1
|
Buitinga M, Veeraiah P, Haans F, Schrauwen-Hinderling VB. Ectopic lipid deposition in muscle and liver, quantified by proton magnetic resonance spectroscopy. Obesity (Silver Spring) 2023; 31:2447-2459. [PMID: 37667838 DOI: 10.1002/oby.23865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 09/06/2023]
Abstract
Advances in the development of noninvasive imaging techniques have spurred investigations into ectopic lipid deposition in the liver and muscle and its implications in the development of metabolic diseases such as type 2 diabetes. Computed tomography and ultrasound have been applied in the past, though magnetic resonance-based methods are currently considered the gold standard as they allow more accurate quantitative detection of ectopic lipid stores. This review focuses on methodological considerations of magnetic resonance-based methods to image hepatic and muscle fat fractions, and it emphasizes anatomical and morphological aspects and how these may influence data acquisition, analysis, and interpretation.
Collapse
Affiliation(s)
- Mijke Buitinga
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Nutrition and Movement Sciences (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Pandichelvam Veeraiah
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Scannexus (Ultra-High Field Imaging Center), Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences (FHML), Maastricht, The Netherlands
| | - Florian Haans
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Nutrition and Movement Sciences (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Institute for Clinical Diabetology, German Diabetes Center and Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Sim KC, Kim MJ, Cho Y, Kim HJ, Park BJ, Sung DJ, Han NY, Han YE, Kim TH, Lee YJ. Radiomics Analysis of Magnetic Resonance Proton Density Fat Fraction for the Diagnosis of Hepatic Steatosis in Patients With Suspected Non-Alcoholic Fatty Liver Disease. J Korean Med Sci 2022; 37:e339. [PMID: 36536543 PMCID: PMC9763710 DOI: 10.3346/jkms.2022.37.e339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This study aimed to assess the diagnostic feasibility of radiomics analysis based on magnetic resonance (MR)-proton density fat fraction (PDFF) for grading hepatic steatosis in patients with suspected non-alcoholic fatty liver disease (NAFLD). METHODS This retrospective study included 106 patients with suspected NAFLD who underwent a hepatic parenchymal biopsy. MR-PDFF and MR spectroscopy were performed on all patients using a 3.0-T scanner. Following whole-volume segmentation of the MR-PDFF images, 833 radiomic features were analyzed using a commercial program. Radiologic features were analyzed, including median and mean values of the multiple regions of interest and variable clinical features. A random forest regressor was used to extract the important radiomic, radiologic, and clinical features. The model was trained using 20 repeated 10-fold cross-validations to classify the NAFLD steatosis grade. The area under the receiver operating characteristic curve (AUROC) was evaluated using a classifier to diagnose steatosis grades. RESULTS The levels of pathological hepatic steatosis were classified as low-grade steatosis (grade, 0-1; n = 82) and high-grade steatosis (grade, 2-3; n = 24). Fifteen important features were extracted from the radiomic analysis, with the three most important being wavelet-LLL neighboring gray tone difference matrix coarseness, original first-order mean, and 90th percentile. The MR spectroscopy mean value was extracted as a more important feature than the MR-PDFF mean or median in radiologic measures. Alanine aminotransferase has been identified as the most important clinical feature. The AUROC of the classifier using radiomics was comparable to that of radiologic measures (0.94 ± 0.09 and 0.96 ± 0.08, respectively). CONCLUSION MR-PDFF-derived radiomics may provide a comparable alternative for grading hepatic steatosis in patients with suspected NAFLD.
Collapse
Affiliation(s)
- Ki Choon Sim
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Min Ju Kim
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.
