%, 97.2%, 81.4%, 89.6% and 88.6% for CECT, respectively. CONCLUSIONS 68 Ga-FAPI-46 PET/CT plus CE-CT demonstrates a higher tumor detection rate than 18F-FDG PET/CT plus CE-CT and CE-CT in a diverse spectrum of malignancies, especially for primary, abdominopelvic nodal, liver, and other visceral lesions. Further studies on which entities draw particular benefit from 68 Ga-FAPI-46 PET/CT are warranted to aid appropriate diagnostic workup. TRIAL REGISTRATION A total of N = 232 patients were analyzed. Of these, N = 50 patients were included in a prospective interventional trial (NCT05160051), and N = 175 in a prospective observational trial (NCT04571086) for correlation and clinical follow-up of PET findings; N = 7 patients were analyzed retrospectively.
Collapse
Affiliation(s)
- Masao Watanabe
- Department of Nuclear Medicine, University Clinic Essen, Hufelandstr. 55, 45147, Essen, Germany.
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
- Department of Diagnostic Radiology, Kyoto City Hospital, 1-2 Mibuhigashitakadacho, Nakagyo-ku, Kyoto, 604-8845, Japan.
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Clinic Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Hong Grafe
- Department of Nuclear Medicine, University Clinic Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Nader Hirmas
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Rainer Hamacher
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Helena Lanzafame
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Hubertus Hautzel
- Department of Nuclear Medicine, University Clinic Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Thoracic Endoscopy, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Stefan Kasper
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK Partner Site Essen), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiation Therapy, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Sherko Kümmel
- Department of Gynecology and Gynecologic Oncology, Ev. Kliniken Essen-Mitte (KEM), Essen, Germany
| | - Celine Lugnier
- Department of Hematology and Oncology With Palliative Care, Ruhr-University Bochum, Bochum, Germany
| | - Boris Hadaschik
- Department of Urology, Department for Medical Oncology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Viktor Grünwald
- Department of Urology, Department for Medical Oncology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Fadi Zarrad
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - David Kersting
- Department of Nuclear Medicine, University Clinic Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Center Consortium (DKTK Partner Site Essen), and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Clinic Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Manuel Weber
- Department of Nuclear Medicine, University Clinic Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
12
|
Suh M, Gil J, Kang Y, Choi H, Cheon G. Aged-Related Fibroblast Activation Protein Expression in Skeletal Muscles Evaluated by PET Imaging. J Cachexia Sarcopenia Muscle 2025; 16:e13730. [PMID: 39956945 PMCID: PMC11830633 DOI: 10.1002/jcsm.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Fibroblast activation protein (FAP) is prominently involved in the tumour microenvironment and tissue remodelling processes in most cancers, and its expression is also noted in normal skeletal muscle. This study aims to explore the relationship between FAP expression and age-related muscle characteristics through FAP inhibitor (FAPI) PET/CT imaging. METHODS This retrospective analysis studied 54 patients with lung cancer (n = 27) and pancreatic cancer (n = 27) using FAPI PET/CT. Imaging-based muscle features including the mean standardised uptake value (SUVmean), skeletal muscle index (SMI) and Hounsfield units (HU) were evaluated. Age-related FAP expression in skeletal muscles was also evaluated using the Genotype-Tissue Expression (GTEx) dataset. Statistical analyses included Spearman's rank correlation and Kruskal-Wallis test, with a p-value of less than 0.05 considered significant. RESULTS Analysis revealed a moderate to strong positive correlation between FAPI SUVmean and age (ρ = 0.368, p = 0.006), with older age groups showing higher muscle uptake. Within specific cohorts, the FAPI-74 group demonstrated a stronger correlation (ρ = 0.500, p = 0.008) compared to the FAPI-46 group (ρ = 0.319, p = 0.105). SUVmean also correlated negatively with muscle density (HU) (ρ = -0.298, p = 0.029), suggesting an association with higher fat infiltration. GTEx data supported these findings, showing a significant increase in FAP expression across age groups (p < 0.001), with the highest median FAP in the 70-79 age group. CONCLUSIONS This study demonstrates an age-related increase in FAPI uptake in skeletal muscle, correlated with changes in muscle density and fat infiltration. The role of FAP extends beyond pathology to normal muscle, indicating broader biological functions. Accordingly, FAPI PET shows promise for assessing age-related muscle health and quality.
Collapse
Affiliation(s)
- Minseok Suh
- Departments of Nuclear Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulSouth Korea
| | - Joonhyung Gil
- Departments of Nuclear Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulSouth Korea
| | - Yeon‐Koo Kang
- Departments of Nuclear Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulSouth Korea
| | - Hongyoon Choi
- Departments of Nuclear Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulSouth Korea
| | - Gi Jeong Cheon
- Departments of Nuclear Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulSouth Korea
| |
Collapse
|
13
|
Al-Ibraheem A, Abdlkadir AS, Al-Rasheed U, Al-Adhami D, Istatieh F, Anwar F, Abdulrahman M, Amarin R, Mohamad I, Mansour A. First Clinical Experience of 68Ga-FAPI PET/CT in Tertiary Cancer Center: Identifying Pearls and Pitfalls. Diagnostics (Basel) 2025; 15:218. [PMID: 39857102 PMCID: PMC11764383 DOI: 10.3390/diagnostics15020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Over the past four years, 68Ga-fibroblast activation protein inhibitor (FAPI) positron emission tomography/computed tomography (PET/CT) has been established at a tertiary cancer care facility in Jordan. This retrospective study aims to explore tracer uptake metrics across various epithelial neoplasms, identify diagnostic pitfalls associated with 68Ga-FAPI PET/CT, and evaluate the influence of 68Ga-FAPI PET/CT staging results on changes in therapeutic intent compared to gold standard molecular imaging modalities. Methods: A total of 48 patients with biopsy-confirmed solid tumors underwent 77 68Ga-FAPI PET/CT examinations for molecular imaging assessment, encompassing neoplasms originating from the gastrointestinal tract, head and neck, hepatobiliary system, pancreas, breast, and lung. Results: Notably, pancreaticobiliary tumors exhibited the highest tracer uptake, with mean maximum standardized uptake values (SUVmax) and tumor-to-background ratios (TBR) surpassing 10. A comparative sub-analysis of 68Ga-FAPI PET metrics in 20 treatment-naïve patients revealed a significant correlation between 68Ga-FAPI uptake metrics and tumor grade (Spearman's rho 0.83; p = 0.00001). Importantly, the results from 68Ga-FAPI PET/CT influenced treatment decisions in 35.5% of the cases, primarily resulting in an escalation of management plans. A total of 220 diagnostic challenges were identified across 88.3% of the scans, predominantly within the musculoskeletal system, attributed to degenerative changes (99 observations). Conclusions: This comprehensive analysis highlights the potential significance of 68Ga-FAPI PET/CT in oncological imaging and treatment strategy, while also emphasizing the necessity for meticulous interpretation to mitigate diagnostic challenges.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan
- School of Medicine, University of Jordan, Al-Jubeiha, Amman 11942, Jordan
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan
| | - Ula Al-Rasheed
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan
| | - Dhuha Al-Adhami
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan
| | - Feras Istatieh
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan
| | - Farah Anwar
- Department of Nuclear Medicine, Warith International Cancer Institute, Karbala 56001, Iraq
| | - Marwah Abdulrahman
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan
| | - Rula Amarin
- Department of Medicine, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan
| | - Issa Mohamad
- Department of Radiation Oncology, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan
| | - Asem Mansour
- Department of Diagnostic Radiology, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan
| |
Collapse
|
14
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
15
|
Loganath K, Craig N, Barton A, Joshi S, Anagnostopoulos C, Erba PA, Glaudemans AWJM, Saraste A, Bucerius J, Lubberink M, Gheysens O, Buechel RR, Habib G, Gaemperli O, Gimelli A, Hyafil F, Newby DE, Slart RHJA, Dweck MR. Cardiovascular positron emission tomography imaging of fibroblast activation: A review of the current literature. J Nucl Cardiol 2024:102106. [PMID: 39672296 DOI: 10.1016/j.nuclcard.2024.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Fibrosis is one of the key healing responses to injury, especially within the heart, where it helps to maintain structural integrity following acute insults such as myocardial infarction. However, if it becomes dysregulated, then fibrosis can become maladaptive, leading to adverse remodelling, impaired cardiac function and heart failure. Fibroblast activation protein is exclusively expressed by activated fibroblasts, the key effector cells of fibrogenesis, and has a unique extracellular domain that is an ideal ligand for novel molecular imaging probes. Fibroblast activation protein inhibitor (FAPI) radiotracers have been developed for positron emission tomography (PET) imaging, demonstrating high selectivity for activated fibroblasts across a range of different pathologies and disparate organ systems. In this review, we will summarise the role of fibroblast activation protein in cardiovascular disease and how FAPI radiotracers might improve the assessment and treatment of patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Krithika Loganath
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| | - Neil Craig
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Barton
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Shruti Joshi
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Constantinos Anagnostopoulos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Paola Anna Erba
- Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy; Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamllynkatu, Turku, Finland; Heart Center, Turku University Hospital, Turku, Finland
| | - Jan Bucerius
- Department of Nuclear Medicine, Georg-August University Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Mark Lubberink
- Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Ronny R Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Zurich, Switzerland
| | - Gilbert Habib
- Cardiology Department, APHM, La Timone Hospital, Marseille, France; Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Oliver Gaemperli
- HeartClinic, Hirslanden Hospital Zurich, Hirslanden, Switzerland
| | | | - Fabien Hyafil
- Department of Nuclear Medicine, DMU IMAGINA, Georges-Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, University of Paris, Paris, France; PARCC, INSERM, University of Paris, Paris, France
| | - David E Newby
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Riemer H J A Slart
- Medical Imaging Centre, Department of Nuclear Medicine & Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Faculty of Science and Technology Biomedical, Photonic Imaging, University of Twente, Enschede, the Netherlands
| | - Marc R Dweck
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Michalski K, Kosmala A, Hartrampf PE, Heinrich M, Serfling SE, Schlötelburg W, Buck AK, Meining A, Werner RA, Weich A. [ 18F]FDG and [ 68Ga]Ga-FAPI-04-Directed Imaging for Outcome Prediction in Patients with High-Grade Neuroendocrine Neoplasms. J Nucl Med 2024; 65:1899-1903. [PMID: 39477500 PMCID: PMC11619591 DOI: 10.2967/jnumed.124.268288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 12/08/2024] Open
Abstract
We aimed to quantitatively investigate the prognostic value of PET-based biomarkers on [18F]FDG and [68Ga]Ga-fibroblast activation protein inhibitor (FAPI)-04 PET/CT in patients with highly aggressive neuroendocrine neoplasms (NENs) and to compare the visually assessed differences in uptake on both examinations with progression-free survival (PFS). Methods: In this single-center retrospective analysis, 20 patients with high-grade NENs had undergone [18F]FDG and [68Ga]Ga-FAPI-04 PET. Both PET scans were visually compared, and the presence of [18F]FDG-positive, [68Ga]Ga-FAPI-04-negative (FDG+/FAPI-) lesions was noted. In addition, we assessed maximum, peak, and mean SUV; tumor volume (TV); and total lesion uptake (TLU = TV × SUVmean) for both radiotracers using a 40% lesion-based threshold. The results of quantitative and visual analysis were correlated with PFS using log-rank analysis or univariate Cox regression. PFS was defined radiographically using RECIST 1.1., clinically using signs of disease progression, or as death. Results: Most primary tumors were located in the gastrointestinal tract (13/20 patients, 65%) or were cancer of unknown primary (5/20 patients, 25%). FDG+/FAPI- lesions were found in 9 of 20 patients (45%). Patients with FDG+/FAPI- lesions had a significantly decreased PFS of 4 mo, compared with 9 mo for patients without FDG+/FAPI- metastases (P = 0.0063 [log-rank test]; hazard ratio [HR], 5.637; 95% CI 1.619-26.16; P = 0.0110 [univariate Cox regression]). On univariate analysis, a significant correlation was also found between PFS and TV for both radiotracers ([18F]FDG: mean TV, 258 ± 588 cm3; HR, 1.024 [per 10 cm3]; 95% CI, 1.007-1.046; P = 0.0204) ([68Ga]Ga-FAPI-04: mean TV, 130 ± 192 cm3; HR, 1.032 [per 10 cm3]; 95% CI, 1.001-1.062; P = 0.0277) and TLU on [18F]FDG PET (mean TLU, 1,931 ± 4,248 cm3; HR, 1.004 [per 10 cm3]; 95% CI, 1.001-1.007; P = 0.0135). Conclusion: The presence of discordant FDG+/FAPI- lesions is associated with a significantly shorter PFS, which might indicate more aggressive disease prone to early progression. Dual-tracer PET/CT of patients with highly aggressive NENs could help guide treatment decisions or identify high-risk lesions for additional local therapeutic approaches.
