1
|
Liu F, Chen L, Wu Q, Li L, Li J, Su T, Li J, Liang S, Qing L. Radiomics of Dynamic Contrast-Enhanced MRI for Predicting Radiation-Induced Hepatic Toxicity After Intensity Modulated Radiotherapy for Hepatocellular Carcinoma: A Machine Learning Predictive Model Based on the SHAP Methodology. J Hepatocell Carcinoma 2025; 12:999-1015. [PMID: 40406666 PMCID: PMC12095435 DOI: 10.2147/jhc.s523448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/03/2025] [Indexed: 05/26/2025] Open
Abstract
Objective To develop an interpretable machine learning (ML) model using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomic data, dosimetric parameters, and clinical data for predicting radiation-induced hepatic toxicity (RIHT) in patients with hepatocellular carcinoma (HCC) following intensity-modulated radiation therapy (IMRT). Methods A retrospective analysis of 150 HCC patients was performed, with a 7:3 ratio used to divide the data into training and validation cohorts. Radiomic features from the original MRI sequences and Delta-radiomic features were extracted. Seven ML models based on radiomics were developed: logistic regression (LR), random forest (RF), support vector machine (SVM), eXtreme Gradient Boosting (XGBoost), adaptive boosting (AdaBoost), decision tree (DT), and artificial neural network (ANN). The predictive performance of the models was evaluated using receiver operating characteristic (ROC) curve analysis and calibration curves. Shapley additive explanations (SHAP) were employed to interpret the contribution of each variable and its risk threshold. Results Original radiomic features and Delta-radiomic features were extracted from DCE-MRI images and filtered to generate Radiomics-scores and Delta-Radiomics-scores. These were then combined with independent risk factors (Body Mass Index (BMI), V5, and pre-Child-Pugh score(pre-CP)) identified through univariate and multivariate logistic regression and Spearman correlation analysis to construct the ML models. In the training cohort, the AUC values were 0.8651 for LR, 0.7004 for RF, 0.6349 for SVM, 0.6706 for XGBoost, 0.7341 for AdaBoost, 0.6806 for Decision Tree, and 0.6786 for ANN. The corresponding accuracies were 84.4%, 65.6%, 75.0%, 65.6%, 71.9%, 68.8%, and 71.9%, respectively. The validation cohort further confirmed the superiority of the LR model, which was selected as the optimal model. SHAP analysis revealed that Delta-radiomics made a substantial positive contribution to the model. Conclusion The interpretable ML model based on radiomics provides a non-invasive tool for predicting RIHT in patients with HCC, demonstrating satisfactory discriminative performance.
Collapse
Affiliation(s)
- Fushuang Liu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530001, People’s Republic of China
| | - Lijun Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530001, People’s Republic of China
| | - Qiaoyuan Wu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530001, People’s Republic of China
| | - Liqing Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530001, People’s Republic of China
| | - Jizhou Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530001, People’s Republic of China
| | - Tingshi Su
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530001, People’s Republic of China
| | - Jianxu Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530001, People’s Republic of China
| | - Shixiong Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530001, People’s Republic of China
| | - Liping Qing
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530001, People’s Republic of China
| |
Collapse
|
2
|
van Overeem Felter M, Møller PK, Josipovic M, Bekke SN, Bernchou U, Serup-Hansen E, Parikh P, Kim J, Geertsen P, Behrens CP, Madsen K, Vogelius IR, Topsøe JF, Berthelsen AK, Pøhl M, Schytte T, Persson GF. 1-year efficacy results after MR-guided risk-adapted stereotactic radiotherapy of infra-diaphragmatic oligometastases in a multicenter phase II trial. Radiother Oncol 2025; 205:110748. [PMID: 39880308 DOI: 10.1016/j.radonc.2025.110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND AND PURPOSE The SOFT (Stereotactic ablative radiotherapy of infra-diaphragmatic sOFT tissue metastases) trial assesses the safety and efficacy of risk-adapted MR-guided stereotactic ablative radiotherapy (SABR) of infra-diaphragmatic soft tissue metastasis in patients with oligometastatic disease (OMD) (clinicaltrials.gov ID NCT04407897). This paper reports the one-year efficacy analysis and evaluates associations between local control (LC) and clinical and dosimetric parameters. MATERIALS AND METHODS This investigator-initiated, multicenter, single-arm, phase 2 study recruited patients from four MR-linac centers in Denmark and the US. Patients with De novo or recurrent OMD with ≤5 metastases in ≤3 organs and patients with induced OMD or oligoprogressive disease (OPD) with ≤3 metastases were eligible. Fractionation schemes were 45-75 Gy in 3-8 fractions. RESULTS The trial included 121 patients with 147 oligometastatic lesions, primarily in the liver (41 %), lymph nodes (35 %), or adrenal glands (14 %). The median follow-up time was 13.0 months, interquartile range (IQR) (11.7,13.7) months. The 1-year LC rate was 89 %, 95 % confidence interval (CI) (83,94 %). We did not observe any statistically significant associations between LC and clinical and dosimetric parameters. The median progression-free survival was 7.1 months, 95 % CI (6.0,9.4). One- and two-year overall survival was 82.6 %, 95 % CI (76.2 %,89.7 %), and 65.1 %, 95 % CI (56.4 %,75.3 %). Sixty-one patients (50 %) were kept off systemic therapy throughout the one-year follow-up. CONCLUSION In our study, treatment with risk-adapted, MR-guided SABR resulted in a high one-year local control and survival rate and could keep half of the patients off systemic therapy within the first year of follow-up.
Collapse
Affiliation(s)
- Mette van Overeem Felter
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, Herlev 2730 Denmark.
| | - Pia Krause Møller
- Department of Oncology, Odense University Hospital, J. B. Winsløws Vej 4, Odense C 5000 Denmark; Institute of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 3, Odense C 5000, Denmark
| | - Mirjana Josipovic
- Department of Oncology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100 Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Susanne Nørring Bekke
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, Herlev 2730 Denmark
| | - Uffe Bernchou
- Department of Oncology, Odense University Hospital, J. B. Winsløws Vej 4, Odense C 5000 Denmark; Institute of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 3, Odense C 5000, Denmark
| | - Eva Serup-Hansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, Herlev 2730 Denmark
| | - Parag Parikh
- Department of Radiation Oncology, Henry Ford Hospital, 2800 W Grand Blvd., Detroit, MI 48202, United States
| | - Joshua Kim
- Department of Radiation Oncology, Henry Ford Hospital, 2800 W Grand Blvd., Detroit, MI 48202, United States
| | - Poul Geertsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, Herlev 2730 Denmark
| | - Claus P Behrens
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, Herlev 2730 Denmark; Department of Health Technology, Technical University of Denmark, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Kapser Madsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, Herlev 2730 Denmark
| | - Ivan R Vogelius
- Department of Oncology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100 Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Jakob Fink Topsøe
- Department of Radiology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, Herlev 2730, Denmark
| | - Anne Kiil Berthelsen
- Department of Oncology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100 Denmark
| | - Mette Pøhl
- Department of Oncology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100 Denmark
| | - Tine Schytte
- Department of Oncology, Odense University Hospital, J. B. Winsløws Vej 4, Odense C 5000 Denmark; Institute of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 3, Odense C 5000, Denmark
| | - Gitte Fredberg Persson
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, Herlev 2730 Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|
3
|
Park H, Lee SY. Radiation-induced liver disease mimicking liver metastasis after low-dose hepatic irradiation during radiotherapy for gastric mucosa-assisted lymphoid tissue lymphoma: A case report. Medicine (Baltimore) 2024; 103:e39191. [PMID: 39183416 PMCID: PMC11346857 DOI: 10.1097/md.0000000000039191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
RATIONALE Radiation-induced liver disease (RILD) is an established complication of hepatic irradiation that is typically reported in patients receiving high-dose radiotherapy for hepatocellular carcinoma or liver metastases. However, RILD can also occur after unintentional low-dose liver exposure during radiotherapy for other gastrointestinal malignancies when careful precautions are not taken. PATIENT CONCERNS We report the case of a 44-year-old woman with gastric mucosa-associated lymphoid tissue lymphoma who underwent salvage radiotherapy administered to the entire stomach. One month after completing this radiotherapy, computed tomography and magnetic resonance imaging of the patient's abdomen revealed a 4 cm lesion in the left lateral liver segment, suggestive of metastasis. DIAGNOSES An ultrasound-guided biopsy was performed, and the histopathological findings were consistent with those of RILD. INTERVENTIONS Conservative management was pursued with close monitoring of liver function tests. OUTCOMES The patient's imaging findings and liver enzyme levels normalized approximately 3 months after the initial diagnosis. LESSONS This case highlights the importance of considering RILD in the differential diagnosis of new hepatic lesions detected after radiotherapy, even in patients with low-dose liver exposure within generally acceptable limits. Careful correlation with the radiotherapy plan is crucial to avoid misdiagnosing RILD as metastatic disease and to guide appropriate management.
