1
|
Zhang Q, Hu Z, Zhao H, Du F, Lv C, Peng T, Zhang Y, Zhang B, Liu J, Wang C. Development and evaluation of 18F-labeled novel radiopharmaceuticals for PET imaging of fibroblast activation protein expressing tumors. Bioorg Chem 2025; 160:108445. [PMID: 40250254 DOI: 10.1016/j.bioorg.2025.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025]
Abstract
This study aimed to develop and evaluate two novel 18F-labeled radiopharmaceuticals, [18F]AlF-NOTA-De-FAPI and [18F]AlF-NOTA-Glu-FAPI, for Positron Emission Tomography (PET) imaging of tumors expressing fibroblast activation protein. Molecular docking simulations predicted the binding affinities of NOTA-De-FAPI and NOTA-Glu-FAPI with FAP. The radiotracers were synthesized and evaluated for radiochemical yield, purity, and molar activity. Surface plasmon resonance analysis measured binding kinetics. In vitro and in vivo stability and distribution coefficients were assessed. PET/CT imaging and ex vivo biodistribution studies were conducted in U87MG tumor-bearing mice. A pilot clinical study compared [18F]AlF-NOTA-De-FAPI with [68Ga]Ga-DOTA-FAPI-04 and [18F]FDG in a liver cancer patient. Molecular docking simulations showed that NOTA-De-FAPI had a slightly higher binding affinity for FAP. The radiotracers were synthesized with high purity and molar activity. SPR analysis confirmed higher binding affinity of NOTA-De-FAPI (KD = 86.35 pM) compared to NOTA-Glu-FAPI (KD = 187 pM). In PET/CT imaging, [18F]AlF-NOTA-De-FAPI demonstrated higher tumor uptake in U87MG tumor-bearing mice, with a peak SUVmax of 2.71 ± 0.39 at 1 h post-injection. Ex vivo biodistribution studies showed that [18F]AlF-NOTA-De-FAPI had a tumor uptake of 9.16 ± 0.49 %ID/g at 1 h post-injection, significantly higher than [18F]AlF-NOTA-Glu-FAPI (6.60 ± 0.82 %ID/g). In the clinical study, [18F]AlF-NOTA-De-FAPI showed strong uptake in the primary tumor but exhibited higher physiological uptake in salivary glands, thyroid, and pancreas compared to [68Ga]Ga-DOTA-FAPI-04. [18F]AlF-NOTA-De-FAPI demonstrated potential as a FAP-targeting tracer with high specific uptake and favorable tumor-to-normal tissue ratios in preclinical models. However, clinical evaluation revealed limitations, such as high physiological uptake in certain glands and lower tumor uptake compared to [68Ga]Ga-DOTA-FAPI-04. Further optimization and clinical validation are needed.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 210000, China; MOE Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Centre of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Zhoumi Hu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 210000, China
| | - Haitao Zhao
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 210000, China
| | - Fuqiang Du
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 210000, China
| | - Chun Lv
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 210000, China
| | - Tukang Peng
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 210000, China
| | - Yukai Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 210000, China; MOE Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Centre of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Bowu Zhang
- MOE Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Centre of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 210000, China.
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 210000, China.
| |
Collapse
|
2
|
Bian L, Liu X, Wang X, Sun Y, Du X, Gu B, Xu X, Song S. Preclinical and First-In-Human Imaging of Novel [ 18F]F-FAPI-FUSCC-07 Tracer: Comparative Prospective Study with [ 18F]F-FAPI-42 and [ 18F]F-FAPI-74. Mol Pharm 2025; 22:1624-1632. [PMID: 39873120 DOI: 10.1021/acs.molpharmaceut.4c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
This study aimed to develop and evaluate a novel fibroblast activation protein (FAP)-specific tracer, fluorine-18-labeled fibroblast activation protein inhibitor-FUSCC-07 ([18F]F-FAPI-FUSCC-07), for use in both preclinical and clinical settings. Preclinical evaluations were conducted to assess the stability and partition coefficient of [18F]F-FAPI-FUSCC-07. Experiments involving human glioma U87MG cells demonstrated its cellular uptake and inhibitory properties. Further investigations included biodistribution analysis and micropositron emission tomography/computed tomography (PET/CT) imaging in U87MG tumor-bearing mice, which revealed strong tumor uptake and prolonged retention. In the clinical setting, [18F]F-FAPI-FUSCC-07 was compared directly with [18F]F-FAPI-42 and [18F]F-FAPI-74 to evaluate its performance in imaging various cancers. By expanding the patient cohort, the study provided a more comprehensive assessment of tracer uptake in lesions. The findings demonstrated that [18F]F-FAPI-FUSCC-07 exhibited high stability in phosphate-buffered saline and fetal bovine serum, as well as hydrophilic properties. Clinical imaging results indicated significantly higher tumor uptake and improved target-to-blood pool ratios compared to the other tracers. Moreover, PET imaging of patients with diverse cancers showed that [18F]F-FAPI-FUSCC-07 consistently provided superior image contrast in most cases. These results represent the first clinical evidence supporting the feasibility of [18F]F-FAPI-FUSCC-07 for imaging across multiple tumor types. The study highlights its potential as a promising tracer for FAPI PET imaging, offering enhanced diagnostic precision and broader applicability in oncology.