Collapse
Affiliation(s)
- Kerstin Michalski
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany;
| | - Aleksander Kosmala
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Philipp E Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- NET-Zentrum Würzburg, European Neuroendocrine Tumor Society Center of Excellence, University Hospital Würzburg, Würzburg, Germany
| | - Marieke Heinrich
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | | | - Wiebke Schlötelburg
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Meining
- NET-Zentrum Würzburg, European Neuroendocrine Tumor Society Center of Excellence, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine II, Gastroenterology, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A Werner
- NET-Zentrum Würzburg, European Neuroendocrine Tumor Society Center of Excellence, University Hospital Würzburg, Würzburg, Germany
- Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany; and
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Alexander Weich
- NET-Zentrum Würzburg, European Neuroendocrine Tumor Society Center of Excellence, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine II, Gastroenterology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Dai J, Zhou W, Liu H, Jiang C, Ye H. Impact of fat intake on [ 18F]AlF-NOTA-FAPI-04 uptake in normal abdominal organs. Front Med (Lausanne) 2024; 11:1464779. [PMID: 39574915 PMCID: PMC11578823 DOI: 10.3389/fmed.2024.1464779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Purpose [18F]AlF-NOTA-FAPI-04 demonstrates significant physiological uptake in the gallbladder and biliary tract system, representing a limitation of this positron emission tomography (PET) tracer. The aim of this study was to evaluate the impact of milk consumed prior to a PET/CT scan on [18F]AlF-NOTA-FAPI-04 uptake in normal abdominal organs. Materials and methods A total of 86 patients who underwent [18F]AlF-NOTA-FAPI-04 PET/CT imaging took part in this single-center retrospective clinical study at the Hunan Cancer Hospital between December 2020 and August 2021. Patients were divided into two groups according to their pre-PET scan diet: treated group, who consumed 250 mL of milk 10 ± 5 min after the tracer injection, while the control group was permitted no food intake subsequent to the radiotracer administration. The mean standardized uptake value (SUVmean) of gallbladder, liver, small intestine and pancreas were measured in 18F-FAPI and 18F-FDG PET/CT. Results There was a statistically significant difference in the 18F-FAPI uptake in the gallbladder between the treated group and the control group (p < 0.001). The average SUVmean in the treated group was 2.19 ± 2.01, which was significantly lower than the average SUVmean of 10.04 ± 9.66 in the control group. In the subgroup analysis of patients who underwent paired [18F]FDG and [18F]FAPI PET/CT scans, the 18F-FAPI uptake of liver and small intestine was significantly lower than the 18F-FDG uptake in both the treated group and the control group (p < 0.001). Conclusion This study suggests that milk consumption decreases physiological 18F-FAPI uptake in the gallbladder, potentially enhancing the diagnostic accuracy for gallbladder cancer.
Collapse
Affiliation(s)
- Jiashun Dai
- Department of PET-CT Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Wanjing Zhou
- Department of PET-CT Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Huaping Liu
- Department of Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Chengzhi Jiang
- Department of PET-CT Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Hui Ye
- Department of PET-CT Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| |
Collapse
|
18
|
Li Y, Zhou Y, He J, Chen J, Zhu H, Yang Z, Wang Q, Li N. Head to head comparison of 18F-FDG and Al 18F-NOTA-FAPI-04 PET/CT imaging used in diagnosis of autoimmune rheumatic diseases. Clin Rheumatol 2024; 43:3497-3505. [PMID: 39349733 DOI: 10.1007/s10067-024-07155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES The aim of this study was to determine the performance of radionuclide-labeled fibroblast activation protein inhibitors (Al18F-NOTA-FAPI-04) PET/CT in patients with autoimmune rheumatic diseases (ARDs) and compare it with fluorine-18 (18F) labeled fluorodeoxyglucose (FDG) imaging. METHODS Fifty-eight participants with ARDs were prospectively enrolled from April 2022 to February 2024 and underwent dual-tracer PET/CT imaging. For both 18F-FDG and Al18F-NOTA-FAPI-04 PET/CT, imaging findings were interpreted and compared. The clinical significance was compared between18F-FDG PET/CT and Al18F-NOTA-FAPI-04 PET/CT imaging. RESULTS 18F-FDG imaging was positive in 53 out of 58 cases (91.4%) while Al18F-NOTA-FAPI-04 imaging was positive in 55 out of 58 cases (94.8%). Overall positive rate of Al18F-NOTA-FAPI-04 imaging was as high as 18F-FDG imaging (P = 0.625). 18F-FDG imaging detected more lesions in lymph node, spleen, and bone marrow. Al18F-NOTA-FAPI-04 imaging detected more lesions in the lung, muscle, and tendon/ligament. There was no statistical difference of composing ratio of grades of clinical significance between two imaging modalities (χ2 = 2.875, P = 0.238). The superior rate of Al18F-NOTA-FAPI-04 PET/CT imaging was higher than 18F-FDG imaging (P = 0.020). In subgroup of adult-onset Still's disease, 18F-FDG imaging showed better performance than Al18F-NOTA-FAPI-04 imaging. In most of the other subgroup of ARDs, Al18F-NOTA-FAPI-04 PET/CT imaging overperformed 18F-FDG imaging. CONCLUSION Both 18F-FDG and Al18F-NOTA-FAPI-04 PET/CT imaging have excellent sensitivity in ARDs. The detection capabilities of two tracers varied according to the involving organs of ARDs. In most of ARDs except adult-onset Still's disease, Al18F-NOTA-FAPI-04 PET/CT imaging overperformed 18F-FDG imaging. Key Points • 18F-FDG and Al18F-NOTA-FAPI-04 PET/CT imaging have excellent sensitivity in diagnosing of ARDs. • 18F-FDG PET/CT imaging detected more lesions in lymph node, spleen, and bone marrow. • 18F-NOTA-FAPI-04 PET/CT imaging detected more lesions in the lung, muscle, and tendon/ligament. • 18F-NOTA-FAPI-04 PET/CT imaging overperformed18F-FDG in most subgroups of ARDs.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
- Department of Nuclear Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yunshan Zhou
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jinchuan Chen
- Department of Nuclear Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Qian Wang
- Department of Nuclear Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
19
|
Kiani M, Jokar S, Hassanzadeh L, Behnammanesh H, Bavi O, Beiki D, Assadi M. Recent Clinical Implications of FAPI: Imaging and Therapy. Clin Nucl Med 2024; 49:e538-e556. [PMID: 39025634 DOI: 10.1097/rlu.0000000000005348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
ABSTRACT The fibroblast activation protein (FAP) is a biomarker that is selectively overexpressed on cancer-associated fibroblasts (CAFs) in various types of tumoral tissues and some nonmalignant diseases, including fibrosis, arthritis, cardiovascular, and metabolic diseases. FAP plays a critical role in tumor microenvironment through facilitating proliferation, invasion, angiogenesis, immunosuppression, and drug resistance. Recent studies reveal that FAP might be regarded as a promising target for cancer diagnosis and treatment. FAP-targeted imaging modalities, especially PET, have shown high sensitivity and specificity in detecting FAP-expressing tumors. FAP-targeted imaging can potentially enhance tumor detection, staging, and monitoring of treatment response, and facilitate the development of personalized treatment strategies. This study provides a comprehensive view of FAP and its function in the pathophysiology of cancer and nonmalignant diseases. It also will discuss the characteristics of radiolabeled FAP inhibitors, particularly those based on small molecules, their recent clinical implications in imaging and therapy, and the associated clinical challenges with them. In addition, we present the results of imaging and biodistribution radiotracer 68 Ga-FAPI-46 in patients with nonmalignant diseases, including interstitial lung disease, primary biliary cirrhosis, and myocardial infarction, who were referred to our department. Our results show that cardiac FAP-targeted imaging can provide a novel potential biomarker for managing left ventricle remodeling. Moreover, this study has been organized and presented in a manner that offers a comprehensive overview of the current status and prospects of FAPI inhibitors in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Mahshid Kiani
- From the Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Safura Jokar
- From the Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Hassanzadeh
- Department of Nuclear Medicine, School of Medicine, Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy, Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
20
|
Haberkorn U, Altmann A, Giesel FL, Kratochwil C. 1,090 Publications and 5 Years Later: Is FAP-Targeted Theranostics Really Happening? J Nucl Med 2024; 65:1518-1520. [PMID: 39168520 DOI: 10.2967/jnumed.124.267923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Affiliation(s)
- Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany;
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Annette Altmann
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Duesseldorf, Germany; and
- Institute for Radiation Sciences, Osaka University, Toyonaka, Japan
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Liu S, Zhang Z, Zhong J, Zhong H, Fu Y, Liu L, Ye X, Wang X. Preclinical evaluation and first-in-human study of [ 18F]AlF-FAP-NUR for PET imaging cancer-associated fibroblasts. EJNMMI Res 2024; 14:87. [PMID: 39352615 PMCID: PMC11445204 DOI: 10.1186/s13550-024-01139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Fibroblast activation protein (FAP) has gained attention as a promising molecular target with potential utility for cancer diagnosis and therapy. [68Ga]Ga-labeled FAP-targeting peptides have been successfully applied to positron emission tomography (PET) imaging of various tumor types. To meet the applicable demand for peptide-based FAP tracers with high patient throughput, we herein report the radiosynthesis, preclinical evaluation, and the first-in-human imaging of a novel [18F]F-labeled FAP-targeting peptide. RESULTS [18F]AlF-FAP-NUR was automatedly prepared within 45 min with a non-decay corrected radiochemical yield of 18.73 ± 4.25% (n = 3). Compared to [68Ga]Ga-FAP-2286, the [18F]F-labeled peptide demonstrated more rapid, higher levels of cellular uptake and internalization, and lower levels of cellular efflux in HT1080-FAP cells. Micro-PET imaging and biodistribution studies conducted on xenograft mice models revealed a similar distribution pattern between the two tracers. However, [18F]AlF-FAP-NUR demonstrated significantly higher tumor-specific uptake resulting in improved Tumor-Background Ratios (TBRs). In the patients, a significant accumulation of [18F]AlF-FAP-NUR was found in the primary tumor. High uptake of the tracer within the bladder indicated that its major route of excretion was through urine. CONCLUSIONS Based on the physical imaging properties and longer half-life of [18F]F, [18F]AlF-FAP-NUR exhibited promising characteristics such as enhanced tumor-specific accumulation and elevated TBRs, which made it a viable candidate for further clinical investigation. TRIAL REGISTRATION www.Chictr.org.cn , ChiCTR2300076976 Retrospectively registered 25 October 2023. at, URL: https://www.chictr.org.cn/showproj.html?proj=206753 .
Collapse
Affiliation(s)
- Shaoyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ziqi Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jiawei Zhong
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Huizhen Zhong
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yimin Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lifang Liu
- Nuclear Medicine Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xiaoting Ye
- Nuclear Medicine Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
22
|
Haidar M, Rizkallah J, El Sardouk O, El Ghawi N, Omran N, Hammoud Z, Saliba N, Tfayli A, Moukadem H, Berjawi G, Nassar L, Marafi F, Choudhary P, Dadgar H, Sadeq A, Abi-Ghanem AS. Radiotracer Innovations in Breast Cancer Imaging: A Review of Recent Progress. Diagnostics (Basel) 2024; 14:1943. [PMID: 39272726 PMCID: PMC11394464 DOI: 10.3390/diagnostics14171943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This review focuses on the pivotal role of radiotracers in breast cancer imaging, emphasizing their importance in accurate detection, staging, and treatment monitoring. Radiotracers, labeled with radioactive isotopes, are integral to various nuclear imaging techniques, including positron emission tomography (PET) and positron emission mammography (PEM). The most widely used radiotracer in breast cancer imaging is 18F-fluorodeoxyglucose (18F-FDG), which highlights areas of increased glucose metabolism, a hallmark of many cancer cells. This allows for the identification of primary tumors and metastatic sites and the assessment of tumor response to therapy. In addition to 18F-FDG, this review will explore newer radiotracers targeting specific receptors, such as estrogen receptors or HER2, which offer more personalized imaging options. These tracers provide valuable insights into the molecular characteristics of tumors, aiding in tailored treatment strategies. By integrating radiotracers into breast cancer management, clinicians can enhance early disease detection, monitor therapeutic efficacy, and guide interventions, ultimately improving patient outcomes. Ongoing research aimed at developing more specific and sensitive tracers will also be highlighted, underscoring their potential to advance precision medicine in breast cancer care.