Collapse
Affiliation(s)
- Hyeli Park
- Department of Radiation Oncology, Presbyterian Medical Center, Jeonju, Jeonbuk, Republic of Korea
- Department of Medicine, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Sun Young Lee
- Department of Radiation Oncology, Jeonbuk National University Hospital-Jeonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|
4
|
Aly M, Shahhat S, Nguyen TK. Pseudoprogression Following Liver Stereotactic Body Radiotherapy (SBRT) in a Patient With Oligometastatic Leiomyosarcoma: A Case Report. Cureus 2024; 16:e67835. [PMID: 39323699 PMCID: PMC11424013 DOI: 10.7759/cureus.67835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Stereotactic body radiotherapy (SBRT) is a non-invasive form of radiation that has been utilized for oligometastatic malignancies. However, pseudoprogression is a common radiological occurrence following this treatment, which manifests as an increase in tumor size before its reduction. We discuss a case of a 58-year-old female patient who initially presented with uterine leiomyosarcoma. Following surgery and postoperative radiation, she was later found to have solitary liver metastasis after three years of surveillance, which was managed by SBRT. However, on short-term follow-up, the lesion was found to have increased in size, prompting discussion regarding whether the growth was a progression of disease or a secondary effect of treatment. After close follow-up, the tumor continued to shrink until it was no longer visible on imaging. This is the first report discussing pseudoprogression following SBRT in a retroperitoneal leiomyosarcoma patient. It serves as a reminder for clinicians to consider the possibility of pseudoprogression before the failure of therapy.
Collapse
Affiliation(s)
- Mohamed Aly
- Schulich School of Medicine and Dentistry, Western University, London, CAN
| | - Shaheer Shahhat
- Radiation Oncology, London Health Sciences Centre, London, CAN
| | | |
Collapse
|
5
|
Martin TW, Griffin L. Prospective pilot study utilizing changes in quantitative values obtained on serial fluorine-18 fluorodeoxyglucose ( 18F-FDG) positron emission tomography-computed tomography (PET/CT) in dogs with appendicular osteosarcoma before and after stereotactic body radiation therapy (SBRT) and carboplatin chemotherapy to assess for prediction of survival and therapeutic effectiveness. Vet Radiol Ultrasound 2024; 65:408-416. [PMID: 38655687 DOI: 10.1111/vru.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 03/10/2024] [Indexed: 04/26/2024] Open
Abstract
Serial fluorine 18 fluorodeoxyglucose (18F-FDG) positron emission tomography-CT (PET/CT) is commonly used in human oncology to prognosticate and evaluate for therapeutic effectiveness. In this pilot study, dogs with naturally occurring appendicular osteosarcoma were evaluated with serial 18F-FDG PET/CT in an attempt to assess for response to therapy, prognostic factors, and appropriateness of imaging intervals. Fourteen dogs were enrolled in the trial. All dogs had the initial 18F-FDG PET/CT (PET1), with nine dogs having their end-of-therapy 18F-FDG PET/CT (EoT PET) 3 months after stereotactic body radiation therapy (SBRT) to the primary tumor. The median percent change from the PET1 to the EoT PET for the standard uptake value maximum (SUVmax%) was -58% (range: -17 to -88%), metabolic tumor volume (MTV%) was -99.8% (range: -65 to -100%), and total lesion glycolysis (TLG%) was -99.8% (range: -75 to -100%), all of which were significant (P < .05, <.05, and <.05, respectively). On evaluation, it was found that volumes of GTV and CTV were significant for survival (P < .05 and <.05), MTV1, TLG1, and SUVmax on the EoT PET (SUVmaxEoT) were predictive of metastasis (P < .05), and the SUVmax% was significantly correlated to the time to first event (P < .05). Based on this data, serial 18F-FDG PET/CT performed 3 months after SBRT can show a significant reduction in avidity, and the quantitative data collected may help predict metastatic disease in canine appendicular osteosarcoma.
Collapse
Affiliation(s)
- Tiffany W Martin
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Lynn Griffin
- VCA Canada Central Victoria Veterinary Hospital, Victoria, British Columbia, Canada
| |
Collapse
|
6
|
Niitsu H, Mizumoto M, Li Y, Nakamura M, Ishida T, Iizumi T, Saito T, Numajiri H, Makishima H, Nakai K, Oshiro Y, Maruo K, Sakurai H. Tumor Response on Diagnostic Imaging after Proton Beam Therapy for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:357. [PMID: 38254846 PMCID: PMC10814092 DOI: 10.3390/cancers16020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Follow-up after treatment for hepatocellular carcinoma (HCC) can be mostly performed using dynamic CT or MRI, but there is no common evaluation method after radiation therapy. The purpose of this study is to examine factors involved in tumor reduction and local recurrence in patients with HCC treated with proton beam therapy (PBT) and to evaluate HCC shrinkage after PBT. METHODS Cases with only one irradiated lesion or those with two lesions irradiated simultaneously were included in this study. Pre- and post-treatment lesions were evaluated using Response Evaluation Criteria in Solid Tumors (RECIST) by measuring the largest diameter. RESULTS The 6-, 12-, and 24-month CR + PR rates after PBT were 33.1%, 57.5%, and 76.9%, respectively, and the reduction rates were 25.1% in the first 6 months, 23.3% at 6-12 months, and 14.5% at 13-24 months. Cases that reached CR/PR at 6 and 12 months had improved OS compared to non-CR/non-PR cases. CONCLUSIONS It is possible that a lesion that reached SD may subsequently transition to PR; it is reasonable to monitor progress with periodic imaging evaluations even after 1 year of treatment.
Collapse
Affiliation(s)
- Hikaru Niitsu
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Masashi Mizumoto
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Yinuo Li
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Masatoshi Nakamura
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Toshiki Ishida
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Takashi Iizumi
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Takashi Saito
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Haruko Numajiri
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Hirokazu Makishima
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Kei Nakai
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Yoshiko Oshiro
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
- Department of Radiation Oncology, Tsukuba Medical Center Hospital, Tsukuba 305-8558, Ibaraki, Japan
| | - Kazushi Maruo
- Department of Biostatistics, Institute of Medicine, University of Tsukuba, Tsukuba 305-8576, Ibaraki, Japan;
| | - Hideyuki Sakurai
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| |
Collapse
|
7
|
Abualnil AY, Kumar R, George MA, Lalos A, Shah MM, Deek MP, Jabbour SK. Role of Stereotactic Body Radiation Therapy in Hepatocellular Carcinoma. Surg Oncol Clin N Am 2024; 33:173-195. [PMID: 37945142 DOI: 10.1016/j.soc.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Hepatocellular carcinoma (HCC)is a common type of liver cancer with a poor prognosis, especially in patients with advanced stages or underlying liver disease. While surgical resection, liver transplantation, and ablation therapies have traditionally been the mainstay of treatment for HCC, radiation therapy has become increasingly recognized as an effective alternative, particularly for those who are not surgical candidates. Stereotactic Body Radiation Therapy (SBRT) is a highly precise form of radiation therapy that delivers very high doses of radiation to the tumor while sparing surrounding healthy tissue. Several studies have reported favorable outcomes with SBRT in HCC treatment. Moreover, SBRT can be used to treat recurrent HCC after prior treatment, offering a potentially curative approach in select cases. While SBRT has demonstrated its efficacy and safety in treating HCC, future studies are needed to further investigate the potential role of SBRT in combination with other treatments for HCC.
Collapse
Affiliation(s)
- Aseel Y Abualnil
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ritesh Kumar
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mridula A George
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Alexander Lalos
- Division of Gasteroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mihir M Shah
- Division of Surgical Oncology, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30342, USA
| | - Matthew P Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
8
|
Omiya Y, Morisaka H, Matsuda M, Saito M, Hashimoto T, Motosugi U, Onishi H. Liver parenchymal changes detected by MR elastography and diffusion-weighted imaging after stereotactic body radiotherapy for hepatocellular carcinoma. Abdom Radiol (NY) 2023; 48:3353-3361. [PMID: 37542553 DOI: 10.1007/s00261-023-03995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) is a local treatment option for hepatocellular carcinoma (HCC). SBRT-induced focal reactions on the liver parenchyma have not been thoroughly evaluated using quantitative magnetic resonance imaging (MRI). PURPOSE To quantitatively evaluate liver parenchymal changes caused by SBRT for HCC using magnetic resonance elastography (MRE) and diffusion-weighted imaging (DWI). METHOD We retrospectively evaluated 22 adult patients who received SBRT for HCC and 27 who received locoregional therapy other than SBRT (controls). Liver stiffness by MRE and apparent diffusion coefficient (ADC) values by DWI of the liver parenchyma were measured before and after SBRT. Regions of interest (ROIs) were drawn on the two areas of radiation dose distribution levels, > 30 Gy and ≤ 30 Gy; a ROI was drawn in the control group. The two indices were compared before and after SBRT using a Wilcoxon matched-pairs signed-rank test. RESULTS Liver stiffness and ADC values were significantly increased after SBRT in the dose areas of > 30 Gy compared with those before SBRT (4.05 vs 4.85 kPa; p < 0.05 in liver stiffness, and 1.10 vs 1.40 ×10-3 s/mm2; p < 0.05 in ADC values). In the dose area of ≦ 30 Gy, liver stiffness showed a significant increase in one reader (p = 0.033) but not in another reader (p = 0.085); ADC value showed no significant difference before and after SBRT as per both readers (p > 0.05). The control group demonstrated no significant differences before and after treatment (p > 0.05). CONCLUSION MRE and DWI can be used to detect SBRT-induced liver parenchymal changes.