Collapse
Affiliation(s)
- Linjie Bian
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Xinyu Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China
| | - Xiao Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China
| | - Yuyun Sun
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Xinyue Du
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University; Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Zhang Q, Hu Z, Zhao H, Du F, Lv C, Peng T, Zhang Y, Zhang B, Liu J, Wang C. Design, Synthesis, and Biological Evaluation of a Novel [ 18F]AlF-H 3RESCA-FAPI Radiotracer Targeting Fibroblast Activation Protein. Pharmaceuticals (Basel) 2025; 18:277. [PMID: 40006089 PMCID: PMC11859916 DOI: 10.3390/ph18020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) are key contributors to the tumorigenic process, with fibroblast activation protein (FAP) overexpressed on CAFs in numerous epithelial carcinomas. FAP represents a promising target for tumor imaging and therapy. We aimed to develop a novel [18F]AlF-H3RESCA-FAPI radiotracer with a high labeling yield at room temperature for positron emission tomography (PET) imaging of FAP-expressing tumors. Methods: The H3RESCA-FAPI chelator was synthesized and radiolabeled with [18F]AlF. Its radiotracer binding affinity to FAP was assessed using surface plasmon resonance (SPR). Its in vitro stability, plasma clearance, and biodistribution were evaluated. PET imaging was performed in U87MG tumor-bearing mice, with a blocking study to assess tracer specificity. Results: The [18F]AlF-H3RESCA-FAPI radiotracer demonstrated a high binding affinity to FAP (KD < 10.09 pM) and favorable radiochemical yields (92.4 ± 2.4%) with >95% radiochemical purity. In vitro and in vivo studies showed good stability and rapid clearance from non-target tissues. PET imaging revealed specific tumor uptake, which was significantly reduced by co-injection with unlabeled DOTA-FAPI-04. Conclusions: [18F]AlF-H3RESCA-FAPI is a promising radiotracer for PET imaging of FAP-expressing tumors. Further optimization of its pharmacokinetics could make it a potential candidate for clinical translation.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
- MOE Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Centre of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China;
| | - Zhoumi Hu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
| | - Haitao Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
| | - Fuqiang Du
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
| | - Chun Lv
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
| | - Tukang Peng
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
| | - Yukai Zhang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
- MOE Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Centre of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China;
| | - Bowu Zhang
- MOE Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Centre of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China;
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
| | - Cheng Wang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
| |
Collapse
|
4
|
Zhou H, Zhong J, Liu Y, Peng S, Yan Q, Wang L, Zhong Y, Hu K. Development of ibuprofen-modified fibroblast activation protein radioligands to improve cancer therapy. Eur J Med Chem 2025; 283:117115. [PMID: 39626520 DOI: 10.1016/j.ejmech.2024.117115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025]
Abstract
FAP-targeting radioligands are used in cancer diagnosis and therapy, but their effectiveness is limited by poor tumor uptake and retention. This study aimed to develop new radioligands using an optimized amino acid linker and ibuprofen for better pharmacokinetics. Three novel quinoline-based FAP ligands with an ibuprofen moiety were synthesized and radiolabeled with gallium-68 and lutetium-177. The synthesized FAP ligands FAPI-Ibu1, 2, 3 showed high binding affinity for FAP, with IC50 values of 1.17 ± 0.09, 0.29 ± 0.06, and 0.78 ± 0.12 nM, respectively. 177Lu-labeled FAP ligands showed stability in vitro and demonstrated significant binding to human plasma proteins as well as FAP specificity. PET imaging and biodistribution studies of 68Ga- or 177Lu-labeled FAPI-Ibu1, 2, 3 revealed improved tumor accumulation and retention. Dosimetry calculation showed that [177Lu]Lu-FAPI-Ibu3 delivered a 9.9-fold higher absorbed dose to tumor than [177Lu]Lu-FAPI-04, but only 2.6-fold higher absorbed dose to kidneys leading to 3.8-fold improvement in the tumor-to-kidney absorbed dose ratios. In the endoradiotherapy study, 18.5 MBq of [177Lu]Lu-FAPI-Ibu3 resulted in longer median survival than the equivalent dose of [177Lu]Lu-FAPI-04 (22 vs 16 days). Three ibuprofen-modified FAP radioligands significantly improved tumor uptake, retention, and growth suppression compared to [177Lu]Lu-FAPI-04, with [177Lu]Lu-FAPI-Ibu3 emerging as the most promising candidate for further clinical translational studies.