Collapse
Affiliation(s)
- Mohamad Haidar
- Department of Diagnostic Radiology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Rizkallah
- Department of Diagnostic Radiology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Omar El Sardouk
- Department of Diagnostic Radiology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nour El Ghawi
- Department of Diagnostic Radiology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nadine Omran
- Department of Diagnostic Radiology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Zeinab Hammoud
- Department of Diagnostic Radiology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nina Saliba
- Department of Diagnostic Radiology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Arafat Tfayli
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hiba Moukadem
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Ghina Berjawi
- Department of Diagnostic Radiology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Lara Nassar
- Department of Diagnostic Radiology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Fahad Marafi
- Jaber Al-Ahmad Centre for Molecular Imaging, Kuwait City 70031, Kuwait
| | - Partha Choudhary
- Department of Nuclear Medicine, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Habibollah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad 9198613636, Iran
| | - Alyaa Sadeq
- Jaber Al-Ahmad Centre for Molecular Imaging, Kuwait City 70031, Kuwait
| | - Alain S Abi-Ghanem
- Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| |
Collapse
|
23
|
Zhuang Z, Zhang Y, Yang X, Deng X, Wang Z. Head-to-head comparison of the diagnostic performance between 68Ga-FAPI-04 PET/CT and 18F-FDG PET/CT in colorectal cancer: a systematic review and meta-analysis. Abdom Radiol (NY) 2024; 49:3166-3174. [PMID: 38587629 DOI: 10.1007/s00261-024-04266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024]
Abstract
This study aimed to compare the detection rates of 68Ga-FAPI-04 PET/CT and 18F-FDG PET/CT in colorectal cancer. A systematic search of major medical databases was conducted to identify studies up to September 2023. The primary outcome assessed was the detection rate of 68Ga-FAPI-04 PET/CT and 18F-FDG PET/CT in the primary tumor. Pooled risk ratios with a 95% CI were calculated using random-effect models to adjust for heterogeneity. Eight studies were included in the meta-analysis. 68Ga-FAPI-04 PET/CT has higher uptakes in lymph nodes, bone, and peritoneal metastasis compared with 18F-FDG PET/CT. The detection rate of 68Ga-FAPI-04 PET/CT based on lesion was better for lymph node metastasis (RR = 0.63, 95% CI 0.47-0.84, P = 0.002) and peritoneal metastasis (RR = 0.52, 95% CI 0.32-0.85, P = 0.009), both imaging modalities had essentially the same diagnostic efficacy in primary tumor (RR = 0.99, 95% CI 0.96-1.02, P = 0.49). 68Ga-FAPI-04 as a highly promising PET/CT tracer was superior to 18F-FDG PET/CT in colorectal cancer, especially in detecting lymph node metastases and peritoneal metastases.
Collapse
Affiliation(s)
- Zixuan Zhuang
- Department of General Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yang Zhang
- Department of General Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Xuyang Yang
- Department of General Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Xiangbing Deng
- Department of General Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Ziqiang Wang
- Department of General Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
- Colorectal Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
24
|
Singh SB, Shrestha BB, Gandhi OH, Shah RP, Mukhtiar V, Ayubcha C, Desai V, Eberts CE, Paudyal P, Jha G, Singh A, Shi Y, Kumar T. The comparative utility of FAPI-based PET radiotracers over [ 18F]FDG in the assessment of malignancies. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:190-207. [PMID: 39309420 PMCID: PMC11411191 DOI: 10.62347/jxzi9315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/28/2024] [Indexed: 09/25/2024]
Abstract
Fibroblast activation protein (FAP) is a type II transmembrane serine protease overexpressed in cancer-associated fibroblasts (CAFs) and has been associated with poor prognosis. PET/CT imaging with radiolabeled FAP inhibitors (FAPI) is currently being studied for various malignancies. This review identifies the uses and limitations of FAPI PET/CT in malignancies and compares the advantages and disadvantages of FAPI and 18F-fluorodeoxyglucose ([18F]FDG). Due to high uptake, rapid clearance from the circulation, and limited uptake in normal tissue, FAPI tumor-to-background contrast ratios are equivalent to or better than [18F]FDG in most applications. In several settings, FAPI has shown greater uptake specificity than [18F]FDG and improved sensitivity in detecting lymph node, bone, and visceral tissue metastases. Therefore, FAPI PET/CT may be complementary in distinguishing pathological lesions with conventional imaging, determining the primary site of malignancy, improving tumor staging, and detecting disease recurrence, especially in patients with inconclusive [18F]FDG PET/CT findings. Nevertheless, FAPI has limitations, including certain settings with non-specific uptake, modified uptake with age and menopause status, challenges with clinical access, and limited clinical evidence.
Collapse
Affiliation(s)
- Shashi B Singh
- Stanford University School of MedicineStanford, CA 94305, USA
| | | | - Om H Gandhi
- Hospital of The University of Pennsylvania3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Rajendra P Shah
- Department of Cardiology, HCA Houston HealthcareHouston, TX 77004, USA
| | | | - Cyrus Ayubcha
- Harvard Medical School25 Shattuck Street, Boston, MA 02115, USA
| | - Vineet Desai
- Harvard Medical School25 Shattuck Street, Boston, MA 02115, USA
| | - Christine E Eberts
- University of California, San Diego School of Medicine9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Pranita Paudyal
- Bridgeport Hospital267 Grant Street, Bridgeport, CT 06610, USA
| | - Goody Jha
- University of California Davis Medical Center4301 X Street, Sacramento, CA 95817, USA
| | - Anurag Singh
- Trijuddha Mahavir Prasad Raghuvir Ram Madhyamik VidyalayaBirgunj, Parsa 44300, Nepal
| | - Yangyang Shi
- University of Arizona College of Medicine1501 N Campbell Avenue, Tucson, AZ 85724, USA
| | - Tushar Kumar
- University of Washington Medical Center, Main Hospital1959 NE Pacific Street, Seattle, WA 98195, USA
| |
Collapse
|
25
|
van der Heide CD, Ma H, Hoorens MWH, Campeiro JD, Stuurman DC, de Ridder CMA, Seimbille Y, Dalm SU. In vitro and in vivo analyses of eFAP: a novel FAP-targeting small molecule for radionuclide theranostics and other oncological interventions. EJNMMI Radiopharm Chem 2024; 9:55. [PMID: 39073475 PMCID: PMC11286609 DOI: 10.1186/s41181-024-00283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Fibroblast activation protein (FAP), a transmembrane serine protease overexpressed by cancer-associated fibroblasts in the tumor stroma, is an interesting biomarker for targeted radionuclide theranostics. FAP-targeting radiotracers have demonstrated to be superior to [18F]FDG PET/CT in various solid cancers. However, these radiotracers have suboptimal tumor retention for targeted radionuclide therapy (TRT). We aimed to develop a novel FAP-targeting pharmacophore with improved pharmacokinetics by introducing a substitution at the 8-position of (4-quinolinoyl)-glycyl-2-cyanopyrrolidine, which allows for conjugation of a chelator, dye, or other payloads. RESULTS Here we showed the synthesis of DOTA-conjugated eFAP-6 and sulfo-Cyanine5-conjugated eFAP-7. After chemical characterization, the uptake and specificity of both tracers were determined on FAP-expressing cells. In vitro, [111In]In-eFAP-6 demonstrated a superior affinity and a more rapid, although slightly lower, peak uptake than gold standard [111In]In-FAPI-46. Confocal microscopy demonstrated a quick FAP-mediated internalization of eFAP-7. Studies with HT1080-huFAP xenografted mice confirmed a more rapid uptake of [177Lu]Lu-eFAP-6 vs. [177Lu]Lu-FAPI-46. However, tumor retention at 24 h post injection of [177Lu]Lu-eFAP-6 was lower than that of [177Lu]Lu-FAPI-46, hereby currently limiting its use for TRT. CONCLUSION The superior affinity and faster tumor accumulation of eFAP-6 over FAPI-46 makes it a suitable compound for radionuclide imaging. After further optimization, the eFAP series has great potential for various oncological interventions, including fluorescent-guided surgery and effective targeted radionuclide theranostics.
Collapse
Affiliation(s)
- Circe D van der Heide
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Hanyue Ma
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Mark W H Hoorens
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Joana D Campeiro
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Debra C Stuurman
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Corrina M A de Ridder
- Department of Experimental Urology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
| | - Simone U Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands.
| |
Collapse
|
26
|
Hitchcock CL, Chapman GJ, Mojzisik CM, Mueller JK, Martin EW. A Concept for Preoperative and Intraoperative Molecular Imaging and Detection for Assessing Extent of Disease of Solid Tumors. Oncol Rev 2024; 18:1409410. [PMID: 39119243 PMCID: PMC11306801 DOI: 10.3389/or.2024.1409410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
The authors propose a concept of "systems engineering," the approach to assessing the extent of diseased tissue (EODT) in solid tumors. We modeled the proof of this concept based on our clinical experience with colorectal carcinoma (CRC) and gastrinoma that included short and long-term survival data of CRC patients. This concept, applicable to various solid tumors, combines resources from surgery, nuclear medicine, radiology, pathology, and oncology needed for preoperative and intraoperative assessments of a patient's EODT. The concept begins with a patient presenting with biopsy-proven cancer. An appropriate preferential locator (PL) is a molecule that preferentially binds to a cancer-related molecular target (i.e., tumor marker) lacking in non-malignant tissue and is the essential element. Detecting the PL after an intravenous injection requires the PL labeling with an appropriate tracer radionuclide, a fluoroprobe, or both. Preoperative imaging of the tracer's signal requires molecular imaging modalities alone or in combination with computerized tomography (CT). These include positron emission tomography (PET), PET/CT, single-photon emission computed tomography (SPECT), SPECT/CT for preoperative imaging, gamma cameras for intraoperative imaging, and gamma-detecting probes for precise localization. Similarly, fluorescent-labeled PLs require appropriate cameras and probes. This approach provides the surgeon with real-time information needed for R0 resection.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Actis Medical, LLC, Powell, OH, United States
| | - Gregg J. Chapman
- Actis Medical, LLC, Powell, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | | | | | - Edward W. Martin
- Actis Medical, LLC, Powell, OH, United States
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
27
|
Sato K, Hirayama Y, Mizutani A, Yao J, Higashino J, Kamitaka Y, Muranaka Y, Yamazaki K, Nishii R, Kobayashi M, Kawai K. Potential Application of the Myocardial Scintigraphy Agent [ 123I]BMIPP in Colon Cancer Cell Imaging. Int J Mol Sci 2024; 25:7747. [PMID: 39062992 PMCID: PMC11277422 DOI: 10.3390/ijms25147747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
[123I]β-methyl-p-iodophenyl-pentadecanoic acid ([123I]BMIPP), which is used for nuclear medicine imaging of myocardial fatty acid metabolism, accumulates in cancer cells. However, the mechanism of accumulation remains unknown. Therefore, this study aimed to elucidate the accumulation and accumulation mechanism of [123I]BMIPP in cancer cells. We compared the accumulation of [123I]BMIPP in cancer cells with that of [18F]FDG and found that [123I]BMIPP was a much higher accumulation than [18F]FDG. The accumulation of [123I]BMIPP was evaluated in the presence of sulfosuccinimidyl oleate (SSO), a CD36 inhibitor, and lipofermata, a fatty acid transport protein (FATP) inhibitor, under low-temperature conditions and in the presence of etomoxir, a carnitine palmitoyl transferase I (CPT1) inhibitor. The results showed that [123I]BMIPP accumulation was decreased in the presence of SSO and lipofermata in H441, LS180, and DLD-1 cells, suggesting that FATPs and CD36 are involved in [123I]BMIPP uptake in cancer cells. [123I]BMIPP accumulation in all cancer cell lines was significantly decreased at 4 °C compared to that at 37 °C and increased in the presence of etomoxir in all cancer cell lines, suggesting that the accumulation of [123I]BMIPP in cancer cells is metabolically dependent. In a biological distribution study conducted using tumor-bearing mice transplanted with LS180 cells, [123I]BMIPP highly accumulated in not only LS180 cells but also normal tissues and organs (including blood and muscle). The tumor-to-intestine or large intestine ratios of [123I]BMIPP were similar to those of [18F]FDG, and the tumor-to-large-intestine ratios exceeded 1.0 during 30 min after [123I]BMIPP administration in the in vivo study. [123I]BMIPP is taken up by cancer cells via CD36 and FATP and incorporated into mitochondria via CPT1. Therefore, [123I]BMIPP may be useful for imaging cancers with activated fatty acid metabolism, such as colon cancer. However, the development of novel imaging radiotracers based on the chemical structure analog of [123I]BMIPP is needed.
