1
|
Innocenzi A, Rangel I, Póvoa-Corrêa M, Parente DB, Perez R, Rodrigues RS, Fukuyama LT, Barroso JM, Oliveira Neto JA, Silvestre de Sousa A, Luiz RR, Barbosa RCP, Camargo GC, Moll-Bernardes R. Cardiac and Liver Fibrosis Assessed by Multiparametric MRI in Patients with Fontan Circulation. Pediatr Cardiol 2025; 46:966-975. [PMID: 38771376 PMCID: PMC11903587 DOI: 10.1007/s00246-024-03522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
The abnormal hemodynamics in Fontan circulation due to persistently increased systemic venous pressure results in hepatic venous congestion and Fontan-associated liver disease. Combined assessment of cardiac and liver fibrosis and cardiac remodeling using multiparametric MRI in this context have not been fully explored. To evaluate cardiac and liver fibrosis and cardiac remodeling using multiparametric MRI in patients who have undergone Fontan procedures. Thirty-eight patients and 23 controls underwent cardiac and liver MRI examinations in a 3.0-T scanner. Mann-Whitney, Fisher exact test, and Spearman's correlation were applied to evaluate myocardial volumes, function, native cardiac and liver T1 mapping, ECVs and liver stiffness. The mean native cardiac T1 value (p = 0.018), cardiac ECV (p < 0.001), liver native T1 (p < 0.001), liver ECV (p < 0.001), and liver stiffness (p < 0.001) were higher in patients than controls. The indexed end-diastolic volume (EDVi) correlated with the myocardial ECV (r = 0.356; p = 0.033), native liver T1 (r = 0.571; p < 0.001), and with liver stiffness (r = 0.391; p = 0.015). In addition, liver stiffness correlated with liver ECV (r = 0.361; p = 0.031) and native liver T1 (r = 0.458; p = 0.004). An association between cardiac remodeling and cardiac and liver fibrosis were found in this population. The usefulness of MRI to follow cardiac and liver involvement in these patients is critical to improve treatment strategies and to prevent the need for combined liver and heart transplantation.
Collapse
Affiliation(s)
- Adriana Innocenzi
- D'Or Institute for Research and Education (IDOR), Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brazil
| | - Isabela Rangel
- D'Or Institute for Research and Education (IDOR), Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil
- Pro Criança Cardiaca, Rio de Janeiro, RJ, Brazil
- Clínica Cardiológica Infantil, Rio de Janeiro, RJ, Brazil
| | - Mariana Póvoa-Corrêa
- D'Or Institute for Research and Education (IDOR), Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil
- Federal University of Rio de Janeiro (UFRJ), Macaé, RJ, Brazil
| | - Daniella Braz Parente
- D'Or Institute for Research and Education (IDOR), Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Renata Perez
- D'Or Institute for Research and Education (IDOR), Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Rosana Souza Rodrigues
- D'Or Institute for Research and Education (IDOR), Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Lúcia Tomoko Fukuyama
- Pro Criança Cardiaca, Rio de Janeiro, RJ, Brazil
- Clínica Cardiológica Infantil, Rio de Janeiro, RJ, Brazil
| | - Julia Machado Barroso
- D'Or Institute for Research and Education (IDOR), Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil
| | - Jaime Araújo Oliveira Neto
- D'Or Institute for Research and Education (IDOR), Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil
| | - Andréa Silvestre de Sousa
- D'Or Institute for Research and Education (IDOR), Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ronir Raggio Luiz
- D'Or Institute for Research and Education (IDOR), Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Gabriel Cordeiro Camargo
- D'Or Institute for Research and Education (IDOR), Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brazil
| | - Renata Moll-Bernardes
- D'Or Institute for Research and Education (IDOR), Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil.
| |
Collapse
|
2
|
Tao K, Ishikawa Y, Suzuki S, Muraji S, Kuraoka A, Sato M, Yamamura K, Sagawa K. Native liver T1 mapping on magnetic resonance imaging for an evaluation of congestive liver injury in children with congenital heart disease. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2025; 41:315-324. [PMID: 39724440 DOI: 10.1007/s10554-024-03310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Fontan-associated liver disease (FALD) may be caused by chronic liver congestion due to high central venous pressure (CVP). Recently, the usefulness of liver native T1 mapping in magnetic resonance imaging (MRI) in adulthood has been reported. To evaluate the usefulness of native liver T1 mapping in children with congenital heart disease (CHD), we investigated the utility of native liver T1 relaxation time (LT1) in pediatric Fontan patients in comparison to other CHDs. Correlations between LT1 and laboratory biomarkers or hemodynamic data were also assessed. A total of 155 patients with CHD (biventricular repair, n = 42; bidirectional Glenn circulation, n = 38; and Fontan circulation, n = 75) underwent blood tests, cardiac catheterization, and cardiac MRI within 48 h. Both CVP and LT1 levels were higher in Fontan patients than in bidirectional Glenn and biventricular patients. There were significant correlation in the overall population and weak correlation in Fontan patients between CVP and LT1(correlation coefficient 0.644 [0.541-0.728] and 0.244 [0.0179-0.446], P < 0.001 and 0.035, respectively). Among the laboratory data, the multiple linear regression analysis revealed that the fibrosis-4 index and alanine aminotransferase were significantly correlated with LT1 in the overall population (P = 0.008,0.012), and the fibrosis-4 index was correlated with LT1 in Fontan patients (P = 0.019). LT1 might have some role to predict elevated CVP and liver injury in children with CHD.
Collapse
Affiliation(s)
- Katsuo Tao
- Department of Cardiology, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-Ku, Fukuoka City, Fukuoka, 813-0017, Japan.
| | - Yuichi Ishikawa
- Department of Cardiology, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-Ku, Fukuoka City, Fukuoka, 813-0017, Japan
| | - Sayo Suzuki
- Department of Cardiology, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-Ku, Fukuoka City, Fukuoka, 813-0017, Japan
| | - Shota Muraji
- Department of Cardiology, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-Ku, Fukuoka City, Fukuoka, 813-0017, Japan
| | - Ayako Kuraoka
- Department of Cardiology, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-Ku, Fukuoka City, Fukuoka, 813-0017, Japan
| | - Masaki Sato
- Department of Cardiology, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-Ku, Fukuoka City, Fukuoka, 813-0017, Japan
| | - Kenichiro Yamamura
- Department of Cardiology and Intensive Care, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Koichi Sagawa
- Department of Cardiology, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-Ku, Fukuoka City, Fukuoka, 813-0017, Japan
| |
Collapse
|
3
|
Yoon H, Kim J, Lim HJ, Lee MJ. Quantitative Liver Imaging in Children. Invest Radiol 2025; 60:60-71. [PMID: 39047265 DOI: 10.1097/rli.0000000000001101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
ABSTRACT In children and adults, quantitative imaging examinations determine the effectiveness of treatment for liver disease. However, pediatric liver disease differs in presentation from liver disease in adults. Children also needed to be followed for a longer period from onset and have less control of their bodies, showing more movement than adults during imaging examinations, which leads to a greater need for sedation. Thus, it is essential to appropriately tailor and accurately perform noninvasive imaging tests in these younger patients. This article is an overview of updated imaging techniques used to assess liver disease quantitatively in children. The common initial imaging study for diffuse liver disease in pediatric patients is ultrasound. In addition to preexisting echo analysis, newly developed attenuation imaging techniques have been introduced to evaluate fatty liver. Ultrasound elastography is also now actively used to evaluate liver conditions, and the broad age spectrum of the pediatric population requires caution to be taken even in the selection of probes. Magnetic resonance imaging (MRI) is another important imaging tool used to evaluate liver disease despite requiring sedation or anesthesia in young children because it allows quantitative analysis with sequences such as fat analysis and MR elastography. In addition to ultrasound and MRI, we review quantitative imaging methods specifically for fatty liver, Wilson disease, biliary atresia, hepatic fibrosis, Fontan-associated liver disease, autoimmune hepatitis, sinusoidal obstruction syndrome, and the transplanted liver. Lastly, concerns such as growth and motion that need to be addressed specifically for children are summarized.
Collapse
Affiliation(s)
- Haesung Yoon
- From the Department of Radiology, Gangnam Severance Hospital, Seoul, South Korea (H.Y.); Department of Radiology and Research Institute of Radiological Science, Yonsei University, College of Medicine, Seoul, South Korea (H.Y., J.K., H.J.L., M.-J.L.); and Department of Pediatric Radiology, Severance Children's Hospital, Seoul, South Korea (J.K., H.J.L., M.-J.L.)
| | | | | | | |
Collapse
|
4
|
Serai SD, Franchi-Abella S, Syed AB, Tkach JA, Toso S, Ferraioli G. MR and Ultrasound Elastography for Fibrosis Assessment in Children: Practical Implementation and Supporting Evidence- AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2024; 223:e2330506. [PMID: 38170833 DOI: 10.2214/ajr.23.30506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Quantitative MRI and ultrasound biomarkers of liver fibrosis have become important tools in the diagnosis and clinical management of children with chronic liver disease (CLD). In particular, MR elastography is now routinely performed in clinical practice to evaluate the liver for fibrosis. Ultrasound shear-wave elastography has also become widely performed for this purpose, especially in young children. These noninvasive methods are increasingly used to replace liver biopsy for the diagnosis, quantitative staging, and treatment monitoring of patients with CLD. Although ultrasound has the advantages of portability and lower equipment cost than MRI, available evidence indicates that MRI may have greater reliability and accuracy in liver fibrosis evaluation. In this AJR Expert Panel Narrative Review, we describe how, why, and when to use MRI- and ultrasound-based elastography methods for liver fibrosis assessment in children. Practical approaches are discussed for adapting and optimizing these methods in children, with consideration of clinical indications, patient preparation, equipment requirements, and acquisition technique, as well as pitfalls and confounding factors. Guidance is provided for interpretation and reporting, and representative case examples are presented.
Collapse
Affiliation(s)
- Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stéphanie Franchi-Abella
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Service de Radiologie Pédiatrique Diagnostique et Interventionnelle, Centre de Référence des Maladies Rares du Foie de L'enfant, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- BIOMAPS, University Paris-Saclay, Orsay, France
| | - Ali B Syed
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Seema Toso
- Department of Pediatric Radiology, University Children's Hospital Geneva, Geneva, Switzerland
| | - Giovanna Ferraioli
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Medical School University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Zou J, Jiang Y, Fan F, Yang P, Gan T, Yang T, Li M, Ding Y, Wang S, Zhang J. The application of B1 inhomogeneity-corrected variable flip angle T1 mapping for assessing liver fibrosis. Magn Reson Imaging 2024; 113:110215. [PMID: 39047851 DOI: 10.1016/j.mri.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE The aim of this study was to evaluate the diagnostic accuracy of the B1 inhomogeneity-corrected variable flip angle (VFA) method using native T1 values in the staging of liver fibrosis. METHODS Eighty-three patients who presented for liver biopsy due to varying degrees of liver damage, underwent MR examinations and had T1-mapping images of the liver acquired using the B1 inhomogeneity-corrected VFA VIBE method. Among them, 65 patients underwent Fibroscan, and their results were used to evaluate the elasticity of liver tissue. Additionally, T1-mapping images were collected from 19 normal control patients. Independent sample t-tests were used to analyze the correlation between T1 mapping and Fibroscan. The diagnostic efficacy of T1 mapping in patients with different stages of liver fibrosis was evaluated using receiver operating characteristic (ROC) curves. RESULTS The consistency between different observer groups was intraclass correlation coefficient (ICC) =0.802. T1 mapping demonstrated significant differences between mid-stage liver fibrosis (S = 2) and late-stage liver fibrosis (S = 3), as well as moderate inflammation (G = 2) and severe inflammation (G = 3), P < 0.05. The Area Under Curve(AUC) values of T1 mapping for early liver fibrosis (S ≥ 1), significant liver fibrosis (S ≥ 2), advanced liver fibrosis (S ≥ 3), and end-stage liver fibrosis (S = 4) were 0.760, 0.709, 0.790, and 0.768, respectively. T1 mapping combined with Fibroscan had an AUC value of 0.860. CONCLUSIONS The B1 inhomogeneity-corrected VFA T1 mapping may be useful for the staging of liver fibrosis. It has a superior diagnostic efficiency for diagnosing advanced fibrosis (≥S3), while native T1 values combined with Fibroscan have potential value for the staging of liver fibrosis.
