1
|
Luo X, Chen J, Fang Y, Xu Q, Jiang F, Wang G. Association between calcification and risk stratification in gastric gastrointestinal stromal tumors. Abdom Radiol (NY) 2025; 50:579-588. [PMID: 39180668 DOI: 10.1007/s00261-024-04544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Risk assessment of gastric gastrointestinal stromal tumors (GISTs), particularly those with a diameter ≤ 5 cm, remains a clinical challenge. Previous research has primarily focused on tumor size, ulceration, necrosis, and enhancement patterns, with less emphasis on the role of tumor calcification, which remains controversial regarding its correlation with malignancy risk. OBJECTIVE This study aims to explore the characteristics of calcification in gastric GISTs and its correlation with risk stratification as defined by the National Institutes of Health (NIH), to improve preoperative risk assessment for gastric GISTs ≤ 5 cm. METHODS A retrospective analysis of 385 pathologically confirmed gastric GIST patients, including 178 with small gastric GISTs (< 2 cm), was conducted. Tumors were categorized into low-risk (very low / low) and high-risk (intermediate / high) groups based on NIH criteria. Variables such as age, gender, tumor long-axis diameter, calcification rates, calcification size, the number and distribution of calcification, calcification to tumor long-axis diameter ratio were analyzed. Logistic regression was used to identify independent predictors of malignancy for gastric GISTs, with predictive values assessed via receiver operating characteristic (ROC) curves. RESULTS Significant differences were found between high-risk and low-risk groups in treatment methods, tumor long-axis diameter, the ratio of calcification to tumor long-axis, and calcification distribution (P < 0.05). Calcification rates varied across risk categories, with 23.6% in very low-risk, 31.6% in low-risk, 9.8% in intermediate-risk, and 31.7% in high-risk categories (P < 0.05). In GISTs ≤ 5 cm, both tumor long-axis diameter (OR = 3.07, 95% CI: 2.29-4.10) and calcification (OR = 0.36, 95% CI: 0.13-0.97) were independent predictors of malignancy risk (both P < 0.05). ROC curve analysis yielded areas of 0.849 for tumor long-axis diameter, 0.578 for calcification, and 0.862 for their combination. CONCLUSION The study indicates lower calcification rates in intermediate-risk gastric GISTs and higher rates in other risk categories. Additionally, tumors of different sizes exhibit two distinct calcification patterns, suggesting possible differing mechanisms of calcification in tumors. Calcification in gastric GISTs ≤ 5 cm acts as a protective factor against higher malignancy risk, and when combined with tumor long-axis diameter, significantly enhances predictive accuracy over long-axis diameter alone.
Collapse
Affiliation(s)
- Xiao Luo
- grid.469636.8Zhejiang Taizhou Hospital, Linhai, China
| | - Jinyao Chen
- grid.469636.8Zhejiang Taizhou Hospital, Linhai, China
| | - Yicheng Fang
- grid.469636.8Zhejiang Taizhou Hospital, Linhai, China
| | - Qinhui Xu
- grid.469636.8Zhejiang Taizhou Hospital, Linhai, China.
| | - Fei Jiang
- grid.469636.8Zhejiang Taizhou Hospital, Linhai, China
| | | |
Collapse
|
2
|
Li Y, Liu YB, Li XB, Cui XN, Meng DH, Yuan CC, Ye ZX. Deep learning model combined with computed tomography features to preoperatively predicting the risk stratification of gastrointestinal stromal tumors. World J Gastrointest Oncol 2024; 16:4663-4674. [PMID: 39678791 PMCID: PMC11577356 DOI: 10.4251/wjgo.v16.i12.4663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND Gastrointestinal stromal tumors (GIST) are prevalent neoplasm originating from the gastrointestinal mesenchyme. Approximately 50% of GIST patients experience tumor recurrence within 5 years. Thus, there is a pressing need to accurately evaluate risk stratification preoperatively. AIM To assess the application of a deep learning model (DLM) combined with computed tomography features for predicting risk stratification of GISTs. METHODS Preoperative contrast-enhanced computed tomography (CECT) images of 551 GIST patients were retrospectively analyzed. All image features were independently analyzed by two radiologists. Quantitative parameters were statistically analyzed to identify significant predictors of high-risk malignancy. Patients were randomly assigned to the training (n = 386) and validation cohorts (n = 165). A DLM and a combined DLM were established for predicting the GIST risk stratification using convolutional neural network and subsequently evaluated in the validation cohort. RESULTS Among the analyzed CECT image features, tumor size, ulceration, and enlarged feeding vessels were identified as significant risk predictors (P < 0.05). In DLM, the overall area under the receiver operating characteristic curve (AUROC) was 0.88, with the accuracy (ACC) and AUROCs for each stratification being 87% and 0.96 for low-risk, 79% and 0.74 for intermediate-risk, and 84% and 0.90 for high-risk, respectively. The overall ACC and AUROC were 84% and 0.94 in the combined model. The ACC and AUROCs for each risk stratification were 92% and 0.97 for low-risk, 87% and 0.83 for intermediate-risk, and 90% and 0.96 for high-risk, respectively. Differences in AUROCs for each risk stratification between the two models were significant (P < 0.05). CONCLUSION A combined DLM with satisfactory performance for preoperatively predicting GIST stratifications was developed using routine computed tomography data, demonstrating superiority compared to DLM.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Yan-Bei Liu
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Xu-Bin Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Xiao-Nan Cui
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Dong-Hua Meng
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Cong-Cong Yuan
- Department of Radiology, Tianjin First Central Hospital, Tianjin 300190, China
| | - Zhao-Xiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| |
Collapse
|
3
|
Zhong G, Chen L, Lin Z, Xiang Z. Evaluation of renal function in chronic kidney disease using histogram analysis based on multiple diffusion models. Br J Radiol 2024; 97:803-811. [PMID: 38291900 PMCID: PMC11027312 DOI: 10.1093/bjr/tqae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVES To compare the diagnostic value of histogram features of multiple diffusion metrics in predicting early renal impairment in chronic kidney disease (CKD). METHODS A total of 77 patients with CKD (mild group, estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.73 m2) and 30 healthy controls (HCs) were enrolled. Diffusion-weighted imaging was performed by using single-shot echo planar sequence with 13 b values (0, 20, 50, 80, 100, 150, 200, 500, 800, 1000, 1500, 2000, and 2500 s/mm2). Diffusion models including mono-exponential (Mono), intravoxel incoherent motion (IVIM), stretched-exponential (SEM), and kurtosis (DKI) were calculated, and their histogram features were analysed. All diffusion models for predicting early renal impairment in CKD were established using logistic regression analysis, and diagnostic efficiency was compared among the models. RESULTS All diffusion models had high differential diagnosis efficiency between the mild group and HCs. The areas under the curve (AUCs) of Mono, IVIM, SEM, DKI, and the combined diffusion model for predicting early renal impairment in CKD were 0.829, 0.809, 0.760, 0.825, and 0.861, respectively. There were no significant differences in AUCs except SEM and combined model, SEM, and DKI model. There were significant correlations between eGFR/serum creatinine and some of histogram features. CONCLUSIONS Histogram analysis based on multiple diffusion metrics was practicable for the non-invasive assessment of early renal impairment in CKD. ADVANCES IN KNOWLEDGE Advanced diffusion models provided microstructural information. Histogram analysis further reflected histological characteristics and heterogeneity. Histogram analysis based on multiple diffusion models could provide an accurate and non-invasive method to evaluate the early renal damage of CKD.