Collapse
Affiliation(s)
- Kakeru Sato
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
- Radiological Center, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Yuka Hirayama
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
| | - Asuka Mizutani
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (A.M.); (K.K.)
| | - Jianwei Yao
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
| | - Jinya Higashino
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
| | - Yuto Kamitaka
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yuka Muranaka
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Kana Yamazaki
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
| | - Ryuichi Nishii
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko Minami, Higashi-ku, Nagoya 461-8673, Japan;
| | - Masato Kobayashi
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (A.M.); (K.K.)
| | - Keiichi Kawai
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (A.M.); (K.K.)
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| |
Collapse
|
28
|
Al-Ibraheem A, Abdulrahman M, Alrousan M, Haidar M. A Rare Case of Adrenal Gland Metastasis from Parotid Adenocarcinoma: Unveiling the Potential Augmented Utility of FAPI PET/CT. Indian J Nucl Med 2024; 39:309-312. [PMID: 39790817 PMCID: PMC11708800 DOI: 10.4103/ijnm.ijnm_13_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 01/12/2025] Open
Abstract
Conventional imaging techniques, while essential, occasionally fall short in identifying elusive metastatic lesions, leading to delayed diagnoses and compromised patient outcomes. Gallium-68 fibroblast activating protein inhibitor (68Ga-FAPI) positron emission tomography/computed tomography (PET/CT), leveraging the distinct affinity of fibroblast activation protein for cancer-associated fibroblasts, emerges as a promising solution to bridge this diagnostic gap. Parotid gland adenocarcinoma is a relatively rare malignancy with metastasis typically occurring in regional lymph nodes and distant sites such as the lungs and bones. However, there have been limited reported cases of rare metastatic sites such as the adrenal gland. This exceptional case report details the clinical presentation, diagnostic workup, and management steps of a rare case of a 47-year-old female patient diagnosed with parotid gland adenocarcinoma with confusing metastasis to the ipsilateral adrenal gland which was confirmed later with a follow-up 68Ga-FAPI PET/CT scan. We aim to highlight FAPI unique ability to illuminate metastatic foci in challenging anatomical locations.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Marwah Abdulrahman
- Department of Nuclear Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Medyan Alrousan
- Department of Surgery, King Hussein Cancer Center, Amman, Jordan
| | - Mohamad Haidar
- Department of Diagnostic Radiology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
29
|
Manuppella F, Pisano G, Taralli S, Caldarella C, Calcagni ML. Diagnostic Performances of PET/CT Using Fibroblast Activation Protein Inhibitors in Patients with Primary and Metastatic Liver Tumors: A Comprehensive Literature Review. Int J Mol Sci 2024; 25:7197. [PMID: 39000301 PMCID: PMC11241825 DOI: 10.3390/ijms25137197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
PET/CT using radiolabeled fibroblast activation protein inhibitors (FAPIs) is a promising diagnostic tool in oncology, especially when non-increased and/or physiologically high [18F]FDG uptake (as in liver parenchyma) is observed. We aimed to review the role of PET/CT using radiolabeled FAPIs in primary and/or metastatic liver lesions, and to compare their performances with more "conventional" radiopharmaceuticals. A search algorithm based on the terms "FAPI" AND ("hepatic" OR "liver") was applied, with the last update on 1st January 2024. Out of 177 articles retrieved, 76 studies reporting on the diagnostic application of radiolabeled FAPI PET/CT in at least one patient harboring primary or metastatic liver lesion(s) were fully analyzed. Although there was some heterogeneity in clinical conditions and/or study methodology, PET/CT with radiolabeled FAPIs showed an excellent performance in common primary liver malignancies (hepatocarcinoma, intrahepatic cholangiocarcinoma) and liver metastases (mostly from the gastrointestinal tract and lungs). A higher tumor-to-background ratio for FAPIs than for [18F]FDG was found in primary and metastatic liver lesions, due to lower background activity. Despite limited clinical evidence, radiolabeled FAPIs may be used to assess the suitability and effectiveness of FAPI-derived therapeutic agents such as [177Lu]Lu-FAPI. However, future prospective research on a wider population is needed to confirm the excellent performance.
Collapse
Affiliation(s)
- Federica Manuppella
- Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, UOC Di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (F.M.); (G.P.); (S.T.); (M.L.C.)
- Dipartimento Universitario Di Scienze Radiologiche Ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Giusi Pisano
- Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, UOC Di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (F.M.); (G.P.); (S.T.); (M.L.C.)
- Dipartimento Universitario Di Scienze Radiologiche Ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Silvia Taralli
- Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, UOC Di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (F.M.); (G.P.); (S.T.); (M.L.C.)
| | - Carmelo Caldarella
- Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, UOC Di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (F.M.); (G.P.); (S.T.); (M.L.C.)
| | - Maria Lucia Calcagni
- Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, UOC Di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (F.M.); (G.P.); (S.T.); (M.L.C.)
- Dipartimento Universitario Di Scienze Radiologiche Ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| |
Collapse
|
30
|
Selçuk NA, Akçay K, Beydağı G, Sönmez Ö, Çelik S, Öven BB, Kabasakal L. Revision of the Histopathological Examination Following 68Ga-DOTA-FAPI-04 PET/CT of a Breast Tumor Diagnosed as Invasive Ductal Carcinomatosis. Mol Imaging Radionucl Ther 2024; 33:134-137. [PMID: 38949561 PMCID: PMC11589264 DOI: 10.4274/mirt.galenos.2024.89106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/01/2024] [Indexed: 07/02/2024] Open
Abstract
Neuroendocrine tumors (NETs) of the breast represent 1% of breast carcinomas. Histopathological misinterpretation of breast NET is common. We present the case of a female patient who had a breast mass diagnosed as invasive ductal carcinoma initially by histopathological examination. Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) revealed 2 ametabolic hypodense liver lesions. Subsequently, the patient underwent fibroblast activation protein inhibitor (FAPI)-PET/CT, which did not reveal any FAP expression in the liver lesions, but increased FAP expression was observed in the soft tissue mass of the mesenteric root. Consequently, the pathology of the biopsy taken from the nodule in the right breast was revised, and a diagnosis of grade 2 NET was established. The benefit of FAPI-PET/CT on NETs has been previously investigated. Further prospective studies are required to establish the role of FAPI-PET/CT in NET management.
Collapse
Affiliation(s)
- Nalan Alan Selçuk
- Yeditepe University Faculty of Medicine, Department of Nuclear Medicine, İstanbul, Türkiye
| | - Kaan Akçay
- Yeditepe University Faculty of Medicine, Department of Nuclear Medicine, İstanbul, Türkiye
| | - Gamze Beydağı
- Yeditepe University Faculty of Medicine, Department of Nuclear Medicine, İstanbul, Türkiye
| | - Ömer Sönmez
- Yeditepe University Faculty of Medicine, Department of Nuclear Medicine, İstanbul, Türkiye
| | - Serkan Çelik
- Yeditepe University Faculty of Medicine, Department of Medical Oncology, İstanbul, Türkiye
| | - Bala Başak Öven
- Yeditepe University Faculty of Medicine, Department of Medical Oncology, İstanbul, Türkiye
| | - Levent Kabasakal
- İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Nuclear Medicine, İstanbul, Türkiye
| |
Collapse
|
31
|
Bentestuen M, Ladekarl M, Knudsen A, Zacho HD. Diagnostic accuracy and clinical value of [68Ga]Ga-FAPI-46 PET/CT for staging patients with ovarian cancer: study protocol for a prospective clinical trial. BMC Cancer 2024; 24:699. [PMID: 38849741 PMCID: PMC11157941 DOI: 10.1186/s12885-024-12461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND [18F]Fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) is recommended during diagnostic work-up for ovarian cancer; however, [18F]FDG PET has several inherent limitations. The novel oncologic PET-tracer fibroblast activation protein inhibitor (FAPI) has demonstrated promising results in multiple cancer types, including ovarian cancer, and could overcome the limitations of [18F]FDG PET; however, high-quality clinical studies are lacking. The primary objective of the present study is to compare the diagnostic accuracy of [68Ga]Ga-FAPI-46 PET/CT and [18F]FDG PET/CT in ovarian cancer patients and to investigate how this potential difference impacts staging and patient management. METHODS AND DESIGN Fifty consecutive ovarian cancer patients will be recruited from Aalborg University Hospital, Denmark. This study will be a single-center, prospective, exploratory clinical trial that adheres to the standards for reporting diagnostic accuracy studies (STARD). This study will be conducted under continuous Good Clinical Practice monitoring. The eligibility criteria for patients are as follows: (1) biopsy verified newly diagnosed ovarian cancer or a high risk of ovarian cancer and referred for primary staging with [18F]FDG PET/CT; and (2) resectable disease, i.e., candidate for primary debulking surgery or neoadjuvant chemotherapy followed by interval debulking surgery. All recruited study subjects will undergo [68Ga]Ga-FAPI-46 PET/CT at primary staging, before primary debulking surgery or neoadjuvant chemotherapy (Group A + B), in addition to conventional imaging (including [18F]FDG PET/CT). Study subjects in Group B will undergo an additional [68Ga]Ga-FAPI-46 PET/CT following neoadjuvant chemotherapy prior to interval debulking surgery. The results of the study-related [68Ga]Ga-FAPI-46 PET/CTs will be blinded, and treatment allocation will be based on common clinical practice in accordance with current guidelines. The histopathology of surgical specimens will serve as a reference standard. A recruitment period of 2 years is estimated; the trial is currently recruiting. DISCUSSION To our knowledge, this trial represents the largest, most extensive, and most meticulous prospective FAPI PET study conducted in patients with ovarian cancer thus far. This study aims to obtain a reliable estimation of the diagnostic accuracy of [68Ga]Ga-FAPI-46 PET/CT, shed light on the clinical importance of [68Ga]Ga-FAPI-46 PET/CT, and examine the potential applicability of [68Ga]Ga-FAPI-46 PET/CT for evaluating chemotherapy response. TRIAL REGISTRATION clinicaltrials.gov: NCT05903807, 2nd June 2023; and euclinicaltrials.eu EU CT Number: 2023-505938-98-00, authorized 11th September 2023.
Collapse
Affiliation(s)
- Morten Bentestuen
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18- 22, Aalborg, DK-9000, Denmark.
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 11, Aalborg, DK-9000, Denmark.
| | - Morten Ladekarl
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18-22, Aalborg, DK- 9000, Denmark
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 11, Aalborg, DK-9000, Denmark
| | - Aage Knudsen
- Department of Gynecology and Obstetrics, Aalborg University Hospital, Reberbansgade 15, Aalborg, DK-9000, Denmark
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 11, Aalborg, DK-9000, Denmark
| | - Helle D Zacho
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18- 22, Aalborg, DK-9000, Denmark
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 11, Aalborg, DK-9000, Denmark
| |
Collapse
|
32
|
Kline B, Yadav S, Seo Y, Ippisch RC, Castillo J, Aggarwal RR, Kelley RK, Behr SC, Flavell RR, Lawhn-Heath C, Melisko M, Rugo HS, Wang V, Yom SS, Ha P, Jiang F, Hope TA. 68Ga-FAP-2286 PET of Solid Tumors: Biodistribution, Dosimetry, and Comparison with 18F-FDG. J Nucl Med 2024; 65:938-943. [PMID: 38697672 PMCID: PMC11149593 DOI: 10.2967/jnumed.123.267281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Fibroblast activation protein (FAP), expressed in the tumor microenvironment of a variety of cancers, has become a target of novel PET tracers. The purpose of this report is to evaluate the imaging characteristics of 68Ga-FAP-2286, present the first-to our knowledge-dosimetry analysis to date, and compare the agent with 18F-FDG and FAPI compounds. Methods: Patients were administered 219 ± 43 MBq of 68Ga-FAP-2286 and scanned after 60 min. Uptake was measured in up to 5 lesions per patient and within the kidneys, spleen, liver, and mediastinum (blood pool). Absorbed doses were evaluated using MIM Encore and OLINDA/EXM version 1.1 using the International Commission on Radiological Protection publication 103 tissue weighting factor. Results: Forty-six patients were imaged with 68Ga-FAP-2286 PET. The highest average uptake was seen in sarcoma, cholangiocarcinoma, and colon cancer. The lowest uptake was found in lung cancer and testicular cancer. The average SUVmax was significantly higher on 68Ga-FAP-2286 PET than on 18F-FDG PET in cholangiocarcinoma (18.2 ± 6.4 vs. 9.1 ± 5.0, P = 0.007), breast cancer (11.1 ± 6.8 vs. 4.1 ± 2.2, P < 0.001), colon cancer (13.8 ± 2.2 vs. 7.6 ± 1.7, P = 0.001), hepatocellular carcinoma (9.3 ± 3.5 vs. 4.7 ± 1.3, P = 0.01), head and neck cancer (11.3 ± 3.5 vs. 7.6 ± 5.5, P = 0.04), and pancreatic adenocarcinoma (7.4 ± 1.8 vs. 3.7 ± 1.0, P = 0.01). The total-body effective dose was estimated at 1.16E-02 mSv/MBq, with the greatest absorbed organ dose in the urinary bladder wall (9.98E-02 mGy/MBq). Conclusion: 68Ga-FAP-2286 biodistribution, dosimetry, and tumor uptake were similar to those of previously reported FAPI compounds. Additionally,68Ga-FAP-2286 PET had consistently higher uptake than 18F-FDG PET. These results are especially promising in the setting of small-volume disease and differentiating tumor from inflammatory uptake.