Collapse
Affiliation(s)
- Yoshie Omiya
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Hiroyuki Morisaka
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masaki Matsuda
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masahide Saito
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Takaaki Hashimoto
- Department of Radiology, Kofu Municipal Hospital, Masutsubocho, Kofu, 400-0832, Japan
| | - Utaroh Motosugi
- Department of Radiology, Kofu-Kyoritsu Hospital, Takara, Kofu, Yamanashi, 400-0034, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
9
|
Mheid S, Allen S, Ng SSW, Hall WA, Sanford NN, Aguilera TA, Elamir AM, Bahij R, Intven MPW, Radhakrishna G, Mohamad I, De Leon J, Tan H, Lewis S, Gani C, Stanecu T, Dell’Acqua V, Hosni A. Local Control Following Stereotactic Body Radiation Therapy for Liver Oligometastases: Lessons from a Quarter Century. Curr Oncol 2023; 30:9230-9243. [PMID: 37887567 PMCID: PMC10605011 DOI: 10.3390/curroncol30100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
The utilization of stereotactic body radiation therapy for the treatment of liver metastasis has been widely studied and has demonstrated favorable local control outcomes. However, several predictive factors play a crucial role in the efficacy of stereotactic body radiation therapy, such as the number and size (volume) of metastatic liver lesions, the primary tumor site (histology), molecular biomarkers (e.g., KRAS and TP53 mutation), the use of systemic therapy prior to SBRT, the radiation dose, and the use of advanced technology and organ motion management during SBRT. These prognostic factors need to be considered when clinical trials are designed to evaluate the efficacy of SBRT for liver metastases.
Collapse
Affiliation(s)
- Sara Mheid
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; (S.M.); (T.S.)
| | - Stefan Allen
- Department of Radiation Oncology, Dalhousie University, Nova Scotia Health, Halifax, NS B3H 4R2, Canada;
| | - Sylvia S. W. Ng
- Department of Radiation Oncology, University of Toronto, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
| | - William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Nina N. Sanford
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX 75235, USA; (N.N.S.); (T.A.A.); (A.M.E.)
| | - Todd A. Aguilera
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX 75235, USA; (N.N.S.); (T.A.A.); (A.M.E.)
| | - Ahmed M. Elamir
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX 75235, USA; (N.N.S.); (T.A.A.); (A.M.E.)
| | - Rana Bahij
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark;
| | - Martijn P. W. Intven
- Department of Radiotherapy, Division Imaging and Oncology, University Medical Centre, 3584 CX Utrecht, The Netherlands;
| | - Ganesh Radhakrishna
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Issa Mohamad
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan;
| | | | - Hendrick Tan
- Department of Radiation Oncology, Fiona Stanley Hospital, Perth, WA 6150, Australia;
- GenesisCare, Perth, WA 6150, Australia
| | - Shirley Lewis
- Department of Radiotherapy and Oncology, Manipal Comprehensive Cancer Care Centre, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany;
| | - Teo Stanecu
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; (S.M.); (T.S.)
| | - Veronica Dell’Acqua
- Medical Affairs and Clinical Research, Linac-Based RT, Elekta Milan, 20864 Lombardy, Italy;
| | - Ali Hosni
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; (S.M.); (T.S.)
| |
Collapse
|
10
|
Sharma HK, Kyriakakos C, Jabbour TE, Ward S, Buckstein M, Taouli B, Lewis S. Longitudinal assessment of hepatocellular carcinoma response to stereotactic body radiation using gadoxetate-enhanced MRI: A case series. Eur J Radiol 2023; 167:111077. [PMID: 37688918 DOI: 10.1016/j.ejrad.2023.111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE To describe the longitudinal response in patients with hepatocellular carcinoma (HCC) treated with stereotactic body radiation therapy (SBRT) and who underwent liver transplant (LT) using gadoxetate-enhanced MRI. METHODS Five men (median age 61y, range 57-64y) with 6 HCCs treated with SBRT (median dose 50 Gy) who subsequently underwent LT were included in this retrospective study. Patients underwent gadoxetate-enhanced MRI before and after SBRT over a period of 3-18 months. Response was assessed using RECIST1.1, mRECIST, LI-RADS and image subtraction, by 2 observers in consensus. Percentage of pathologic tumor necrosis was evaluated. RESULTS LT was performed 278 days (IQR, 148-418d) after completion of SBRT and 48d after the last MRI. Histopathology demonstrated tumor necrosis of 48 ± 42% (range, 10-100%). Mean tumor size at baseline and last post-treatment MRIs pre-LT were 2.6 ± 0.8 cm and 2.4 ± 0.9 cm. Enhancing tumor component size at baseline MRI and last post-treatment MRI pre-LT were 1.6 ± 0.8 cm and 0.9 ± 1.0 cm. Responses assessed at the last LRI pre-LT were: partial response (PR, n = 3), stable disease (SD, n = 3) using RECIST1.1; complete response (CR, n = 2), partial response (PR, n = 2), stable disease (SD, n = 2) using mRECIST; and LR-TR viable (n = 4), LR-TR non-viable (n = 2) using LI-RADS. At the last MRI pre-LT, per-lesion features of arterial phase hyperenhancement (APHE, 4/6), portal venous washout (3/6) and capsule (3/6) were observed. 5/6 lesions displayed a hypointense perilesional halo on hepatobiliary phase with a mean delay of 3.1 months post-SBRT. CONCLUSIONS This case-series showed decreased size, persistent APHE, and incomplete pathologic necrosis in most HCCs treated with SBRT undergoing transplant.
Collapse
Affiliation(s)
- Himanshu Kumar Sharma
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Christopher Kyriakakos
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Tony El Jabbour
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15th Floor, 1468 Madison Avenue, New York, NY 10029, USA
| | - Stephen Ward
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15th Floor, 1468 Madison Avenue, New York, NY 10029, USA
| | - Michael Buckstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, 1184 5th Avenue, First Floor, New York, NY 10029, USA
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sara Lewis
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
11
|
Soon GS, Yasir S, Wu TT, Welle C, Venkatesh SK, Torbenson MS, Chen ZE. Unique Morphologic Findings in the Liver After Stereotactic Radiation for Cholangiocarcinoma. Am J Surg Pathol 2023; 47:792-800. [PMID: 37204143 PMCID: PMC10330188 DOI: 10.1097/pas.0000000000002052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Newer radiotherapy techniques, such as stereotactic body radiation, have been increasingly used as part of the treatment of cholangiocarcinomas, particularly as a bridge to liver transplantation. Although conformal, these high-dose therapies result in tissue injury in the peritumoral liver tissue. This retrospective study characterized the morphologic changes in the liver after stereotactic body radiation in a series of liver explant specimens with perihilar cholangiocarcinoma. The morphologic changes in the irradiated zone were compared against the nonirradiated background liver parenchyma to control for chemotherapy-related changes. Of the 21 cases studied, 16 patients (76.2%) had underlying primary sclerosing cholangitis, and 13 patients (61.9%) had advanced liver fibrosis. The average duration between completion of radiotherapy and liver transplantation was 33.4 weeks (range: 6.29 to 67.7). Twelve patients (57.1%) had no residual tumor in the liver. The most frequent histologic changes in the peritumoral irradiated liver tissue were sinusoidal congestion (100%), sinusoidal edematous stroma (100%), and hepatocellular atrophy (100%), followed by partial/complete occlusion of central veins (76.2%), sinusoidal cellular infiltrates (76.2%), and hepatocyte dropout (66.7%). The findings in the radiated areas were more extensive than in the background liver ( P <0.01). Sinusoidal edematous stroma was striking and dominated the histologic findings in some cases. Over time, there was less sinusoidal congestion but more hepatocyte dropout (r s =-0.54, P =0.012 and r s =0.64, P =0.002, respectively). Uncommon findings, such as foam cell arteriopathy in the liver hilum, were also observed. In summary, postradiation liver specimens have distinctive morphologic findings.
Collapse
Affiliation(s)
| | - Saba Yasir
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tsung-Teh Wu
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher Welle
- Division of Anatomic Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
12
|
Mai Z, Yang Q, Xu J, Xie H, Ban X, Xu G, Zhang R. Response evaluation of hepatocellular carcinoma treated with stereotactic body radiation therapy: magnetic resonance imaging findings. Abdom Radiol (NY) 2023; 48:1995-2007. [PMID: 36939911 PMCID: PMC10167191 DOI: 10.1007/s00261-023-03827-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 03/21/2023]
Abstract
PURPOSE To summarize the magnetic resonance imaging manifestations of hepatocellular carcinoma (HCC) with and without progression after stereotactic body radiation therapy (SBRT) and evaluate the treatment effect using the modified Liver Reporting and Data System (LI-RADS). METHODS Between January 2015 and December 2020, 102 patients with SBRT-treated HCC were included. Tumor size, signal intensity, and enhancement patterns at each follow-up period were analyzed. Three different patterns of enhancement: APHE and wash-out, non-enhancement, and delayed enhancement. For modified LI-RADS, delayed enhancement with no size increase were considered to be a "treatment-specific expected enhancement pattern" for LR-TR non-viable. RESULTS Patients were divided into two groups: without (n = 96) and with local progression (n = 6). Among patients without local progression, APHE and wash-out pattern demonstrated conversion to the delayed enhancement (71.9%) and non-enhancement (20.8%) patterns, with decreased signal intensity on T1WI(92.9%) and DWI(99%), increased signal intensity on T1WI (99%), and decreased size. The signal intensity and enhancement patterns stabilized after 6-9 months. Six cases with progression exhibited tumor growth, APHE and wash-out, and increased signal intensity on T2WI/DWI. Based on the modified LI-RADS criteria, 74% and 95% showed LR-TR-nonviable in 3 and 12 months post-SBRT, respectively. CONCLUSIONS After SBRT, the signal intensity and enhancement patterns of HCCs showed a temporal evolution. Tumor growth, APHE and wash-out, and increased signal intensity on T2WI/DWI indicates tumor progression. Modified LI-RADS criteria showed good performance in evaluating nonviable lesions after SBRT.