Collapse
Affiliation(s)
- Hui Zhou
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Jiawei Zhong
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yang Liu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Simin Peng
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingsong Yan
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lijuan Wang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yuhua Zhong
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Kongzhen Hu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Meng X, Kong X, Wu R, Yang Z. Total Body PET/CT: A Role in Drug Development? Semin Nucl Med 2025; 55:116-123. [PMID: 39389888 DOI: 10.1053/j.semnuclmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Nowadays, total body PET has already entered the medical centers and enabled various clinical applications due to its superior imaging capabilities, especially the high sensitivity. However, the potential of the total body PET in the clinical evaluation of radiopharmaceuticals remains underexplored. The development and regulatory processes for radiopharmaceuticals present unique challenges that total body PET could address. In the safety evaluation of radiopharmaceuticals, the internal radiation dosimetry demands images with high quality and quantitative accuracy, which can be achieved using the total body PET. The current clinical pharmacokinetic study for radiopharmaceuticals still relies on invasively sampling of blood and other body fluid, causing discomfort of participant and difficulty in implementation. With the total body PET, the radioactive concentration of the drug in various blood vessels can be assessed noninvasively, facilitating the pharmacokinetic study. The parametric analysis over the total body based on compartment models also sheds light on the pharmacokinetics of the radiopharmaceutical. A special requirement for multi-center clinical research involving PET and SPECT is the harmonization of the quantitative performance among different imaging equipment, and the discrepancy between the total body PET and short axial field of view PET scanners may add to the complexity. To date, there are several successful examples of clinical trials of innovative radiopharmaceuticals using the total body PET, involving different types of tracers ranging from small molecules, peptides, nanobodies, minibodies, and aptamers. In conclusion, total body PET has the potential to revolutionize the clinical evaluation of radiopharmaceuticals and will play a crucial role in future drug development.
Collapse
Affiliation(s)
- Xiangxi Meng
- Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiangxing Kong
- Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Runze Wu
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing 100094, China
| | - Zhi Yang
- Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
6
|
Chan HW, Kuo DY, Shueng PW, Chuang HY. Visualizing the Tumor Microenvironment: Molecular Imaging Probes Target Extracellular Matrix, Vascular Networks, and Immunosuppressive Cells. Pharmaceuticals (Basel) 2024; 17:1663. [PMID: 39770505 PMCID: PMC11676442 DOI: 10.3390/ph17121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor microenvironment (TME) is a critical factor in cancer progression, driving tumor growth, immune evasion, therapeutic resistance, and metastasis. Understanding the dynamic interactions within the TME is essential for advancing cancer management. Molecular imaging provides a non-invasive, real-time, and longitudinal approach to studying the TME, with techniques such as positron emission tomography (PET), magnetic resonance imaging (MRI), and fluorescence imaging offering complementary strengths, including high sensitivity, spatial resolution, and intraoperative precision. Recent advances in imaging probe development have enhanced the ability to target and monitor specific components of the TME, facilitating early cancer diagnosis, therapeutic monitoring, and deeper insights into tumor biology. By integrating these innovations, molecular imaging offers transformative potential for precision oncology, improving diagnostic accuracy and treatment outcomes through a comprehensive assessment of TME dynamics.