Collapse
Affiliation(s)
- Jie Zou
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yanli Jiang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Fengxian Fan
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Pin Yang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Tiejun Gan
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Tingli Yang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Min Li
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yuan Ding
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Shaoyu Wang
- MR Scientific Marketing, Siemens Healthineers, Xi'an 710065, PR China
| | - Jing Zhang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China.
| |
Collapse
|
6
|
Serai SD, Robson MD, Tirkes T, Trout AT. T 1 Mapping of the Abdomen, From the AJR "How We Do It" Special Series. AJR Am J Roentgenol 2024. [PMID: 39194308 DOI: 10.2214/ajr.24.31643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
By exploiting different tissues' characteristic T1 relaxation times, T1-weighted images help distinguish normal and abnormal tissues, aiding assessment of diffuse and local pathologies. However, such images do not provide quantitative T1 values. Advances in abdominal MRI techniques have enabled measurement of abdominal organs' T1 relaxation times, which can be used to create color-coded quantitative maps. T1 mapping is sensitive to tissue microenvironments including inflammation and fibrosis and has received substantial interest for noninvasive imaging of abdominal organ pathology. In particular, quantitative mapping provides a powerful tool for evaluation of diffuse disease by making apparent changes in T1 occurring across organs that may otherwise be difficult to identify. Quantitative measurement also facilitates sensitive monitoring of longitudinal T1 changes. Increased T1 in liver helps to predict parenchymal fibro-inflammation, in pancreas is associated with reduced exocrine function from chronic or autoimmune pancreatitis, and in kidney is associated with impaired renal function and aids diagnosis of chronic kidney disease. In this review, we describe the acquisition, postprocessing, and analysis of T1 maps in the abdomen and explore applications in liver, spleen, pancreas, and kidney. We highlight practical aspects of implementation and standardization, technical pitfalls and confounding factors, and areas of likely greatest clinical impact.
Collapse
Affiliation(s)
- Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Temel Tirkes
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
7
|
Kremer N, Roller FC, Kremer S, Schäfer S, Kryvenko V, Rako ZA, Brito da Rocha BR, Yogeswaran A, Seeger W, Guth S, Wiedenroth CB, Tello K. Native hepatic T1-time as a non-invasive predictor of diastolic dysfunction and a monitoring tool for disease progression and treatment response in patients with pulmonary hypertension. Int J Cardiol 2024; 409:132189. [PMID: 38761974 DOI: 10.1016/j.ijcard.2024.132189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
AIMS Hepatic T1-time derived from cardiac magnetic resonance imaging (cMRI) reflects venous congestion and may provide a simple alternative to invasive end-diastolic elastance (Eed) for assessment of right ventricular (RV) diastolic function. We investigated the association of native hepatic T1-time with single-beat Eed and the value of hepatic T1-time for longitudinal monitoring in pulmonary hypertension (PH). METHODS AND RESULTS We retrospectively enrolled 85 patients with suspected PH (59% female; 78 with PH diagnosed; 7 with PH excluded) who underwent standard right heart catheterization and cMRI within 24 h between 2015 and 2020. Hepatic T1-time showed moderate to strong correlations (rho >0.3, P ≤ 0.002) with pulmonary vascular resistance, native myocardial T1-time, Eed, RV size and function, brain natriuretic peptide (BNP) level, and 6-min walk distance, and a significant association with functional class (Kruskal-Wallis P < 0.001). Eed, myocardial T1-time, and BNP were independently linked to hepatic T1-time in multivariable regression. Hepatic T1-time > 598 ms predicted elevated Eed with 72.9% sensitivity and 82.1% specificity. Hepatic T1-time was superior to Eed in predicting clinical worsening. In 16 patients with follow-up assessments, those with decreasing hepatic T1-time (7 patients) showed significant hemodynamic improvements, whereas those with increasing hepatic T1-time (9 patients) did not. In a second retrospective cohort of 27 patients with chronic thromboembolic PH undergoing balloon pulmonary angioplasty, hepatic T1-time decreased significantly and hemodynamics improved after the procedure. CONCLUSIONS Hepatic T1-time predicts RV diastolic dysfunction and prognosis, and may be useful for monitoring disease progression and treatment response in PH.
Collapse
Affiliation(s)
- Nils Kremer
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Fritz C Roller
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University Giessen, Germany
| | - Sarah Kremer
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Simon Schäfer
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Vitalii Kryvenko
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Zvonimir A Rako
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Bruno R Brito da Rocha
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Athiththan Yogeswaran
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Guth
- Department of Thoracic Surgery, Kerckhoff Heart, Rheuma and Thoracic Center, Bad Nauheim, Germany
| | - Christoph B Wiedenroth
- Department of Thoracic Surgery, Kerckhoff Heart, Rheuma and Thoracic Center, Bad Nauheim, Germany
| | - Khodr Tello
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
8
|
Wang J, Diao Y, Xu Y, Guo J, Li W, Li Y, Wan K, Sun J, Han Y, Chen Y. Liver T1 Mapping Derived From Cardiac Magnetic Resonance Imaging: A Potential Prognostic Marker in Idiopathic Dilated Cardiomyopathy. J Magn Reson Imaging 2024; 60:675-685. [PMID: 38174826 DOI: 10.1002/jmri.29223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Hepatic alterations are common aftereffects of heart failure (HF) and ventricular dysfunction. The prognostic value of liver injury markers derived from cardiac MRI studies in nonischemic dilated cardiomyopathy (DCM) patients is unclear. PURPOSE Evaluate the prognostic performance of liver injury markers derived from cardiac MRI studies in DCM patients. STUDY TYPE Prospective. POPULATION Three hundred fifty-six consecutive DCM patients diagnosed according to ESC guidelines (age 48.7 ± 14.2 years, males 72.6%). FIELD STRENGTH/SEQUENCE Steady-state free precession, modified Look-Locker inversion recovery T1 mapping and phase sensitive inversion recovery late gadolinium enhancement (LGE) sequences at 3 T. ASSESSMENT Clinical characteristics, conventional MRI parameters (ventricular volumes, function, mass), native myocardial and liver T1, liver extracellular volume (ECV), and myocardial LGE presence were assessed. Patients were followed up for a median duration of 48.3 months (interquartile range 42.0-69.9 months). Primary endpoints included HF death, sudden cardiac death, heart transplantation, and HF readmission; secondary endpoints included HF death, sudden cardiac death, and heart transplantation. Models were developed to predict endpoints and the incremental value of including liver parameters assessed. STATISTICAL TESTS Optimal cut-off value was determined using receiver operating characteristic curve and Youden method. Survival analysis was performed using Kaplan-Meier and Cox proportional hazard. Discriminative power of models was compared using net reclassification improvement and integrated discriminatory index. P value <0.05 was considered statistically significant. RESULTS 47.2% patients reached primary endpoints; 25.8% patients reached secondary endpoints. Patients with elevated liver ECV (cut-off 34.4%) had significantly higher risk reaching primary and secondary endpoints. Cox regression showed liver ECV was an independent prognostic predictor, and showed independent prognostic value for primary endpoints and long-term HF readmission compared to conventional clinical and cardiac MRI parameters. DATA CONCLUSIONS Liver ECV is an independent prognostic predictor and may serve as an innovative approach for risk stratification for DCM. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yike Diao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajun Guo
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Weihao Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yangjie Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Wan
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchi Han
- Cardiovascular Medicine, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Nishii T, Horinouchi H, Namboku T, Sofue K, Asano R, Kotoku A, Ohta Y, Ogo T, Fukuda T. Laterality of CT-measured hepatic extracellular volume fraction in patients with chronic thromboembolic pulmonary hypertension. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1423-1434. [PMID: 38796803 DOI: 10.1007/s10554-024-03119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE This study examines the hepatic extracellular volume fraction (ECV) disparity between the left and right lobes (ECV_left and ECV_right) in patients with chronic thromboembolic pulmonary hypertension (CTEPH), its association with right heart catheterization (RHC) metrics, and with intolerance to increased pulmonary hypertension (PH)-targeted medication dosages. METHODS We retrospectively analyzed 72 CTEPH-diagnosed patients who underwent equilibrium-phase abdominal dual-energy CT (DECT) and RHC. Hepatic ECVs, derived from DECT's iodine maps using circular regions of interest in the liver and aorta, were correlated with RHC parameters via Spearman's rank correlation and lobe differences through the Wilcoxon signed-rank test. Logistic regression assessed cases with ECV_left exceeding ECV_right by > 0.05, while receiver operating characteristic curve analysis gauged ECVs' predictive power for medication intolerance. RESULTS Of the 72 patients (57 females; median age 69), ECV_total (0.24, IQR 0.20-0.27) moderately correlated with RHC parameters (rs = 0.28, -0.24, 0.3 for mean pulmonary arterial pressure, cardiac index [CI], and pulmonary vascular resistance index, respectively). ECV_left significantly surpassed ECV_right (0.25 vs. 0.22, p < 0.001), with a greater ECV_left by > 0.05 indicating notably lower CI (p < 0.001). In 27 patients on PH medication, ECV_left effectively predicted medication intolerance (AUC = 0.84). CONCLUSION In CTEPH patients, hepatic ECV correlated with RHC metrics, where elevated left lobe ECV suggested reduced CI and potential medication intolerance.
Collapse
Affiliation(s)
- Tatsuya Nishii
- Department of Radiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
| | - Hiroki Horinouchi
- Department of Radiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Takara Namboku
- Department of Radiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Keitaro Sofue
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ryotaro Asano
- Department of Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Akiyuki Kotoku
- Department of Radiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Yasutoshi Ohta
- Department of Radiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Takeshi Ogo
- Department of Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Tetsuya Fukuda
- Department of Radiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| |
Collapse
|
10
|
Shamaitijiang X, Kimita W, Ko J, Skudder-Hill L, Liu Y, Petrov MS. Relationship of Liver Blood Tests and T1 Relaxation Time With Intra-pancreatic Fat Deposition. J Clin Exp Hepatol 2024; 14:101343. [PMID: 38304879 PMCID: PMC10827601 DOI: 10.1016/j.jceh.2023.101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Background Liver is well recognised as a metabolically active organ. While intra-pancreatic fat deposition (IPFD) is emerging as an important player in the whole-body metabolism, the interplay between the liver and IPFD has been poorly investigated. This study aimed to investigate the associations of liver blood tests and non-invasive tests for hepatic fibrosis with IPFD. Methods Participants underwent a 3.0 Tesla magnetic resonance imaging to measure IPFD and map liver T1 (longitudinal relaxation time). Four liver tests were done on the same sample of blood. Hepatic fibrosis risk score (BARD) was calculated. Linear regression models were built, accounting for age, sex, visceral-to-subcutaneous fat ratio, and other covariates. Results A total of 143 individuals were studied. In the most adjusted model, alkaline phosphatase (P < 0.001), alanine aminotransferase (P < 0.001), and γ-glutamyl transferase (P = 0.042) were significantly positively associated with IPFD. The BARD score was not significantly associated with IPFD in the most adjusted model (P = 0.295). T1 relaxation time of the liver was not significantly associated with IPFD in the most adjusted model (P = 0.782). Conclusions Elevated alkaline phosphatase, alanine aminotransferase, and γ-glutamyl transferase are associated with increased IPFD. Hepatic fibrosis does not appear to be associated with IPFD.