Collapse
Affiliation(s)
- Zhijun Mai
- Department of Radiology, Sun Yat-Sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou, 510060, China
| | - Qiuxia Yang
- Department of Radiology, Sun Yat-Sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jiahui Xu
- Department of Radiology, Sun Yat-Sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou, 510060, China
| | - Hui Xie
- Department of Radiology, Sun Yat-Sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou, 510060, China
| | - Xiaohua Ban
- Department of Radiology, Sun Yat-Sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou, 510060, China
| | - Guixiao Xu
- Department of Radiology, Sun Yat-Sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou, 510060, China
| | - Rong Zhang
- Department of Radiology, Sun Yat-Sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
13
|
Wu QQ, Chen YX, Du SS, Hu Y, Yang P, Zeng ZC. Early complete tumor response as a survival predictor in hepatocellular carcinoma patients receiving stereotactic body radiation therapy. Clin Transl Radiat Oncol 2023; 39:100465. [PMID: 36935858 PMCID: PMC10014333 DOI: 10.1016/j.ctro.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/21/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022] Open
Abstract
Background and Purpose To evaluate the different response patterns after Stereotactic Body Radiation Therapy (SBRT) and their predictive value in local control and progression of hepatocellular carcinoma (HCC). Materials and methods Seventy-two HCC patients who were treated with SBRT during 2015-2020 were included in this retrospective study. The assessment was made using MRI, CT, and PET-CT. Local and systemic responses were determined according to modified Response Evaluation Criteria in Solid Tumors (mRECIST) criteria during follow up. Patients were categorized as early responders (complete response during 6 months after radiotherapy) or non-early responders (the rest of the patients). Prognostic factors were determined using multivariate logistic models. Results The median follow-up was 24.0 months (range, 7.7-74.5 months). We found that 84.7%(61/72) of patients achieved a complete response. Early responses occurred in 45 patients (45/72, 62.5%), and they had 1-, 2-, and 5- year intrahepatic outfield-free survival (OutFFS) rates of 86.2%, 80.3%, and 76.3% vs. 55.3%, 44.7%, and 33.5% in non-early responses patients, whereas the 1-, 2-, and 5- year distant metastasis-free survival (DMFS) were 95.5%, 84.5% and 79.5% and 74.1%, 56.2% and 56.2%, respectively. The 1-, 2-, and 5-year overall survival (OS) were 97.7%, 92.1%, 79.1%, and 85.2%, 53.8%, and 40.3%, respectively. Multivariate analysis revealed that early tumor response was an independent predictor of OutFFS, DMFS, and OS. Conclusions Early complete tumor response within 6 months after radiotherapy predicted better intrahepatic outfield-free survival, distant metastasis-free survival, and overall survival outcomes. Confirmation is warranted for early response on SBRT to guide decision making.
Collapse
Affiliation(s)
- Qi-Qiao Wu
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Xiamen Branch, Jinhu Road 668, Xiamen 361006, China
| | - Yi-Xing Chen
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, Shanghai 200030, China
| | - Shi-Suo Du
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, Shanghai 200030, China
| | - Yong Hu
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, Shanghai 200030, China
| | - Ping Yang
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, Shanghai 200030, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, Shanghai 200030, China
| |
Collapse
|
14
|
Navin PJ, Olson MC, Mendiratta-Lala M, Hallemeier CL, Torbenson MS, Venkatesh SK. Imaging Features in the Liver after Stereotactic Body Radiation Therapy. Radiographics 2022; 42:2131-2148. [PMID: 36240077 DOI: 10.1148/rg.220084] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Historically, radiation therapy was not considered in treatment of liver tumors owing to the risk of radiation-induced liver disease. However, development of highly conformed radiation treatments such as stereotactic body radiation therapy (SBRT) has increased use of radiation therapy in the liver. SBRT is indicated in treatment of primary and metastatic liver tumors with outcomes comparable to those of other local therapies, especially in treatment of hepatocellular carcinoma. After SBRT, imaging features of the tumor and surrounding background hepatic parenchyma demonstrate a predictable pattern immediately after treatment and during follow-up. The goals of SBRT are to deliver a lethal radiation dose to the targeted liver tumor and to minimize radiation dose to normal liver parenchyma and other adjacent organs. Evaluation of tumor response after SBRT centers on changes in size and enhancement; however, these changes are often delayed secondary to the underlying physiologic effects of radiation. Knowledge of the underlying pathophysiologic mechanisms of SBRT should allow better understanding of the typical imaging features in detection of tumor response and avoid misinterpretation from common pitfalls and atypical imaging findings. Imaging features of radiation-induced change in the surrounding liver parenchyma are characterized by a focal liver reaction that can potentially be mistaken for no response or recurrence of tumor. Knowledge of the pattern and chronology of this phenomenon may allay any uncertainty in assessment of tumor response. Other pitfalls related to fiducial marker placement or combination therapies are important to recognize. The authors review the basic principles of SBRT and illustrate post-SBRT imaging features of treated liver tumors and adjacent liver parenchyma with a focus on avoiding pitfalls in imaging evaluation of response. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Patrick J Navin
- From the Departments of Radiology (P.J.N., M.C.O., S.K.V.), Radiation Oncology (C.L.H.), and Pathology (M.S.T.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Radiology, University of Michigan, Ann Arbor, Mich (M.M.L.)
| | - Michael C Olson
- From the Departments of Radiology (P.J.N., M.C.O., S.K.V.), Radiation Oncology (C.L.H.), and Pathology (M.S.T.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Radiology, University of Michigan, Ann Arbor, Mich (M.M.L.)
| | - Mishal Mendiratta-Lala
- From the Departments of Radiology (P.J.N., M.C.O., S.K.V.), Radiation Oncology (C.L.H.), and Pathology (M.S.T.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Radiology, University of Michigan, Ann Arbor, Mich (M.M.L.)
| | - Christopher L Hallemeier
- From the Departments of Radiology (P.J.N., M.C.O., S.K.V.), Radiation Oncology (C.L.H.), and Pathology (M.S.T.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Radiology, University of Michigan, Ann Arbor, Mich (M.M.L.)
| | - Michael S Torbenson
- From the Departments of Radiology (P.J.N., M.C.O., S.K.V.), Radiation Oncology (C.L.H.), and Pathology (M.S.T.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Radiology, University of Michigan, Ann Arbor, Mich (M.M.L.)
| | - Sudhakar K Venkatesh
- From the Departments of Radiology (P.J.N., M.C.O., S.K.V.), Radiation Oncology (C.L.H.), and Pathology (M.S.T.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Radiology, University of Michigan, Ann Arbor, Mich (M.M.L.)
| |
Collapse
|
15
|
Serafini A, Ruggeri V, Inchingolo R, Gatti M, Guarneri A, Maino C, Ippolito D, Grazioli L, Ricardi U, Faletti R. Liver magnetic resonance imaging for evaluation of response to treatment after stereotactic body radiation therapy of hepatocellular carcinoma. World J Hepatol 2022; 14:1790-1803. [PMID: 36185716 PMCID: PMC9521449 DOI: 10.4254/wjh.v14.i9.1790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/24/2022] [Accepted: 08/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although stereotactic body radiation therapy (SBRT) is increasingly used, its application has not yet been regulated by the main international guidelines, leaving the decision to multidisciplinary teams. AIM To assess magnetic resonance imaging (MRI) features of hepatocellular carcinoma (HCC) treated with SBRT, highlighting the efficacy of the treatment and the main aspects of the lesion before and after the procedure. METHODS As part of a retrospective study, 49 patients who underwent SBRT for HCC between January 2013 and November 2019 were recruited. Each patient underwent a pre-treatment MRI examination with a hepatospecific contrast agent and a similar follow-up examination within 6 mo of therapy. In addition, 22 patients underwent a second follow-up examination after the first 6 mo. The following characteristics were analysed: Features analysed compared to pre-treatment MRI examination, presence or absence of infield and outfield progression, ring-like enhancement, signal hyperintensity in T2-weighted sequences in the perilesional parenchyma, capsular retraction, and "band" signal hypointensity in T1-weighted gradient echo fat saturated sequences obtained during hepatobiliary excretion. RESULTS Signal hyperintensity in the T2-weighted sequences showed a statistically significant reduction in the number of lesions at the post-SBRT first control (P = 0.0006). Signal hyperintensity in diffusion-weighted imaging-weighted sequences was decreased at MRI first control (P < 0.0001). A statistically significant increase of apparent diffusion coefficient values from a median of 1.01 to 1.38 at the first post-control was found (P < 0.0001). Capsular retraction was increased at the late evaluation (P = 0.006). Band-like signal hypointensity in the hepatobiliary phase was present in 94% at the late control (P = 0.006). The study of the risk of outfield progression vs infield progression revealed a hazard ratio of 9. CONCLUSION The efficacy of SBRT should be evaluated not in the first 6 mo, but at least 9 mo post-SBRT, when infield progression persists at very low rates while the risk of outfield progression increases significantly.