| | - Yongwon Cho
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
- AI Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hyun Jin Kim
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Beom Jin Park
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Deuk Jae Sung
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Na Yeon Han
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Yeo Eun Han
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Tae Hyung Kim
- Department of Gastroenterology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Yoo Jin Lee
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Cao D, Li M, Liu Y, Jin H, Yang D, Xu H, Lv H, Liu JI, Zhang P, Zhang Z, Yang Z. Comparison of reader agreement, correlation with liver biopsy, and time-burden sampling strategies for liver proton density fat fraction measured using magnetic resonance imaging in patients with obesity: a secondary cross-sectional study. BMC Med Imaging 2022; 22:92. [PMID: 35581577 PMCID: PMC9112589 DOI: 10.1186/s12880-022-00821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background The magnetic resonance imaging (MRI)-based proton density fat fraction (PDFF) has become popular for quantifying liver fat content. However, the variability of the region-of-interest (ROI) sampling strategy may result in a lack of standardisation of this technology. In an effort to establish an accurate and effective PDFF measurement scheme, this study assessed the pathological correlation, the reader agreement, and time-burden of different sampling strategies with variable ROI size, location, and number. Methods Six-echo spoiled gradient-recalled-echo magnitude-based fat quantification was performed for 50 patients with obesity, using a 3.0-T MRI scanner. Two readers used different ROI sampling strategies to measure liver PDFF, three times. Intra-reader and inter-reader agreement was evaluated using intra-class correlation coefficients and Bland‒Altman analysis. Pearson correlations were used to assess the correlation between PDFFs and liver biopsy. Time-burden was recorded. Results For pathological correlations, the correlations for the strategy of using three large ROIs in Couinaud segment 3 (S3 3L-ROI) were significantly greater than those for all sampling strategies at the whole-liver level (P < 0.05). For inter-reader agreement, the sampling strategies at the segmental level for S3 3L-ROI and using three large ROIs in Couinaud segment 6 (S6 3L-ROI) and the sampling strategies at the whole-liver level for three small ROIs per Couinaud segment (27S-ROI), one large ROI per Couinaud segment (9L-ROI), and three large ROIs per Couinaud segment (27S-ROI) had limits of agreement (LOA) < 1.5%. For intra-reader agreement, the sampling strategies at the whole-liver level for 27S-ROI, 9L-ROI, and 27L-ROI had both intraclass coefficients > 0.995 and LOAs < 1.5%. The change in the time-burden was the largest (100.80 s) when 9L-ROI was changed to 27L-ROI. Conclusions For hepatic PDFF measurement without liver puncture biopsy as the gold standard, and for general hepatic PDFF assessment, 9L-ROI sampling strategy at the whole-liver level should be used preferentially. For hepatic PDFF with liver puncture biopsy as the gold standard, 3L-ROI sampling strategy at the puncture site segment is recommended.
Collapse
Affiliation(s)
- Di Cao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Mengyi Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Yang Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - He Jin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - JIa Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Peng Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.
| |
Collapse
|
4
|
Yoon H, Shin HJ, Kim MJ, Lee MJ. Quantitative Imaging in Pediatric Hepatobiliary Disease. Korean J Radiol 2020; 20:1342-1357. [PMID: 31464113 PMCID: PMC6715564 DOI: 10.3348/kjr.2019.0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Pediatric hepatobiliary imaging is important for evaluation of not only congenital or structural disease but also metabolic or diffuse parenchymal disease and tumors. A variety of ultrasonography and magnetic resonance imaging (MRI) techniques can be used for these assessments. In ultrasonography, conventional ultrasound imaging as well as vascular imaging, elastography, and contrast-enhanced ultrasonography can be used, while in MRI, fat quantification, T2/T2* mapping, diffusion-weighted imaging, magnetic resonance elastography, and dynamic contrast-enhanced MRI can be performed. These techniques may be helpful for evaluation of biliary atresia, hepatic fibrosis, nonalcoholic fatty liver disease, sinusoidal obstruction syndrome, and hepatic masses in children. In this review, we discuss each tool in the context of management of hepatobiliary disease in children, and cover various imaging techniques in the context of the relevant physics and their clinical applications for patient care.