Collapse
Affiliation(s)
| | - Wandia Kimita
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Juyeon Ko
- School of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Yutong Liu
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Maxim S. Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Brown MJ, Kolbe AB, Hull NC, Hilscher M, Kamath PS, Yalon M, Gu CN, Amawi ADT, Venkatesh SK, Wells ML. Imaging of Fontan-Associated Liver Disease. J Comput Assist Tomogr 2024; 48:1-11. [PMID: 37574655 DOI: 10.1097/rct.0000000000001533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
ABSTRACT The Fontan procedure is the definitive treatment for patients with single-ventricle physiology. Surgical advances have led to a growing number of patients surviving into adulthood. Fontan-associated liver disease (FALD) encompasses a spectrum of pathologic liver changes that occur secondary to altered physiology including congestion, fibrosis, and the development of liver masses. Assessment of FALD is difficult and relies on using imaging alongside of clinical, laboratory, and pathology information. Ultrasound, computed tomography, and magnetic resonance imaging are capable of demonstrating physiologic and hepatic parenchymal abnormalities commonly seen in FALD. Several novel imaging techniques including magnetic resonance elastography are under study for use as biomarkers for FALD progression. Imaging has a central role in detection and characterization of liver masses as benign or malignant. Benign FNH-like masses are commonly encountered; however, these can display atypical features and be mistaken for hepatocellular carcinoma (HCC). Fontan patients are at elevated risk for HCC, which is a feared complication and has a poor prognosis in this population. While imaging screening for HCC is widely advocated, no consensus has been reached regarding an optimal surveillance regimen.
Collapse
Affiliation(s)
- Mark J Brown
- From the Mayo Graduate School of Medicine: Mayo School of Graduate Medical Education
| | - Amy B Kolbe
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Nathan C Hull
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Moira Hilscher
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Patrick S Kamath
- Department of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Mayo Clinic
| | | | - Chris N Gu
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Ali Dean T Amawi
- Department of Internal Medicine, NYC Health and Hospital/Lincoln Medical Center, New York City, NY
| | - Sudhakar K Venkatesh
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Michael L Wells
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Téllez L, Payancé A, Tjwa E, Del Cerro MJ, Idorn L, Ovroutski S, De Bruyne R, Verkade HJ, De Rita F, de Lange C, Angelini A, Paradis V, Rautou PE, García-Pagán JC. EASL-ERN position paper on liver involvement in patients with Fontan-type circulation. J Hepatol 2023; 79:1270-1301. [PMID: 37863545 DOI: 10.1016/j.jhep.2023.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 10/22/2023]
Abstract
Fontan-type surgery is the final step in the sequential palliative surgical treatment of infants born with a univentricular heart. The resulting long-term haemodynamic changes promote liver damage, leading to Fontan-associated liver disease (FALD), in virtually all patients with Fontan circulation. Owing to the lack of a uniform definition of FALD and the competitive risk of other complications developed by Fontan patients, the impact of FALD on the prognosis of these patients is currently debatable. However, based on the increasing number of adult Fontan patients and recent research interest, the European Association for The Study of the Liver and the European Reference Network on Rare Liver Diseases thought a position paper timely. The aims of the current paper are: (1) to provide a clear definition and description of FALD, including clinical, analytical, radiological, haemodynamic, and histological features; (2) to facilitate guidance for staging the liver disease; and (3) to provide evidence- and experience-based recommendations for the management of different clinical scenarios.
Collapse
Affiliation(s)
- Luis Téllez
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBEREHD (Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas), University of Alcalá, Madrid, Spain
| | - Audrey Payancé
- DHU Unity, Pôle des Maladies de l'Appareil Digestif, Service d'Hépatologie, Hôpital Beaujon, AP-HP, Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, Paris, France
| | - Eric Tjwa
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - María Jesús Del Cerro
- Pediatric Cardiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | - Lars Idorn
- Department of Pediatrics, Section of Pediatric Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Stanislav Ovroutski
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Ruth De Bruyne
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University Hospital, Belgium
| | - Henkjan J Verkade
- Department of Pediatrics, Beatrix Children's Hospital/University Medical Center Groningen, The Netherlands
| | - Fabrizio De Rita
- Adult Congenital and Paediatric Heart Unit, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Charlotte de Lange
- Department of Pediatric Radiology, Queen Silvia Childrens' Hospital, Sahlgrenska University Hospital, Behandlingsvagen 7, 41650 Göteborg, Sweden
| | - Annalisa Angelini
- Pathology of Cardiac Transplantation and Regenerative Medicine Unit, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Valérie Paradis
- Centre de recherche sur l'inflammation, INSERM1149, Université Paris Cité, Paris, France; Pathology Department, Beaujon Hospital, APHP.Nord, Clichy, France
| | - Pierre Emmanuel Rautou
- AP-HP, Service d'Hépatologie, Hôpital Beaujon, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, Clichy, France; Université Paris-Cité, Inserm, Centre de recherche sur l'inflammation, UMR 1149, Paris, France
| | - Juan Carlos García-Pagán
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Departament de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain; CIBEREHD (Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Spain.
| |
Collapse
|
13
|
Oka H, Nakau K, Nakagawa S, Imanishi R, Shimada S, Mikami Y, Fukao K, Iwata K, Takahashi S. Liver T1/T2 values with cardiac MRI during respiration. Cardiol Young 2023; 33:1859-1865. [PMID: 36281881 DOI: 10.1017/s1047951122003274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Assessing the hepatic status of children with CHD is very important in the post-operative period. This study aimed to assess the usefulness of paediatric liver T1/T2 values and to evaluate the impact of respiration on liver T1/T2 values. METHODS Liver T1/T2 values were evaluated in 69 individuals who underwent cardiac MRI. The mean age of the participants was 16.2 ± 9.8 years. Two types of imaging with different breathing methods were possible in 34 participants for liver T1 values and 10 participants for liver T2 values. RESULTS The normal range was set at 620-830 msec for liver T1 and 25-40 ms for liver T2 based on the data obtained from 17 healthy individuals. The liver T1/T2 values were not significantly different between breath-hold and free-breath imaging (T1: 769.4 ± 102.8 ms versus 763.2 ± 93.9 ms; p = 0.148, T2: 34.9 ± 4.0 ms versus 33.6 ± 2.4 ms; p = 0.169). Higher liver T1 values were observed in patients who had undergone Fontan operation, tetralogy of Fallot operation, or those with chronic viral hepatitis. There was a trend toward correlation between liver T1 values and liver stiffness (R = 0.65, p = 0.0004); and the liver T1 values showed a positive correlation with the shear wave velocity (R = 0.62, p = 0.0006). CONCLUSIONS Liver T1/T2 values were not affected by breathing patterns. Because liver T1 values tend to increase with right heart overload, evaluation of liver T1 values during routine cardiac MRI may enable early detection of future complications.
Collapse
Affiliation(s)
- Hideharu Oka
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Kouichi Nakau
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Sadahiro Nakagawa
- Section of Radiological Technology, Department of Medical Technology, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Rina Imanishi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Sorachi Shimada
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Yuki Mikami
- Section of Radiological Technology, Department of Medical Technology, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Kazunori Fukao
- Section of Radiological Technology, Department of Medical Technology, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Kunihiro Iwata
- Section of Radiological Technology, Department of Medical Technology, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| |
Collapse
|
14
|
Greidanus PG, Pagano JJ, Escudero CA, Thompson R, Tham EB. Regional Elevation of Liver T1 in Fontan Patients. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:134-142. [PMID: 37969352 PMCID: PMC10642140 DOI: 10.1016/j.cjcpc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/08/2023] [Indexed: 11/17/2023]
Abstract
Background Fontan-associated liver disease (FALD) is characterized by hepatic congestion and progressive hepatic fibrosis in patients with the Fontan operation. This condition is generally clinically silent until late, necessitating techniques for early detection. Liver T1 mapping has been used to screen for FALD, but without consideration of regional variations in T1 values. Methods Liver T1 measured with a liver-specific T1 mapping sequence (PROFIT1) in Fontan patients was compared with cohorts of patients with biventricular congenital heart disease (BiV-CHD) and controls with normal cardiac function and anatomy. Results Liver T1 was significantly elevated in the Fontan cohort (n = 20) compared with patients with BiV-CHD (n = 12) and controls (n = 9) (781, 678, and 675 milliseconds, respectively; P < 0.001), with a consistent pattern of significantly elevated T1 values in the peripheral compared with central liver regions (ΔT1 = 54, 2, and 11 milliseconds; P < 0.001). PROFIT1 also yielded simultaneous T2∗ maps and fat fraction values that were similar in all groups. Fontan liver T1 values were also significantly elevated as compared with BiV-CHD and controls as measured with the cardiac (modified Look-Locker inversion) acquisitions (728, 583, and 583 milliseconds, respectively; P < 0.001) and values correlated with PROFIT1 liver T1 (R = 0.87, P < 0.001). Conclusions Fontan patients have globally increased liver T1 values and consistent spatial variations, with higher values in the peripheral liver regions as compared with spatially uniform values in BiV-CHD and controls. The spatial patterns may provide insight into the progression of FALD. Liver T1 mapping studies should include uniform spatial coverage to avoid bias based on slice locations in this population.
Collapse
Affiliation(s)
- Paul G. Greidanus
- Division of Pediatric Cardiology, Stollery Children’s Hospital & Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph J. Pagano
- Division of Pediatric Cardiology, Stollery Children’s Hospital & Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Carolina A. Escudero
- Division of Pediatric Cardiology, Stollery Children’s Hospital & Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Edythe B. Tham
- Division of Pediatric Cardiology, Stollery Children’s Hospital & Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
de Lange C, Möller T, Hebelka H. Fontan-associated liver disease: Diagnosis, surveillance, and management. Front Pediatr 2023; 11:1100514. [PMID: 36937979 PMCID: PMC10020358 DOI: 10.3389/fped.2023.1100514] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
The Fontan operation is a lifesaving procedure for patients with functional single-ventricle congenital heart disease, where hypoplastic left heart syndrome is the most frequent anomaly. Hemodynamic changes following Fontan circulation creation are now increasingly recognized to cause multiorgan affection, where the development of a chronic liver disease, Fontan-associated liver disease (FALD), is one of the most important morbidities. Virtually, all patients with a Fontan circulation develop liver congestion, resulting in fibrosis and cirrhosis, and most patients experience childhood onset. FALD is a distinctive type of congestive hepatopathy, and its pathogenesis is thought to be a multifactorial process driven by increased nonpulsatile central venous pressure and decreased cardiac output, both of which are inherent in the Fontan circulation. In the advanced stage of liver injury, complications of portal hypertension often occur, and there is a risk of developing secondary liver cancer, reported at young age. However, FALD develops with few clinical symptoms, a surprisingly variable degree of severity in liver disease, and with little relation to poor cardiac function. The disease mechanisms and modifying factors of its development are still not fully understood. As one of the more important noncardiac complications of the Fontan circulation, FALD needs to be diagnosed in a timely manner with a structured monitoring scheme of disease development, early detection of malignancy, and determination of the optimal time point for transplantation. There is also a clear need for consensus on the best surveillance strategy for FALD. In this regard, imaging plays an important role together with clinical scoring systems, biochemical workups, and histology. Patients operated on with a Fontan circulation are generally followed up in cardiology units. Ultimately, the resulting multiorgan affection requires a multidisciplinary team of healthcare personnel to address the different organ complications. This article discusses the current concepts, diagnosis, and management of FALD, with special emphasis on the role of different imaging techniques in the diagnosis and monitoring of disease progression, as well as current recommendations for liver disease surveillance.
Collapse
Affiliation(s)
- Charlotte de Lange
- Department of Pediatric Radiology, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Möller
- Department of Pediatric Cardiology, Oslo University Hospital, Oslo, Norway
| | - Hanna Hebelka
- Department of Pediatric Radiology, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Ishikawa Y, Urabe H, Yamada Y, Yamamura K, Tao K, Suzuki S, Muraji S, Kuraoka A, Sagawa K. Normal Ventricular and Regional Blood Flow Volumes and Native T1 Values in Healthy Japanese Children Obtained from Comprehensive Cardiovascular Magnetic Resonance Imaging. Int Heart J 2023; 64:663-671. [PMID: 37518347 DOI: 10.1536/ihj.23-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Age-related mean and reference ranges for ventricular volumes and mass, regional blood flow measurements, and T1 values using cardiovascular magnetic resonance (CMR) imaging are yet to be established for the pediatric population. Especially in infants and toddlers, no consistent flow volume sets or T1 values have been reported. The purpose of this study was to determine the relevant normal values.Twenty-three children (aged 0.1-15.3 years) without cardiovascular diseases were included. Comprehensive CMR imaging including cine, 2-dimensional phase-contrast, and native T1 mapping, were performed. Ventricular volumes and masses, 11 sets of regional blood flow volumes, and myocardial and liver T1 values were measured. All intraclass correlation coefficient values were > 0.94, except for the right ventricular mass (0.744), myocardial (0.868) and liver T1 values (0.895), reflecting good to excellent agreement between rates.Regression analysis showed an exponential relationship between body surface area (BSA) and ventricular volumes, mass, and regional blood flow volumes (normal value = a*BSAb). Left ventricular myocardial T1 values were regressed on linear regression with age (normal value = -7.39*age + 1091), and hepatic T1 values were regressed on a quadratic function of age (normal value = 0.923*age2 -18.012*age + 613).Comparison of the 2 different methods for the same physical quantities by Bland-Altman plot showed no difference except that the right ventricular stroke volume was 1.5 mL larger than the main pulmonary trunk flow volume.This study provides the normal values for comprehensive CMR imaging in Japanese children.