Collapse
Affiliation(s)
- Brad Kline
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Surekha Yadav
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Robin Cumming Ippisch
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Jessa Castillo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Rahul R Aggarwal
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Robin Kate Kelley
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Spencer C Behr
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Courtney Lawhn-Heath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Michelle Melisko
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Hope S Rugo
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Victoria Wang
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Patrick Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California; and
| | - Fei Jiang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California;
| |
Collapse
|
33
|
Hagens MJ, van Leeuwen PJ, Wondergem M, Boellaard TN, Sanguedolce F, Oprea-Lager DE, Bex A, Vis AN, van der Poel HG, Mertens LS. A Systematic Review on the Diagnostic Value of Fibroblast Activation Protein Inhibitor PET/CT in Genitourinary Cancers. J Nucl Med 2024; 65:888-896. [PMID: 38637140 DOI: 10.2967/jnumed.123.267260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
In contemporary oncologic diagnostics, molecular imaging modalities are pivotal for precise local and metastatic staging. Recent studies identified fibroblast activation protein as a promising target for molecular imaging across various malignancies. Therefore, we aimed to systematically evaluate the current literature on the utility of fibroblast activation protein inhibitor (FAPI) PET/CT for staging patients with genitourinary malignancies. Methods: A systematic Embase and Medline search was conducted, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) process, on August 1, 2023. Relevant publications reporting on the diagnostic value of FAPI PET/CT in genitourinary malignancies were identified and included. Studies were critically reviewed using a modified version of a tool for quality appraisal of case reports. Study results were summarized using a narrative approach. Results: We included 22 retrospective studies with a cumulative total of 69 patients, focusing on prostate cancer, urothelial carcinoma of the bladder and of the upper urinary tract, renal cell carcinoma, and testicular cancer. FAPI PET/CT was able to visualize both local and metastatic disease, including challenging cases such as prostate-specific membrane antigen (PSMA)-negative prostate cancer. Compared with radiolabeled 18F-FDG and PSMA PET/CT, FAPI PET/CT showed heterogeneous performance. In selected cases, FAPI PET/CT demonstrated superior tumor visualization (i.e., better tumor-to-background ratios and visualization of small tumors or metastatic deposits visible in no other way) over 18F-FDG PET/CT in detecting local or metastatic disease, whereas comparisons with PSMA PET/CT showed both superior and inferior performances. Challenges in FAPI PET/CT arise from physiologic urinary excretion of most FAPI radiotracers, hindering primary-lesion visualization in the bladder and upper urinary tract, despite generally providing high tumor-to-background ratios. Conclusion: The current findings suggest that FAPI PET/CT may hold promise as a future tool to aid clinicians in detecting genitourinary malignancies. Given the substantial heterogeneity among the included studies and the limited number of patients, caution in interpreting these findings is warranted. Subsequent prospective and comparative investigations are anticipated to delve more deeply into this innovative imaging modality and elucidate its role in clinical practice.
Collapse
Affiliation(s)
- Marinus J Hagens
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands;
| | - Pim J van Leeuwen
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Maurits Wondergem
- Department of Nuclear Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Thierry N Boellaard
- Department of Radiology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Francesco Sanguedolce
- Department of Urology, Fundació Puigvert, Autonomous University of Barcelona, Barcelona, Spain
| | - Daniela E Oprea-Lager
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands; and
| | - Axel Bex
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - André N Vis
- Department of Urology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Henk G van der Poel
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | |
Collapse
|
34
|
Lanzafame H, Mavroeidi IA, Pabst KM, Desaulniers M, Ingenwerth M, Hirmas N, Kessler L, Nader M, Bartel T, Leyser S, Barbato F, Schuler M, Bauer S, Siveke JT, Herrmann K, Hamacher R, Fendler WP. 68Ga-Fibroblast Activation Protein Inhibitor PET/CT Improves Detection of Intermediate and Low-Grade Sarcomas and Identifies Candidates for Radiopharmaceutical Therapy. J Nucl Med 2024; 65:880-887. [PMID: 38724279 DOI: 10.2967/jnumed.123.267248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/15/2024] [Indexed: 06/05/2024] Open
Abstract
Fibroblast activation protein-α (FAP) is often highly expressed by sarcoma cells and by sarcoma-associated fibroblasts in the tumor microenvironment. This makes it a promising target for imaging and therapy. The level of FAP expression and the diagnostic value of 68Ga-FAP inhibitor (FAPI) PET for sarcoma subtypes are unknown. We assessed the diagnostic performance and accuracy of 68Ga-FAPI PET in various bone and soft-tissue sarcomas. Potential eligibility for FAP-targeted radiopharmaceutical therapy (FAP-RPT) was evaluated. Methods: This prospective observational trial enrolled 200 patients with bone and soft-tissue sarcoma who underwent 68Ga-FAPI PET/CT and 18F-FDG PET/CT (186/200, or 93%) for staging or restaging. The number of lesions detected and the uptake (SUVmax) of the primary tumor, lymph nodes, and visceral and bone metastases were analyzed. The Wilcoxon test was used for semiquantitative assessment. The association of 68Ga-FAPI uptake intensity, histopathologic grade, and FAP expression in sarcoma biopsy samples was analyzed using Spearman r correlation. The impact of 68Ga-FAPI PET on clinical management was investigated using questionnaires before and after PET/CT. Eligibility for FAP-RPT was defined by an SUVmax greater than 10 for all tumor regions. Results: 68Ga-FAPI uptake was heterogeneous among sarcoma subtypes. The 3 sarcoma entities with the highest uptake (mean SUVmax ± SD) were solitary fibrous tumor (24.7 ± 11.9), undifferentiated pleomorphic sarcoma (18.8 ± 13.1), and leiomyosarcoma (15.2 ± 10.2). Uptake of 68Ga-FAPI versus 18F-FDG was significantly higher in low-grade sarcomas (10.4 ± 8.5 vs. 7.0 ± 4.5, P = 0.01) and in potentially malignant intermediate or unpredictable sarcomas without a World Health Organization grade (not applicable [NA]; 22.3 ± 12.5 vs. 8.5 ± 10.0, P = 0.0004), including solitary fibrous tumor. The accuracy, as well as the detection rates, of 68Ga-FAPI was higher than that of 18F-FDG in low-grade sarcomas (accuracy, 92.2 vs. 80.0) and NA sarcomas (accuracy, 96.9 vs. 81.9). 68Ga-FAPI uptake and the histopathologic FAP expression score (n = 89) were moderately correlated (Spearman r = 0.43, P < 0.0002). Of 138 patients, 62 (45%) with metastatic sarcoma were eligible for FAP-RPT. Conclusion: In patients with low-grade and NA sarcomas, 68Ga-FAPI PET demonstrates uptake, detection rates, and accuracy superior to those of 18F-FDG PET. 68Ga-FAPI PET criteria identified eligibility for FAP-RPT in about half of sarcoma patients.
Collapse
Affiliation(s)
- Helena Lanzafame
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany;
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Ilektra A Mavroeidi
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Mélanie Desaulniers
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marc Ingenwerth
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Nader Hirmas
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Lukas Kessler
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Michael Nader
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Timo Bartel
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Stephan Leyser
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Francesco Barbato
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Martin Schuler
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- National Center for Tumor Diseases West, Campus Essen, Essen, Germany; and
| | - Sebastian Bauer
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- National Center for Tumor Diseases West, Campus Essen, Essen, Germany; and
| | - Jens T Siveke
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- National Center for Tumor Diseases West, Campus Essen, Essen, Germany; and
- Bridge Institute of Experimental Tumor Therapy and Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Rainer Hamacher
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| |
Collapse
|
35
|
Röhrich M, Daum J, Gutjahr E, Spektor AM, Glatting FM, Sahin YA, Buchholz HG, Hoppner J, Schroeter C, Mavriopoulou E, Schlamp K, Grott M, Eichhorn F, Heußel CP, Kauczor HU, Kreuter M, Giesel F, Schreckenberger M, Winter H, Haberkorn U. Diagnostic Potential of Supplemental Static and Dynamic 68Ga-FAPI-46 PET for Primary 18F-FDG-Negative Pulmonary Lesions. J Nucl Med 2024; 65:872-879. [PMID: 38604763 PMCID: PMC11149599 DOI: 10.2967/jnumed.123.267103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/20/2024] [Indexed: 04/13/2024] Open
Abstract
PET using 68Ga-labeled fibroblast activation protein (FAP) inhibitors (FAPIs) holds high potential for diagnostic imaging of various malignancies, including lung cancer (LC). However, 18F-FDG PET is still the clinical gold standard for LC imaging. Several subtypes of LC, especially lepidic LC, are frequently 18F-FDG PET-negative, which markedly hampers the assessment of single pulmonary lesions suggestive of LC. Here, we evaluated the diagnostic potential of static and dynamic 68Ga-FAPI-46 PET in the 18F-FDG-negative pulmonary lesions of 19 patients who underwent surgery or biopsy for histologic diagnosis after PET imaging. For target validation, FAP expression in lepidic LC was confirmed by FAP immunohistochemistry. Methods: Hematoxylin and eosin staining and FAP immunohistochemistry of 24 tissue sections of lepidic LC from the local tissue bank were performed and analyzed visually. Clinically, 19 patients underwent static and dynamic 68Ga-FAPI-46 PET in addition to 18F-FDG PET based on individual clinical indications. Static PET data of both examinations were analyzed by determining SUVmax, SUVmean, and tumor-to-background ratio (TBR) against the blood pool, as well as relative parameters (68Ga-FAPI-46 in relation to18F-FDG), of histologically confirmed LC and benign lesions. Time-activity curves and dynamic parameters (time to peak, slope, k 1, k 2, k 3, and k 4) were extracted from dynamic 68Ga-FAPI-46 PET data. The sensitivity and specificity of all parameters were analyzed by calculating receiver-operating-characteristic curves. Results: FAP immunohistochemistry confirmed the presence of strongly FAP-positive cancer-associated fibroblasts in lepidic LC. LC showed markedly elevated 68Ga-FAPI-46 uptake, higher TBRs, and higher 68Ga-FAPI-46-to-18F-FDG ratios for all parameters than did benign pulmonary lesions. Dynamic imaging analysis revealed differential time-activity curves for LC and benign pulmonary lesions: initially increasing time-activity curves with a decent slope were typical of LC, and steadily decreasing time-activity curve indicated benign pulmonary lesions, as was reflected by a significantly increased time to peak and significantly smaller absolute values of the slope for LC. Relative 68Ga-FAPI-46-to-18F-FDG ratios regarding SUVmax and TBR showed the highest sensitivity and specificity for the discrimination of LC from benign pulmonary lesions. Conclusion: 68Ga-FAPI-46 PET is a powerful new tool for the assessment of single 18F-FDG-negative pulmonary lesions and may optimize patient stratification in this clinical setting.