Collapse
Affiliation(s)
- Hui-Wen Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei City 112, Taiwan;
| | - Deng-Yu Kuo
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei City 112, Taiwan;
| |
Collapse
|
7
|
Yu Z, Jiang Z, Cheng X, Yuan L, Chen H, Ai L, Wu Z. Development of fibroblast activation protein-α radiopharmaceuticals: Recent advances and perspectives. Eur J Med Chem 2024; 277:116787. [PMID: 39197253 DOI: 10.1016/j.ejmech.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Fibroblast activation protein-α (FAP) has emerged as a promising target in the field of radiopharmaceuticals due to its selective expression in cancer-associated fibroblasts (CAFs) and other pathological conditions involving fibrosis and inflammation. Recent advancements have focused on developing FAP-specific radioligands for diagnostic imaging and targeted radionuclide therapy. This perspective summarized the latest progress in FAP radiopharmaceutical development, highlighting novel radioligands, preclinical evaluations, and potential clinical applications. Additionally, we analyzed the advantages and existing problems of targeted FAP radiopharmaceuticals, and discussed the key breakthrough directions of this target, so as to improve the development and conversion of FAP-targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Ziyue Yu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Zeng Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Leilei Yuan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Zehui Wu
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
8
|
Huang J, Cui S, Chi X, Cong A, Yang X, Su H, Zhou Z, Su C, Hu Z, Huang Z, Luo J, Wang G, Jiang Y, Tang G, Cao W. Dynamically visualizing profibrotic maladaptive repair after acute kidney injury by fibroblast activation protein imaging. Kidney Int 2024; 106:826-839. [PMID: 39098582 DOI: 10.1016/j.kint.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/02/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024]
Abstract
A major challenge in prevention and early treatment of organ fibrosis is the lack of valuable tools to assess the evolving profibrotic maladaptive repair after injury in vivo in a non-invasive way. Here, using acute kidney injury (AKI) as an example, we tested the utility of fibroblast activation protein (FAP) imaging for dynamic assessment of maladaptive repair after injury. The temporospatial pattern of kidney FAP expression after injury was first characterized. Single-cell RNA sequencing and immunostaining analysis of patient biopsies were combined to show that FAP was specifically upregulated in kidney fibroblasts after AKI and was associated with fibroblast activation and chronic kidney disease (CKD) progression. This was corroborated in AKI mouse models, where a sustained and exaggerated kidney FAP upregulation was coupled to persistent fibroblast activation and a fibrotic outcome, linking kidney FAP level to post-insult maladaptive repair. Furthermore, using positron emission tomography (PET)/CT scanning with FAP-inhibitor tracers ([18F]FAPI-42, [18F]FAPT) targeting FAP, we demonstrated the feasibility of non-invasively tracking of maladaptive repair evolution toward kidney fibrosis. Importantly, a sustained increase in kidney [18F]FAPT (less hepatobiliary metabolized than [18F]FAPI-42) uptake reflected persistent kidney upregulation of FAP and characterized maladaptive repair after AKI. Kidney [18F]FAPT uptake at hour 2-day 7 correlated with kidney fibrosis 14 days after AKI. Similar changes in [18F]FAPI-42 PET/CT imaging were observed in patients with AKI and CKD progression. Thus, persistent kidney FAP upregulation after AKI was associated with maladaptive repair and a fibrotic outcome. Hence, FAP-specific PET/CT imaging enables dynamic visualization of maladaptive repair after AKI and prediction of kidney fibrosis within a clinically actionable window.
Collapse
Affiliation(s)
- Jiawen Huang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China; Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Medical Products Administration Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, China
| | - Shuang Cui
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaohua Chi
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Medical Products Administration Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, China
| | - Ansheng Cong
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Xiaoqiang Yang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Medical Products Administration Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, China
| | - Huanjuan Su
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Zhanmei Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Cailing Su
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Zuoyu Hu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Zhijie Huang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Jiao Luo
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Guobao Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Ying Jiang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Medical Products Administration Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, China
| | - Ganghua Tang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Medical Products Administration Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, China.
| | - Wei Cao
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China.