Collapse
Affiliation(s)
- Haesung Yoon
- Department of Radiology, Severance Hospital, Severance Pediatric Liver Disease Research Group, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Joo Shin
- Department of Radiology, Severance Hospital, Severance Pediatric Liver Disease Research Group, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Joon Kim
- Department of Radiology, Severance Hospital, Severance Pediatric Liver Disease Research Group, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Jung Lee
- Department of Radiology, Severance Hospital, Severance Pediatric Liver Disease Research Group, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Tas E, Bai S, Ou X, Mercer K, Lin H, Mansfield K, Buchmann R, Diaz EC, Oden J, Børsheim E, Adams SH, Dranoff J. Fibroblast Growth Factor-21 to Adiponectin Ratio: A Potential Biomarker to Monitor Liver Fat in Children With Obesity. Front Endocrinol (Lausanne) 2020; 11:654. [PMID: 33071964 PMCID: PMC7533567 DOI: 10.3389/fendo.2020.00654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/11/2020] [Indexed: 01/12/2023] Open
Abstract
Background: There is a pressing need for effective and non-invasive biomarkers to track intrahepatic triglyceride (IHTG) in children at-risk for non-alcoholic fatty liver disease (NAFLD), as standard-of-care reference tools, liver biopsy and magnetic resonance imaging (MRI), are impractical to monitor the course disease. Objective: We aimed to examine the association between serum fibroblast growth factor (FGF)-21 to adiponectin ratio (FAR) and IHTG as assessed by MRI in children with obesity. Methods: Serum FGF21 and adiponectin levels and IHTG were measured at two time points (baseline, 6 months) in obese children enrolled in a clinical weight loss program. The association between percent change in FAR and IHTG at final visit was examined using a multiple linear regression model. Results: At baseline, FAR was higher in the subjects with NAFLD (n = 23, 35.8 ± 41.9 pg/ng) than without NAFLD (n = 35, 19.8 ± 13.7 pg/ng; p = 0.042). Forty-eight subjects completed both visits and were divided into IHTG loss (≥1% reduction than baseline), no change (within ±1% change), and gain (≥1% increase than baseline) groups. At 6 months, the percent change in FAR was different among the three groups (p = 0.005). Multiple linear regression showed a positive relationship between percent change in FAR and the final liver fat percent in sex and pubertal stage-similar subjects with NAFLD at baseline (slope coefficient 6.18, 95% CI 1.90-10.47, P = 0.007), but not in those without NAFLD. Conclusions: Higher value in percent increase in FAR is positively associated with higher level of IHTG percent value at 6 months in children with baseline NAFLD. FAR could be a potential biomarker to monitor the changes in IHTG in children with NAFLD.
Collapse
Affiliation(s)
- Emir Tas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Endocrinology and Diabetes, Arkansas Children's Hospital, Little Rock, AR, United States
- Arkansas Children's Research Institute, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
- *Correspondence: Emir Tas
| | - Shasha Bai
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Xiawei Ou
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kelly Mercer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Research Institute, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Haixia Lin
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Kori Mansfield
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Robert Buchmann
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Eva C. Diaz
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Research Institute, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Jon Oden
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Endocrinology and Diabetes, Arkansas Children's Hospital, Little Rock, AR, United States
- Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Elisabet Børsheim
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Research Institute, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Sean H. Adams
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Research Institute, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Jonathan Dranoff
- Arkansas Children's Research Institute, Little Rock, AR, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
6
|
Hu F, Yang R, Huang Z, Wang M, Yuan F, Xia C, Wei Y, Song B. 3D Multi-Echo Dixon technique for simultaneous assessment of liver steatosis and iron overload in patients with chronic liver diseases: a feasibility study. Quant Imaging Med Surg 2019; 9:1014-1024. [PMID: 31367555 PMCID: PMC6629573 DOI: 10.21037/qims.2019.05.20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/16/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Patients with chronic liver diseases (CLDs) often suffer from lipidosis or siderosis. Proton density fat fraction (PDFF) and R2* can be used as quantitative parameters to assess the fat/iron content of the liver. The aim of this study was to evaluate the influence of liver fibrosis and inflammation on the 3D Multi-echo Dixon (3D ME Dixon) parameters (MRI-PDFF and R2*) in patients with CLDs and to determine the feasibility of 3D ME Dixon technique for the simultaneous assessment of liver steatosis and iron overload using histopathologic findings as the reference standard. METHODS Ninety-nine consecutive patients with CLDs underwent T1-independent, T2*-corrected 3D ME Dixon sequence with reconstruction using multipeak spectral modeling on a 3T MR scanner. Liver specimen was reviewed in all cases, grading liver steatosis, siderosis, fibrosis, and inflammation. Spearman correlation analysis was performed to determine the relationship between 3D ME Dixon parameters (MRI-PDFF and R2*) and histopathological and biochemical features [liver steatosis, iron overload, liver fibrosis, inflammation, alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL)]. Multiple regression analysis was applied to identify variables associated with 3D ME Dixon parameters. Receiver operating characteristic (ROC) analysis was performed to determine the diagnostic performance of these parameters to differentiate liver steatosis or iron overload. RESULTS In multivariate analysis, only liver steatosis independently influenced PDFF values (R2=0.803, P<0.001), liver iron overload and fibrosis influenced R2* values (R2=0.647, P<0.001). The Spearman analyses showed that R2* values were moderately correlated with fibrosis stages (r=0.542, P<0.001) in the subgroup with the absence of iron overload. The area under the ROC curve of PDFF was 0.989 for the diagnosis of steatosis grade 1 or greater, and 0.986 for steatosis grade 2 or greater. The area under the ROC curve of R2* was 0.815 for identifying iron overload grade 1 or greater, and 0.876 for iron overload grade 2 or greater. CONCLUSIONS 3D Multi-Echo Dixon can be used to simultaneously evaluate liver steatosis and iron overload in patients with CLDs, especially for quantification of liver steatosis. However, liver R2* value may be affected by the liver fibrosis in the setting of CLDs with absence of iron overload.