Collapse
Affiliation(s)
- Guimian Zhong
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China
| | - Luyan Chen
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China
| | | | - Zhiming Xiang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China
- Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Barat M, Pellat A, Dohan A, Hoeffel C, Coriat R, Soyer P. CT and MRI of Gastrointestinal Stromal Tumors: New Trends and Perspectives. Can Assoc Radiol J 2024; 75:107-117. [PMID: 37386745 DOI: 10.1177/08465371231180510] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are defined as mesenchymal tumors of the gastrointestinal tract that express positivity for CD117, which is a c-KIT proto-oncogene antigen. Expression of the c-KIT protein, a tyrosine kinase growth factor receptor, allows the distinction between GISTs and other mesenchymal tumors such as leiomyoma, leiomyosarcoma, schwannoma and neurofibroma. GISTs can develop anywhere in the gastrointestinal tract, as well as in the mesentery and omentum. Over the years, the management of GISTs has improved due to a better knowledge of their behaviors and risk or recurrence, the identification of specific mutations and the use of targeted therapies. This has resulted in a better prognosis for patients with GISTs. In parallel, imaging of GISTs has been revolutionized by tremendous progress in the field of detection, characterization, survival prediction and monitoring during therapy. Recently, a particular attention has been given to radiomics for the characterization of GISTs using analysis of quantitative imaging features. In addition, radiomics has currently many applications that are developed in conjunction with artificial intelligence with the aim of better characterizing GISTs and providing a more precise assessment of tumor burden. This article sums up recent advances in computed tomography and magnetic resonance imaging of GISTs in the field of image/data acquisition, tumor detection, tumor characterization, treatment response evaluation, and preoperative planning.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hopital Cochin, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| | - Anna Pellat
- Université Paris Cité, Faculté de Médecine, Paris, France
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, Paris, France
| | - Anthony Dohan
- Department of Radiology, Hopital Cochin, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| | - Christine Hoeffel
- Reims Medical School, Department of Radiology, Hopital Robert Debré, CHU Reims, Université Champagne-Ardennes, Reims, France
| | - Romain Coriat
- Université Paris Cité, Faculté de Médecine, Paris, France
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, Paris, France
| | - Philippe Soyer
- Department of Radiology, Hopital Cochin, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
5
|
Jovanovic MM, Stefanovic AD, Sarac D, Kovac J, Jankovic A, Saponjski DJ, Tadic B, Kostadinovic M, Veselinovic M, Sljukic V, Skrobic O, Micev M, Masulovic D, Pesko P, Ebrahimi K. Possibility of Using Conventional Computed Tomography Features and Histogram Texture Analysis Parameters as Imaging Biomarkers for Preoperative Prediction of High-Risk Gastrointestinal Stromal Tumors of the Stomach. Cancers (Basel) 2023; 15:5840. [PMID: 38136387 PMCID: PMC10742259 DOI: 10.3390/cancers15245840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The objective of this study is to determine the morphological computed tomography features of the tumor and texture analysis parameters, which may be a useful diagnostic tool for the preoperative prediction of high-risk gastrointestinal stromal tumors (HR GISTs). METHODS This is a prospective cohort study that was carried out in the period from 2019 to 2022. The study included 79 patients who underwent CT examination, texture analysis, surgical resection of a lesion that was suspicious for GIST as well as pathohistological and immunohistochemical analysis. RESULTS Textural analysis pointed out min norm (p = 0.032) as a histogram parameter that significantly differed between HR and LR GISTs, while min norm (p = 0.007), skewness (p = 0.035) and kurtosis (p = 0.003) showed significant differences between high-grade and low-grade tumors. Univariate regression analysis identified tumor diameter, margin appearance, growth pattern, lesion shape, structure, mucosal continuity, enlarged peri- and intra-tumoral feeding or draining vessel (EFDV) and max norm as significant predictive factors for HR GISTs. Interrupted mucosa (p < 0.001) and presence of EFDV (p < 0.001) were obtained by multivariate regression analysis as independent predictive factors of high-risk GISTs with an AUC of 0.878 (CI: 0.797-0.959), sensitivity of 94%, specificity of 77% and accuracy of 88%. CONCLUSION This result shows that morphological CT features of GIST are of great importance in the prediction of non-invasive preoperative metastatic risk. The incorporation of texture analysis into basic imaging protocols may further improve the preoperative assessment of risk stratification.
Collapse
Affiliation(s)
- Milica Mitrovic Jovanovic
- Center for Radiology and Magnetic Resonance Imaging, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia; (M.M.J.)
- Department for Radiology, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
| | - Aleksandra Djuric Stefanovic
- Center for Radiology and Magnetic Resonance Imaging, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia; (M.M.J.)
- Department for Radiology, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
| | - Dimitrije Sarac
- Center for Radiology and Magnetic Resonance Imaging, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia; (M.M.J.)
| | - Jelena Kovac
- Center for Radiology and Magnetic Resonance Imaging, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia; (M.M.J.)
- Department for Radiology, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
| | - Aleksandra Jankovic
- Center for Radiology and Magnetic Resonance Imaging, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia; (M.M.J.)
- Department for Radiology, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
| | - Dusan J. Saponjski
- Center for Radiology and Magnetic Resonance Imaging, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia; (M.M.J.)