| |
Collapse
|
9
|
Liang H, Chen Z, Ren S, Mo C, Tang G. Synthesis and preclinical evaluation of [18F]AlF-NOTA-Glc-Folate as a novel folate-receptor-targeted PET tracer. J Radioanal Nucl Chem 2024; 333:5581-5588. [DOI: 10.1007/s10967-024-09633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/18/2024] [Indexed: 04/24/2025]
|
10
|
Huang J, Zhang X, Liu Q, Gong F, Huang Y, Huang S, Fu L, Tang G. 68Ga/ 177Lu-Labeled Theranostic Pair for Targeting Fibroblast Activation Protein with Improved Tumor Uptake and Retention. J Med Chem 2024; 67:17785-17795. [PMID: 39321030 DOI: 10.1021/acs.jmedchem.4c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Fibroblast activation protein (FAP) is specifically expressed on cancer-associated fibroblasts in over 90% of tumors and is considered a promising target for cancer theranostics. Here, we developed a novel tracer, DOTA-FAPT, and labeled it with gallium-68 and lutetium-177 as a theranostic pair. [68Ga]Ga/[177Lu]Lu-FAPT exhibited high stability and hydrophilicity, as well as strong affinity to the FAP target. Micro-PET/CT imaging revealed that [68Ga]Ga-FAPT exhibited significantly increased uptake in tumors and extended retention in A549-FAP and U87MG tumor xenografts as compared to [68Ga]Ga-FAPI-04, demonstrating favorable pharmacokinetic characteristics in vivo. Therapeutic studies showed that [177Lu]Lu-FAPT had higher tumor accumulation compared to [177Lu]Lu-FAPI-04, leading to stronger tumor growth inhibition. The first-in-human evaluation also revealed that [68Ga]Ga-FAPT has good in vivo distribution and superior diagnostic efficacy on primary and lymph node metastases in a patient with lung cancer. Our encouraging results suggest that 68Ga/177Lu-labeled DOTA-FAPT is a theranostic pair with broad application prospect.
Collapse
Affiliation(s)
- Jiawen Huang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xiaojun Zhang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Qingxing Liu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Fengping Gong
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yanchao Huang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Shun Huang
- Department of Nuclear Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, P. R. China
| | - Lilan Fu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Ganghua Tang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| |
Collapse
|
11
|
Ji T, Zan C, Li L, Cao J, Su Y, Wang H, Wu Z, Yang MF, Dou K, Li S. Molecular Imaging of Fibroblast Activation in Rabbit Atherosclerotic Plaques: a Preclinical PET/CT Study. Mol Imaging Biol 2024; 26:680-692. [PMID: 38664355 DOI: 10.1007/s11307-024-01919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
AIM Atherosclerosis remains the pathological basis of myocardial infarction and ischemic stroke. Early and accurate identification of plauqes is crucial to improve clinical outcomes of atherosclerosis patients. Our study aims to evaluate the potential value of fibroblast activation protein inhibitor (FAPI)-04 PET/CT in identifying plaques via a preclinical rabbit model of atherosclerosis. METHODS New Zealand white rabbits were fed high-fat diet (HFD), and randomly divided into the model group injured by the balloon, and the sham group only with incisions. Ultrasound was performed to detect plaques, and FAPI-avid was determined through Al18F-NOTA-FAPI-04 PET/CT. Mean standardized uptake values (SUVmean) in lesions were compared, and biodistribution of Al18F-NOTA-FAPI-04 and target-to-background ratios (TBRs) were calculated. Histological staining was performed to display arterial plaques, and autoradiography (ARG) was employed to measure the in vitro intensity of Al18F-NOTA-FAPI-04. At last, the correlation among FAP levels, plaque area, SUVmean values and fibrous cap thickness was assessed. RESULTS The rabbit carotid and abdominal atherosclerosis model was established. Al18F-NOTA-FAPI-04 showed a higher uptake in carotid plaques (SUVmean 1.32 ± 0.11) and abdominal plaques (SUVmean 0.73 ± 0.13) compared to corresponding controls (SUVmean 1.07 ± 0.06; 0.46 ± 0.03) (P < 0.05). Biodistribution analysis of Al18F-NOTA-FAPI-04 revealed that the bigger plaques were delineated with higher TBRs. Pathological staining showed the formation of arterial plaques, and ARG staining exhibited a higher intensity of Al18F-NOTA-FAPI-04 in the bigger plaques. Lastly, plaque area was found to be positively correlated to FAP expression and SUVmean, while FAP expression was negatively correlated to fibrous cap thickness of plaques. CONCLUSIONS We successfully achieve molecular imaging of fibroblast activation in atherosclerotic lesions of rabbits, suggesting Al18F-NOTA-FAPI-04 PET/CT may be a potentially valuable tool to identify plaques.
Collapse
Affiliation(s)
- Tianxiong Ji
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Chunfang Zan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Lina Li
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jianbo Cao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Yao Su
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hongliang Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| | - Min-Fu Yang
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China.
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Kefei Dou
- State Key Laboratory of Cardiovascular Disease, Beijing, 100037, China.