Collapse
Affiliation(s)
- Manuel Röhrich
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany;
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
- German Center of Lung Research, Heidelberg, Germany
| | - Johanna Daum
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- German Center of Lung Research, Heidelberg, Germany
| | - Ewgenija Gutjahr
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna-Maria Spektor
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- German Center of Lung Research, Heidelberg, Germany
| | - Frederik M Glatting
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | - Jorge Hoppner
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- German Center of Lung Research, Heidelberg, Germany
| | - Cathrin Schroeter
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- German Center of Lung Research, Heidelberg, Germany
| | - Eleni Mavriopoulou
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- German Center of Lung Research, Heidelberg, Germany
| | - Kai Schlamp
- German Center of Lung Research, Heidelberg, Germany
- Department of Radiology, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Grott
- German Center of Lung Research, Heidelberg, Germany
- Department of Thoracic Surgery, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Eichhorn
- German Center of Lung Research, Heidelberg, Germany
- Department of Thoracic Surgery, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Claus Peter Heußel
- German Center of Lung Research, Heidelberg, Germany
- Department of Radiology, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans Ulrich Kauczor
- German Center of Lung Research, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Center for Interstitial and Rare Lung Diseases, Pneumology, and Respiratory Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Michael Kreuter
- Department of Pneumology, Mainz Center for Pulmonary Medicine, Mainz University, Mainz, Germany
- Medical Center and Department of Pulmonary, Critical Care, and Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Frederik Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- German Center of Lung Research, Heidelberg, Germany
- Department of Nuclear Medicine, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Institute for Radiation Sciences, Osaka University, Osaka, Japan
- German Cancer Consortium, Heidelberg, Germany; and
| | | | - Hauke Winter
- German Center of Lung Research, Heidelberg, Germany
- Department of Radiology, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- German Center of Lung Research, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
36
|
Li Y, Gao J, Li Y, Duan X, Shen C. Non-specific uptake of 18F-FAPI-04 in the pancreas and its related factors: a post-hoc analysis of an ongoing prospective clinical trial. Sci Rep 2024; 14:11141. [PMID: 38750103 PMCID: PMC11096165 DOI: 10.1038/s41598-024-62005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
This study aimed to analyze the characteristics of the non-specific uptake (NSU) of 18F-labeled fibroblast activation protein inhibitor (18F-FAPI) of the pancreas and investigate the related factors. Totally, 78 patients who underwent both 18F-fluorodeoxyglucose (FDG) and 18F-FAPI PET/CT examinations were divided into normal (n = 53) and NSU (n = 25) groups. The differences in general information, medical history, laboratory indexes and uptake were compared. Receiver operating characteristic (ROC) curves were used to analyze the optimal cut-off values. The correlations between 18F-FAPI-SUVmax and blood cell analysis, liver function indexes, tumor markers, and inflammatory indices were analyzed. The logistic regression model was used to estimate the independent factors. Both 18F-FAPI (4.48 ± 0.98 vs. 2.01 ± 0.53, t = 11.718, P < 0.05) and 18F-FDG (2.23 ± 0.42 vs. 2.02 ± 0.44, t = 2.036, P = 0.045) showed significantly higher in NSU group. Patients in the NSU group tended to be complicated with a history of drinking (P = 0.034), chronic liver diseases (P = 0.006), and surgery of gastrectomy (P = 0.004). ROC analysis showed cutoff values of 3.25 and 2.05 for 18F-FAPI and 18F-FDG in identifying the NSU. Patients in the NSU group showed less platelet count, higher platelet volume, higher total bilirubin, direct or indirect bilirubin (P < 0.05). Platelet count, platelet crit, large platelet ratio, aspartate aminotransferase (AST), α-L-fucosidase, and total, direct or indirect bilirubin were correlated with 18F-FAPI-SUVmax (P < 0.05). AST [1.099 (1.014, 1.192), P = 0.021] and total bilirubin [1.137 (1.035, 1.249), P = 0.007] were two independent factors in the step forward logistic regression, and platelet/% [1.079 (1.004, 1.160), P = 0.039] and total bilirubin [1.459 (1.016, 2.095), P = 0.041] were two independent factors in the step backward logistic regression for the prediction of pancreatic uptake of 18F-FAPI. 18F-FAPI-PET/CT was better than 18F-FDG in predicting the pancreatic NSU, and NSU is related to a history of drinking, chronic liver diseases, gastrectomy, heteromorphic platelet, and impaired liver function.
Collapse
Affiliation(s)
- Yan Li
- Department of PET/CT, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jungang Gao
- Department of PET/CT, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yang Li
- Department of PET/CT, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xiaoyi Duan
- Department of PET/CT, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Cong Shen
- Department of PET/CT, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
37
|
Zhao X, Zhang G, Chen J, Li Z, Shi Y, Li G, Zhai C, Nie L. A rationally designed nuclei-targeting FAPI 04-based molecular probe with enhanced tumor uptake for PET/CT and fluorescence imaging. Eur J Nucl Med Mol Imaging 2024; 51:1593-1604. [PMID: 38512485 DOI: 10.1007/s00259-024-06691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Fibroblast activation protein inhibitor (FAPI) -based probes have been widely studied in the diagnosis of various malignant tumors with positron emission tomography/computed tomography (PET/CT). However, current imaging studies of FAPI-based probes face challenges in rapid clearance rate and potential false-negative results. Furthermore, FAPI has been rarely explored in optical imaging. Considering this, further modifications are imperative to improve the properties of FAPI-based probes to address existing limitations and broaden their application scenarios. In this study, we rationally introduced methylene blue (MB) to FAPIs, thereby imparting nuclei-targeting and fluorescence imaging capabilities to the probes. Furthermore, we evaluated the added value of FAPI-based fluorescence imaging to traditional PET/CT, exploring the potential application of FAPI-based probes in intraoperative fluorescence imaging. METHODS A new FAPI-based probe, namely NOTA-FAPI-MB, was designed for both PET/CT and fluorescence imaging by conjugation of MB. The targeting efficacy of the probe was evaluated on fibroblast activation protein (FAP)-transfected cell line and human primary cancer-associated fibroblasts (CAFs). Subsequently, PET/CT and fluorescence imaging were conducted on tumor-bearing mice. The tumor detection and boundary delineation were assessed by fluorescence imaging of tissues from hepatocellular carcinoma (HCC) patients. RESULTS NOTA-FAPI-MB demonstrated exceptional targeting ability towards FAP-transfected cells and CAFs in comparison to NOTA-FAPI. This benefit arises from the cationic methylene blue (MB) affinity for anionic nucleic acids. PET/CT imaging of tumor-bearing mice revealed significantly higher tumor uptake of [18F]F-NOTA-FAPI-MB (standard uptake value of 2.20 ± 0.31) compared to [18F]F-FDG (standard uptake value of 1.66 ± 0.14). In vivo fluorescence imaging indicated prolonged retention at the tumor site, with retention lasting up to 24 h. In addition, the fluorescent probes enabled more precise lesion detection and tumor margin delineation than clinically used indocyanine green (ICG), achieving a 100.0% (6/6) tumor-positive rate for NOTA-FAPI-MB while 33.3% (2/6) for ICG. These findings highlighted the potential of NOTA-FAPI-MB in guiding intraoperative surgical procedures. CONCLUSIONS The NOTA-FAPI-MB was successfully synthesized, in which FAPI and MB simultaneously contributed to the targeting effect. Notably, the nuclear delivery mechanism of the probes improved intracellular retention time and targeting efficacy, broadening the imaging time window for fluorescence imaging. In vivo PET/CT demonstrated favorable performance of NOTA-FAPI-MB compared to [18F]F-FDG. This study highlights the significance of fluorescence imaging as an adjunct technique to PET/CT. Furthermore, the encouraging results obtained from the imaging of human HCC tissues hold promise for the potential application of NOTA-FAPI-MB in intraoperative fluorescent surgery guidance within clinical settings.
Collapse
Affiliation(s)
- Xingyang Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Guojin Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jiali Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zirong Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yusheng Shi
- Department of Radiation Oncology, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, China
| | - Guiting Li
- Research and Development Center, Guangdong Huixuan Pharmaceutical Technology Co., Ltd, Guangzhou, 510765, China
| | - Chuangyan Zhai
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
38
|
Mori Y, Kramer V, Novruzov E, Mamlins E, Röhrich M, Fernández R, Amaral H, Soza-Ried C, Monje B, Sabbagh E, Florenzano M, Giesel FL, Undurraga Á. Initial results with [ 18F]FAPI-74 PET/CT in idiopathic pulmonary fibrosis. Eur J Nucl Med Mol Imaging 2024; 51:1605-1611. [PMID: 38117298 PMCID: PMC11043111 DOI: 10.1007/s00259-023-06564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial lung disease with a poor prognosis. 68Ga-labeled FAP ligands exhibited highly promising results due to the crucial role of activated fibroblasts in fibrosis imaging of the lung. However, 18F-labeled FAP ligands might provide qualitatively much higher imaging results with accompanying economic benefits due to large-scale production. Thus, we sought to investigate the potential of [18F]FAPI-74 prospectively in a small patient cohort. METHODS Eight patients underwent both [18F]FAPI-74-PET/CT and HRCT scans and were then compared with a control group without any fibrosing pulmonary disease. The tracer uptake of fibrotic lung areas was analyzed in synopsis with radiological and clinical parameters. RESULTS We observed a positive correlation between the fibrotic active volume, the Hounsfield scale, as well as the vital and diffusing capacity of the lung. CONCLUSION The initial results confirm our assumption that [18F]FAPI-74 offers a viable non-invasive assessment method for pulmonary fibrotic changes in patients with IPF.
Collapse
Affiliation(s)
- Yuriko Mori
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - Vasko Kramer
- Center for Nuclear Medicine and PET/CT, PositronMed, 7501068, Providencia, Santiago, Chile
- Positronpharma SA, 7500921, Providencia, Santiago, Chile
| | - Emil Novruzov
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany
| | - Eduards Mamlins
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany
| | - Manuel Röhrich
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120, Heidelberg, Germany
- Department of Nuclear Medicine, Mainz University Hospital, Langenbeckstraße 1, 55131, Mainz, Germany
| | - René Fernández
- Center for Nuclear Medicine and PET/CT, PositronMed, 7501068, Providencia, Santiago, Chile
| | - Horacio Amaral
- Center for Nuclear Medicine and PET/CT, PositronMed, 7501068, Providencia, Santiago, Chile
- Positronpharma SA, 7500921, Providencia, Santiago, Chile
| | - Cristian Soza-Ried
- Center for Nuclear Medicine and PET/CT, PositronMed, 7501068, Providencia, Santiago, Chile
- Positronpharma SA, 7500921, Providencia, Santiago, Chile
| | - Barbara Monje
- Center for Nuclear Medicine and PET/CT, PositronMed, 7501068, Providencia, Santiago, Chile
| | | | - Matías Florenzano
- Instituto Nacional del Tórax, Santiago, Chile
- Clínica Universidad de los Andes, Santiago, Chile
| | - Frederik L Giesel
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany
- Institute for Radiation Sciences, Osaka University, Osaka, Japan
| | - Álvaro Undurraga
- Instituto Nacional del Tórax, Santiago, Chile
- Universidad de Chile, Santiago, Chile
| |
Collapse
|
39
|
Matsusaka Y, Werner RA, Serfling SE, Buck AK, Kosmala A, Sasaki T, Weich A, Higuchi T. Evaluating the Patterns of FAPI Uptake in the Shoulder Joint: a Preliminary Study Comparing with FDG Uptake in Oncological Studies. Mol Imaging Biol 2024; 26:294-300. [PMID: 38177615 DOI: 10.1007/s11307-023-01893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Fibroblast activation protein inhibitor (FAPI) targeting PET has been introduced as a novel molecular imaging modality for visualizing cancer-associated fibroblasts. There have also been reports suggesting incidental findings of localized accumulation in the shoulder joints. However, further characterization in a larger patient cohort is still lacking. METHODS 77 consecutive patients (28 females; mean age, 63.1 ± 11.6) who underwent Ga-68 FAPI-04 PET/CT for diagnosis of solid tumors were included. The incidence and localization of tracer uptake in shoulder joints were investigated and compared with available F-18 FDG scans serving as reference. RESULTS Ga-68 FAPI-04 uptake was evaluated in 77 patients (154 shoulder joints), of whom 54 subjects (108 shoulder joints) also had available F-18 FDG scans for head-to-head comparison. On FAPI-targeted imaging, 67/154 shoulders (43.5%) demonstrated increased radiotracer accumulation in target lesions, which were distributed as follows: acromioclavicular (AC) joints in 25/67 (37.3%), followed by glenohumeral and subacromial (GH + SA) joints in 23/67 (34.3%), or both (AC and GH + SA joints) in the remaining 19/67 (28.4%). Ga-68 FAPI-04 correlated with quantified F-18 FDG uptake (r = 0.69, p < 0.0001). Relative to the latter radiotracer, however, in-vivo FAP expression in the shoulders was significantly increased (Ga-68 FAPI-04, 4.7 ± 3.2 vs F-18 FDG, 3.6 ± 1.3, p < 0.001). CONCLUSION Our study revealed focal accumulation of Ga-68 FAPI-04 in the shoulders, particularly in the AC joints, with higher uptake compared to the inflammatory-directed PET radiotracer F-18 FDG in oncological studies. As a result, further trials are warranted to investigate the potential of FAPI-directed molecular imaging in identifying chronic remodeling in shoulder joints. This could have implications for initiating anti-FAP targeted photodynamic therapy based on PET signal strength.