- Department for Radiology, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
| | - Boris Tadic
- Department for HBP Surgery, Clinic for Digestive Surgery, University Clinical Centre of Serbia, Koste Todorovica Street, No. 6, 11000 Belgrade, Serbia
- Department for Surgery, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
| | - Milena Kostadinovic
- Center for Physical Medicine and Rehabilitation, University Clinical Centre of Serbia, Pasterova Street, No. 2, 11000 Beograd, Serbia
| | - Milan Veselinovic
- Department for Surgery, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
- Department of Stomach and Esophageal Surgery, Clinic for Digestive Surgery, University Clinical Centre of Serbia, Koste Todorovica Street No. 6, 11000 Belgrade, Serbia
| | - Vladimir Sljukic
- Department for Surgery, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
- Department of Stomach and Esophageal Surgery, Clinic for Digestive Surgery, University Clinical Centre of Serbia, Koste Todorovica Street No. 6, 11000 Belgrade, Serbia
| | - Ognjan Skrobic
- Department for Surgery, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
- Department of Stomach and Esophageal Surgery, Clinic for Digestive Surgery, University Clinical Centre of Serbia, Koste Todorovica Street No. 6, 11000 Belgrade, Serbia
| | - Marjan Micev
- Department for Pathology, Clinic for Digestive Surgery, University Clinical Centre of Serbia, Koste Todorovica Street, No. 6, 11000 Belgrade, Serbia
| | - Dragan Masulovic
- Center for Radiology and Magnetic Resonance Imaging, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia; (M.M.J.)
- Department for Radiology, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
| | - Predrag Pesko
- Department for Surgery, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
- Department of Stomach and Esophageal Surgery, Clinic for Digestive Surgery, University Clinical Centre of Serbia, Koste Todorovica Street No. 6, 11000 Belgrade, Serbia
| | - Keramatollah Ebrahimi
- Department for Surgery, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
- Department of Stomach and Esophageal Surgery, Clinic for Digestive Surgery, University Clinical Centre of Serbia, Koste Todorovica Street No. 6, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Tabari A, Chan SM, Omar OMF, Iqbal SI, Gee MS, Daye D. Role of Machine Learning in Precision Oncology: Applications in Gastrointestinal Cancers. Cancers (Basel) 2022; 15:cancers15010063. [PMID: 36612061 PMCID: PMC9817513 DOI: 10.3390/cancers15010063] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) cancers, consisting of a wide spectrum of pathologies, have become a prominent health issue globally. Despite medical imaging playing a crucial role in the clinical workflow of cancers, standard evaluation of different imaging modalities may provide limited information. Accurate tumor detection, characterization, and monitoring remain a challenge. Progress in quantitative imaging analysis techniques resulted in "radiomics", a promising methodical tool that helps to personalize diagnosis and treatment optimization. Radiomics, a sub-field of computer vision analysis, is a bourgeoning area of interest, especially in this era of precision medicine. In the field of oncology, radiomics has been described as a tool to aid in the diagnosis, classification, and categorization of malignancies and to predict outcomes using various endpoints. In addition, machine learning is a technique for analyzing and predicting by learning from sample data, finding patterns in it, and applying it to new data. Machine learning has been increasingly applied in this field, where it is being studied in image diagnosis. This review assesses the current landscape of radiomics and methodological processes in GI cancers (including gastric, colorectal, liver, pancreatic, neuroendocrine, GI stromal, and rectal cancers). We explain in a stepwise fashion the process from data acquisition and curation to segmentation and feature extraction. Furthermore, the applications of radiomics for diagnosis, staging, assessment of tumor prognosis and treatment response according to different GI cancer types are explored. Finally, we discussed the existing challenges and limitations of radiomics in abdominal cancers and investigate future opportunities.
Collapse
Affiliation(s)
- Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| | - Shin Mei Chan
- Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA
| | - Omar Mustafa Fathy Omar
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Shams I. Iqbal
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Michael S. Gee
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Weeda YA, Kalisvaart GM, van Velden FHP, Gelderblom H, van der Molen AJ, Bovee JVMG, van der Hage JA, Grootjans W, de Geus-Oei LF. Early Prediction and Monitoring of Treatment Response in Gastrointestinal Stromal Tumors by Means of Imaging: A Systematic Review. Diagnostics (Basel) 2022; 12:2722. [PMID: 36359564 PMCID: PMC9689665 DOI: 10.3390/diagnostics12112722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 05/11/2025] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are rare mesenchymal neoplasms. Tyrosine kinase inhibitor (TKI) therapy is currently part of routine clinical practice for unresectable and metastatic disease. It is important to assess the efficacy of TKI treatment at an early stage to optimize therapy strategies and eliminate futile ineffective treatment, side effects and unnecessary costs. This systematic review provides an overview of the imaging features obtained from contrast-enhanced (CE)-CT and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET/CT to predict and monitor TKI treatment response in GIST patients. PubMed, Web of Science, the Cochrane Library and Embase were systematically screened. Articles were considered eligible if quantitative outcome measures (area under the curve (AUC), correlations, sensitivity, specificity, accuracy) were used to evaluate the efficacy of imaging features for predicting and monitoring treatment response to various TKI treatments. The methodological quality of all articles was assessed using the Quality Assessment of Diagnostic Accuracy Studies, v2 (QUADAS-2) tool and modified versions of the Radiomics Quality Score (RQS). A total of 90 articles were included, of which 66 articles used baseline [18F]FDG-PET and CE-CT imaging features for response prediction. Generally, the presence of heterogeneous enhancement on baseline CE-CT imaging was considered predictive for high-risk GISTs, related to underlying neovascularization and necrosis of the tumor. The remaining articles discussed therapy monitoring. Clinically established imaging features, including changes in tumor size and density, were considered unfavorable monitoring criteria, leading to under- and overestimation of response. Furthermore, changes in glucose metabolism, as reflected by [18F]FDG-PET imaging features, preceded changes in tumor size and were more strongly correlated with tumor response. Although CE-CT and [18F]FDG-PET can aid in the prediction and monitoring in GIST patients, further research on cost-effectiveness is recommended.
Collapse
Affiliation(s)
- Ylva. A. Weeda
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gijsbert M. Kalisvaart
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Aart. J. van der Molen
- Department of Radiology, Section of Abdominal Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Judith V. M. G. Bovee
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jos A. van der Hage
- Department of Surgical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Willem Grootjans
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Radiation Science & Technology, Technical University of Delft, 2629 JB Delft, The Netherlands
| |
Collapse
|
8
|
Inoue A, Ota S, Yamasaki M, Batsaikhan B, Furukawa A, Watanabe Y. Gastrointestinal stromal tumors: a comprehensive radiological review. Jpn J Radiol 2022; 40:1105-1120. [PMID: 35809209 DOI: 10.1007/s11604-022-01305-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Gastrointestinal stromal tumors (GISTs) originating from the interstitial cells of Cajal in the muscularis propria are the most common mesenchymal tumor of the gastrointestinal tract. Multiple modalities, including computed tomography (CT), magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography, ultrasonography, digital subtraction angiography, and endoscopy, have been performed to evaluate GISTs. CT is most frequently used for diagnosis, staging, surveillance, and response monitoring during molecularly targeted therapy in clinical practice. The diagnosis of GISTs is sometimes challenging because of the diverse imaging findings, such as anatomical location (esophagus, stomach, duodenum, small bowel, colorectum, appendix, and peritoneum), growth pattern, and enhancement pattern as well as the presence of necrosis, calcification, ulceration, early venous return, and metastasis. Imaging findings of GISTs treated with antineoplastic agents are quite different from those of other neoplasms (e.g. adenocarcinomas) because only subtle changes in size are seen even in responsive lesions. Furthermore, the recurrence pattern of GISTs is different from that of other neoplasms. This review discusses the advantages and disadvantages of each imaging modality, describes imaging findings obtained before and after treatment, presents a few cases of complicated GISTs, and discusses recent investigations performed using CT and MRI to predict histological risk grade, gene mutations, and patient outcomes.