- Cardiometabolic Medicine Center, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
12
|
Meng X, Kong X, Xia L, Wu R, Zhu H, Yang Z. The Role of Total-Body PET in Drug Development and Evaluation: Status and Outlook. J Nucl Med 2024; 65:46S-53S. [PMID: 38719239 DOI: 10.2967/jnumed.123.266978] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Indexed: 07/16/2024] Open
Abstract
Total-body PET, an emerging technique, enables high-quality simultaneous total-body dynamic PET acquisition and accurate kinetic analysis. It has the potential to facilitate the study of multiple tracers while minimizing radiation dose and improving tracer-specific imaging. This advancement holds promise for enhancing the development and clinical evaluation of drugs, particularly radiopharmaceuticals. Multiple clinical trials are using a total-body PET scanner to explore existing and innovative radiopharmaceuticals. However, challenges persist, along with the opportunities, with regard to the use of total-body PET in drug development and evaluation. Specifically, considerations relate to the role of total-body PET in clinical pharmacologic evaluations and its integration into the theranostic paradigm. In this review, state-of-the-art total-body PET and its potential roles in pharmaceutical research are explored.
Collapse
Affiliation(s)
- Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Xiangxing Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Lei Xia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Runze Wu
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| |
Collapse
|
13
|
Zhao L, Kang F, Pang Y, Fang J, Sun L, Wu H, Lan X, Wang J, Chen H. Fibroblast Activation Protein Inhibitor Tracers and Their Preclinical, Translational, and Clinical Status in China. J Nucl Med 2024; 65:4S-11S. [PMID: 38719234 DOI: 10.2967/jnumed.123.266983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Indexed: 07/16/2024] Open
Abstract
Quinoline-based fibroblast activation protein (FAP) inhibitors (FAPIs) have recently emerged as a focal point in global nuclear medicine, underscored by their promising applications in cancer theranostics and the diagnosis of various nononcological conditions. This review offers an in-depth summary of the existing literature on the evolution and use of FAPI tracers in China, tracing their journey from preclinical to clinical research. Moreover, this review also assesses the diagnostic accuracy of FAPI PET for the most common cancers in China, analyzes its impact on oncologic management paradigms, and investigates the potential of FAP-targeted radionuclide therapy in patients with advanced or metastatic cancer. This review also summarizes studies using FAPI PET for nononcologic disorders in China. Thus, this qualitative overview presents a snapshot of China's engagement with FAPI tracers, aiming to guide future research endeavors.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yizhen Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianyang Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China; and
| | - Long Sun
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - XiaoLi Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China;
| | - Haojun Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China;
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Nakayama M, Hope TA, Salavati A. Diagnostic and Therapeutic Application of Fibroblast Activation Protein Inhibitors in Oncologic and Nononcologic Diseases. Cancer J 2024; 30:210-217. [PMID: 38753756 DOI: 10.1097/ppo.0000000000000719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Fibroblast activation protein inhibitor positron emission tomography (PET) has gained interest for its ability to demonstrate uptake in a diverse range of tumors. Its molecular target, fibroblast activation protein, is expressed in cancer-associated fibroblasts, a major cell type in tumor microenvironment that surrounds various types of cancers. Although existing literature on FAPI PET is largely from single-center studies and case reports, initial findings show promise for some cancer types demonstrating improved imaging when compared with the widely used 18F-fludeoxyglucose PET for oncologic imaging. As we expand our knowledge of the utility of FAPI PET, accurate understanding of noncancerous uptake seen on FAPI PET is crucial for accurate evaluation. In this review, we summarize potential diagnostic and therapeutic applications of radiolabeled FAP inhibitors in oncological and nononcological disease processes.
Collapse
Affiliation(s)
- Mariko Nakayama
- From the Department of Radiological Sciences, UCLA, Los Angeles, CA, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ali Salavati
- Division of Nuclear Medicine and Translational Theranostics, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
15
|
Zhang X, Huang J, Gong F, Cai Z, Liu Y, Tang G, Hu K. Synthesis and preclinical evaluation of a novel PET/fluorescence dual-modality probe targeting fibroblast activation protein. Bioorg Chem 2024; 146:107275. [PMID: 38493637 DOI: 10.1016/j.bioorg.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Early diagnosis and precise surgical intervention are crucial for cancer patients. We aimed to develop a novel positron emission tomography (PET)/fluorescence dual-modality probe for preoperative diagnosis, intraoperative guidance, and postoperative monitoring of fibroblast activation protein (FAP)-positive tumors. FAPI-FAM was synthesized and labeled with gallium-68. [68Ga]Ga-FAPI-FAM showed favorable in vivo and in vitro characteristics, specific binding affinity, and excellent tumor accumulation in FAP-positive cells and mice xenografts. Excellent tumor-to-background contrast was found owing to high tumor uptake, prolonged retention, and rapid renal clearance of [68Ga]Ga-FAPI-FAM. Moreover, a specific fluorescence signal was detected in FAP-positive tumors during ex vivo fluorescence imaging, demonstrating the feasibility of whole-body tumor detection and intraoperative tumor delineation.