Collapse
Affiliation(s)
| | - Valeria Ruggeri
- Department of Radiology, University of Brescia, Brescia 25123, Italy
| | - Riccardo Inchingolo
- Interventional Radiology Unit, Miulli Hospital, Acquaviva Delle Fonti 70124, Italy
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Alessia Guarneri
- Department of Oncology-Radiation Oncology, University of Turin, Turin 10126, Italy
| | - Cesare Maino
- Department of Diagnostic Radiology, University of Milano-Bicocca, Monza 20900, Italy
| | - Davide Ippolito
- Department of Diagnostic Radiology, University of Milano-Bicocca, Monza 20900, Italy
| | - Luigi Grazioli
- Department of Radiology, Spedali Civili, University of Brescia, Brescia 25023, Italy
| | - Umberto Ricardi
- Department of Oncology-Radiation Oncology, University of Turin, Turin 10126, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy.
| |
Collapse
|
16
|
Alnammi M, Wortman J, Therrien J, Afnan J. MRI features of treated hepatocellular carcinoma following locoregional therapy: a pictorial review. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:2299-2313. [PMID: 35524803 DOI: 10.1007/s00261-022-03526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide and within the United States. Liver transplant or partial liver resection is the definitive treatment of choice for HCC; however, the majority of cases are detected in advanced stages due to its early-stage asymptomatic nature, often precluding surgical treatment. Locoregional therapy plays an essential role in HCC management, including curative intent, as a bridge to transplant, or in some cases palliative therapy. Radiologists play a critical role in assessing tumor response following treatment to guide further management that may potentially impact transplantation eligibility; therefore, it is important for radiologists to have an understanding of different locoregional therapies and the variations of imaging response to different therapies. In this review article, we outline the imaging response to ablative therapy (AT), transarterial chemoembolization (TACE), selective internal radiation therapy (SIRT), and stereotactic body radiation therapy (SBRT). We will also briefly discuss the basic concepts of these locoregional therapies. This review focuses on the imaging features following locoregional treatment for hepatocellular carcinoma following AT, TACE, SIRT, and SBRT.
Collapse
Affiliation(s)
- Mohanned Alnammi
- Department of Diagnostic Radiology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA
| | - Jeremy Wortman
- Department of Diagnostic Radiology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA
| | - Jaclyn Therrien
- Department of Diagnostic Radiology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA
| | - Jalil Afnan
- Department of Diagnostic Radiology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA.
| |
Collapse
|
17
|
Shen PC, Huang WY, Dai YH, Lo CH, Yang JF, Su YF, Wang YF, Lu CF, Lin CS. Radiomics-Based Predictive Model of Radiation-Induced Liver Disease in Hepatocellular Carcinoma Patients Receiving Stereo-Tactic Body Radiotherapy. Biomedicines 2022; 10:biomedicines10030597. [PMID: 35327398 PMCID: PMC8945465 DOI: 10.3390/biomedicines10030597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The application of stereotactic body radiation therapy (SBRT) in hepatocellular carcinoma (HCC) limited the risk of the radiation-induced liver disease (RILD) and we aimed to predict the occurrence of RILD more accurately. (2) Methods: 86 HCC patients were enrolled. We identified key predictive factors from clinical, radiomic, and dose-volumetric parameters using a multivariate analysis, sequential forward selection (SFS), and a K-nearest neighbor (KNN) algorithm. We developed a predictive model for RILD based on these factors, using the random forest or logistic regression algorithms. (3) Results: Five key predictive factors in the training set were identified, including the albumin–bilirubin grade, difference average, strength, V5, and V30. After model training, the F1 score, sensitivity, specificity, and accuracy of the final random forest model were 0.857, 100, 93.3, and 94.4% in the test set, respectively. Meanwhile, the logistic regression model yielded an F1 score, sensitivity, specificity, and accuracy of 0.8, 66.7, 100, and 94.4% in the test set, respectively. (4) Conclusions: Based on clinical, radiomic, and dose-volumetric factors, our models achieved satisfactory performance on the prediction of the occurrence of SBRT-related RILD in HCC patients. Before undergoing SBRT, the proposed models may detect patients at high risk of RILD, allowing to assist in treatment strategies accordingly.
Collapse
Affiliation(s)
- Po-Chien Shen
- National Defense Medical Center, Department of Radiation Oncology, Tri-Service General Hospital, Taipei 114, Taiwan; (P.-C.S.); (W.-Y.H.); (Y.-H.D.); (C.-H.L.); (J.-F.Y.); (Y.-F.S.); (Y.-F.W.)
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wen-Yen Huang
- National Defense Medical Center, Department of Radiation Oncology, Tri-Service General Hospital, Taipei 114, Taiwan; (P.-C.S.); (W.-Y.H.); (Y.-H.D.); (C.-H.L.); (J.-F.Y.); (Y.-F.S.); (Y.-F.W.)
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 114, Taiwan
| | - Yang-Hong Dai
- National Defense Medical Center, Department of Radiation Oncology, Tri-Service General Hospital, Taipei 114, Taiwan; (P.-C.S.); (W.-Y.H.); (Y.-H.D.); (C.-H.L.); (J.-F.Y.); (Y.-F.S.); (Y.-F.W.)
| | - Cheng-Hsiang Lo
- National Defense Medical Center, Department of Radiation Oncology, Tri-Service General Hospital, Taipei 114, Taiwan; (P.-C.S.); (W.-Y.H.); (Y.-H.D.); (C.-H.L.); (J.-F.Y.); (Y.-F.S.); (Y.-F.W.)
| | - Jen-Fu Yang
- National Defense Medical Center, Department of Radiation Oncology, Tri-Service General Hospital, Taipei 114, Taiwan; (P.-C.S.); (W.-Y.H.); (Y.-H.D.); (C.-H.L.); (J.-F.Y.); (Y.-F.S.); (Y.-F.W.)
- National Defense Medical Center, Institute of Medical Science, Taipei 114, Taiwan
| | - Yu-Fu Su
- National Defense Medical Center, Department of Radiation Oncology, Tri-Service General Hospital, Taipei 114, Taiwan; (P.-C.S.); (W.-Y.H.); (Y.-H.D.); (C.-H.L.); (J.-F.Y.); (Y.-F.S.); (Y.-F.W.)
- National Defense Medical Center, Institute of Medical Science, Taipei 114, Taiwan
| | - Ying-Fu Wang
- National Defense Medical Center, Department of Radiation Oncology, Tri-Service General Hospital, Taipei 114, Taiwan; (P.-C.S.); (W.-Y.H.); (Y.-H.D.); (C.-H.L.); (J.-F.Y.); (Y.-F.S.); (Y.-F.W.)
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (C.-F.L.); (C.-S.L.); Tel.: +886-2-2826-7308 (C.-F.L.); +886-2-8792-7122 (C.-S.L.)
| | - Chun-Shu Lin
- National Defense Medical Center, Department of Radiation Oncology, Tri-Service General Hospital, Taipei 114, Taiwan; (P.-C.S.); (W.-Y.H.); (Y.-H.D.); (C.-H.L.); (J.-F.Y.); (Y.-F.S.); (Y.-F.W.)
- Correspondence: (C.-F.L.); (C.-S.L.); Tel.: +886-2-2826-7308 (C.-F.L.); +886-2-8792-7122 (C.-S.L.)
| |
Collapse
|
18
|
Shampain KL, Hackett CE, Towfighi S, Aslam A, Masch WR, Harris AC, Chang SD, Khanna K, Mendiratta V, Gabr AM, Owen D, Mendiratta-Lala M. SBRT for HCC: Overview of technique and treatment response assessment. Abdom Radiol (NY) 2021; 46:3615-3624. [PMID: 33963419 DOI: 10.1007/s00261-021-03107-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Stereotactic body radiation therapy (SBRT) is an emerging locoregional treatment (LRT) modality used in the management of patients with hepatocellular carcinoma (HCC). The decision to treat HCC with LRT is evaluated in a multidisciplinary setting, and the specific LRT chosen depends on the treatment intent, such as bridge-to-transplant, down-staging to transplant, definitive/curative treatment, and/or palliation, as well as underlying patient clinical factors. Accurate assessment of treatment response is necessary in order to guide clinical management in these patients. Patients who undergo LRT need continuous imaging evaluation to assess treatment response and to evaluate for recurrence. Thus, an accurate understanding of expected post-SBRT imaging findings is critical to avoid misinterpreting normal post-treatment changes as local progression or viable tumor. SBRT-treated HCC demonstrates unique imaging findings that differ from HCC treated with other forms of LRT. In particular, SBRT-treated HCC can demonstrate persistent APHE and washout on short-term follow-up imaging. This brief review summarizes current evidence for the use of SBRT for HCC, including patient population, SBRT technique and procedure, tumor response assessment on contrast-enhanced cross-sectional imaging with expected findings, and pitfalls in treatment response evaluation.