Collapse
Affiliation(s)
- Akitoshi Inoue
- Department of Radiology, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan. .,Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | - Shinichi Ota
- Department of Radiology, Nagahama Red Cross Hospital, Shiga, Japan
| | - Michio Yamasaki
- Department of Radiology, Kohka Public Hospital, Shiga, Japan
| | - Bolorkhand Batsaikhan
- Graduate School of Human Health Sciences, Department of Radiological Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Akira Furukawa
- Graduate School of Human Health Sciences, Department of Radiological Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
9
|
Shao M, Niu Z, He L, Fang Z, He J, Xie Z, Cheng G, Wang J. Building Radiomics Models Based on Triple-Phase CT Images Combining Clinical Features for Discriminating the Risk Rating in Gastrointestinal Stromal Tumors. Front Oncol 2021; 11:737302. [PMID: 34950578 PMCID: PMC8689687 DOI: 10.3389/fonc.2021.737302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
We aimed to build radiomics models based on triple-phase CT images combining clinical features to predict the risk rating of gastrointestinal stromal tumors (GISTs). A total of 231 patients with pathologically diagnosed GISTs from July 2012 to July 2020 were categorized into a training data set (82 patients with high risk, 80 patients with low risk) and a validation data set (35 patients with high risk, 34 patients with low risk) with a ratio of 7:3. Four diagnostic models were constructed by assessing 20 clinical characteristics and 18 radiomic features that were extracted from a lesion mask based on triple-phase CT images. The receiver operating characteristic (ROC) curves were applied to calculate the diagnostic performance of these models, and ROC curves of these models were compared using Delong test in different data sets. The results of ROC analyses showed that areas under ROC curves (AUC) of model 4 [Clinic + CT value of unenhanced (CTU) + CT value of arterial phase (CTA) + value of venous phase (CTV)], model 1 (Clinic + CTU), model 2 (Clinic + CTA), and model 3 (Clinic + CTV) were 0.925, 0.894, 0.909, and 0.914 in the training set and 0.897, 0.866, 0,892, and 0.892 in the validation set, respectively. Model 4, model 1, model 2, and model 3 yielded an accuracy of 88.3%, 85.8%, 86.4%, and 84.6%, a sensitivity of 85.4%, 84.2%, 76.8%, and 78.0%, and a specificity of 91.2%, 87.5%, 96.2%, and 91.2% in the training set and an accuracy of 88.4%, 84.1%, 82.6%, and 82.6%, a sensitivity of 88.6%, 77.1%, 74.3%, and 85.7%, and a specificity of 88.2%, 91.2%, 91.2%, and 79.4% in the validation set, respectively. There was a significant difference between model 4 and model 1 in discriminating the risk rating in gastrointestinal stromal tumors in the training data set (Delong test, p < 0.05). The radiomic models based on clinical features and triple-phase CT images manifested excellent accuracy for the discrimination of risk rating of GISTs.
Collapse
Affiliation(s)
- Meihua Shao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhongfeng Niu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linyang He
- Hangzhou Jianpei Technology Company, Hangzhou, China
| | - Zhaoxing Fang
- Hangzhou Jianpei Technology Company, Hangzhou, China
| | - Jie He
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongyu Xie
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Guohua Cheng
- Hangzhou Jianpei Technology Company, Hangzhou, China
| | - Jian Wang
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Liang P, Li S, Xu C, Li J, Tan F, Hu D, Kamel I, Li Z. Assessment of renal function using magnetic resonance quantitative histogram analysis based on spatial labeling with multiple inversion pulses. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1614. [PMID: 34926658 PMCID: PMC8640904 DOI: 10.21037/atm-21-2299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Background The incidence of chronic kidney disease (CKD) is high, and is easy to develop into end-stage renal disease (ESRD), which requires kidney dialysis or kidney transplantation. Therefore, we want to explore the clinical value of magnetic resonance quantitative histogram analysis based on spatial labeling with multiple inversion pulses (SLEEK) in assessing renal function in the early stage. Methods One hundred and twenty-nine patients underwent abdominal MRI examination, including a coronal SLEEK sequence. The patients were divided into the control group [CG, 47 cases, estimated glomerular filtration rate (eGFR) >90], the mild renal function impairment (mRI) group (48 cases, eGFR =60–90), and the moderate to severe renal function impairment (m-sRI) group (34 cases, eGFR <60). Two experienced radiologists delineated cortex and medulla regions of interest (ROIs) on SLEEK images to obtain cortex and medulla quantitative histogram parameters [Mean, Median, Percentiles (5th, 10th, 25th, 75th, and 90th), Skewness, Kurtosis, and Entropy] using FireVoxel. These histogram parameters were compared by proper statistical methods such as one-way analysis of variance, the χ2 test, and receiver operating characteristic (ROC) curve analysis. Results Four histogram parameters (Inhomogeneitycortex, Skewnesscortex, Kurtosismedulla, and Entropymedulla) differed significantly between the CG and the mRI group. One medulla (Entropymedulla) and nine cortex (Meancortex, Mediancortex, Kurtosiscortex, Entropycortex, and 5th, 10th, 25th, 75th, and 90th Percentilecortex) histogram parameters were significantly different between the m-RI and m-sRI groups. The most relevant parameter to eGFR was Inhomogenitycortex (r=−0.450, P<0.001). Inhomogeneitycortex had the largest area under the curve (AUC) for differentiating the mRI group from the CG (AUC =0.718; 95% CI: 0.616–0.806), while 25th Percentilecortex generated the largest AUC (AUC =0.786; 95% CI: 0.681–0.869) for differentiating the mRI and m-sRI groups. Conclusions Quantitative histogram parameters based on a SLEEK sequence can be used to supplement renal dysfunction assessment. Cortex histogram parameters are more valuable for evaluating renal function than medulla histogram parameters.