Collapse
Affiliation(s)
- Fubi Hu
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610041, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ru Yang
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610041, China
| | - Zixing Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Evaluation of nonalcoholic fatty liver disease using magnetic resonance in obese children and adolescents. J Pediatr (Rio J) 2019; 95:34-40. [PMID: 29438686 DOI: 10.1016/j.jped.2017.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To determine the frequency of nonalcoholic fatty liver disease using nuclear magnetic resonance as a noninvasive method. METHODOLOGY This was a cross-sectional study conducted on 50 children and adolescents followed up at an outpatient obesity clinic. The subjects were submitted to physical examination, laboratory tests (transaminases, liver function tests, lipid profile, glycemia, and basal insulin) and abdominal nuclear magnetic resonance (calculation of hepatic, visceral, and subcutaneous fat). RESULTS Nonalcoholic fatty liver disease was diagnosed in 14 (28%) participants, as a severe condition in eight (percent fat >18%), and as non-severe in four (percent fat from 9% to 18%). Fatty liver was associated with male gender, triglycerides, AST, ALT, AST/ALT ratio, and acanthosis nigricans. Homeostasis model assessment of insulin resistance and metabolic syndrome did not show an association with fatty liver. CONCLUSION The frequency of nonalcoholic fatty liver disease in the present population of children and adolescents was lower than that reported in the international literature. It is suggested that nuclear magnetic resonance is an imaging exam that can be applied to children and adolescents, thus representing an effective noninvasive tool for the diagnosis of nonalcoholic fatty liver disease in this age range. However, further national multicenter studies with longitudinal design are needed for a better analysis of the correlation between nonalcoholic fatty liver disease and its risk factors, as well as its consequences.
Collapse
|
8
|
Benetolo PO, Fernandes MI, Del Ciampo IR, Elias‐Junior J, Sawamura R. Evaluation of nonalcoholic fatty liver disease using magnetic resonance in obese children and adolescents. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2019. [DOI: 10.1016/j.jpedp.2018.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Nemeth A, Segrestin B, Leporq B, Seyssel K, Faraz K, Sauvinet V, Disse E, Valette PJ, Laville M, Ratiney H, Beuf O. 3D Chemical Shift-Encoded MRI for Volume and Composition Quantification of Abdominal Adipose Tissue During an Overfeeding Protocol in Healthy Volunteers. J Magn Reson Imaging 2018; 49:1587-1599. [PMID: 30328237 DOI: 10.1002/jmri.26532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Overweight and obesity are major worldwide health concerns characterized by an abnormal accumulation of fat in adipose tissue (AT) and liver. PURPOSE To evaluate the volume and the fatty acid (FA) composition of the subcutaneous adipose tissue (SAT) and the visceral adipose tissue (VAT) and the fat content in the liver from 3D chemical-shift-encoded (CSE)-MRI acquisition, before and after a 31-day overfeeding protocol. STUDY TYPE Prospective and longitudinal study. SUBJECTS Twenty-one nonobese healthy male volunteers. FIELD STRENGTH/SEQUENCE A 3D spoiled-gradient multiple echo sequence and STEAM sequence were performed at 3T. ASSESSMENT AT volume was automatically segmented on CSE-MRI between L2 to L4 lumbar vertebrae and compared to the dual-energy X-ray absorptiometry (DEXA) measurement. CSE-MRI and MR spectroscopy (MRS) data were analyzed to assess the proton density fat fraction (PDFF) in the liver and the FA composition in SAT and VAT. Gas chromatography-mass spectrometry (GC-MS) analyses were performed on 13 SAT samples as a FA composition countermeasure. STATISTICAL TESTS Paired t-test, Pearson's correlation coefficient, and Bland-Altman plots were used to compare measurements. RESULTS SAT and VAT volumes significantly increased (P < 0.001). CSE-MRI and DEXA measurements were strongly correlated (r = 0.98, P < 0.001). PDFF significantly increased in the liver (+1.35, P = 0.002 for CSE-MRI, + 