Collapse
Affiliation(s)
| | | | - Sohrab Towfighi
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Anum Aslam
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - William R Masch
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Alison C Harris
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Silvia D Chang
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Kanika Khanna
- Department of Hepatology, Henry Ford Hospital, Detroit, MI, USA
| | | | - Ahmed M Gabr
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, USA
| | | |
Collapse
|
19
|
In Regard to Kimura et al. Int J Radiat Oncol Biol Phys 2021; 110:615-616. [PMID: 33989584 DOI: 10.1016/j.ijrobp.2020.12.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022]
|
20
|
Li Z, Jiao D, Han X. Commentary: Stereotactic Body Radiotherapy vs. Radiofrequency Ablation in the Treatment of Hepatocellular Carcinoma: A Meta-Analysis. Front Oncol 2021; 11:633417. [PMID: 34084741 PMCID: PMC8168374 DOI: 10.3389/fonc.2021.633417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhaonan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Li T, Cui D, Ren G, Hui ES, Cai J. Investigation of the effect of acquisition schemes on time-resolved magnetic resonance fingerprinting. Phys Med Biol 2021; 66. [PMID: 33823496 DOI: 10.1088/1361-6560/abf51f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/06/2021] [Indexed: 01/27/2023]
Abstract
Purpose.This study aims to investigate the feasibility of different acquisition methods for time-resolved magnetic resonance fingerprinting (TR-MRF) in computer simulation.Methods.An extended cardiac-torso (XCAT) phantom is used to generate abdominal T1, T2, and proton density maps for MRF simulation. The simulated MRF technique consists of an IR-FISP MRF sequence with spiral trajectory acquisition. MRF maps were simulated with different numbers of repetitions from 1 to 15. Three different methods were used to generate TR-MRF maps: (1) continuous acquisition without delay between MRF repetitions; (2) continuous acquisition with 5 s delay between MRF repetitions; (3) triggered acquisition with variable delay between MRF repetitions to allow the next acquisition to start at different respiration phase. After the generation of TR-MRF maps, the image quality indexes including the absolute T1 and T2 values, signal-to-noise-ratio (SNR), tumor-to-liver contrast-to-noise ratio, error in the amplitude of diaphragm motion and tumor volume error were used to evaluate the reconstructed parameter maps. Three volunteers were recruited to test the feasibility of the selected acquisition method.Results.Dynamic MR parametric maps using three different acquisition methods were estimated. The overall and liver T1 value error, liver SNR in T1 and T2 maps, and tumor SNR from T1 maps from triggered method is statistically significantly better than the other two methods (p-value < 0.05). The other image quality indexes have no significant difference between the triggered method and the other two continuous acquisition methods. All image quality indexes exhibit no significant difference between the acquisition methods with 0 s and 5 s delay. The triggered method was successfully performed in three healthy volunteers.Conclusion.TR-MRF technique was investigated using three different acquisition methods in computer simulation where the triggered method showed better performance than the other two methods. The triggered method has been tested successfully in healthy volunteers.
Collapse
Affiliation(s)
- Tian Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - Di Cui
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
| | - Ge Ren
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - Edward S Hui
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
22
|
Mastrocostas K, Fischer S, Munoz-Schuffenegger P, Jang HJ, Dawson LA, Liu ZA, Sapisochin G, Kim TK. Radiological tumor response and histopathological correlation of hepatocellular carcinoma treated with stereotactic body radiation therapy as a bridge to liver transplantation. Abdom Radiol (NY) 2021; 46:1572-1585. [PMID: 33074426 DOI: 10.1007/s00261-020-02821-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/04/2020] [Accepted: 10/10/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE To assess the imaging findings of hepatocellular carcinoma (HCC) treated with stereotactic body radiation therapy (SBRT) as a bridging therapy prior to liver transplantation (LT), with histopathological correlation at liver explant. METHODS Our institutional review board approved this retrospective study. The study subjects included 25 HCC lesions in 23 patients (20 males; median age, 60 years; range 41-68 years) who underwent LT after SBRT for HCC as a bridge to LT in a single tertiary referral institution over a 12-year period. Target HCC lesions were assessed for imaging biomarkers on contrast-enhanced CT or MRI including change in HCC diameter and assessment of percentage necrosis. The radiologic response at pre-LT imaging was compared to explant pathology. RESULTS There was a positive correlation between the tumor size (Spearman's ρ = 0.86; p < 0.001) and percentage necrosis (p < 0.001) on Pre-LT imaging and those on pathology. Partial response (PR), stable disease (SD), and progressive disease (PD) according to RECIST 1.1 were seen in 8 (32%), 15 (60%), and 2 (8%) lesions on pre-LT imaging, respectively. Of the 15 lesions with radiologic SD, 5/15 (33%) showed necrosis of more than 50% on post-SBRT imaging, while 9/15 (60%) showed necrosis of more than 50% at explant pathologic analysis, showing a tendency to underestimate the degree of tumor necrosis compared to pathology. CONCLUSION RECIST 1.1 radiologic response criteria may underestimate the response to treatment with SBRT, and radiologic estimation of percent tumor necrosis was more closely correlated with pathologic percent tumor necrosis.
Collapse
|
23
|
Maebayashi T, Ishibashi N, Aizawa T, Sakaguchi M, Okada M. Stereotactic radiotherapy for hepatocellular carcinoma induced by hepatitis C and the relationships of changes in carbohydrate antigen 19-9 with AFP and PIVKA-II. Cancer Radiother 2021; 25:242-248. [PMID: 33455875 DOI: 10.1016/j.canrad.2020.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE Assessing the therapeutic effects of stereotactic body radiotherapy (SBRT) for hepatocellular carcinoma (HCC) takes time. Purpose of our study was to explore the relationships of changes in carbohydrate antigen 19-9 (CA 19-9) with those in the existing markers alpha-fetoprotein (AFP) and protein induced by vitamin K absence or antagonist-II (PIVKA-II). PATIENTS AND METHODS The subjects were 16 patients who underwent SBRT for solitary HCC ≤3cm induced by hepatitis C between June 2016 and July 2019. Observation periods ranged from 8-43 (median: 28) months, ages from 59-85 (median: 65) years. RESULTS Changes in CA 19-9 levels after SBRT were categorised into three patterns: 1) a transient elevation followed by a decline (75%); 2) a transient decline followed by an elevation (18.8%); and 3) no change (6.3%). Among patients showing a transient CA 19-9 elevation followed by a decline, which was the most frequent pattern, 75% showed these changes in synchronisation with AFP and preceded the changes in PIVKA-II, while in the other 25%, CA 19-9 changes were in synchronisation with PIVKA-II and preceded those in AFP. At the time of recurrence, 62.5% showed a continuous CA 19-9 elevation, either in synchronisation with other markers or by itself. CONCLUSIONS This is the first investigation of changes in CA 19-9 levels after SBRT for HCC induced by hepatitis C. Characteristic changes in CA 19-9, AFP, and PIVKA-II levels were observed as responses after treatment. As for its correlations with tumour markers, the acute responses of PIVKA-II tended to be slower than those of CA 19-9 and AFP. Although the sample size was small, our findings raise the possibility that measuring these 3 biomarkers after SBRT may be useful for monitoring patients for HCC recurrence.
Collapse
Affiliation(s)
- T Maebayashi
- Department of Radiology, Nihon University School of Medicine, 30-1, Oyaguchi Kami-cho Itabashi-ku, 173-8610 Tokyo, Japan.
| | - N Ishibashi
- Department of Radiology, Nihon University School of Medicine, 30-1, Oyaguchi Kami-cho Itabashi-ku, 173-8610 Tokyo, Japan.
| | - T Aizawa
- Department of Radiology, Nihon University School of Medicine, 30-1, Oyaguchi Kami-cho Itabashi-ku, 173-8610 Tokyo, Japan.
| | - M Sakaguchi
- Department of Radiology, Nihon University School of Medicine, 30-1, Oyaguchi Kami-cho Itabashi-ku, 173-8610 Tokyo, Japan.
| | - M Okada
- Department of Radiology, Nihon University School of Medicine, 30-1, Oyaguchi Kami-cho Itabashi-ku, 173-8610 Tokyo, Japan.
| |
Collapse
|
24
|
Zhang J, Wang L, Li X, Huang M, Xu B. Quantification of Intrafraction and Interfraction Tumor Motion Amplitude and Prediction Error for Different Liver Tumor Trajectories in Cyberknife Synchrony Tracking. Int J Radiat Oncol Biol Phys 2020; 109:1588-1605. [PMID: 33227440 DOI: 10.1016/j.ijrobp.2020.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/28/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE To research the fiducial-based, real-time tracking intrafraction (during the fraction [intra-]) and interfraction (between fractions [inter-]) tumor respiration amplitude, motion trajectory, and prediction error and quantify their relationships for different types of motion trajectories during Cyberknife-based stereotactic ablation radiotherapy. METHODS AND MATERIALS Twelve patients with liver tumors were treated using a Cyberknife system, and 58 fractions were involved in this study. Real-time target motion tracking data were extracted and transformed from the robot coordinate system into the patient coordinate system by the rotation matrix. Only the time sessions of the beam on were studied according to the data information generated from the Cyberknife motion tracking system. The motion correlation model between the external marker signal and internal fiducial position was built to present the type of motion trajectory. RESULTS Using the correlation model as a function of external marker signal and internal fiducial position, we knew 4 motion trajectories mainly existed for liver cancer patients as follows: perfect linearity (group I), simple linearity (group II), hysteresis (group III), and area respiratory (group IV) patterns. More than half of the patients had a linear breathing trajectory. Analyzing all patients together, the intra-amplitudes were slightly less than those of the inter-amplitudes. The amplitude from large to small was in the superior-inferior, left-right and anterior-posterior directions, regardless of inter- and intra-amplitudes. Then, patients with a larger peak-to-peak have a larger standard deviation of amplitude and a larger amplitude in all fractions/sessions. The prediction errors of the linear motion trajectory were generally less than 1 mm. The prediction errors of the regular hysteresis breathing model were smaller than those of the irregular hysteresis model. Scattered breathing would result in a larger tracking error, such as the area respiratory trajectory. It was logical that prediction errors were larger for patients who showed much variation in their breathing amplitude. CONCLUSIONS This paper showed that the liver motion trajectory model included perfect linearity, sample linearity, hysteresis, and area. The linear motion trajectory presented the minimum tracking error and the best stability, and the hysteresis and area trajectory were the worst. Therefore, breathing management, including respiration training, control, and evaluation of motion trajectory in all directions, was significantly necessary during liver SABR treatment.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China; Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Lin Wang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaobo Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China; Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.
| | - Miaoyun Huang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China; Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
25
|
Ramachandran A, Srivastava DN, Madhusudhan KS. Gallbladder cancer revisited: the evolving role of a radiologist. Br J Radiol 2020; 94:20200726. [PMID: 33090880 DOI: 10.1259/bjr.20200726] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gallbladder cancer is the most common malignancy of the biliary tract. It is also the most aggressive biliary tumor with the shortest median survival duration. Complete surgical resection, the only potentially curative treatment, can be accomplished only in those patients who are diagnosed at an early stage of the disease. Majority (90%) of the patients present at an advanced stage and the management involves a multidisciplinary approach. The role of imaging in gallbladder cancer cannot be overemphasized. Imaging is crucial not only in detecting, staging, and planning management but also in guiding radiological interventions. This article discusses the role of a radiologist in the diagnosis and management of gallbladder cancer.