Collapse
Affiliation(s)
| | - Hiroaki Urabe
- Department of Radiology, Fukuoka Children's Hospital
| | - Yuya Yamada
- Department of Cardiology, Fukuoka Children's Hospital
| | - Kenichiro Yamamura
- Department of Cardiovascular Intensive Care, Fukuoka Children's Hospital
| | - Katsuo Tao
- Department of Cardiology, Fukuoka Children's Hospital
| | - Sayo Suzuki
- Department of Cardiology, Fukuoka Children's Hospital
| | - Shota Muraji
- Department of Cardiology, Fukuoka Children's Hospital
| | - Ayako Kuraoka
- Department of Cardiology, Fukuoka Children's Hospital
| | - Koichi Sagawa
- Department of Cardiology, Fukuoka Children's Hospital
| |
Collapse
|
17
|
T1 mapping of the myocardium and liver in the single ventricle population. Pediatr Radiol 2022; 53:1092-1099. [PMID: 36539566 DOI: 10.1007/s00247-022-05560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Fontan associated liver disease (FALD) is an increasingly recognized complication of the single ventricle circulation characterized by hepatic venous congestion leading to hepatic fibrosis. Within the Fontan myocardium, fibrotic myocardial remodeling may occur and lead to ventricular dysfunction. Magnetic resonance imaging (MRI) T1 mapping can characterize both myocardial and liver properties. OBJECTIVE The aim of this study was to compare myocardial and liver T1 between single ventricle patients with and without a Fontan and biventricular controls. MATERIALS AND METHODS A retrospective study of 3 groups of patients: 16 single ventricle patients before Fontan (SVpre 2 newborns, 9 pre-Glenn, 5 pre-Fontan, 31% single right ventricle [SRV]), 16 Fontans (56% SRV) and 10 repaired d-transposition of the great arteries (TGA). Native modified Look-Locker inversion T1 times were measured in the myocardium and liver. Cardiac MRI parameters, myocardial and liver T1 values were compared in the three groups. Correlations were assessed between liver T1 and cardiac parameters. RESULTS Myocardial T1 was higher in SVpre (1,056 ± 48 ms) and Fontans (1,047 ± 41 ms) compared to TGA (1,012 ± 48 ms, P < 0.05). Increased liver T1 was found in both SVpre (683 ± 82 ms) and Fontan (727 ± 49 ms) patients compared to TGA patients (587 ± 58 ms, P < 0.001). There was no difference between single left ventricle (SLV) versus SRV myocardial or liver T1. Liver T1 showed moderate correlations with myocardial T1 (r = 0.48, confidence interval [CI] 0.26-0.72) and ejection fraction (r = -0.36, CI -0.66-0.95) but not with other volumetric parameters. CONCLUSION Increased liver T1 at both pre- and post-Fontan stages suggests there are intrinsic liver abnormalities early in the course of single ventricle palliation. Increased myocardial T1 and its relationship to liver T1 suggest a combination of edema from passive venous congestion and/or myocardial fibrosis occurring in this population. Liver T1 may provide an earlier marker of liver disease warranting further study.
Collapse
|
18
|
Guo J, Wang L, Wang J, Wan K, Gong C, Chen X, Guo J, Xu Y, He J, Yin L, Pu S, Wen B, Chen C, Han Y, Chen Y. Prognostic Value of Hepatic Native T1 and Extracellular Volume Fraction in Patients with Pulmonary Arterial Hypertension. J Am Heart Assoc 2022; 11:e026254. [DOI: 10.1161/jaha.122.026254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background
Right heart failure may lead to impaired liver perfusion and venous congestion, resulting in different extents of liver fibrosis. However, whether hepatic tissue deterioration determined by native T1 mapping and extracellular volume fraction using cardiac magnetic resonance imaging is associated with poor outcomes in patients with pulmonary arterial hypertension remains unclear.
Methods and Results
A total of 131 participants with pulmonary arterial hypertension (mean age, 36±13 years) and 64 healthy controls (mean age, 44±18) between October 2013 and December 2019 were prospectively enrolled. Hepatic native T1 and extracellular volume fraction values were measured using modified Look–Locker inversion recovery T1 mapping sequences. The primary end point was all‐cause mortality; the secondary end point was all‐cause mortality and repeat hospitalization attributable to heart failure. Cox regression models and Kaplan–Meier survival analysis were used to identify the association between variables and clinical outcome. During a median follow‐up of 34.5 months (interquartile range: 25.3–50.8), hepatic native T1 (hazard ratio per 30‐ms increase, 1.22 [95% CI, 1.07–1.39];
P
=0.003) and extracellular volume fraction (hazard ratio per 3% increase, 1.18 [95% CI, 1.04–1.34];
P
=0.010) values were associated with a higher risk of death. In the multivariate Cox model, hepatic native T1 value (hazard ratio per 30‐ms increase, 1.15 [95% CI, 1.04–1.27];
P
=0.009) remained as an independent prognostic factor for the secondary end point.
Conclusions
Hepatic T1 mapping values were predictors of adverse cardiovascular events in participants with pulmonary arterial hypertension and could be novel imaging biomarkers for poor prognosis recognition.
Collapse
Affiliation(s)
- Jiajun Guo
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Lili Wang
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jiaqi Wang
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Ke Wan
- Department of Geriatrics, West China Hospital Sichuan University Chengdu China
| | - Chao Gong
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Xiaoling Chen
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Jinghua Guo
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Juan He
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Lidan Yin
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Shoufang Pu
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Bi Wen
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Chen Chen
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Yuchi Han
- Cardiovascular Medicine, Wexner Medical Center, College of Medicine The Ohio State University Columbus Ohio
| | - Yucheng Chen
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| |
Collapse
|
19
|
Mascherbauer K, Donà C, Koschutnik M, Dannenberg V, Nitsche C, Duca F, Heitzinger G, Halavina K, Steinacher E, Kronberger C, Bardach C, Beitzke D, Loewe C, Waldmann E, Trauner M, Barkto P, Goliasch G, Mascherbauer J, Hengstenberg C, Kammerlander A. Hepatic T1-Time Predicts Cardiovascular Risk in All-Comers Referred for Cardiovascular Magnetic Resonance: A Post-Hoc Analysis. Circ Cardiovasc Imaging 2022; 15:e014716. [PMID: 36256728 DOI: 10.1161/circimaging.122.014716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Liver damage is frequently observed in patients with cardiovascular disease but infrequently quantified. We hypothesized that in patients with cardiovascular disease undergoing cardiac magnetic resonance, liver T1-times indicate liver damage and are associated with cardiovascular outcome. METHODS We measured hepatic T1-times, displayed on standard cardiac T1-maps, in an all-comer cardiac magnetic resonance-cohort. At the time of cardiac magnetic resonance, we assessed validated general liver fibrosis scores. Kaplan-Meier estimates and Cox-regression models were used to investigate the association between hepatic T1-times and a composite endpoint of non-fatal myocardial infarction, heart failure hospitalization, and death. RESULTS One thousand seventy-five participants (58±18 year old, 47% female) were included (972 patients, 50 controls, 53 participants with transient elastography). Hepatic T1-times were 590±89 ms in patients and 574±45 ms in controls (P=0.052). They were significantly correlated with cardiac size and function, presence of atrial fibrillation, NT-pro-BNP levels, and gamma-glutamyl-transferase levels (P<0.001 for all). During follow-up (58±31 months), a total of 280 (29%) events occurred. On Cox-regression, high hepatic T1-times yielded a significantly higher risk for events (adjusted hazard ratio, 1.66 [95% CI, 1.45-1.89] per 100 ms increase; P<0.001), even when adjusted for age, sex, left and right ventricular ejection fraction, NT-proBNP (N-terminal prohormone of brain natriuretic peptide), and myocardial T1-time. On receiver operating characteristic analysis and restricted cubic splines, we found that a hepatic T1-time exceeding 610 ms was associated with excessive risk. CONCLUSIONS Hepatic T1-times on standard cardiac magnetic resonance scans were significantly associated with cardiac size and function, comorbidities, natriuretic peptides, and independently predicted cardiovascular mortality and morbidity. A hepatic T1-time >610 ms seems to indicate excessive risk. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT04220450.
Collapse
Affiliation(s)
- Katharina Mascherbauer
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Carolina Donà
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Matthias Koschutnik
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Varius Dannenberg
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Christian Nitsche
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Franz Duca
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Gregor Heitzinger
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Kseniya Halavina
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Eva Steinacher
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Christina Kronberger
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Constanze Bardach
- Division of Cardiovascular and Interventional Radiology (C.B., D.B., C.L.), Medical University of Vienna
| | - Dietrich Beitzke
- Division of Cardiovascular and Interventional Radiology (C.B., D.B., C.L.), Medical University of Vienna
| | - Christian Loewe
- Division of Cardiovascular and Interventional Radiology (C.B., D.B., C.L.), Medical University of Vienna
| | - Elisabeth Waldmann
- Division of Gastroenterology and Hepatology (E.W., M.T.), Medical University of Vienna
| | - Michael Trauner
- Division of Gastroenterology and Hepatology (E.W., M.T.), Medical University of Vienna
| | - Philipp Barkto
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Georg Goliasch
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Julia Mascherbauer
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna.,Karl Landsteiner University of Health Sciences, Department of Internal Medicine 3, University Hospital St. Pölten, Krems, Austria (J.M.)
| | - Christian Hengstenberg
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Andreas Kammerlander
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| |
Collapse
|
20
|
Comparison of Hepatic Tissue Characterization between T1-Mapping and Non-Contrast Computed Tomography. J Clin Med 2022; 11:jcm11102863. [PMID: 35628989 PMCID: PMC9144343 DOI: 10.3390/jcm11102863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Non-contrast computed tomography (CT) is frequently used to assess non-alcoholic/metabolic fatty liver disease (NAFLD/MAFLD), which is associated with cardiovascular risk. Although liver biopsy is considered the gold standard for diagnosis, standardized scores and non-contrast computed tomography (CT) are used instead. On standard cardiac T1-maps on cardiovascular imaging (CMR) exams for myocardial tissue characterization hepatic tissue is also visible. We hypothesized that there is a significant correlation between hepatic tissue T1-times on CMR and Hounsfield units (HU) on non-contrast CT. Methods: We retrospectively identified patients undergoing a non-contrast CT including the abdomen, a CMR including T1-mapping, and laboratory assessment within 30 days. Patients with storage diseases were excluded. Results: We identified 271 patients (62 ± 15 y/o, 49% female) undergoing non-contrast CT and CMR T1-mapping within 30 days. Mean hepatic HU values were 54 ± 11 on CT and native T1-times were 598 ± 102 ms on CMR and there was a weak, but significant, correlation between these parameters (r = −0.136, p = 0.025). On age and sex adjusted regression analysis, lower liver HU values indicated a dismal cardiometabolic risk profile, including higher HbA1C (p = 0.005) and higher body mass index (p < 0.001). In contrast, native hepatic T1-times yielded a more pronounced cardiac risk profile, including impaired systolic function (p = 0.045) and higher NT-proBNP values (N-Terminal Brain Natriuretic Peptide) (p = 0.004). Conclusions: Hepatic T1-times are easy to assess on standard T1-maps on CMR but only weakly correlated with hepatic HU values on CT and clinical NAFLD/MAFLD scores. Liver T1-times, however, are linked to impaired systolic function and higher natriuretic peptide levels. The prognostic value and clinical usefulness of hepatic T1-times in CMR cohorts warrants further research.