Collapse
Affiliation(s)
- Ping Liang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shichao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuou Xu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangqin Tan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ihab Kamel
- Department of Radiology and Radiological Science, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Kang B, Yuan X, Wang H, Qin S, Song X, Yu X, Zhang S, Sun C, Zhou Q, Wei Y, Shi F, Yang S, Wang X. Preoperative CT-Based Deep Learning Model for Predicting Risk Stratification in Patients With Gastrointestinal Stromal Tumors. Front Oncol 2021; 11:750875. [PMID: 34631589 PMCID: PMC8496403 DOI: 10.3389/fonc.2021.750875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Objective To develop and evaluate a deep learning model (DLM) for predicting the risk stratification of gastrointestinal stromal tumors (GISTs). Methods Preoperative contrast-enhanced CT images of 733 patients with GISTs were retrospectively obtained from two centers between January 2011 and June 2020. The datasets were split into training (n = 241), testing (n = 104), and external validation cohorts (n = 388). A DLM for predicting the risk stratification of GISTs was developed using a convolutional neural network and evaluated in the testing and external validation cohorts. The performance of the DLM was compared with that of radiomics model by using the area under the receiver operating characteristic curves (AUROCs) and the Obuchowski index. The attention area of the DLM was visualized as a heatmap by gradient-weighted class activation mapping. Results In the testing cohort, the DLM had AUROCs of 0.90 (95% confidence interval [CI]: 0.84, 0.96), 0.80 (95% CI: 0.72, 0.88), and 0.89 (95% CI: 0.83, 0.95) for low-malignant, intermediate-malignant, and high-malignant GISTs, respectively. In the external validation cohort, the AUROCs of the DLM were 0.87 (95% CI: 0.83, 0.91), 0.64 (95% CI: 0.60, 0.68), and 0.85 (95% CI: 0.81, 0.89) for low-malignant, intermediate-malignant, and high-malignant GISTs, respectively. The DLM (Obuchowski index: training, 0.84; external validation, 0.79) outperformed the radiomics model (Obuchowski index: training, 0.77; external validation, 0.77) for predicting risk stratification of GISTs. The relevant subregions were successfully highlighted with attention heatmap on the CT images for further clinical review. Conclusion The DLM showed good performance for predicting the risk stratification of GISTs using CT images and achieved better performance than that of radiomics model.
Collapse
Affiliation(s)
- Bing Kang
- Cheeloo College of Medicine, School of Medicine, Shandong University, Jinan, China.,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xianshun Yuan
- Cheeloo College of Medicine, School of Medicine, Shandong University, Jinan, China.,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hexiang Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Songnan Qin
- Cheeloo College of Medicine, School of Medicine, Shandong University, Jinan, China.,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xuelin Song
- Department of Radiology, Hospital of Traditional Chinese Medicine of Liaocheng City, Liaocheng, China
| | - Xinxin Yu
- Cheeloo College of Medicine, School of Medicine, Shandong University, Jinan, China.,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shuai Zhang
- School of Medicine, Shandong First Medical University, Jinan, China
| | - Cong Sun
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qing Zhou
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Ying Wei
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Shifeng Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
12
|
Yang CW, Liu XJ, Zhao L, Che F, Yin Y, Chen HJ, Zhang B, Wu M, Song B. Preoperative prediction of gastrointestinal stromal tumors with high Ki-67 proliferation index based on CT features. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1556. [PMID: 34790762 PMCID: PMC8576677 DOI: 10.21037/atm-21-4669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND To determine whether preoperative computed tomography (CT) features can be used for the prediction of gastrointestinal stromal tumors (GISTs) with a high Ki-67 proliferation index (Ki-67 PI). METHODS A total of 198 patients with surgically and pathologically proven GISTs were retrospectively included. All GISTs were divided into a low Ki-67 PI group (<10%) and a high Ki-67 PI group (≥10%). All imaging features were blindly interpreted by two radiologists. Receiver operating characteristic (ROC) curve analyses were conducted to evaluate the predictive performance of the imaging features. RESULTS Imaging features were found to be significantly different between the low and the high Ki-67 PI groups (P<0.05). Wall thickness of necrosis showed the highest predictive ability, with an area under the curve (AUC) of 0.838 [95% confidence interval (CI): 0.627-0.957], followed by necrosis, necrosis degree, hyperenhancement of the overlying mucosa (HYOM), and long diameter (LD) (AUC >0.7, P<0.05). HYOM was the strongest predictive feature for the high Ki-67 PI GISTs group, with an odds ratio (OR) value of 30.037 (95% CI: 5.707-158.106). CONCLUSIONS Imaging features, including the presence of necrosis, high necrosis degree, thick wall of necrosis, and HYOM were significant predictive indicators for the high Ki-67 PI GISTs group.
Collapse
Affiliation(s)
- Cai-Wei Yang
- West China School of Medicine, Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi-Jiao Liu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Zhao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Che
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yuan Yin
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hui-Jiao Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Clinic Medical Center, Dazhou Central Hospital, Dazhou, China
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, CA, USA
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Ozturk M, Polat AV, Selcuk MB. Whole-lesion ADC histogram analysis versus single-slice ADC measurement for the differentiation of benign and malignant soft tissue tumors. Eur J Radiol 2021; 143:109934. [PMID: 34500411 DOI: 10.1016/j.ejrad.2021.109934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/25/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate and compare the diagnostic performances of whole-lesion apparent diffusion coefficient (ADC) histogram analysis and single-slice ADC measurement in the differentiation of benign and malignant soft tissue tumors. METHODS Fifty-three patients (mean age: 48.5 ± 21.4) with soft tissue tumors (27 benign and 26 malignant) were evaluated with diffusion-weighted MRI. Whole-lesion ADC histogram parameters (mean, median, 10th percentile, 90th percentile, minimum, maximum, range, mean absolute deviation, interquartile range, kurtosis, skewness, root mean squared, variance and inhomogeneity) of the lesions were measured using the whole solid tumor volume region of interest (ROI). In other sessions, five ROIs were manually drawn on the tumor slices, and mean ADC and minimum ADC of the measurements were calculated. Diagnostic accuracies of the two methods were assessed and compared. RESULTS Mean, median, minimum, 10th percentile, 90th percentile, range, root mean squared and inhomogeneity of ADC histogram analysis, and mean ADC and minimum ADC of single-slice ADC measurement were significantly different between malignant and benign lesions (p < 0.001 - p = 0.002). Among the ADC histogram parameters, 10th percentile had the highest diagnostic performance (AUC = 0.825) followed by mean (AUC = 0.792) and median (AUC = 0.789). For the single-slice ADC measurement, the AUC of mean ADC and minimum ADC were 0.842 and 0.786, respectively. Mean ADC of single-slice measurement had a similar diagnostic performance with the 10th percentile, mean, and median of ADC histogram analysis (p = 0.070-1.000). CONCLUSIONS Both whole-lesion ADC histogram analysis and single-slice ADC measurement can differentiate benign and malignant soft tissue tumors with similar diagnostic performances.