Collapse
Affiliation(s)
- Anupama Ramachandran
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
26
|
Guiu B. Stereotactic body radiation therapy vs. radiofrequency ablation in HCC: comparing noncomparable data. J Hepatol 2020; 73:727-728. [PMID: 32423631 DOI: 10.1016/j.jhep.2020.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Boris Guiu
- Department of Radiology, St-Eloi University Hospital, 34980 Montpellier, France.
| |
Collapse
|
27
|
Nakayama M, Uehara K, Nishimura H, Tamura S, Munetomo Y, Tsudou S, Mayahara H, Mukumoto N, Geso M, Sasaki R. Retrospective assessment of a single fiducial marker tracking regimen with robotic stereotactic body radiation therapy for liver tumours. Rep Pract Oncol Radiother 2019; 24:383-391. [PMID: 31297039 DOI: 10.1016/j.rpor.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/22/2019] [Accepted: 06/01/2019] [Indexed: 12/25/2022] Open
Abstract
Aim To investigate tumour motion tracking uncertainties in the CyberKnife Synchrony system with single fiducial marker in liver tumours. Background In the fiducial-based CyberKnife real-time tumour motion tracking system, multiple fiducial markers are generally used to enable translation and rotation corrections during tracking. However, sometimes a single fiducial marker is employed when rotation corrections are not estimated during treatment. Materials and methods Data were analysed for 32 patients with liver tumours where one fiducial marker was implanted. Four-dimensional computed tomography (CT) scans were performed to determine the internal target volume (ITV). Before the first treatment fraction, the CT scans were repeated and the marker migration was determined. Log files generated by the Synchrony system were obtained after each treatment and the correlation model errors were calculated. Intra-fractional spine rotations were examined on the spine alignment images before and after each treatment. Results The mean (standard deviation) ITV margin was 4.1 (2.3) mm, which correlated weakly with the distance between the fiducial marker and the tumour. The mean migration distance of the marker was 1.5 (0.7) mm. The overall mean correlation model error was 1.03 (0.37) mm in the radial direction. The overall mean spine rotations were 0.27° (0.31), 0.25° (0.22), and 0.23° (0.26) for roll, pitch, and yaw, respectively. The treatment time was moderately associated with the correlation model errors and weakly related to spine rotation in the roll and yaw planes. Conclusions More caution and an additional safety margins are required when tracking a single fiducial marker.
Collapse
Key Words
- AP, anterior–posterior
- CTV, clinical target volume
- CyberKnife
- Fiducial marker tracking
- GTV, gross tumour volume
- ITV, internal target volume
- LED, light-emitting diode
- LR, left–right
- Liver tumour
- PTV, planning target volume
- SBRT, stereotactic body radiation therapy
- SD, standard deviation
- SI, superior–inferior
- Synchrony system
- XST, Xsight Spine Tracking
Collapse
Affiliation(s)
- Masao Nakayama
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuou-ku, Kobe City, Hyogo 650-0017, Japan.,Discipline of Medical Radiations, School of Biomedical & Health Sciences, RMIT University, Bundoora Campus, Victoria 3083, Australia
| | - Kazuyuki Uehara
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, 8-5-1 Minatojima-nakamachi, Chuou-ku, Kobe City, Hyogo 650-0046, Japan
| | - Hideki Nishimura
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuou-ku, Kobe City, Hyogo 650-0017, Japan
| | - Shuhei Tamura
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, 8-5-1 Minatojima-nakamachi, Chuou-ku, Kobe City, Hyogo 650-0046, Japan
| | - Yoshiki Munetomo
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, 8-5-1 Minatojima-nakamachi, Chuou-ku, Kobe City, Hyogo 650-0046, Japan
| | - Shinji Tsudou
- Department of Radiation Oncology, Hyogo Cancer Center, 13-70 Kitaojicho, Akashi City, Hyogo 637-8558, Japan
| | - Hiroshi Mayahara
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, 8-5-1 Minatojima-nakamachi, Chuou-ku, Kobe City, Hyogo 650-0046, Japan
| | - Naritoshi Mukumoto
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuou-ku, Kobe City, Hyogo 650-0017, Japan
| | - Moshi Geso
- Discipline of Medical Radiations, School of Biomedical & Health Sciences, RMIT University, Bundoora Campus, Victoria 3083, Australia
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuou-ku, Kobe City, Hyogo 650-0017, Japan
| |
Collapse
|
28
|
Mastrocostas K, Jang HJ, Fischer S, Dawson LA, Munoz-Schuffenegger P, Sapisochin G, Kim TK. Imaging post-stereotactic body radiation therapy responses for hepatocellular carcinoma: typical imaging patterns and pitfalls. Abdom Radiol (NY) 2019; 44:1795-1807. [PMID: 30710166 DOI: 10.1007/s00261-019-01901-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stereotactic body radiation therapy (SBRT) has increased utility in the management of hepatocellular carcinoma (HCC) ranging from local therapy in early-stage HCC not suitable for other focal therapies to end-stage HCC. As the indications for the use of SBRT in HCC expand, diagnostic imaging is being increasingly used to assess response to treatment. The imaging features of tumor response do not parallel those of other focal therapies such as radiofrequency ablation or trans-arterial chemoembolization that immediately devascularize the tumor. The tumor response to SBRT on imaging takes much longer and often shows gradual changes including the reduction of enhancement and size over several months. It is essential to recognize the typical imaging patterns of response, as well as the appearance of focal liver reaction in the non-target liver that can confound image interpretation. The timing of treatment response assessment imaging is fundamental to minimize the potential for false negative response. The purpose of this article is to review the variable post-SBRT imaging features of HCC and adjacent liver parenchyma and discuss the potential pitfalls of imaging evaluation after SBRT for HCC.
Collapse
|
29
|
Panick CE, Ward RD, Coppa C, Liu PS. Hepatic capsular retraction: An updated MR imaging review. Eur J Radiol 2019; 113:15-23. [DOI: 10.1016/j.ejrad.2019.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
|
30
|
Evaluation of Hepatic Toxicity after Repeated Stereotactic Body Radiation Therapy for Recurrent Hepatocellular Carcinoma using Deformable Image Registration. Sci Rep 2018; 8:16224. [PMID: 30385839 PMCID: PMC6212421 DOI: 10.1038/s41598-018-34676-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
This study aimed to evaluate hepatic toxicity after repeated stereotactic body radiation therapy (SBRT) for recurrent hepatocellular carcinoma (HCC) using deformable image registration (DIR). Between January 2007 and December 2015, 85 patients who underwent two sessions of SBRT for HCC treatment were retrospectively analyzed. A DIR technique was used to calculate the cumulative dose of the first and second SBRT to the normal liver by matching two computed tomography simulation images. The Dice similarity coefficient (DSC) index was calculated to evaluate DIR accuracy. Before the first and second SBRT, 6 (7.1%) and 12 (14.1%) patients were Child-Pugh class B, respectively. Median tumor size was 1.7 cm before both SBRT treatments. Mean DSC index value was 0.93, being >0.9 in 79 (92.9%) registrations. Median cumulative mean liver dose (MLD) was 9.3 Gy (interquartile range, 7.6–11.7). Radiation-induced liver disease developed in three patients, and two of them, with Child-Pugh class B, experienced irreversible liver function deterioration following the second SBRT. The DIR method provided reliable information regarding cumulative doses to the liver. In patients with Child-Pugh class A liver function, repeated SBRT for small recurrent HCC could be safely performed with acceptable hepatic toxicity.