1.74, P = 0.002 for MRS). FA composition of SAT and VAT appeared to be consistent between localized-MRS and CSE-MRI (on whole segmented volume) measurements. A significant difference between SAT and VAT FA composition was found (P < 0.001 for CSE-MRI, P = 0.001 for MRS). MRS and CSE-MRI measurements of the FA composition were correlated with the GC-MS results (for ndb: rMRS/GC-MS = 0.83 P < 0.001, rCSE-MRI/GC-MS = 0.84, P = 0.001; for nmidb: rMRS/GC-MS = 0.74, P = 0.006, rCSE-MRI/GC-MS = 0.66, P = 0.020) DATA CONCLUSION: The follow-up of liver PDFF, volume, and FA composition of AT during an overfeeding diet was demonstrated through different methods. The CSE-MRI sequence associated with a dedicated postprocessing was found reliable for such quantification. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1587-1599.
Collapse
Affiliation(s)
- Angeline Nemeth
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69621, Lyon, France
| | - Bérénice Segrestin
- Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon, France.,Institut National de la Santé et de la Recherche Médicale Unit 1060, CarMeN Laboratory, Lyon 1 University, Oullins, France
| | - Benjamin Leporq
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69621, Lyon, France
| | - Kevin Seyssel
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Khuram Faraz
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69621, Lyon, France
| | - Valérie Sauvinet
- Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon, France
| | - Emmanuel Disse
- Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon, France.,Institut National de la Santé et de la Recherche Médicale Unit 1060, CarMeN Laboratory, Lyon 1 University, Oullins, France
| | - Pierre-Jean Valette
- Hospices Civils de Lyon, Département d'imagerie digestive, CHU Edouard Herriot, Lyon, France
| | - Martine Laville
- Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon, France.,Institut National de la Santé et de la Recherche Médicale Unit 1060, CarMeN Laboratory, Lyon 1 University, Oullins, France
| | - Hélène Ratiney
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69621, Lyon, France
| | - Olivier Beuf
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69621, Lyon, France
| |
Collapse
|
10
|
Zhang YN, Fowler KJ, Hamilton G, Cui JY, Sy EZ, Balanay M, Hooker JC, Szeverenyi N, Sirlin CB. Liver fat imaging-a clinical overview of ultrasound, CT, and MR imaging. Br J Radiol 2018; 91:20170959. [PMID: 29722568 PMCID: PMC6223150 DOI: 10.1259/bjr.20170959] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic steatosis is a frequently encountered imaging finding that may indicate chronic liver disease, the most common of which is non-alcoholic fatty liver disease. Non-alcoholic fatty liver disease is implicated in the development of systemic diseases and its progressive phenotype, non-alcoholic steatohepatitis, leads to increased liver-specific morbidity and mortality. With the rising obesity epidemic and advent of novel therapeutics aimed at altering metabolism, there is a growing need to quantify and monitor liver steatosis. Imaging methods for assessing steatosis range from simple and qualitative to complex and highly accurate metrics. Ultrasound may be appropriate in some clinical instances as a screening modality to identify the presence of abnormal liver morphology. However, it lacks sufficient specificity and sensitivity to constitute a diagnostic modality for instigating and monitoring therapy. Newer ultrasound techniques such as quantitative ultrasound show promise in turning qualitative assessment of steatosis on conventional ultrasound into quantitative measurements. Conventional unenhanced CT is capable of detecting and quantifying moderate to severe steatosis but is inaccurate at diagnosing mild steatosis and involves the use of radiation. Newer CT techniques, like dual energy CT, show potential in expanding the role of CT in quantifying steatosis. MRI proton-density fat fraction is currently the most accurate and precise imaging biomarker to quantify liver steatosis. As such, proton-density fat fraction is the most appropriate noninvasive end point for steatosis reduction in clinical trials and therapy response assessment.