Collapse
Affiliation(s)
- Mesut Ozturk
- Radiology Clinic, Samsun Gazi State Hospital, Samsun, Turkey; Department of Radiology, Ondokuz Mayis University, Faculty of Medicine, Samsun, Turkey.
| | - Ahmet Veysel Polat
- Department of Radiology, Ondokuz Mayis University, Faculty of Medicine, Samsun, Turkey
| | - Mustafa Bekir Selcuk
- Department of Radiology, Ondokuz Mayis University, Faculty of Medicine, Samsun, Turkey
| |
Collapse
|
14
|
Chen Z, Xu L, Zhang C, Huang C, Wang M, Feng Z, Xiong Y. CT Radiomics Model for Discriminating the Risk Stratification of Gastrointestinal Stromal Tumors: A Multi-Class Classification and Multi-Center Study. Front Oncol 2021; 11:654114. [PMID: 34168985 PMCID: PMC8217748 DOI: 10.3389/fonc.2021.654114] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Objective To establish and verify a computed tomography (CT)-based multi-class prediction model for discriminating the risk stratification of gastrointestinal stromal tumors (GISTs). Materials and Methods A total of 381 patients with GISTs were confirmed by surgery and pathology. Information on 213 patients were obtained from one hospital and used as training cohort, whereas the details of 168 patients were collected from two other hospitals and used as independent validation cohort. Regions of interest on CT images of arterial and venous phases were drawn, radiomics features were extracted, and dimensionality reduction processing was performed. Using a one-vs-rest method, a Random Forest-based GISTs risk three-class prediction model was established, and the receiver operating characteristic curve (ROC) was used to evaluate the performance of the multi-class classification model, and the generalization ability was verified using external data. Results The training cohort included 96 very low-risk and low-risk, 60 intermediate-risk and 57 high-risk patients. External validation cohort included 82 very low-risk and low-risk, 48 intermediate-risk and 38 high-risk patients. The GISTs risk three-class radiomics model had a macro/micro average area under the curve (AUC) of 0.84 and an accuracy of 0.78 in the training cohort. It had a stable performance in the external validation cohort, with a macro/micro average AUC of 0.83 and an accuracy of 0.80. Conclusion CT radiomics can discriminate GISTs risk stratification. The performance of the three-class radiomics prediction model is good, and its generalization ability has also been verified in the external validation cohort, indicating its potential to assist stratified and accurate treatment of GISTs in the clinic.
Collapse
Affiliation(s)
- Zhonghua Chen
- Department of Radiology, Haining People's Hospital, Jiaxing, China
| | - Linyi Xu
- Department of Radiology, Haining People's Hospital, Jiaxing, China
| | - Chuanmin Zhang
- Department of Radiology, Haining People's Hospital, Jiaxing, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd, R&D Center, Beijing, China
| | - Minhong Wang
- Department of Radiology, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zhan Feng
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Xiong
- Department of Radiology, Haining People's Hospital, Jiaxing, China
| |
Collapse
|
15
|
Mao H, Zhang B, Zou M, Huang Y, Yang L, Wang C, Pang P, Zhao Z. MRI-Based Radiomics Models for Predicting Risk Classification of Gastrointestinal Stromal Tumors. Front Oncol 2021; 11:631927. [PMID: 34041017 PMCID: PMC8141866 DOI: 10.3389/fonc.2021.631927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/13/2021] [Indexed: 01/04/2023] Open
Abstract
Background We conduct a study in developing and validating four MRI-based radiomics models to preoperatively predict the risk classification of gastrointestinal stromal tumors (GISTs). Methods Forty-one patients (low-risk = 17, intermediate-risk = 13, high-risk = 11) underwent MRI before surgery between September 2013 and March 2019 in this retrospective study. The Kruskal–Wallis test with Bonferonni correction and variance threshold was used to select appropriate features, and the Random Forest model (three classification model) was used to select features among the high-risk, intermediate-risk, and low-risk of GISTs. The predictive performance of the models built by the Random Forest was estimated by a 5-fold cross validation (5FCV). Their performance was estimated using the receiver operating characteristic (ROC) curve, summarized as the area under the ROC curve (AUC). Area under the curve (AUC), accuracy, sensitivity, and specificity for risk classification were reported. Linear discriminant analysis (LDA) was used to assess the discriminative ability of these radiomics models. Results The high-risk, intermediate-risk, and low-risk of GISTs were well classified by radiomics models, the micro-average of ROC curves was 0.85, 0.81, 0.87 and 0.94 for T1WI, T2WI, ADC and combined three MR sequences. And ROC curves achieved excellent AUCs for T1WI (0.85, 0.75 and 0.82), T2WI (0.69, 0.78 and 0.78), ADC (0.85, 0.77 and 0.80) and combined three MR sequences (0.96, 0.92, 0.81) for the diagnosis of high-risk, intermediate-risk, and low-risk of GISTs, respectively. In addition, LDA demonstrated the different risk of GISTs were correctly classified by radiomics analysis (61.0% for T1WI, 70.7% for T2WI, 83.3% for ADC, and 78.9% for the combined three MR sequences). Conclusions Radiomics models based on a single sequence and combined three MR sequences can be a noninvasive method to evaluate the risk classification of GISTs, which may help the treatment of GISTs patients in the future.
Collapse
Affiliation(s)
- Haijia Mao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Bingqian Zhang
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Mingyue Zou
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Yanan Huang
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Liming Yang
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Cheng Wang
- Department of Pathology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - PeiPei Pang
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Hangzhou, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| |
Collapse
|
16
|
Wang M, Feng Z, Zhou L, Zhang L, Hao X, Zhai J. Computed-Tomography-Based Radiomics Model for Predicting the Malignant Potential of Gastrointestinal Stromal Tumors Preoperatively: A Multi-Classifier and Multicenter Study. Front Oncol 2021; 11:582847. [PMID: 33968714 PMCID: PMC8100324 DOI: 10.3389/fonc.2021.582847] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Our goal was to establish and verify a radiomics risk grading model for gastrointestinal stromal tumors (GISTs) and to identify the optimal algorithm for risk stratification. Methods: We conducted a retrospective analysis of 324 patients with GISTs, the presence of which was confirmed by surgical pathology. Patients were treated at three different hospitals. A training cohort of 180 patients was collected from the largest center, while an external validation cohort of 144 patients was collected from the other two centers. To extract radiomics features, regions of interest (ROIs) were outlined layer by layer along the edge of the tumor contour on CT images of the arterial and portal venous phases. The dimensionality of radiomic features was reduced, and the top 10 features with importance value above 5 were selected before modeling. The training cohort used three classifiers [logistic regression, support vector machine (SVM), and random forest] to establish three GIST risk stratification prediction models. The receiver operating characteristic curve (ROC) was used to compare model performance, which was validated by external data. Results: In the training cohort, the average area under the curve (AUC) was 0.84 ± 0.07 of the logistic regression, 0.88 ± 0.06 of the random forest, and 0.81 ± 0.08 of the SVM. In the external validation cohort, the AUC was 0.85 of the logistic regression, 0.90 of the random forest, and 0.80 of the SVM. The random forest model performed the best in both the training and the external validation cohorts and could be generalized. Conclusion: Based on CT radiomics, there are multiple machine-learning models that can predict the risk of GISTs. Among them, the random forest algorithm had the highest prediction efficiency and could be readily generalizable. Through external validation data, we assume that the random forest model may be used as an effective tool to guide preoperative clinical decision-making.