Collapse
Affiliation(s)
- Xiaojun Zhang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Jiawen Huang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Fengping Gong
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zhikai Cai
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yang Liu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Ganghua Tang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Kongzhen Hu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| |
Collapse
|
16
|
Quigley NG, Steiger K, Färber SF, Richter F, Weichert W, Notni J. Sensitive Positron Emission Tomography Imaging of PD-L1 Expression in Human Breast and Lung Carcinoma Xenografts Using the Radiometalated Peptide Ga-68-TRAP-WL12. Mol Pharm 2024; 21:1827-1837. [PMID: 38291706 DOI: 10.1021/acs.molpharmaceut.3c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Noninvasive imaging of the immune checkpoint protein programmed death ligand 1 (PD-L1; synonyms: CD274, B7-H1) holds great promise to improve patient selection and, thus, response rates for immune checkpoint therapy (ICT) with monoclonal antibodies targeting the PD1/PD-L1 axis. The PD-L1 specific peptide WL12 (cyclo(AcY-(NMe)A-N-P-H-L-Hyp-W-S-W(Me)-(NMe)Nle-(NMe)Nle-O-C)-G-NH2) was functionalized with the Gallium-68 chelator TRAP by means of click chemistry (CuAAC). The resulting conjugate TRAP-WL12 was labeled with Gallium-68 within 16 min, with approximately 90% radiochemical yield and 99% radiochemical purity, affording Ga-68-TRAP-WL12 with molar activities typically exceeding 100 MBq/nmol. This radiotracer was characterized by positron emission tomography (PET) imaging and ex vivo biodistribution in murine xenografts of nontransfected PD-L1 expressing tumor cell lines, MDA-MB-231 (human breast carcinoma), and H2009 (human lung adenocarcinoma). It showed a favorable biodistribution profile with rapid renal clearance and low background (tumor-to-blood ratio = 26.6, 3 h p.i.). Conjugation of the Ga-68-TRAP moiety to WL12 successfully mitigated the nonspecific uptake of this peptide in organs, particularly the liver. This was demonstrated by comparing Ga-68-TRAP-WL12 with the archetypical Ga-68-DOTA-WL12, for which tumor-to-liver ratios of 1.4 and 0.5, respectively, were found. Although immunohistochemistry (IHC) revealed a low PD-L1 expression in MDA-MB-213 and H2009 xenografts that corresponds well to the clinical situation, PET showed high tumor uptakes (6.6 and 7.3% injected activity per gram of tissue (iA/g), respectively) for Ga-68-TRAP-WL12. Thus, this tracer has the potential for routine clinical PD-L1 PET imaging because it detects even very low PD-L1 expression densities with high sensitivity and may open an avenue to replace PD-L1 IHC of biopsies as the standard means to select potential responders for ICT.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Stefanie Felicitas Färber
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Frauke Richter
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Johannes Notni
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
- TRIMT GmbH, Carl-Eschebach-Str. 7, Radeberg D-01454, Germany
| |
Collapse
|
17
|
Zhou H, Zhong J, Peng S, Liu Y, Tang P, Cai Z, Wang L, Xu H, Hu K. Synthesis and preclinical evaluation of novel 18F-labeled fibroblast activation protein tracers for positron emission tomography imaging of cancer-associated fibroblasts. Eur J Med Chem 2024; 264:115993. [PMID: 38039792 DOI: 10.1016/j.ejmech.2023.115993] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Fibroblast activation protein (FAP) is overexpressed in cancer-associated fibroblasts in more than 90% of epithelial tumors. Several radiotracers targeting FAPs have been used in clinical settings in recent years. However, the number of 18F-labeled FAP tracers is still limited. Herein, we aimed to develop 18F-labeled FAP tracers with optimized pharmacokinetics. Labeling precursors (NOTA-DD-FAPI and NOTA-PD-FAPI) were synthesized and labeled with fluorine-18. The precursors NOTA-DD-FAPI (IC50 = 0.21 ± 0.06 nM) and NOTA -PD-FAPI (IC50 = 0.13 ± 0.07 nM) showed a higher affinity for FAP compared to NOTA-FAPI-42 (IC50 = 0.66 ± 0.19 nM). Novel 18F-labeled FAP tracers showed a specific uptake, high internalized fraction, and low cellular efflux in vitro. Compared to the clinically used tracer [18F]AlF-FAPI-42, both the novel 18F-labeled FAP tracers, and especially the [18F]AlF-PD-FAPI tracer with a higher tumor-to-background ratio demonstrated rapid renal excretion and higher tumor uptake during preclinical evaluation, resulting in images with higher contrast. Thus, [18F]AlF-PD-FAPI shows promise for use as a FAP-targeting tracer for clinical translation.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jiawei Zhong