Collapse
Affiliation(s)
- Yingzhen N Zhang
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| | - Kathryn J Fowler
- Department of Radiology, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Gavin Hamilton
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| | - Jennifer Y Cui
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| | - Ethan Z Sy
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| | - Michelle Balanay
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| | - Jonathan C Hooker
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| | - Nikolaus Szeverenyi
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| | - Claude B Sirlin
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
11
|
Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique. Pediatr Radiol 2018; 48:941-953. [PMID: 29728744 DOI: 10.1007/s00247-018-4127-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/07/2018] [Accepted: 03/25/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND In adults, noninvasive chemical shift encoded Cartesian magnetic resonance imaging (MRI) and single-voxel magnetic resonance (MR) spectroscopy (SVS) accurately quantify hepatic steatosis but require breath-holding. In children, especially young and sick children, breath-holding is often limited or not feasible. Sedation can facilitate breath-holding but is highly undesirable. For these reasons, there is a need to develop free-breathing MRI technology that accurately quantifies steatosis in all children. OBJECTIVE This study aimed to compare non-sedated free-breathing multi-echo 3-D stack-of-radial (radial) MRI versus standard breath-holding MRI and SVS techniques in a group of children for fat quantification with respect to image quality, accuracy and repeatability. MATERIALS AND METHODS Healthy children (n=10, median age [±interquartile range]: 10.9 [±3.3] years) and overweight children with nonalcoholic fatty liver disease (NAFLD) (n=9, median age: 15.2 [±3.2] years) were imaged at 3 Tesla using free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS. Acquisitions were performed twice to assess repeatability (within-subject mean difference, MDwithin). Images and hepatic proton-density fat fraction (PDFF) maps were scored for image quality. Free-breathing and breath-holding PDFF were compared using linear regression (correlation coefficient, r and concordance correlation coefficient, ρc) and Bland-Altman analysis (mean difference). P<0.05 was considered significant. RESULTS In patients with NAFLD, free-breathing radial MRI demonstrated significantly less motion artifacts compared to breath-holding Cartesian (P<0.05). Free-breathing radial PDFF demonstrated a linear relationship (P<0.001) versus breath-holding SVS PDFF and breath-holding Cartesian PDFF with r=0.996 and ρc=0.994, and r=0.997 and ρc=0.995, respectively. The mean difference in PDFF between free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS was <0.7%. Repeated free-breathing radial MRI had MDwithin=0.25% for PDFF. CONCLUSION In this pediatric study, non-sedated free-breathing radial MRI provided accurate and repeatable hepatic PDFF measurements and improved image quality, compared to standard breath-holding MR techniques.