Collapse
Affiliation(s)
- Minhong Wang
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zhan Feng
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lixiang Zhou
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Liang Zhang
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiaojun Hao
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jian Zhai
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
17
|
Primary Gastro-Intestinal Lymphoma and Gastro-Intestinal Adenocarcinoma: An Initial Study of CT Texture Analysis as Quantitative Biomarkers for Differentiation. Life (Basel) 2021; 11:life11030264. [PMID: 33806817 PMCID: PMC8005065 DOI: 10.3390/life11030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND To explore the potential role of computed tomography (CT) texture analysis and an imaging biomarker in differentiating primary gastro-intestinal lymphoma (PGIL) from gastro-intestinal adenocarcinoma (GIAC). METHODS A total of 131 patients with surgical pathologically PGIL and GIAC were enrolled in this study. Histogram parameters of arterial and venous phases extracted from contrast enhanced modified discrete cosine transform (MDCT) images were compared between PGIL and GIAC by Mann-Whitney U tests. The optimal parameters for differentiating these two groups were obtained through receiver operating characteristic (ROC) curves and the area under the curve (AUC) was calculated. RESULTS Compared with GIAC, in arterial phase, PGIL had statistically higher 5th, 10th percentiles (p = 0.003 and 0.011) and statistically lower entropy (p = 0.001). In the venous phase, PGIL had statistically lower mean, median, 75th, 90th, 95th percentiles, and entropy (p = 0.036, 0.029, 0.007, 0.001 and 0.001, respectively). For differentiating PGIL from GIAC, V-median + A-5th percentile was an optimal parameter for combined diagnosis (AUC = 0.746, p < 0.0001), and the corresponding sensitivity and specificity were 81.7 and 64.8%, respectively. CONCLUSION CT texture analysis could be useful for differential diagnosis of PGIL and GIAC.
Collapse
|
18
|
Yang CW, Liu XJ, Liu SY, Wan S, Ye Z, Song B. Current and Potential Applications of Artificial Intelligence in Gastrointestinal Stromal Tumor Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:6058159. [PMID: 33304203 PMCID: PMC7714601 DOI: 10.1155/2020/6058159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/18/2020] [Accepted: 10/31/2020] [Indexed: 02/05/2023]
Abstract
The most common mesenchymal tumors are gastrointestinal stromal tumors (GISTs), which have malignant potential and can occur anywhere along the gastrointestinal system. Imaging methods are important and indispensable of GISTs in diagnosis, risk staging, therapy, and follow-up. The recommended imaging method for staging and follow-up is computed tomography (CT) according to current guidelines. Artificial intelligence (AI) applies and elaborates theses, procedures, modes, and utilization systems for simulating, enlarging, and stretching the intellectual capacity of humans. Recently, researchers have done a few studies to explore AI applications in GIST imaging. This article reviews the present AI studies in GISTs imaging, including preoperative diagnosis, risk stratification and prediction of prognosis, gene mutation, and targeted therapy response.
Collapse
Affiliation(s)
- Cai-Wei Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xi-Jiao Liu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Yun Liu
- GE Healthcare (China), Beijing 100176, China
| | - Shang Wan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
19
|
Peng G, Huang B, Yang X, Pang M, Li N. Preoperative CT feature of incomplete overlying enhancing mucosa as a high-risk predictor in gastrointestinal stromal tumors of the stomach. Eur Radiol 2020; 31:3276-3285. [PMID: 33125563 DOI: 10.1007/s00330-020-07377-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To determine whether the CT finding of overlying enhancing gastric mucosa (OEGM) can be used to predict risk stratifications by observing CT features of gastrointestinal stromal tumors (GISTs) of the stomach. METHODS Clinical characteristics and CT features within pathologically demonstrated GISTs were retrospectively reviewed. Risk stratifications were classified into non-high group and high-risk group according to the modified National Institutes of Health criteria. Univariate analysis and multivariate logistic regression analysis were performed in order to determine significant predictors for high-risk stratification. Receiver operating characteristic (ROC) curve analysis, subgroup analysis, and pathologic-radiologic correlation analysis were all executed. RESULTS A total of 147 patients were finally enrolled as test subjects. Within the univariate analysis, high-risk tumors tended to have a larger diameter, irregular shape, exophytic growth pattern, present necrosis, incomplete OEGM, tumor vessels, heterogeneous enhancement, and present rupture. According to ROC curve analysis, incomplete OEGM showed the largest area under curve values for diagnosing lesions (0.835; 95% CI, 0.766-0.904; p < 0.001). Multivariate analysis showed that the incomplete OEGM was the strongest independent predictor for high-risk stratification of gastric GISTs (OR = 21.944; 95% CI, 4.344-110.863; p < 0.001). Within the subgroup analysis, incomplete OEGM was more frequently associated with tumors size > 10 cm, irregular shape, exophytic growth pattern, high mitotic count, and disrupted mucosa on pathology. CONCLUSIONS The CT feature of incomplete OEGM is an independent predictive factor for high-risk stratification of gastric GISTs and strongly correlated with pathological mucosal changes. KEY POINTS • Preoperative CT features can be helpful in assessment of risk stratifications of gastric GISTs. • OEGM is an independent predictor for high-risk stratification of gastric GISTs. • Incomplete OEGM likely indicates high-risk stratification of gastric GISTs.