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Simin Peng
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yang Liu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peipei Tang
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhikai Cai
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Hao Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Kongzhen Hu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Nakamoto Y, Baba S, Kaida H, Manabe O, Uehara T. Recent topics in fibroblast activation protein inhibitor-PET/CT: clinical and pharmacological aspects. Ann Nucl Med 2024; 38:10-19. [PMID: 37861977 DOI: 10.1007/s12149-023-01873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Recently, positron emission tomography (PET) with fibroblast activation protein inhibitor (FAPI) has gained significant attention as an advanced tumor diagnostic imaging tool. FAPI PET has a promising potential owing to its ability to accurately depict most malignant tumors. It has an accuracy that is comparable to or surpassing the diagnostic accuracy of PET using 18F-fluorodeoxyglucose (FDG). Moreover, FAPI PET can identify malignant lesions that may be inconclusive on FDG PET. Beyond its application in neoplastic disorders, there have been encouraging reports suggesting the utility of FAPI PET in non-neoplastic conditions such as respiratory or cardiac diseases. This article aimed to provide a comprehensive overview of the recently published articles investigating FAPI and discuss its clinical utility with an emphasis on its application in tumor diagnostics. Numerous radiopharmaceutical FAPIs, including 18F- and 68Ga-labeled compounds, have been developed, and they offer various advantages and applications. With the progress in the FAPI PET synthesis to enhance accumulation and retention in pathological lesions, future studies are expected to provide valuable data on its therapeutic efficacy.
Collapse
Affiliation(s)
- Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Shingo Baba
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Hayato Kaida
- Department of Radiology, Kindai University Faculty of Medicine, Ohnohigashi 377-2, Osakasayama City, Osaka, 589-8511, Japan
| | - Osamu Manabe
- Department of Radiology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
19
|
Zhang X, Choi JY, Lee KH, Choe YS. Synthesis and Evaluation of [ 18F]SiFA-Conjugated Ligands for Fibroblast Activation Protein Imaging. Mol Pharm 2023; 20:6441-6450. [PMID: 37968928 DOI: 10.1021/acs.molpharmaceut.3c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
In recent years, fibroblast activation protein (FAP) has emerged as an important target for the diagnosis and therapy of various tumors due to its high expression on the cell surface of cancer-associated fibroblasts, which are the major components of the tumor stroma. In this study, we synthesized and evaluated 18F-labeled FAP inhibitors (FAPIs) for FAP imaging. Two silicon fluoride acceptor (SiFA)-conjugated FAPIs were synthesized: one containing a γ-carboxy-l-glutamic acid (Gla) residue (1) and another containing two Gla residues (2). Both ligands exhibited high binding affinities for FAP. 18F/19F exchange reactions on both ligands were performed in the presence of 2% water. This resulted in the formation of radioligands [18F]1 and [18F]2 in high radiochemical yields. Radioligand [18F]2, with a more favorable partition coefficient, was selected for the U87MG cell binding study, and the results showed FAP-specific binding of the radioligand to the cells. An ex vivo biodistribution study in U87MG tumor-bearing mice 60 min after injection demonstrated a 5.8-fold higher tumor accumulation of [18F]2 than that of [18F]1. Furthermore, PET and ex vivo biodistribution studies of [18F]2 in U87MG tumor-bearing mice showed high and persistent tumor uptake over time, which was significantly blocked by the preinjection of FAPI-04. Our results indicate that [18F]SiFA-(Gla)2-conjugated FAPI ([18F]2) has the potential for FAP imaging.
Collapse
Affiliation(s)
- Xuran Zhang
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Yearn Seong Choe
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|