Collapse
|
21
|
Ozkok S, Sorkun M, Erdemli S, Dogan MB, Aslan A, Yucel IK, Celebi A. Liver parenchymal changes and association with cardiac magnetic resonance imaging findings in repaired tetralogy of Fallot: an intravoxel incoherent motion magnetic resonance imaging study. Pediatr Radiol 2022; 52:892-902. [PMID: 35147715 DOI: 10.1007/s00247-021-05271-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/01/2021] [Accepted: 12/04/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Liver disease can develop in repaired tetralogy of Fallot (TOF) from hepatic congestion caused by volume and pressure overload of the right ventricle. Noninvasive assessment of the liver is important for diagnosing and managing children with TOF. OBJECTIVE To evaluate subclinical hepatic changes without liver function test abnormality in adolescents with repaired TOF using intravoxel incoherent motion (IVIM) MRI and cardiac MRI findings. MATERIALS AND METHODS We included 106 young adults (75 with repaired TOF and 31 healthy individuals) in the study. Liver IVIM MRI examinations were performed with 10 b values (0, 10, 20, 30, 50, 80, 100, 200, 400, 800 s/mm2). Two observers measured IVIM MRI parameters D true, D* and f, as well as apparent diffusion coefficient (ADC) values in liver segments 5-8. RESULTS D* and f values were significantly lower in adolescents with TOF (P = 0.003 vs. P = 0.05, respectively). ADC values were higher in adolescents with TOF (P = 0.005). However, we found no significant difference between adolescents with and without TOF in terms of Dtrue (P = 0.53). There was a significant correlation between f value and right ventricular ejection fraction. The intraclass correlation coefficient (ICC) analysis of the two observers showed substantial-to-excellent agreement for D, f, D true and ADC (0.7, 0.8, 0.9 and 0.8, respectively). CONCLUSION The results of our study suggest that impaired microperfusion with increased ADC values in adolescents with repaired TOF reflect hepatic congestion rather than fibrosis. Hepatic congestion characterized by decreased ADC values can be easily differentiated before fibrotic changes occur by using IVIM MRI to assess diffusion and microcapillary perfusion separately.
Collapse
Affiliation(s)
- Sercin Ozkok
- Goztepe Training and Research Hospital, Department of Radiology, Istanbul Medeniyet University, Dr. Erkin Street, No:6, Kadikoy, Istanbul, Turkey.
| | - Mine Sorkun
- Goztepe Training and Research Hospital, Department of Radiology, Istanbul Medeniyet University, Dr. Erkin Street, No:6, Kadikoy, Istanbul, Turkey
| | - Servet Erdemli
- Goztepe Training and Research Hospital, Department of Radiology, Istanbul Medeniyet University, Dr. Erkin Street, No:6, Kadikoy, Istanbul, Turkey
| | - Mahmut B Dogan
- Goztepe Training and Research Hospital, Department of Radiology, Istanbul Medeniyet University, Dr. Erkin Street, No:6, Kadikoy, Istanbul, Turkey
| | - Ahmet Aslan
- Goztepe Training and Research Hospital, Department of Radiology, Istanbul Medeniyet University, Dr. Erkin Street, No:6, Kadikoy, Istanbul, Turkey
| | - Ilker K Yucel
- Department of Pediatric Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Ahmet Celebi
- Department of Pediatric Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
22
|
Dolan RS, Stillman AE, Davarpanah AH. Feasibility of Hepatic T1-Mapping and Extracellular Volume Quantification on Routine Cardiac Magnetic Resonance Imaging in Patients with Infiltrative and Systemic Disorders. Acad Radiol 2022; 29 Suppl 4:S100-S109. [PMID: 34702675 DOI: 10.1016/j.acra.2021.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/05/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
RATIONALE AND OBJECTIVES Cardiac magnetic resonance imaging (CMR) is commonly obtained to evaluate for myocardial infiltrative disorders and fibrosis. Pre- and post-Gadolinium contrast T1-mapping sequences are employed to estimate interstitial expansion using extracellular volume fraction (ECV). Given the proximity of the liver to the heart, T1 and ECV quantification of the liver is feasible on CMR. The purpose of this study was to evaluate for hepatic measures of fibrosis and interstitial expansion in patients with amyloidosis or systemic disease on CMR. MATERIALS AND METHODS Myocardial and hepatic native T1 values were measured retrospectively using a cardiac short axis modified Look-Locker inversion recovery sequence. Myocardial and hepatic ECV were calculated using pre- and post-contrast T1 and blood pool values according to the following formula: ECV = (Δ(1/T1) myocardium or liver and/or Δ(1/T1) blood)x(1 - hematocrit). Patients were divided into three cohorts by final diagnosis: amyloidosis, systemic disease (e.g. sarcoid, scleroderma), and controls (EF > 50, no ischemia). RESULTS Of the 135 patients who underwent CMR, 22 had cardiac amyloidosis (age 59.9 ± 12.6 yrs, 41% female), 20 had systemic disease (age 50.9 ± 13.4 yrs, 35% female), and 93 were controls (age 49.5 ± 17.3 yrs, 50% female). Myocardial T1 and ECV values were highest for patients with amyloid, second highest for systemic disease, and least for controls (T1: 1169 ± 92 vs 1101 ± 53 vs 1027 ± 73 ms, p < 0.0001; ECV: 0.47 ± 0.11 vs 0.31 ± 0.05 vs 0.27 ± 0.04, p < 0.0001). Hepatic T1 and ECV were similarly higher in patients with amyloid and systemic disease compared to controls (T1: 646 ± 101 vs 660 ± 93 vs 595 ± 58 ms, p < 0.0001; ECV: 0.38 ± 0.08 vs 0.37 ± 0.05 vs 0.31 ± 0.03, p < 0.0001). There was a positive correlation between hepatic T1 and ECV (R2 = 0.282, p < 0.0001). No patients had abnormal liver function tests or clinical liver disease. CONCLUSION Hepatic ECV quantification on CMR in patients with amyloidosis and systemic disorders is feasible. Further longitudinal investigation regarding detection of early or subclinical liver disease is warranted.
Collapse
Affiliation(s)
- Ryan S Dolan
- Department of Radiology (R.S.D., A.E.S., A.H.D.), Emory University, 1364 Clifton Road NE, Atlanta, GA 30322.
| | - Arthur E Stillman
- Department of Radiology (R.S.D., A.E.S., A.H.D.), Emory University, 1364 Clifton Road NE, Atlanta, GA 30322
| | - Amir H Davarpanah
- Department of Radiology (R.S.D., A.E.S., A.H.D.), Emory University, 1364 Clifton Road NE, Atlanta, GA 30322
| |
Collapse
|
23
|
Serai SD. Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging. Pediatr Radiol 2022; 52:217-227. [PMID: 33856502 DOI: 10.1007/s00247-021-05042-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/18/2021] [Accepted: 03/01/2021] [Indexed: 01/27/2023]
Abstract
Magnetic resonance imaging is widely available and accepted as the imaging method of choice for many pediatric body imaging applications. Traditionally, it has been used in a qualitative way, where the images are reported non-numerically by radiologists. But now MRI machines have built-in post-processing software connected to the scanner and the database of MR images. This setting enables and encourages simple quantitative analysis of MR images. In this paper, the author reviews the fundamentals of MRI and discusses the most common quantitative MRI techniques for body imaging: T1, T2, T2*, T1rho and diffusion-weighted imaging (DWI). For each quantitative imaging method, this article reviews the technique, its measurement mechanism, and selected clinical applications to body imaging.
Collapse
Affiliation(s)
- Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA. .,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
von Ulmenstein S, Bogdanovic S, Honcharova-Biletska H, Blümel S, Deibel AR, Segna D, Jüngst C, Weber A, Kuntzen T, Gubler C, Reiner CS. Assessment of hepatic fibrosis and inflammation with look-locker T1 mapping and magnetic resonance elastography with histopathology as reference standard. Abdom Radiol (NY) 2022; 47:3746-3757. [PMID: 36038643 PMCID: PMC9560941 DOI: 10.1007/s00261-022-03647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To compare the diagnostic performance of T1 mapping and MR elastography (MRE) for staging of hepatic fibrosis and grading inflammation with histopathology as standard of reference. METHODS 68 patients with various liver diseases undergoing liver biopsy for suspected fibrosis or with an established diagnosis of cirrhosis prospectively underwent look-locker inversion recovery T1 mapping and MRE. T1 relaxation time and liver stiffness (LS) were measured by two readers. Hepatic fibrosis and inflammation were histopathologically staged according to a standardized fibrosis (F0-F4) and inflammation (A0-A2) score. For statistical analysis, independent t test, and Mann-Whitney U test and ROC analysis were performed, the latter to determine the performance of T1 mapping and MRE for fibrosis staging and inflammation grading, as compared to histopathology. RESULTS Histopathological analysis diagnosed 9 patients with F0 (13.2%), 21 with F1 (30.9%), 11 with F2 (16.2%), 10 with F3 (14.7%), and 17 with F4 (25.0%). Both T1 mapping and MRE showed significantly higher values for patients with significant fibrosis (F0-1 vs. F2-4; T1 mapping p < 0.0001, MRE p < 0.0001) as well as for patients with severe fibrosis or cirrhosis (F0-2 vs. F3-4; T1 mapping p < 0.0001, MRE p < 0.0001). T1 values and MRE LS were significantly higher in patients with inflammation (A0 vs. A1-2, both p = 0.01). T1 mapping showed a tendency toward lower diagnostic performance without statistical significance for significant fibrosis (F2-4) (AUC 0.79 vs. 0.91, p = 0.06) and with a significant difference compared to MRE for severe fibrosis (F3-4) (AUC 0.79 vs. 0.94, p = 0.03). For both T1 mapping and MRE, diagnostic performance for diagnosing hepatic inflammation (A1-2) was low (AUC 0.72 vs. 0.71, respectively). CONCLUSION T1 mapping is able to diagnose hepatic fibrosis, however, with a tendency toward lower diagnostic performance compared to MRE and thus may be used as an alternative to MRE for diagnosing hepatic fibrosis, whenever MRE is not available or likely to fail due to intrinsic factors of the patient. Both T1 mapping and MRE are probably not sufficient as standalone methods to diagnose hepatic inflammation with relatively low diagnostic accuracy.
Collapse
Affiliation(s)
- Sophie von Ulmenstein
- Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Sanja Bogdanovic
- Diagnostic Radiology, Balgrist University Hospital, Zurich, Switzerland
| | | | - Sena Blümel
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Ansgar R Deibel
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Segna
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Jüngst
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Kuntzen
- Gastroenterology and Hepatology, Kantonsspital Aarau, Aarau, Switzerland
| | - Christoph Gubler
- Gastroenterology and Hepatology, Stadtspital Triemli, Zurich, Switzerland
| | - Cäcilia S Reiner
- Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
25
|
Brayer SW, Zafar F, Lubert AM, Trout AT, Palermo JJ, Opotowsky AR, Anwar N, Dillman JR, Alsaied T. Relation of Magnetic Resonance Elastography to Fontan Circulatory Failure in a Cohort of Pediatric and Adult Patients. Pediatr Cardiol 2021; 42:1871-1878. [PMID: 34448042 DOI: 10.1007/s00246-021-02707-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023]
Abstract
Elevated magnetic resonance elastography (MRE)-derived liver stiffness may be associated with worse outcomes in people with Fontan circulation. We sought to evaluate the association between liver stiffness and Fontan failure or portal hypertension. Single center cross-sectional retrospective study of people with Fontan circulation who underwent MRE between 2011 and 2020. The cohort was divided into adult (age ≥ 21 years) and pediatric (< 21 years) groups. Fontan circulatory failure (FF) was defined as any of the following: death, transplantation, ventricular assist device, heart failure symptoms requiring escalation of diuretics. Radiologic portal hypertension was defined as the presence of one or more of the following: splenomegaly, ascites, or gastrointestinal varices. 128 patients were included (average age = 22.6 ± 8.7 years) and 58 (45%) were children. Median liver stiffness was 4.3 kPa (interquartile range (IQR) 3.8-5.8) for the entire cohort. Thirty patients (23%) developed FF (16 adults, 14 children). Liver stiffness was higher in adults with FF compared to those without FF (4.9 (IQR 4.0-6.0) vs. 4.2 (IQR 3.8-4.7) kPa, p = 0.04). There was no difference in liver stiffness between pediatric patients with and without FF (4.4 (IQR 4.1-5.4) vs. 4.4 (IQR 3.8-5.0), p = 0.5). Adults with radiologic portal hypertension and adults with moderate or severe atrioventricular valve regurgitation had higher liver stiffness than adults without. MRE-derived liver stiffness is associated with atrioventricular valve regurgitation, portal hypertension, and poor clinical outcomes in adults with Fontan circulation. There was no association between liver stiffness and FF in pediatric patients. This difference may be due to the progressive nature of Fontan-associated liver disease.