Collapse
|
12
|
Middleton MS, Van Natta ML, Heba ER, Alazraki A, Trout AT, Masand P, Brunt EM, Kleiner DE, Doo E, Tonascia J, Lavine JE, Shen W, Hamilton G, Schwimmer JB, Sirlin CB. Diagnostic accuracy of magnetic resonance imaging hepatic proton density fat fraction in pediatric nonalcoholic fatty liver disease. Hepatology 2018; 67:858-872. [PMID: 29028128 PMCID: PMC6211296 DOI: 10.1002/hep.29596] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022]
Abstract
UNLABELLED We assessed the performance of magnetic resonance imaging (MRI) proton density fat fraction (PDFF) in children to stratify hepatic steatosis grade before and after treatment in the Cysteamine Bitartrate Delayed-Release for the Treatment of Nonalcoholic Fatty Liver Disease in Children (CyNCh) trial, using centrally scored histology as reference. Participants had multiecho 1.5 Tesla (T) or 3T MRI on scanners from three manufacturers. Of 169 enrolled children, 110 (65%) and 83 (49%) had MRI and liver biopsy at baseline and at end of treatment (EOT; 52 weeks), respectively. At baseline, 17% (19 of 110), 28% (31 of 110), and 55% (60 of 110) of liver biopsies showed grades 1, 2, and 3 histological steatosis; corresponding PDFF (mean ± SD) values were 10.9 ± 4.1%, 18.4 ± 6.2%, and 25.7 ± 9.7%, respectively. PDFF classified grade 1 versus 2-3 and 1-2 versus 3 steatosis with areas under receiving operator characteristic curves (AUROCs) of 0.87 (95% confidence interval [CI], 0.80, 0.94) and 0.79 (0.70, 0.87), respectively. PDFF cutoffs at 90% specificity were 17.5% for grades 2-3 steatosis and 23.3% for grade 3 steatosis. At EOT, 47% (39 of 83), 41% (34 of 83), and 12% (10 of 83) of biopsies showed improved, unchanged, and worsened steatosis grade, respectively, with corresponding PDFF (mean ± SD) changes of -7.8 ± 6.3%, -1.2 ± 7.8%, and 4.9 ± 5.0%, respectively. PDFF change classified steatosis grade improvement and worsening with AUROCs (95% CIs) of 0.76 (0.66, 0.87) and 0.83 (0.73, 0.92), respectively. PDFF change cut-off values at 90% specificity were -11.0% and +5.5% for improvement and worsening. CONCLUSION MRI-estimated PDFF has high diagnostic accuracy to both classify and predict histological steatosis grade and change in histological steatosis grade in children with NAFLD. (Hepatology 2018;67:858-872).
Collapse
Affiliation(s)
- Michael S. Middleton
- Liver Imaging Group, Department of Radiology, UCSD School of Medicine, San Diego, California
| | - Mark L. Van Natta
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elhamy R. Heba
- Liver Imaging Group, Department of Radiology, UCSD School of Medicine, San Diego, California
| | - Adina Alazraki
- Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, Georgia
| | - Andrew T. Trout
- Cincinnati Children’s Hospital, Department of Radiology, Cincinnati, Ohio
| | | | | | | | - Edward Doo
- Liver Diseases Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases
| | - James Tonascia
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Joel E. Lavine
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Wei Shen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Gavin Hamilton
- Liver Imaging Group, Department of Radiology, UCSD School of Medicine, San Diego, California
| | - Jeffrey B. Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California; and Department of Gastroenterology, Rady Children’s Hospital, San Diego, California
| | - Claude B. Sirlin
- Liver Imaging Group, Department of Radiology, UCSD School of Medicine, San Diego, California
| | | |
Collapse
|
13
|
Dai D, Wen F, Zhou S, Su Z, Liu G, Wang M, Zhou J, He F. Association of MTTP gene variants with pediatric NAFLD: A candidate-gene-based analysis of single nucleotide variations in obese children. PLoS One 2017; 12:e0185396. [PMID: 28953935 PMCID: PMC5617203 DOI: 10.1371/journal.pone.0185396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022] Open
Abstract
Objective We used targeted next-generation sequencing to investigate whether genetic variants of lipid metabolism-related genes are associated with increased susceptibility to nonalcoholic fatty liver disease (NAFLD) in obese children. Methods A cohort of 100 obese children aged 6 to 18 years were divided into NAFLD and non-NAFLD groups and subjected to hepatic ultrasound, anthropometric, and biochemical analyses. We evaluated the association of genetic variants with NAFLD susceptibility by investigating the single nucleotide polymorphisms in each of 36 lipid-metabolism-related genes. The panel genes were assembled for target region sequencing. Correlations between single nucleotide variations, biochemical markers, and clinical phenotypes were analyzed. Results 97 variants in the 36 target genes per child were uncovered. Twenty-six variants in 16 genes were more prevalent in NAFLD subjects than in in-house controls. The mutation rate of MTTP rs2306986 and SLC6A2 rs3743788 was significantly higher in NAFLD subjects than in non-NAFLD subjects (OR: 3.879; P = 0.004; OR: 6.667, P = 0.005). Logistic regression analysis indicated the MTTP variant rs2306986 was an independent risk factor for NAFLD (OR: 23.468, P = 0.044). Conclusions The results of this study, examining a cohort of obese children, suggest that the genetic variation at MTTP rs2306986 was associated with higher susceptibility to NAFLD. This may contribute to the altered lipid metabolism by disruption of assembly and secretion of lipoprotein, leading to reducing fat export from the involved hepatocytes.