Collapse
Affiliation(s)
- Yohji Matsusaka
- Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of Würzburg, Oberdürrbacher Str. 6, ZIM House A4, 97080, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of Würzburg, Oberdürrbacher Str. 6, ZIM House A4, 97080, Würzburg, Germany
- Division of Nuclear Medicine and Molecular Imaging, The Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sebastian E Serfling
- Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of Würzburg, Oberdürrbacher Str. 6, ZIM House A4, 97080, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of Würzburg, Oberdürrbacher Str. 6, ZIM House A4, 97080, Würzburg, Germany
| | - Aleksander Kosmala
- Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of Würzburg, Oberdürrbacher Str. 6, ZIM House A4, 97080, Würzburg, Germany
| | - Takanori Sasaki
- Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of Würzburg, Oberdürrbacher Str. 6, ZIM House A4, 97080, Würzburg, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Alexander Weich
- Internal Medicine II and ENETS CoE NET-Zentrum Würzburg, Gastroenterology, University Hospital Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of Würzburg, Oberdürrbacher Str. 6, ZIM House A4, 97080, Würzburg, Germany.
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
40
|
Zhang Z, Tao J, Qiu J, Cao Z, Huang H, Xiao J, Zhang T. From basic research to clinical application: targeting fibroblast activation protein for cancer diagnosis and treatment. Cell Oncol (Dordr) 2024; 47:361-381. [PMID: 37726505 DOI: 10.1007/s13402-023-00872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE This study aims to review the multifaceted roles of a membrane protein named Fibroblast Activation Protein (FAP) expressed in tumor tissue, including its molecular functionalities, regulatory mechanisms governing its expression, prognostic significance, and its crucial role in cancer diagnosis and treatment. METHODS Articles that have uncovered the regulatory role of FAP in tumor, as well as its potential utility within clinical realms, spanning diagnosis to therapeutic intervention has been screened for a comprehensive review. RESULTS Our review reveals that FAP plays a pivotal role in solid tumor progression by undertaking a multitude of enzymatic and nonenzymatic roles within the tumor stroma. The exclusive presence of FAP within tumor tissues highlights its potential as a diagnostic marker and therapeutic target. The review also emphasizes the prognostic significance of FAP in predicting tumor progression and patient outcomes. Furthermore, the emerging strategies involving FAPI inhibitor (FAPI) in cancer research and clinical trials for PET/CT diagnosis are discussed. And targeted therapy utilizing FAP including FAPI, chimeric antigen receptor (CAR) T cell therapy, tumor vaccine, antibody-drug conjugates, bispecific T-cell engagers, FAP cleavable prodrugs, and drug delivery system are also introduced. CONCLUSION FAP's intricate interactions with tumor cells and the tumor microenvironment make it a promising target for diagnosis and treatment. Promising strategies such as FAPI offer potential avenues for accurate tumor diagnosis, while multiple therapeutic strategies highlight the prospects of FAP targeting treatments which needs further clinical evaluation.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jinxin Tao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhe Cao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hua Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jianchun Xiao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
41
|
Li T, Zhang J, Yan Y, Tan M, Chen Y. Applications of FAPI PET/CT in the diagnosis and treatment of breast and the most common gynecologic malignancies: a literature review. Front Oncol 2024; 14:1358070. [PMID: 38505595 PMCID: PMC10949888 DOI: 10.3389/fonc.2024.1358070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
The fibroblast activating protein (FAP) is expressed by some fibroblasts found in healthy tissues. However, FAP is overexpressed in more than 90% of epithelial tumors, including breast and gynecological tumors. As a result, the FAP ligand could be used as a target for diagnosis and treatment purposes. Positron emission tomography/computed tomography (PET/CT) is a hybrid imaging technique commonly used to locate and assess the tumor's molecular and metabolic functions. PET imaging involves the injection of a radiotracer that tends to accumulate more in metabolically active lesions such as cancer. Several radiotracers have been developed to target FAP in PET/CT imaging, such as the fibroblast-activation protein inhibitor (FAPI). These tracers bind to FAP with high specificity and affinity, allowing for the non-invasive detection and quantification of FAP expression in tumors. In this review, we discussed the applications of FAPI PET/CT in the diagnosis and treatment of breast and the most common gynecologic malignancies. Radiolabeled FAPI can improve the detection, staging, and assessment of treatment response in breast and the most common gynecologic malignancies, but the problem with normal hormone-responsive organs remains insurmountable. Compared to the diagnostic applications of FAPI, further research is needed for future therapeutic applications.
Collapse
Affiliation(s)
- Tengfei Li
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Jintao Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanzhuo Yan
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Min Tan
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
42
|
Boschi S, Castellucci P, Nanni C. Theragnostic: radiopharmaceuticals and nuclear medicine as viewed through Hegel's eyes. Eur J Nucl Med Mol Imaging 2024; 51:942-946. [PMID: 38114617 DOI: 10.1007/s00259-023-06570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Affiliation(s)
- Stefano Boschi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Paolo Castellucci
- Nuclear Medicine Department, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine Department, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
43
|
Qiao K, Qin X, Fu S, Ren J, Jia J, Hu X, Tao Y, Yuan S, Wei Y. Value of [ 18F]AlF-NOTA-FAPI-04 PET/CT for differential diagnosis of malignant and various inflammatory lung lesions: comparison with [ 18F]FDG PET/CT. Eur Radiol 2024; 34:1948-1959. [PMID: 37670186 DOI: 10.1007/s00330-023-10208-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVE Uptake of the imaging tracers [18F]AlF-NOTA-FAPI-04 and [18F]FDG varies in some inflammatory lesions, which may result in false-positive findings for malignancy on PET/CT. Our aim was to compare the [18F]AlF-NOTA-FAPI-04 and [18F]FDG PET/CT imaging features of malignant and various inflammatory lung lesions and to analyze their value for differential diagnosis. METHODS We retrospectively analyzed [18F]AlF-NOTA-FAPI-04 PET/CT scans from 67 cancer patients taken between December 2020 and January 2022, as well as the scans of 32 patients who also underwent [18F]FDG PET/CT imaging. The maximum and mean standardized uptake values (SUVmax and SUVmean, respectively) and lesion-to-background ratio (LBR) were calculated. The predictive capabilities of semiquantitative PET/CT parameters were analyzed by receiver operating characteristic curve analysis. RESULTS A total of 70 inflammatory and 37 malignant lung lesions were evaluated by [18F]AlF‑NOTA‑FAPI‑04 PET/CT, and 33 inflammatory and 26 malignant lung lesions also were evaluated by [18F]FDG PET/CT. Inflammatory lesions exhibited lower [18F]AlF-NOTA-FAPI-04 and [18F]FDG uptake compared to malignant lesions, with statistically significant differences in SUVmax, SUVmean, and LBR (all p < 0.001). [18F]AlF-NOTA-FAPI-04 uptake also varied among different types of inflammatory lesions (SUVmax, p = 0.005; SUVmean, p = 0.008; LBR, p < 0.001), with the highest uptake observed in bronchiectasis with infection, followed by postobstructive pneumonia, and the lowest in pneumonia. [18F]FDG uptake was higher in postobstructive pneumonia than in pneumonia (SUVmax, p = 0.009; SUVmean, p = 0.016; LBR, p = 0.004). CONCLUSION [18F]AlF-NOTA-FAPI-04/[18F]FDG PET/CT showed significantly lower uptake in inflammatory lesions than malignancies as well as variation in different types of inflammatory lesions, and thus, may be valuable for distinguishing malignant and various inflammatory findings. CLINICAL RELEVANCE STATEMENT Our study confirmed that the uptake of [18F]AlF-NOTA-FAPI-04/[18F]FDG PET/CT in inflammatory and malignant lung lesions is different, which is beneficial to distinguish inflammatory and malignant lung lesions in clinic. KEY POINTS • Malignant and different inflammatory lung lesions showed varying degrees of uptake of [18F]AlF-NOTA-FAPI-04 and [18F]FDG. • Inflammatory lung lesions showed significantly less uptake than malignancies, and uptake varied among different types of inflammatory lesions. • Both types of PET/CT could differentiate malignant and various inflammatory lung findings.
Collapse
Affiliation(s)
- Kailin Qiao
- Shandong University Cancer Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xueting Qin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Shuai Fu
- Department of Respiratory Medicine II, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiazhong Ren
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jing Jia
- Shandong University Cancer Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xinying Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yuanyuan Tao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Shuanghu Yuan
- Shandong University Cancer Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Yuchun Wei
- Shandong University Cancer Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| |
Collapse
|
44
|
Hirmas N, Hamacher R, Sraieb M, Kessler L, Pabst KM, Barbato F, Lanzafame H, Kasper S, Nader M, Kesch C, von Tresckow B, Hautzel H, Aigner C, Glas M, Stuschke M, Kümmel S, Harter P, Lugnier C, Uhl W, Hadaschik B, Grünwald V, Siveke JT, Herrmann K, Fendler WP. Diagnostic Accuracy of 68Ga-FAPI Versus 18F-FDG PET in Patients with Various Malignancies. J Nucl Med 2024; 65:372-378. [PMID: 38331453 DOI: 10.2967/jnumed.123.266652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
To assess the diagnostic accuracy of 68Ga-labeled fibroblast activation protein inhibitor (FAPI) and 18F-labeled FDG PET for the detection of various tumors, we performed a head-to-head comparison of both imaging modalities across a range of tumor entities as part of our ongoing 68Ga-FAPI PET observational trial. Methods: The study included 115 patients with 8 tumor entities who received imaging with 68Ga-FAPI for tumor staging or restaging between October 2018 and March 2022. Of those, 103 patients received concomitant imaging with 68Ga-FAPI and 18F-FDG PET and had adequate lesion validation for accuracy analysis. Each scan was evaluated for the detection of primary tumor, lymph nodes, and visceral and bone metastases. True or false positivity and negativity to detected lesions was assigned on the basis of histopathology from biopsies or surgical excision, as well as imaging validation. Results: 68Ga-FAPI PET revealed higher accuracy than 18F-FDG PET in the detection of colorectal cancer (n = 14; per-patient, 85.7% vs. 78.6%; per-region, 95.6% vs. 91.1%) and prostate cancer (n = 22; per-patient, 100% vs. 90.9%; per-region, 96.4% vs. 92.7%). 68Ga-FAPI PET and 18F-FDG PET had comparable per-patient accuracy in detecting breast cancer (n = 16, 100% for both) and head and neck cancers (n = 10, 90% for both modalities). 68Ga-FAPI PET had lower per-patient accuracy than 18F-FDG PET in cancers of the bladder (n = 12, 75% vs. 100%) and kidney (n = 10, 80% vs. 90%), as well as lymphoma (n = 9, 88.9% vs. 100%) and myeloma (n = 10, 80% vs. 90%). Conclusion: 68Ga-FAPI PET demonstrated higher diagnostic accuracy than 18F-FDG PET in the diagnosis of colorectal cancer and prostate cancer, as well as comparable diagnostic performance for cancers of the breast and head and neck. Accuracy and impact on management will be further assessed in an ongoing prospective interventional trial (NCT05160051).