Collapse
Affiliation(s)
- Samuel W Brayer
- Pediatric Residency Training Program, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, USA.
| | - Faizeen Zafar
- Pediatric Residency Training Program, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, USA
| | - Adam M Lubert
- Department of Pediatrics, Cincinnati Children's Hospital Heart Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph J Palermo
- Division of Gastroenterology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander R Opotowsky
- Department of Pediatrics, Cincinnati Children's Hospital Heart Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nadeem Anwar
- Division of Gastroenterology, Department of Medicine, University of Cincinnati Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tarek Alsaied
- UPMC Children's Hospital of Pittsburgh Heart and Vascular Institute, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Langguth P, Salehi Ravesh M, Moritz JD, Rinne K, Harneit PL, Khodami JK, Graessner J, Uebing A, Jansen O, Both M, Hansen JH. Non-contrast enhanced magnetic resonance imaging for characterization of Fontan associated liver disease. Int J Cardiol 2021; 349:48-54. [PMID: 34808211 DOI: 10.1016/j.ijcard.2021.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/16/2021] [Indexed: 11/05/2022]
Abstract
OBJECTIVES To evaluate the ability of non-contrast enhanced magnetic resonance imaging (MRI) techniques to characterize Fontan associated liver disease (FALD) in adolescent and adult Fontan patients. METHODS Fontan patients (n = 29) and healthy controls (n = 13) underwent an MRI protocol with T1, T2 and Apparent Diffusion Coefficient (ADC) mapping. Routine FALD screening included abdominal ultrasound and laboratory testing. RESULTS Median follow-up after Fontan operation was 15.1 (IQR 12.0-16.8) years. Distinct differences in tissue characteristics were visualized. T1 and T2 relaxation times were prolonged in Fontan patients, particularly of the right lobe (T1: 745 (IQR 715-784) ms vs. 586 (IQR 555-602) ms, p < 0.001; T2: 63 (IQR 59-64) ms vs. 58 (IQR 56-60) ms, p = 0.002). Left lobe ADC was lower in Fontan patients (1.10 (IQR 1.06-1.18) x 10-3 mm2/s vs. 1.23 (IQR 1.19-1.29) x 10-3 mm2/s, p < 0.001). T2 mapping was able to differentiate between controls and Fontan patients with different FALD severity. Right lobe T2 was higher in patients with moderate or severe in comparison to those with no or mild changes and healthy controls (64 (IQR 61-67) ms vs. 60 (IQR 59-63) ms vs. 58 (IQR 56-60) ms, p = 0.001). CONCLUSIONS Non-contrast enhanced MRI methods are able to visualize regional differences in liver tissue characteristics. T1 and T2 relaxation times were prolonged in Fontan patients suggestive of fibrosis or congestive hepatopathy, while reduced ADC might reflect impaired microperfusion. These methods have promising clinical potential for detection of liver abnormalities in Fontan patients. The usefulness of T2 mapping to grade FALD severity merits further investigation.
Collapse
Affiliation(s)
- Patrick Langguth
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Mona Salehi Ravesh
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Jörg Detlev Moritz
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Katy Rinne
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Paul Lennard Harneit
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Joshua Kian Khodami
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | | | - Anselm Uebing
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Jan Hinnerk Hansen
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
27
|
Breit HC, Block KT, Winkel DJ, Gehweiler JE, Henkel MJ, Weikert T, Stieltjes B, Boll DT, Heye TJ. Evaluation of liver fibrosis and cirrhosis on the basis of quantitative T1 mapping: Are acute inflammation, age and liver volume confounding factors? Eur J Radiol 2021; 141:109789. [PMID: 34051684 DOI: 10.1016/j.ejrad.2021.109789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate potential confounding factors in the quantitative assessment of liver fibrosis and cirrhosis using T1 relaxation times. METHODS The study population is based on a radiology-information-system database search for abdominal MRI performed from July 2018 to April 2019 at our institution. After applying exclusion criteria 200 (59 ± 16 yrs) remaining patients were retrospectively included. 93 patients were defined as liver-healthy, 40 patients without known fibrosis or cirrhosis, and 67 subjects had a clinically or biopsy-proven liver fibrosis or cirrhosis. T1 mapping was performed using a slice based look-locker approach. A ROI based analysis of the left and the right liver was performed. Fat fraction, R2*, liver volume, laboratory parameters, sex, and age were evaluated as potential confounding factors. RESULTS T1 values were significantly lower in healthy subjects without known fibrotic changes (1.5 T MRI: 575 ± 56 ms; 3 T MRI: 857 ± 128 ms) compared to patients with acute liver disease (1.5 T MRI: 657 ± 73 ms, p < 0.0001; 3 T MRI: 952 ± 37 ms, p = 0.028) or known fibrosis or cirrhosis (1.5 T MRI: 644 ± 83 ms, p < 0.0001; 3 T MRI: 995 ± 150 ms, p = 0.018). T1 values correlated moderately with the Child-Pugh stage at 1.5 T (p = 0.01, ρ = 0.35). CONCLUSION T1 mapping is a capable predictor for detection of liver fibrosis and cirrhosis. Especially age is not a confounding factor and, hence, age-independent thresholds can be defined. Acute liver diseases are confounding factors and should be ruled out before employing T1-relaxometry based thresholds to screen for patients with liver fibrosis or cirrhosis.
Collapse
Affiliation(s)
- Hanns C Breit
- Department of Radiology, University Hospital Basel, Basel, Switzerland.
| | - Kai T Block
- NYU Langone Medical Center, New York City, United States
| | - David J Winkel
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | | | - Maurice J Henkel
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Thomas Weikert
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Bram Stieltjes
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Daniel T Boll
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Tobias J Heye
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
28
|
Waterton JC. Survey of water proton longitudinal relaxation in liver in vivo. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:779-789. [PMID: 33978944 PMCID: PMC8578172 DOI: 10.1007/s10334-021-00928-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/05/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022]
Abstract
Objective To determine the variability, and preferred values, for normal liver longitudinal water proton relaxation rate R1 in the published literature. Methods Values of mean R1 and between-subject variance were obtained from literature searching. Weighted means were fitted to a heuristic and to a model. Results After exclusions, 116 publications (143 studies) remained, representing apparently normal liver in 3392 humans, 99 mice and 249 rats. Seventeen field strengths were included between 0.04 T and 9.4 T. Older studies tended to report higher between-subject coefficients of variation (CoV), but for studies published since 1992, the median between-subject CoV was 7.4%, and in half of those studies, measured R1 deviated from model by 8.0% or less. Discussion The within-study between-subject CoV incorporates repeatability error and true between-subject variation. Between-study variation also incorporates between-population variation, together with bias from interactions between methodology and physiology. While quantitative relaxometry ultimately requires validation with phantoms and analysis of propagation of errors, this survey allows investigators to compare their own R1 and variability values with the range of existing literature. Supplementary Information The online version contains supplementary material available at 10.1007/s10334-021-00928-x.
Collapse
Affiliation(s)
- John Charles Waterton
- Centre for Imaging Sciences, Division of Informatics Imaging and Data Sciences, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9PL, UK. .,Bioxydyn Ltd, Rutherford House, Manchester Science Park, Pencroft Way, Manchester, M15 6SZ, UK.
| |
Collapse
|
29
|
Ahn JH, Yu JS, Park KS, Kang SH, Huh JH, Chang JS, Lee JH, Kim MY, Nickel MD, Kannengiesser S, Kim JY, Koh SB. Effect of hepatic steatosis on native T1 mapping of 3T magnetic resonance imaging in the assessment of T1 values for patients with non-alcoholic fatty liver disease. Magn Reson Imaging 2021; 80:1-8. [PMID: 33798658 DOI: 10.1016/j.mri.2021.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/09/2023]
Abstract
PURPOSE This study investigated whether T1 values in native T1 mapping of 3T magnetic resonance imaging (MRI) of the liver were affected by the fatty component. METHODS This prospective study involved 340 participants from a population-based cohort study between May 8, 2018 and August 8, 2019. Data obtained included: (1) hepatic stiffness according to magnetic resonance elastography (MRE); (2) T1 value according to T1 mapping; (3) fat fraction and iron concentration from multi-echo Dixon; and (4) clinical indices of hepatic steatosis including body mass index, waist circumference, history of diabetes, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transpeptidase, and triglycerides. The correlations between T1 value and fat fraction, and between T1 value and liver stiffness were assessed using Pearson's correlation coefficient. The independent two-sample t-test was used to evaluate the differences in T1 values according to the presence or absence of hepatic steatosis, and the one-way analysis of variance was used to evaluate the difference in T1 value by grading of hepatic steatosis according to MRI-based proton density fat fraction (PDFF). In addition, univariate and multivariate linear regression analyses were performed to determine whether other variables influenced the T1 value. RESULTS T1 value showed a positive correlation with the fat fraction obtained from PDFF (r = 0.615, P < 0.001) and with the liver stiffness obtained from MRE (r = 0.370, P < 0.001). Regardless of the evaluation method, the T1 value was significantly increased in subjects with hepatic steatosis (P < 0.001). When comparing hepatic steatosis grades based on MRI-PDFF, the mean T1 values were significantly different in all grades, and the T1 value tended to increase as the grade increased (P < 0.001, P for trend <0.001). On multiple linear regression analysis, the T1 value was influenced by MRI-PDFF, calculated liver iron concentration, liver stiffness, and serum aspartate aminotransferase level. CONCLUSION The T1 value obtained by current T1 mapping of 3T MRI was affected by the liver fat component and several other factors such as liver stiffness, iron concentration, and inflammation.
Collapse
Affiliation(s)
- Jhii-Hyun Ahn
- Department of Radiology, Wonju Severance Christian Hospital, Yonsei University College of Medicine, Republic of Korea
| | - Jeong-Sik Yu
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Kyu-Sang Park
- Mitohormesis Research Center, Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seong Hee Kang
- Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Ji Hye Huh
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jae Seung Chang
- Mitohormesis Research Center, Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jong-Han Lee
- Department of Laboratory Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Moon Young Kim
- Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | | | | | - Jang-Young Kim
- Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sang-Baek Koh
- Department of Preventive Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
30
|
Mesropyan N, Isaak A, Faron A, Praktiknjo M, Jansen C, Kuetting D, Meyer C, Pieper CC, Sprinkart AM, Chang J, Maedler B, Thomas D, Kupczyk P, Attenberger U, Luetkens JA. Magnetic resonance parametric mapping of the spleen for non-invasive assessment of portal hypertension. Eur Radiol 2021; 31:85-93. [PMID: 32749584 PMCID: PMC7755629 DOI: 10.1007/s00330-020-07080-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/25/2020] [Accepted: 07/16/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES In patients with advanced liver disease, portal hypertension is an important risk factor, leading to complications such as esophageal variceal bleeding, ascites, and hepatic encephalopathy. This study aimed to determine the diagnostic value of T1 and T2 mapping and extracellular volume fraction (ECV) for the non-invasive assessment of portal hypertension. METHODS In this prospective study, 50 participants (33 patients with indication for trans-jugular intrahepatic portosystemic shunt (TIPS) and 17 healthy volunteers) underwent MRI. The derivation and validation cohorts included 40 and 10 participants, respectively. T1 and T2 relaxation times and ECV of the liver and the spleen were assessed using quantitative mapping techniques. Direct hepatic venous pressure gradient (HVPG) and portal pressure measurements were performed during TIPS procedure. ROC analysis was performed to compare diagnostic performance. RESULTS Splenic ECV correlated with portal pressure (r = 0.72; p < 0.001) and direct HVPG (r = 0.50; p = 0.003). No significant correlations were found between native splenic T1 and T2 relaxation times with portal pressure measurements (p > 0.05, respectively). In the derivation cohort, splenic ECV revealed a perfect diagnostic performance with an AUC of 1.000 for the identification of clinically significant portal hypertension (direct HVPG ≥ 10 mmHg) and outperformed other parameters: hepatic T2 (AUC, 0.731), splenic T2 (AUC, 0.736), and splenic native T1 (AUC, 0.806) (p < 0.05, respectively). The diagnostic performance of mapping parameters was comparable in the validation cohort. CONCLUSION Splenic ECV was associated with portal pressure measurements in patients with advanced liver disease. Future studies should explore the diagnostic value of parametric mapping accross a broader range of pressure values. KEY POINTS • Non-invasive assessment and monitoring of portal hypertension is an area of unmet interest. • Splenic extracellular volume fraction is strongly associated with portal pressure in patients with end-stage liver disease. • Quantitative splenic and hepatic MRI-derived parameters have a potential to become a new non-invasive diagnostic parameter to assess and monitor portal pressure.