Collapse
Affiliation(s)
- Dongling Dai
- Shenzhen Children's Hospital, Shenzhen, China
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feiqiu Wen
- Shenzhen Children's Hospital, Shenzhen, China
- * E-mail: (FW); (SZ)
| | - Shaoming Zhou
- Shenzhen Children's Hospital, Shenzhen, China
- * E-mail: (FW); (SZ)
| | - Zhe Su
- Shenzhen Children's Hospital, Shenzhen, China
| | - Guosheng Liu
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mingbang Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
- Shenzhen Following Precision Medical Research Institute, Shenzhen, China
| | - Jianli Zhou
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fusheng He
- Shenzhen Following Precision Medical Research Institute, Shenzhen, China
| |
Collapse
|
14
|
Standardized Approach for ROI-Based Measurements of Proton Density Fat Fraction and R2* in the Liver. AJR Am J Roentgenol 2017; 209:592-603. [PMID: 28705058 DOI: 10.2214/ajr.17.17812] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the reproducibility (interreviewer agreement) and repeatability (intrareviewer agreement) of ROI sampling strategies to measure chemical shift-encoded (CSE) MRI-based liver proton density fat fraction (PDFF) and R2* (1 / T2*). A secondary purpose was to standardize ROI-based liver PDFF and R2* measurements by providing a compromise between measurement reproducibility and repeatability and time burden for image analysts. MATERIALS AND METHODS CSE data from two cohorts were retrospectively analyzed. Cohort A included 53 patients referred for abdominal MRI and healthy subjects recruited for a comparison study of CT and MRI. Cohort B included 37 patients with suspected liver iron overload. Three reviewers measured liver PDFF and R2* using previously reported ROI sampling strategies. Inter- and intrareviewer agreement of liver PDFF and R2* were evaluated using Bland-Altman analysis. RESULTS Averaging largest-fit ROIs over the nine Couinaud segments resulted in the narrowest limits of agreement (LOA) for liver PDFF and R2* measurements in both cohorts. For PDFF, interreviewer agreement had mean LOA of ± 0.8% for cohort A and ± 1.7% for cohort B. Intrareviewer agreement was ± 0.5% for cohort A and ± 0.9% for cohort B. For R2* interre-viewer agreement had mean LOA of ± 3.0 s-1 for cohort A and ± 17.9 s-1 for cohort B. Intrare-viewer agreement was ± 2.6 s-1 for cohort A and ± 14.6 s-1 for cohort B. This approach was the most time-burdensome, requiring a mean ± SD of 149.7 ± 8.6 s per dataset. CONCLUSION For improved reproducibility and repeatability of liver PDFF and R2* measurements, clinicians and researchers should sample as much area of the liver as possible using multiple large ROIs.
Collapse
|
15
|
Abstract
Childhood obesity has reached epidemic proportions, and by 2012, more than one third of American children were overweight or obese. As a result, increasingly, children are developing complications of obesity including liver disease. In fact, non-alcoholic fatty liver disease is the most common form of chronic liver disease seen in children today. Recently, there has been a burgeoning literature examining the pathogenesis, genetic markers, and role of the microbiome in this disease. On the clinical front, new modalities of diagnosing hepatic steatosis and hepatic fibrosis are being developed to provide non-invasive methods of surveillance in children. Lastly, the mainstay of treatment of pediatric non-alcoholic fatty liver disease (NAFLD) has been largely through lifestyle interventions, namely, dieting and exercise. Currently, there are a number of clinical trials examining novel lifestyle and drug therapies for NAFLD that are registered with the US National Institutes of Health ClinicalTrials.gov website.
Collapse
|
16
|
Imajo K, Nakajima A. Reply. Gastroenterology 2016; 151:375-6. [PMID: 27376525 DOI: 10.1053/j.gastro.2016.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Kento Imajo
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|