Collapse
|
31
|
Lo EC, N. Rucker A, Federle MP. Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma: Imaging for Diagnosis, Tumor Response to Treatment and Liver Response to Radiation. Semin Radiat Oncol 2018; 28:267-276. [DOI: 10.1016/j.semradonc.2018.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Mendiratta-Lala M, Masch W, Shankar PR, Hartman HE, Davenport MS, Schipper MJ, Maurino C, Cuneo KC, Lawrence TS, Owen D. Magnetic Resonance Imaging Evaluation of Hepatocellular Carcinoma Treated With Stereotactic Body Radiation Therapy: Long Term Imaging Follow-Up. Int J Radiat Oncol Biol Phys 2018; 103:169-179. [PMID: 30213751 DOI: 10.1016/j.ijrobp.2018.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE To determine the natural history of imaging findings seen on magnetic resonance imaging (MRI) of hepatocellular carcinoma (HCC) treated with stereotactic body radiation therapy (SBRT). Although arterial hyperenhancement is a key feature of untreated HCC, our clinical experience suggested that tumors that never progressed could still show hyperenhancement. Therefore, we undertook a systematic study to test the hypothesis that persistent arterial phase hyperenhancement (APHE) after SBRT is an expected finding that does not suggest failure of treatment. METHODS AND MATERIALS One hundred forty-six patients undergoing SBRT for HCC between January 1, 2007, and December 31, 2015, were screened retrospectively using an institutional review board-approved prospectively maintained registry. Inclusion criteria were (1) HCC treated with SBRT, (2) multiphasic MRI ≤3 months before SBRT, (3) up to 1 year of follow-up MRI post-SBRT, and (4) cirrhosis. The exclusion criterion was ≤3 months of locoregional therapy to the liver segment containing the SBRT-treated HCC. Pre- and post-SBRT MRI from up to 3 years were analyzed in consensus by independent pairs of subspecialty-trained radiologists to determine the temporal evolution of major features for HCC and imaging findings in off-target parenchyma. RESULTS Sixty-two patients with 67 HCCs (Organ Procurement and Transplantation Network imaging criteria [OPTN] 5a [n = 26], OPTN 5b [n = 28], OPTN 5x [n = 7]; Liver Imaging Reporting Data System [LI-RAD]-M [n = 4] and LiRADs-4 [n = 2]) were studied. Tumor size either decreased (66% [44 of 67]) or remained unchanged (34% [23 of 67]) within the first 12 months. Post-SBRT APHE was common (58% [39 of 67]). When graded using modified Response Evaluation Criteria in Solid Tumors at 3 to 6 months, 25% (17 of 67) met criteria for complete response and 75% (50 of 67) met criteria for stable disease. CONCLUSIONS SBRT is an effective locoregional treatment option for HCC. Persistent APHE is common and does not necessarily indicate viable neoplasm; thus, standard response assessment such as modified Response Evaluation Criteria should be used with caution, particularly in the early phases after SBRT therapy.
Collapse
Affiliation(s)
| | - William Masch
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Prasad R Shankar
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Holly E Hartman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | | | - Matthew J Schipper
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Chris Maurino
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Kyle C Cuneo
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Dawn Owen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
33
|
Meyer J, Singal AG. Stereotactic ablative radiotherapy for hepatocellular carcinoma: History, current status, and opportunities. Liver Transpl 2018; 24:420-427. [PMID: 29205797 DOI: 10.1002/lt.24991] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/08/2017] [Accepted: 11/23/2017] [Indexed: 02/07/2023]
Abstract
A variety of surgical and other local-regional approaches to the management of hepatocellular carcinoma (HCC) are in clinical use. External beam radiation therapy is a relative newcomer to the portfolio of treatment options. Advances in planning and delivery of radiation therapy, developing in parallel with and inspiring changing paradigms of tumor management in the field of radiation oncology, have led to growing interest in radiation therapy as a viable treatment option for HCC as well as other liver tumors. In this review, we discuss these advances, current trends in liver radiotherapy, as well as avenues of future clinical and basic research. Liver Transplantation 24 420-427 2018 AASLD.
Collapse
Affiliation(s)
- Jeffrey Meyer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Mediciner, Baltimore, MD
| | - Amit G Singal
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
34
|
Direct dose correlation of MRI morphologic alterations of healthy liver tissue after robotic liver SBRT. Strahlenther Onkol 2018; 194:414-424. [PMID: 29404626 DOI: 10.1007/s00066-018-1271-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/16/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE For assessing healthy liver reactions after robotic SBRT (stereotactic body radiotherapy), we investigated early morphologic alterations on MRI (magnetic resonance imaging) with respect to patient and treatment plan parameters. PATIENTS AND METHODS MRI data at 6-17 weeks post-treatment from 22 patients with 42 liver metastases were analyzed retrospectively. Median prescription dose was 40 Gy delivered in 3-5 fractions. T2- and T1-weighted MRI were registered to the treatment plan. Absolute doses were converted to EQD2 (Equivalent dose in 2Gy fractions) with α/β-ratios of 2 and 3 Gy for healthy, and 8 Gy for modelling pre-damaged liver tissue. RESULTS Sharply defined, centroid-shaped morphologic alterations were observed outside the high-dose volume surrounding the GTV. On T2-w MRI, hyperintensity at EQD2 isodoses of 113.3 ± 66.1 Gy2, 97.5 ± 54.7 Gy3, and 66.5 ± 32.0 Gy8 significantly depended on PTV dimension (p = 0.02) and healthy liver EQD2 (p = 0.05). On T1-w non-contrast MRI, hypointensity at EQD2 isodoses of 113.3 ± 49.3 Gy2, 97.4 ± 41.0 Gy3, and 65.7 ± 24.2 Gy8 significantly depended on prior chemotherapy (p = 0.01) and total liver volume (p = 0.05). On T1-w gadolinium-contrast delayed MRI, hypointensity at EQD2 isodoses of 90.6 ± 42.5 Gy2, 79.3 ± 35.3 Gy3, and 56.6 ± 20.9 Gy8 significantly depended on total (p = 0.04) and healthy (p = 0.01) liver EQD2. CONCLUSIONS Early post-treatment changes in healthy liver tissue after robotic SBRT could spatially be correlated to respective isodoses. Median nominal doses of 10.1-11.3 Gy per fraction (EQD2 79-97 Gy3) induce characteristic morphologic alterations surrounding the lesions, potentially allowing for dosimetric in-vivo accuracy assessments. Comparison to other techniques and investigations of the short- and long-term clinical impact require further research.
Collapse
|
35
|
Zhang Z, Wang X, Li B, Hou Y, Cai Z, Yang J, Li Y. Paclitaxel-loaded PLGA microspheres with a novel morphology to facilitate drug delivery and antitumor efficiency. RSC Adv 2018; 8:3274-3285. [PMID: 35541195 PMCID: PMC9077493 DOI: 10.1039/c7ra12683b] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/08/2018] [Indexed: 12/25/2022] Open
Abstract
A novel morphological PTX-PLGA-MS with microporous surface and porous internal structures to enhance drug loading, delivery and antitumor efficiency.
Collapse
Affiliation(s)
- Zongrui Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Biomedical Materials and Engineering Research Center of Hubei Province
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Biomedical Materials and Engineering Research Center of Hubei Province
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Biomedical Materials and Engineering Research Center of Hubei Province
| | - Yuanjing Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Biomedical Materials and Engineering Research Center of Hubei Province
| | - Zhengwei Cai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Biomedical Materials and Engineering Research Center of Hubei Province
| | - Jing Yang
- School of Foreign Languages
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Yi Li
- Institute of Textiles and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| |
Collapse
|
36
|
Mendiratta-Lala M, Gu E, Owen D, Cuneo KC, Bazzi L, Lawrence TS, Hussain HK, Davenport MS. Imaging Findings Within the First 12 Months of Hepatocellular Carcinoma Treated With Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2017; 102:1063-1069. [PMID: 29029891 DOI: 10.1016/j.ijrobp.2017.08.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/15/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE To correlate the imaging findings of treated hepatocellular carcinoma (HCC) after stereotactic body radiation therapy (SBRT) with explant pathology and alpha-fetoprotein (AFP) response. METHODS AND MATERIALS From 2007 to 2015, of 146 patients treated with liver SBRT for Barcelona Clinic Liver Cancer stage A hepatocellular carcinoma, 10 were identified with inclusion criteria and had regular interval follow-up magnetic resonance imaging/triple phase computed tomography and explant pathology or declining AFP values for radiology-pathology response correlation. Reference standards for successful response were >90% necrosis on explant pathology or pretreatment AFP >75 ng/mL normalizing to <10 ng/mL within 1 year after SBRT without other treatment. Subjects were treated with 24 to 50 Gy in 3 to 5 fractions. Multiphasic magnetic resonance imaging or computed tomography performed at 3, 6, 9, and 12 months after SBRT was compared with pretreatment imaging by 2 expert radiologists. Descriptive statistics were calculated. RESULTS There were 10 subjects with 10 treated HCCs, classified as 3 Organ Procurement and Transplantation Network (OPTN) 5a, 4 OPTN 5b, and 3 OPTN 5x. All had successfully treated HCCs, according to explant pathology or declining AFP. Four of 10 HCCs had persistent central arterial hyperenhancement 3 to 12 months after SBRT; persistent wash-out was common up to 12 months (9 of 10). Of 10 treated HCCs, 9 exhibited decreased size at 12 months. Liver parenchyma adjacent to the lesion showed early (3-6 months) hyperemia followed by late (6-12 months) capsular retraction and delayed enhancement. No patient had a significant decline in liver function. CONCLUSIONS In the absence of increasing size, persistent central arterial hyperenhancement and wash-out can occur within the first 12 months after SBRT in successfully treated HCCs and may not represent residual viable tumor. Liver parenchyma adjacent to the treated lesion showed inflammation followed by fibrosis, without significant change in hepatic function. Until a radiologic signature of tumor control is determined, freedom from local progression seems to be the best measure of HCC control after SBRT.
Collapse
Affiliation(s)
| | - Everett Gu
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Dawn Owen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Kyle C Cuneo
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Latifa Bazzi
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Hero K Hussain
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|