Collapse
Affiliation(s)
- Narine Mesropyan
- Department of Diagnostic and Interventional Radiology and Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology and Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anton Faron
- Department of Diagnostic and Interventional Radiology and Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Michael Praktiknjo
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christian Jansen
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology and Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Carsten Meyer
- Department of Diagnostic and Interventional Radiology and Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology and Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alois M Sprinkart
- Department of Diagnostic and Interventional Radiology and Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Johannes Chang
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Burkhard Maedler
- Philips GmbH Germany, Roentgenstrasse 22, 22335, Hamburg, Germany
| | - Daniel Thomas
- Department of Diagnostic and Interventional Radiology and Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Patrick Kupczyk
- Department of Diagnostic and Interventional Radiology and Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology and Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology and Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
31
|
MacAskill CJ, Erokwu BO, Markley M, Parsons A, Farr S, Zhang Y, Tran U, Chen Y, Anderson CE, Serai S, Hartung EA, Wessely O, Ma D, Dell KM, Flask CA. Multi-parametric MRI of kidney disease progression for autosomal recessive polycystic kidney disease: mouse model and initial patient results. Pediatr Res 2021; 89:157-162. [PMID: 32283547 PMCID: PMC7554096 DOI: 10.1038/s41390-020-0883-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/20/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) is a rare but potentially lethal genetic disorder typically characterized by diffuse renal microcysts. Clinical trials for patients with ARPKD are not currently possible due to the absence of sensitive measures of ARPKD kidney disease progression and/or therapeutic efficacy. METHODS In this study, animal and human magnetic resonance imaging (MRI) scanners were used to obtain quantitative kidney T1 and T2 relaxation time maps for both excised kidneys from bpk and wild-type (WT) mice as well as for a pediatric patient with ARPKD and a healthy adult volunteer. RESULTS Mean kidney T1 and T2 relaxation times showed significant increases with age (p < 0.05) as well as significant increases in comparison to WT mice (p < 2 × 10-10). Significant or nearly significant linear correlations were observed for mean kidney T1 (p = 0.030) and T2 (p = 0.054) as a function of total kidney volume, respectively. Initial magnetic resonance fingerprinting assessments in a patient with ARPKD showed visible increases in both kidney T1 and T2 in comparison to the healthy volunteer. CONCLUSIONS These preclinical and initial clinical MRI studies suggest that renal T1 and T2 relaxometry may provide an additional outcome measure to assess cystic kidney disease progression in patients with ARPKD. IMPACT A major roadblock for implementing clinical trials in patients with ARPKD is the absence of sensitive measures of ARPKD kidney disease progression and/or therapeutic efficacy. A clinical need exists to develop a safe and sensitive measure for kidney disease progression, and eventually therapeutic efficacy, for patients with ARPKD. Mean kidney T1 and T2 MRI relaxation times showed significant increases with age (p < 0.05) as well as significant increases in comparison to WT mice (p < 2 ×10-10), indicating that T1 and T2 may provide sensitive assessments of cystic changes associated with progressive ARPKD kidney disease. This preclinical and initial clinical study suggests that MRI-based kidney T1 and T2 mapping could be used as a non-invasive assessment of ARPKD kidney disease progression. These non-invasive, quantitative MRI techniques could eventually be used as an outcome measure for clinical trials evaluating novel therapeutics aimed at limiting or preventing ARPKD kidney disease progression.
Collapse
Affiliation(s)
| | - Bernadette O Erokwu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Markley
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Ashlee Parsons
- Center for Pediatric Nephrology, Cleveland Clinic Children's, Cleveland, OH, USA
| | - Susan Farr
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Yifan Zhang
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Uyen Tran
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Christian E Anderson
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Suraj Serai
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erum A Hartung
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Oliver Wessely
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Dan Ma
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Katherine M Dell
- Center for Pediatric Nephrology, Cleveland Clinic Children's, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Chris A Flask
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
32
|
de Lange C, Thrane KJ, Thomassen KS, Geier O, Nguyen B, Tomterstad A, Ording Müller LS, Thaulow E, Almaas R, Døhlen G, Suther KR, Möller T. Hepatic magnetic resonance T1-mapping and extracellular volume fraction compared to shear-wave elastography in pediatric Fontan-associated liver disease. Pediatr Radiol 2021; 51:66-76. [PMID: 33033916 PMCID: PMC7796890 DOI: 10.1007/s00247-020-04805-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/10/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Children with Fontan circulation are at risk of developing hepatic fibrosis/cirrhosis. Reliable noninvasive monitoring techniques are lacking or under development. OBJECTIVE To investigate surrogate indicators of hepatic fibrosis in adolescents with Fontan circulation by evaluating hepatic magnetic resonance (MR) T1 mapping and extracellular volume fraction measurements compared to US shear-wave elastography. MATERIALS AND METHODS We analyzed hepatic native T1 times and extracellular volume fractions with modified Look-Locker inversion recovery. Liver stiffness was analyzed with shear-wave elastography. We compared results between 45 pediatric patients ages 16.7±0.6 years with Fontan circulation and 15 healthy controls ages 19.2±1.2 years. Measurements were correlated to clinical and hemodynamic data from cardiac catheterization. RESULTS MR mapping was successful in 35/45 patients, revealing higher hepatic T1 times (774±44 ms) than in controls (632±52 ms; P<0.001) and higher extracellular volume fractions (47.4±5.0%) than in controls (34.6±3.8%; P<0.001). Liver stiffness was 1.91±0.13 m/s in patients vs. 1.20±0.10 m/s in controls (P<0.001). Native T1 times correlated with central venous pressures (r=0.5, P=0.007). Native T1 was not correlated with elastography in patients (r=0.2, P=0.1) or controls (r = -0.3, P=0.3). Extracellular volume fraction was correlated with elastography in patients (r=0.5, P=0.005) but not in controls (r=0.2, P=0.6). CONCLUSION Increased hepatic MR relaxometry and shear-wave elastography values in adolescents with Fontan circulation suggested the presence of hepatic fibrosis or congestion. Central venous pressure was related to T1 times. Changes were detected differently with MR relaxometry and elastography; thus, these techniques should not be used interchangeably in monitoring hepatic fibrosis.
Collapse
Affiliation(s)
- Charlotte de Lange
- Division of Radiology and Nuclear Medicine, Section of Paediatric Radiology, Oslo University Hospital, Oslo, Norway. .,Department of Radiology and Clinical Physiology, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Rondv 10, S-41615, Göteborg, Sweden.
| | - Karl Julius Thrane
- Division of Radiology and Nuclear Medicine, Section of Paediatric Radiology, Oslo University Hospital, Oslo, Norway
| | - Kristian S. Thomassen
- Division of Radiology and Nuclear Medicine, Section of Paediatric Radiology, Oslo University Hospital, Oslo, Norway
| | - Oliver Geier
- Department of Physics, Oslo University Hospital, Oslo, Norway
| | - Bac Nguyen
- Division of Radiology and Nuclear Medicine, Section of Paediatric Radiology, Oslo University Hospital, Oslo, Norway
| | - Anders Tomterstad
- Division of Radiology and Nuclear Medicine, Section of Paediatric Radiology, Oslo University Hospital, Oslo, Norway
| | - Lil-Sofie Ording Müller
- Division of Radiology and Nuclear Medicine, Section of Paediatric Radiology, Oslo University Hospital, Oslo, Norway
| | - Erik Thaulow
- Department of Paediatric Cardiology, Oslo University Hospital, Oslo, Norway ,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Runar Almaas
- Department of Paediatric Research and Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Gaute Døhlen
- Department of Paediatric Cardiology, Oslo University Hospital, Oslo, Norway
| | - Kathrine Rydén Suther
- Division of Radiology and Nuclear Medicine, Section of Paediatric Radiology, Oslo University Hospital, Oslo, Norway
| | - Thomas Möller
- Department of Paediatric Cardiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
33
|
Kupczyk PA, Mesropyan N, Isaak A, Endler C, Faron A, Kuetting D, Sprinkart AM, Mädler B, Thomas D, Attenberger UI, Luetkens JA. Quantitative MRI of the liver: Evaluation of extracellular volume fraction and other quantitative parameters in comparison to MR elastography for the assessment of hepatopathy. Magn Reson Imaging 2020; 77:7-13. [PMID: 33309923 DOI: 10.1016/j.mri.2020.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/27/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chronic liver diseases pose a major health problem worldwide, while common tests for diagnosis and monitoring of diffuse hepatopathy have considerable limitations. Preliminary data on the quantification of hepatic extracellular volume fraction (ECV) with magnetic resonance imaging (MRI) for non-invasive assessment of liver fibrosis are encouraging, with ECV having the potential to overcome several of these constraints. PURPOSE To clinically evaluate ECV provided by quantitative MRI for assessing the severity of liver disease. MATERIALS AND METHODS In this prospective study, multiparametric liver MRI, including T1 mapping and magnetic resonance elastography (MRE), was performed in subjects with and without hepatopathy between November 2018 and October 2019. T1, T2, T2*, proton density fat fraction and stiffness were extracted from parametric maps by regions of interest and ECV was calculated from T1 relaxometries. Serum markers of liver disease were obtained by clinical database research. For correlation analysis, Spearman rank correlation was used. ROC analysis of serum markers and quantitative MRI data for discrimination of liver cirrhosis was performed with MRE as reference standard. RESULTS 109 participants were enrolled (50.7 ± 16.1 years, 61 men). ECV, T1 and MRE correlated significantly with almost all serum markers of liver disease, with ECV showing the strongest associations (up to r = 0.67 with MELD, p < 0.01). ECV and T1 correlated with MRE (0.75 and 0.73, p < 0.01 each). ECV (AUC 0.89, cutoff 32.2%, sensitivity 85%, specificity 87%) and T1 mapping (AUC 0.85, cutoff 592.5 ms, sensitivity 83%, specificity 75%) featured good performances in detection of liver cirrhosis with only ECV performing significantly superior to model of end stage liver disease (MELD), AST/ALT ratio and international normalized ratio (p < 0.01, respectively). CONCLUSION Quantification of hepatic extracellular volume fraction with MRI is suitable for estimating the severity of liver disease when using MRE as the standard of reference. It represents a promising tool for non-invasive assessment of liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- P A Kupczyk
- University Hospital Bonn, Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), Venusberg-Campus 1, 53127 Bonn, Germany.