Collapse
Affiliation(s)
- Nader Hirmas
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
| | - Rainer Hamacher
- Department of Medical Oncology, West German Cancer Center, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Miriam Sraieb
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lukas Kessler
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Francesco Barbato
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Helena Lanzafame
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Kasper
- Department of Medical Oncology, West German Cancer Center, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Nader
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Claudia Kesch
- Department of Urology, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hubertus Hautzel
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Thoracic Endoscopy, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiation Therapy, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sherko Kümmel
- Breast Unit, Kliniken Essen-Mitte, Essen, Germany
- Department of Gynecology with Breast Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Evangelische Kliniken Essen-Mitte, Essen, Germany
| | - Celine Lugnier
- Department of Hematology and Oncology with Palliative Care, Ruhr University Bochum, Bochum, Germany
| | - Waldemar Uhl
- Department of General and Visceral Surgery, Ruhr University Bochum, Bochum, Germany
| | - Boris Hadaschik
- Department of Urology, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Viktor Grünwald
- Department of Urology, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany; and
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK partner site Essen), German Cancer Research Center, Heidelberg, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
45
|
Shangguan C, Yang C, Shi Z, Miao Y, Hai W, Shen Y, Qu Q, Li B, Mi J. 68Ga-FAPI-04 Positron Emission Tomography Distinguishes Malignancy From 18F-FDG-Avid Colorectal Lesions. Int J Radiat Oncol Biol Phys 2024; 118:285-294. [PMID: 37634891 DOI: 10.1016/j.ijrobp.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE Lesions with a high uptake of 18F-fluorodeoxyglucose (18F-FDG) on positron emission tomography-computed tomography (PET-CT) can be benign and malignant. New radiotracers, such as the gallium 68 (68Ga)-labeled fibroblast activation protein inhibitor 4 (FAPI-04), could be used to diagnose colorectal carcinoma. This study aimed to evaluate the efficacy of 68Ga-FAPI-04 PET in differentiating benign from malignant 18F-FDG-avid colorectal lesions. METHODS AND MATERIALS An azoxymethane/dextran sodium sulfate (AOM/DSS)-induced rat colorectal tumor model was developed. Double-tracer 68Ga-FAPI-04 and 18F-FDG PET-CT were applied in the rat model and 22 patients. The PET-CT data were analyzed with enteroscopy, histopathologic observations, immunohistochemistry (IHC) staining, and radioautography results. One hundred seventy-two patients with pathologically confirmed colorectal lesions were enrolled in FAP IHC staining. RESULTS We found that 68Ga-FAPI-04 PET-CT imaging accurately distinguished the malignant from benign inflammatory lesions in an AOM/DSS-induced rat colorectal tumor model. Of 22 patients with gastric cancer but without colorectal carcinoma, 8 had 18F-FDG uptake in the colorectum, but 68Ga-FAPI-04 PET was negative in these sites. An inflammatory lesion or adenoma did not interfere with 68Ga-FAPI-04 PET imaging. Among the 18F-FDG-avid colorectal lesions, 80 of 94 pathologically malignant lesions (85.1%) were FAP-positive, and only 16 of the 78 premalignant or benign lesions (20.5%) had a weak 68Ga-FAPI-04 uptake. CONCLUSIONS 68Ga-FAPI-04 PET-CT could be used to distinguish between benign and malignant 18F-FDG-avid colorectal lesions.
Collapse
Affiliation(s)
- Chengfang Shangguan
- Department of Oncology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- Department of Otolaryngology & Head and Neck Surgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaopeng Shi
- Basic Medical Institute, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Miao
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shen
- Research Center for Experimental Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Qu
- Department of Oncology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Biao Li
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Mi
- Basic Medical Institute, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
46
|
Wegen S, Weindler J, Voltin CA, van Heek L, Schomäcker K, Fischer T, Marnitz S, Kobe C, Drzezga A, Roth KS. Dual-tracer PET/CT protocol with [ 18F]FDG and [ 68Ga]Ga-FAPI-46 outperforms single-tracer PET/CT with [ 18F]FDG in different cancer types, resulting in larger functional and gross tumor volume. Strahlenther Onkol 2024; 200:28-38. [PMID: 37584717 PMCID: PMC10784364 DOI: 10.1007/s00066-023-02117-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE Fibroblast activation protein (FAP) detected by positron-emission tomography (PET) using fibroblast activation protein inhibitor (FAPI) appears to be a promising target for cancer imaging, staging, and therapy, providing added value and strength as a complement to [18F]fluorodeoxyglucose (FDG) in cancer imaging. We recently introduced a combined single-session/dual-tracer protocol with [18F]FDG and [68Ga]Ga-FAPI for cancer imaging and staging. Malignant tissue visualization and target-to-background uptake ratios (TBRs) as well as functional tumor volume (FTV) and gross tumor volume (GTV) were assessed in the present study with single-tracer [18F]FDG PET/computed tomography (CT) and with dual-tracer [18F]FDG&[68Ga]Ga-FAPI-46 PET/CT. METHODS A total of 19 patients with head and neck and gastrointestinal cancers received initial [18F]FDG-PET/CT followed by dual-tracer PET/CT after additional injection of [68Ga]Ga-FAPI-46 during the same medical appointment (on average 13.9 ± 12.3 min after injection of [18F]FDG). Two readers visually compared detection rate of malignant tissue, TBR, FTV, and GTV for tumor and metastatic tissue in single- and dual-tracer PET/CT. RESULTS The diagnostic performance of dual-tracer compared to single-tracer PET/CT was equal in 13 patients and superior in 6 patients. The mean TBRs of tumors and metastases in dual-tracer PET/CTs were mostly higher compared to single-tracer PET/CT using maximal count rates (CRmax). GTV and FTV were significantly larger when measured on dual-tracer compared to single-tracer PET/CT. CONCLUSION Dual-tracer PET/CT with [18F]FDG and [68Ga]Ga-FAPI-46 showed better visualization due to a generally higher TBR and larger FTV and GTV compared to [18F]FDG-PET/CT in several tumor entities, suggesting that [68Ga]Ga-FAPI-46 provides added value in pretherapeutic staging.
Collapse
Affiliation(s)
- Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Jasmin Weindler
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Conrad-Amadeus Voltin
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Lutz van Heek
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Klaus Schomäcker
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Thomas Fischer
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Simone Marnitz
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Katrin S Roth
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
47
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
48
|
Vetrone L, Fortunati E, Castellucci P, Fanti S. Future Imaging of Prostate Cancer: Do We Need More Than PSMA PET/CT? Semin Nucl Med 2024; 54:150-162. [PMID: 37394289 DOI: 10.1053/j.semnuclmed.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
In the setting of prostate cancer (PCa), many different imaging modalities are available to correctly assess staging, restaging, treatment response and radio-ligand therapy recruitment. The introduction of fluoride or gallium-labelled prostate specific membrane antigen (PSMA) made a revolution in PCa management, also due to its possible theragnostic use. Nowadays PSMA-PET/CT is a fundamental tool for staging and restaging PCa. This review discusses the latest findings in PSMA imaging in PCa patients and the impact of PSMA imaging on the patients' management in primary staging, biochemical recurrence and in advanced prostate cancer, always keeping in mind the important theragnostic role of PSMA. This review tries also to assess the current role of other radiopharmaceuticals as Choline, FACBC or other radiotracers like gastrin-releasing peptide receptor targeting tracers and FAPI in different PCa settings.
Collapse
Affiliation(s)
- Luigia Vetrone
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Emilia Fortunati
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - Paolo Castellucci
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy; Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
49
|
Demmert TT, Pomykala KL, Lanzafame H, Pabst KM, Lueckerath K, Siveke J, Umutlu L, Hautzel H, Hamacher R, Herrmann K, Fendler WP. Oncologic Staging with 68Ga-FAPI PET/CT Demonstrates a Lower Rate of Nonspecific Lymph Node Findings Than 18F-FDG PET/CT. J Nucl Med 2023; 64:1906-1909. [PMID: 37734836 DOI: 10.2967/jnumed.123.265751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
Nonspecific lymph node uptake on 18F-FDG PET/CT imaging is a significant pitfall for tumor staging. Fibroblast activation protein α expression on cancer-associated fibroblasts and some tumor cells is less sensitive to acute inflammatory stimuli, and fibroblast activation protein-directed PET may overcome this limitation. Methods: Eighteen patients from our prospective observational study underwent 18F-FDG and 68Ga fibroblast activation protein inhibitor (FAPI) PET/CT scans within a median of 2 d (range, 0-22 d). Lymph nodes were assessed on histopathology and compared with SUV measurements. Results: On a per-patient basis, lymph nodes were rated malignant in 10 (56%) versus 7 (39%) patients by 18F-FDG PET/CT versus 68Ga-FAPI PET/CT scans, respectively, with a respective accuracy of 55% versus 94% for true lymph node metastases. Five of 6 (83%) false-positive nodes on the 18F-FDG PET/CT scans were rated true negative by the 68Ga-FAPI PET/CT scans. On a per-lesion basis, tumor detection rates were similar (85/89 lesions, 96%). Conclusion: 68Ga-FAPI PET/CT imaging demonstrated higher accuracy for true nodal involvement and therefore has the potential to replace 18F-FDG PET/CT imaging for cancer staging.
Collapse
Affiliation(s)
- Tristan T Demmert
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen, Essen, Germany;
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| | - Kelsey L Pomykala
- Institute for AI in Medicine, University Medicine Essen, Essen, Germany
| | - Helena Lanzafame
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| | - Katharina Lueckerath
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| | - Jens Siveke
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; and
| | - Hubertus Hautzel
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| | - Rainer Hamacher
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| |
Collapse
|
50
|
Kessler L, Hirmas N, Pabst KM, Hamacher R, Ferdinandus J, Schaarschmidt BM, Milosevic A, Nader M, Umutlu L, Uhl W, Reinacher-Schick A, Lugnier C, Witte D, Niedergethmann M, Herrmann K, Fendler WP, Siveke JT. 68Ga-Labeled Fibroblast Activation Protein Inhibitor ( 68Ga-FAPI) PET for Pancreatic Adenocarcinoma: Data from the 68Ga-FAPI PET Observational Trial. J Nucl Med 2023; 64:1910-1917. [PMID: 37973185 DOI: 10.2967/jnumed.122.264827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/27/2023] [Indexed: 11/19/2023] Open
Abstract
The fibroblast activation protein (FAP) is highly expressed on carcinoma-associated fibroblasts in the stroma of pancreatic cancer and thus is a promising target for imaging and therapy. Preliminary data on PET imaging with radiolabeled FAP inhibitors (FAPIs) demonstrate superior tumor detection. Here we assess the accuracy of FAP-directed PET in patients with pancreatic cancer. Methods: Of 64 patients with suspected or proven pancreatic cancer, 62 (97%) were included in the data analysis of the 68Ga-FAPI PET observational trial (NCT04571086). All of these patients underwent contrast-enhanced CT, and 38 patients additionally underwent 18F-FDG PET. The primary study endpoint was the association of 68Ga-FAPI PET uptake intensity and histopathologic FAP expression. Secondary endpoints were detection rate, diagnostic performance, interreader reproducibility, and change in management. Datasets were interpreted by 2 masked readers. Results: The primary endpoint was met: The association between 68Ga-FAPI SUVmax and histopathologic FAP expression was significant (Spearman r, 0.48; P = 0.04). For histopathology-validated lesions, 68Ga-FAPI PET showed high sensitivity and positive predictive values (PPVs) on per-patient (sensitivity, 100%; PPV, 96.3%) and per-region (sensitivity, 100%; PPV, 97.0%) bases. In a head-to-head comparison versus 18F-FDG or contrast-enhanced CT, 68Ga-FAPI detected more tumor on a per-lesion (84.7% vs. 46.5% vs. 52.9%), per-patient (97.4% vs. 73.7% vs. 92.1%), or per-region (32.6% vs. 18.8% vs. 23.7%) basis, respectively. 68Ga-FAPI PET readers showed substantial overall agreement on the basis of the Fleiss κ: primary κ, 0.77 (range, 0.66-0.88). Minor and major changes in clinical management occurred in 5 patients (8.4%) after 68Ga-FAPI PET. Conclusion: We confirmed an association of 68Ga-FAPI PET SUVmax and histopathologic FAP expression in pancreatic cancer patients. Additionally, we found high detection rate and diagnostic accuracy, superior to those of 18F-FDG PET/CT. 68Ga-FAPI might become a powerful diagnostic tool for pancreatic cancer work-up.
Collapse
Affiliation(s)
- Lukas Kessler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Nader Hirmas
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Rainer Hamacher
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - Justin Ferdinandus
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Benedikt M Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Aleksandar Milosevic
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Michael Nader
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Waldemar Uhl
- Department of General and Visceral Surgery, St. Josef Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Anke Reinacher-Schick
- Department of Hematology and Oncology with Palliative Care, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Celine Lugnier
- Department of General and Visceral Surgery, Alfried Krupp Hospital, Essen, Germany
| | - David Witte
- Department of General and Visceral Surgery, Alfried Krupp Hospital, Essen, Germany
| | - Marco Niedergethmann
- Department of General and Visceral Surgery, Alfried Krupp Hospital, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Jens T Siveke
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany;
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; and
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|