| | - N Mesropyan
- University Hospital Bonn, Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), Venusberg-Campus 1, 53127 Bonn, Germany
| | - A Isaak
- University Hospital Bonn, Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), Venusberg-Campus 1, 53127 Bonn, Germany
| | - C Endler
- University Hospital Bonn, Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), Venusberg-Campus 1, 53127 Bonn, Germany
| | - A Faron
- University Hospital Bonn, Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), Venusberg-Campus 1, 53127 Bonn, Germany
| | - D Kuetting
- University Hospital Bonn, Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), Venusberg-Campus 1, 53127 Bonn, Germany
| | - A M Sprinkart
- University Hospital Bonn, Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), Venusberg-Campus 1, 53127 Bonn, Germany
| | - B Mädler
- Philips Healthcare, Hamburg, Germany
| | - D Thomas
- University Hospital Bonn, Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), Venusberg-Campus 1, 53127 Bonn, Germany
| | - U I Attenberger
- University Hospital Bonn, Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), Venusberg-Campus 1, 53127 Bonn, Germany
| | - J A Luetkens
- University Hospital Bonn, Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
34
|
Shiina Y, Inai K, Ohashi R, Nagao M. Potential of Liver T 1 Mapping for the Detection of Fontan-associated Liver Disease in Adults. Magn Reson Med Sci 2020; 20:295-302. [PMID: 32893257 PMCID: PMC8424020 DOI: 10.2463/mrms.mp.2020-0063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Purpose: The native T1 value at 3T MRI is a sensitive marker for diffuse fibrosis or damage in various organs including the heart, liver, and pancreas. Despite the fact that Fontan-associated liver disease (FALD) is a crucial issue in adults with Fontan circulation, there are only a few studies with liver T1 mapping in children and adolescents. We investigated the potential of the liver native T1 mapping in detecting FALD in adult patients. Methods: We prospectively enrolled 16 consecutive adults with Fontan circulation (age 31.3 ± 8.5 years), who were in New York Heart Association Functional class II–IV. Twenty with tetralogy of Fallot (TOF), and 20 age-matched controls also underwent cardiac magnetic resonance (CMR) imaging at 3T. Myocardial T1 mapping with a Modified Look-Locker Inversion recovery sequence was applied to liver T1 mapping. Patients in the Fontan group underwent the right heart catheter and liver function tests, including those for fibrotic markers. Results: Liver native T1 values in the Fontan group were significantly higher than that in TOF and controls (P < 0.001). In the Fontan group, the liver native T1 value was significantly correlated with age, γ -glutamyltransferase, model for end-stage liver disease XI score, and albumin-bilirubin score (P = 0.01, 0.01, 0.044, 0.001). However, it demonstrated no correlation with central venous pressure, pulmonary vessel resistance, or fibrotic markers. Conclusion: Liver native T1 value derived from CMR may be a non-invasive adjunctive and/or screening marker to detect FALD.
Collapse
Affiliation(s)
- Yumi Shiina
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University.,Cardiovascular Center, St. Luke's International Hospital
| | - Kei Inai
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University
| | - Ryoko Ohashi
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University
| | - Michinobu Nagao
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University
| |
Collapse
|
35
|
Dillman JR, Serai SD, Miethke AG, Singh R, Tkach JA, Trout AT. Comparison of liver T1 relaxation times without and with iron correction in pediatric autoimmune liver disease. Pediatr Radiol 2020; 50:935-942. [PMID: 32409910 DOI: 10.1007/s00247-020-04663-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/21/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) T1 relaxometry (mapping) has been reported as a quantitative biomarker of liver injury due to inflammation and fibrosis. OBJECTIVE To assess the relationship between liver MRI T1 relaxometry measurements obtained using a modified Look-Locker inversion recovery (MOLLI) pulse sequence without and with iron (T2*) correction (cT1) in pediatric autoimmune liver disease. MATERIALS AND METHODS This cross-sectional study was institutional review board-approved, with informed consent obtained. MRI was acquired at 1.5 T in patients participating in an autoimmune liver disease registry. T1 relaxometry was performed using a MOLLI sequence with a 5(3)3-s acquisition strategy. A multi-echo gradient echo sequence was used to measure liver T2*. Non-iron-corrected native T1 (ms), calculated as the mean of four slices through the mid-liver, was measured using T1 parametric maps generated off-line. A proprietary T2* correction (Perspectum Diagnostics, Oxford, UK), blinded to native T1 values, calculated cT1 values. The relationship between native T1 and cT1 measurements was assessed using Spearman rank correlation and Bland-Altman analyses. RESULTS Forty-eight patients with a mean (standard deviation [SD]) age of 15.2 (4.1) years were included. Mean (SD) liver native T1 was 651.2 (123.9) ms and mean (SD) cT1 was 919.5 (86.8) ms, with excellent positive correlation between values (r=0.91 [95% confidence interval (CI): 0.85-0.95]; P<0.0001). Mean bias between native T1 and cT1 measurements was 268.3 ms (95% limits of agreement: 131.9-404.7 ms). CONCLUSION There is excellent positive correlation between liver native T1 and cT1 measurements in pediatric patients with autoimmune liver disease. This relationship brings into question the need to perform T1 iron correction in this patient population. T1 and cT1 measurements are not interchangeable, however, due to considerable systematic bias with cT1 values being considerably higher.
Collapse
Affiliation(s)
- Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA. .,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexander G Miethke
- Division of Hepatology, Gastroenterology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ruchi Singh
- Division of Hepatology, Gastroenterology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
36
|
Clinical and Preclinical Imaging of Hepatosplenic Schistosomiasis. Trends Parasitol 2019; 36:206-226. [PMID: 31864895 DOI: 10.1016/j.pt.2019.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/22/2019] [Accepted: 11/30/2019] [Indexed: 12/12/2022]
Abstract
Schistosomiasis, a neglected tropical disease, is a major cause of chronic morbidity and disability, and premature death. The hepatosplenic form of schistosomiasis is characterized by hepatosplenomegaly, liver fibrosis, portal hypertension, and esophageal varices, whose rupture may cause bleeding and death. We review currently available abdominal imaging modalities and describe their basic principles, strengths, weaknesses, and usefulness in the assessment of hepatosplenic schistosomiasis (HSS). Advanced imaging methods are presented that could be of interest for hepatosplenic schistosomiasis evaluation by yielding morphological, functional, and molecular parameters of disease progression. We also provide a comprehensive view of preclinical imaging studies and current research objectives such as parasite visualization in hosts, follow-up of the host's immune response, and development of noninvasive quantitative methods for liver fibrosis assessment.
Collapse
|
37
|
Alsaied T, Possner M, Lubert AM, Trout AT, Szugye C, Palermo JJ, Lorts A, Goldstein BH, Veldtman GR, Anwar N, Dillman JR. Relation of Magnetic Resonance Elastography to Fontan Failure and Portal Hypertension. Am J Cardiol 2019; 124:1454-1459. [PMID: 31474329 DOI: 10.1016/j.amjcard.2019.07.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022]
Abstract
Fontan associated liver disease is associated with morbidity and mortality in palliated single-ventricle congenital heart disease patients. Magnetic resonance elastography (MRE) provides a quantitative assessment of liver stiffness in Fontan patients. We hypothesized that MRE liver stiffness correlates with liver enzymes, hemodynamics, portal hypertension, and Fontan failure (FF). All adult Fontan patients who had MRE between 2011 and 2018 were included. Radiologic portal hypertension was defined as splenomegaly, ascites, and/or varices. FF was defined as death, transplantation, or heart failure symptoms requiring escalation of diuretics. Seventy patients with a median age of 24.7 years and a median follow-up from MRE of 3.9 years were included. The median liver stiffness was 4.3 kPa (interquartile range [IQR]: 3.8 to 5.0 kPa). There was a weak, positive correlation between liver stiffness and Fontan pathway pressure (r = 0.34, p = 0.03). There was a moderate negative correlation of liver stiffness with ventricular ejection fraction (r = -0.52, p = 0.03). Liver stiffness was weakly positively correlated with liver transaminases and gamma glutamyl transferase. Patients with portal hypertension had higher liver stiffness compared to patients without (5.2 ± 1.3 vs 4.2 ± 0.8 kPa, p = 0.03). At MRE or during follow-up, 13 patients (19%) met definition of FF and had significantly higher liver stiffness compared to patients without FF (5.1 [IQR: 4.3 to 6.3] vs 4.2 [IQR: 3.7 to 4.7] kPa, p = 0.01). Liver stiffness above 4.5 kPa differentiated FF with a sensitivity of 77% and specificity of 77%. In conclusion, elevated MRE-derived liver stiffness is associated with worse hemodynamics, liver enzymes and clinical outcomes in Fontan patients. This measure may serve as a global imaging biomarker of Fontan health.
Collapse
Affiliation(s)
- Tarek Alsaied
- Cincinnati Children's Hospital Heart Institute, Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, Ohio.
| | - Mathias Possner
- Cincinnati Children's Hospital Heart Institute, Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, Ohio
| | - Adam M Lubert
- Cincinnati Children's Hospital Heart Institute, Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, Ohio
| | - Andrew T Trout
- Cincinnati Children's Hospital Medical Center, Department of Radiology, University of Cincinnati College of Medicine Cincinnati, Ohio
| | - Cassandra Szugye
- Cincinnati Children's Hospital Heart Institute, Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, Ohio
| | - Joseph J Palermo
- Cincinnati Children's Hospital Medical Center, Division of Gastroenterology, Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, Ohio
| | - Angela Lorts
- Cincinnati Children's Hospital Heart Institute, Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, Ohio
| | - Bryan H Goldstein
- Cincinnati Children's Hospital Heart Institute, Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, Ohio
| | - Gruschen R Veldtman
- Cincinnati Children's Hospital Heart Institute, Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, Ohio; Adult Congenital Heart Disease, Heart Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nadeem Anwar
- University of Cincinnati Medical Center, Division of Gastroenterology, Department of Medicine, University of Cincinnati College of Medicine Cincinnati, Ohio
| | - Johnathan R Dillman
- Cincinnati Children's Hospital Medical Center, Department of Radiology, University of Cincinnati College of Medicine Cincinnati, Ohio
| |
Collapse
|
38
|
Li J, Liu H, Zhang C, Yang S, Wang Y, Chen W, Li X, Wang D. Native T1 mapping compared to ultrasound elastography for staging and monitoring liver fibrosis: an animal study of repeatability, reproducibility, and accuracy. Eur Radiol 2019; 30:337-345. [PMID: 31338650 DOI: 10.1007/s00330-019-06335-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To investigate the repeatability, reproducibility, and staging and monitoring of the performance of native T1 mapping for noninvasively assessing liver fibrosis in comparison with acoustic radiation force impulse (ARFI) elastography. METHODS The repeatability and reproducibility were explored in 8 male Sprague-Dawley rats with intraclass correlation coefficient (ICC). Different degrees of fibrosis were induced in 52 rats by carbon-tetrachloride (CCl4) insult. Another 16 rats were used to build fibrosis progression and regression models. The native T1 values and shear wave velocity (SWV) were quantified by using native T1 mapping and ARFI elastography, respectively. The METAVIR system (F0-F4) was used for the staging of fibrosis. The area under the receiver operating characteristic curve (AUC) was determined to assess the performance of quantitative parameters for staging and monitoring fibrosis. RESULTS Native T1 values shared similar good repeatability (ICC = 0.93) and reproducibility (ICC = 0.87) with SWV (ICC = 0.84-0.93). The AUC of native T1 values were 0.84, 0.84, and 0.75 for diagnosing significant fibrosis (≥ F2) and liver cirrhosis (F4) and detecting fibrosis progression, and those of SWV were 0.81, 0.86, and 0.7, respectively. No significant difference in performance was found between the two quantitative parameters (p ≥ 0.496). For detecting fibrosis regression, native T1 values had a better accuracy (AUC = 0.99) than SWV (AUC = 0.56; p = 0.002). CONCLUSION Native T1 mapping may be a reliable and accurate method for noninvasively assessing liver fibrosis. Compared with ARFI elastography, it provides similar good repeatability and reproducibility, a similar high accuracy for staging fibrosis, and a better accuracy for detecting fibrosis regression. KEY POINTS • Native T1 mapping is a valuable tool for noninvasively assessing liver fibrosis and can be measured on virtually all clinical MRI machines without additional hardware or gadolinium chelate injection. • Compared with acoustic radiation force impulse elastography, native T1 mapping yields similar good repeatability and reproducibility and a similar high accuracy for staging fibrosis. • Native T1 mapping provides a significantly better performance for detecting fibrosis regression than acoustic radiation force impulse elastography.
Collapse
Affiliation(s)
- Jinning Li
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Huanhuan Liu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Caiyuan Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Shuyan Yang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Yanshu Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Weibo Chen
- Philips Healthcare, Shanghai, 200233, China
| | - Xin Li
- GE Healthcare, Shanghai, 210000, China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|