Collapse
Affiliation(s)
- Gang Peng
- Department of Radiology, Shanghai Pudong New Area Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China
| | - Bingcang Huang
- Department of Radiology, Shanghai Pudong New Area Gongli Hospital, No. 219 Miaopu Road, Pudong New Area, Shanghai, 200135, China
| | - Xiaodan Yang
- Department of Radiology, Shanghai Pudong New Area Gongli Hospital, No. 219 Miaopu Road, Pudong New Area, Shanghai, 200135, China
| | - Maohua Pang
- Department of Radiology, Shanghai Pudong New Area Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China
| | - Na Li
- Department of Ultrasound and Radiology, Daqing Oilfield General Hospital, No. 9 Zhongkang Road, Saertu District, Daqing, 163000, Heilongjiang, China.
| |
Collapse
|
20
|
Cannella R, La Grutta L, Midiri M, Bartolotta TV. New advances in radiomics of gastrointestinal stromal tumors. World J Gastroenterol 2020; 26:4729-4738. [PMID: 32921953 PMCID: PMC7459199 DOI: 10.3748/wjg.v26.i32.4729] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are uncommon neoplasms of the gastrointestinal tract with peculiar clinical, genetic, and imaging characteristics. Preoperative knowledge of risk stratification and mutational status is crucial to guide the appropriate patients’ treatment. Predicting the clinical behavior and biological aggressiveness of GISTs based on conventional computed tomography (CT) and magnetic resonance imaging (MRI) evaluation is challenging, unless the lesions have already metastasized at the time of diagnosis. Radiomics is emerging as a promising tool for the quantification of lesion heterogeneity on radiological images, extracting additional data that cannot be assessed by visual analysis. Radiomics applications have been explored for the differential diagnosis of GISTs from other gastrointestinal neoplasms, risk stratification and prediction of prognosis after surgical resection, and evaluation of mutational status in GISTs. The published researches on GISTs radiomics have obtained excellent performance of derived radiomics models on CT and MRI. However, lack of standardization and differences in study methodology challenge the application of radiomics in clinical practice. The purpose of this review is to describe the new advances of radiomics applied to CT and MRI for the evaluation of gastrointestinal stromal tumors, discuss the potential clinical applications that may impact patients’ management, report limitations of current radiomics studies, and future directions.
Collapse
Affiliation(s)
- Roberto Cannella
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Ludovico La Grutta
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Massimo Midiri
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Tommaso Vincenzo Bartolotta
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
- Department of Radiology, Fondazione Istituto Giuseppe Giglio, Ct.da Pietrapollastra, Cefalù (Palermo) 90015, Italy
| |
Collapse
|
21
|
Choi B, Choi IY, Cha SH, Yeom SK, Chung HH, Lee SH, Cha J, Lee JH. Feasibility of computed tomography texture analysis of hepatic fibrosis using dual-energy spectral detector computed tomography. Jpn J Radiol 2020; 38:1179-1189. [PMID: 32666182 DOI: 10.1007/s11604-020-01020-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/06/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE To evaluate feasibility of computer tomography texture analysis (CTTA) at different energy level using dual-energy spectral detector CT for liver fibrosis. MATERIALS AND METHODS Eighty-seven patients who underwent a spectral CT examination and had a reference standard of liver fibrosis (histopathologic findings, n = 61, or clinical findings for normal, n = 26) were included. Mean gray-level intensity, mean number of positive pixels (MPP), entropy, skewness, and kurtosis using commercially available software (TexRAD) were compared at different energy levels. Optimal CTTA parameter cutoffs to diagnose liver fibrosis were evaluated. CTTA parameters at different energy levels correlated with liver fibrosis. The association of CTTA parameters with energy level was evaluated. RESULTS Mean gray-level intensity, skewness, kurtosis, and entropy showed significant differences between patients with and without clinically significant hepatic fibrosis (P < 0.05). Mean gray-level intensity at 50 keV was significantly positively correlated with liver fibrosis (ρ = 0.502, P < 0.001). To diagnose stages F2-F4, entropy and mean gray-level intensity at low keV level showed the largest area under the curve (AUC; 0.79 and 0.79). Estimated marginal means (EMMs) of mean gray-level intensity showed prominent differences at low energy levels. CONCLUSION CTTA parameters from different keV levels demonstrated meaningful accuracy for diagnosis of liver fibrosis or clinically significant hepatic fibrosis.
Collapse
Affiliation(s)
- ByukGyung Choi
- Department of Radiology, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - In Young Choi
- Department of Radiology, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea.
| | - Sang Hoon Cha
- Department of Radiology, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Suk Keu Yeom
- Department of Radiology, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Hwan Hoon Chung
- Department of Radiology, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Seung Hwa Lee
- Department of Radiology, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Jaehyung Cha
- Department of Biostatistics, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| |
Collapse
|
22
|
Lee HN, Kim JI, Shin SY, Kim DH, Kim C, Hong IK. Combined CT texture analysis and nodal axial ratio for detection of nodal metastasis in esophageal cancer. Br J Radiol 2020; 93:20190827. [PMID: 32242741 DOI: 10.1259/bjr.20190827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To assess the accuracy of a combination of CT texture analysis (CTTA) and nodal axial ratio to detect metastatic lymph nodes (LNs) in esophageal squamous cell carcinoma (ESCC). METHODS The contrast-enhanced chest CT images of 78 LNs (40 metastasis, 38 benign) from 38 patients with ESCC were retrospectively analyzed. Nodal axial ratios (short-axis/long-axis diameter) were calculated. CCTA parameters (kurtosis, entropy, skewness) were extracted using commercial software (TexRAD) with fine, medium, and coarse spatial filters. Combinations of significant texture features and nodal axial ratios were entered as predictors in logistic regression models to differentiate metastatic from benign LNs, and the performance of the logistic regression models was analyzed using the area under the receiver operating characteristic curve (AUROC). RESULTS The mean axial ratio of metastatic LNs was significantly higher than that of benign LNs (0.81 ± 0.2 vs 0.71 ± 0.1, p = 0.005; sensitivity 82.5%, specificity 47.4%); namely, significantly more round than benign. The mean values of the entropy (all filters) and kurtosis (fine and medium) of metastatic LNs were significantly higher than those of benign LNs (all, p < 0.05). Medium entropy showed the best performance in the AUROC analysis with 0.802 (p < 0.001; sensitivity 85.0%, specificity 63.2%). A binary logistic regression analysis combining the nodal axial ratio, fine entropy, and fine kurtosis identified metastatic LNs with 87.5% sensitivity and 65.8% specificity (AUROC = 0.855, p < 0.001). CONCLUSION The combination of CTTA features and the axial ratio of LNs has the potential to differentiate metastatic from benign LNs and improves the sensitivity for detection of LN metastases in ESCC. ADVANCES IN KNOWLEDGE The combination of CTTA and nodal axial ratio has improved CT sensitivity (up to 87.5%) for the diagnosis of metastatic LNs in esophageal cancer.
Collapse
Affiliation(s)
- Han Na Lee
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jung Im Kim
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - So Youn Shin
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dae Hyun Kim
- Department of Thoracic Surgery, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chanwoo Kim
- Department of Nuclear Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Il Ki Hong
- Department of Nuclear Medicine, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Ren C, Wang S, Zhang S. Development and validation of a nomogram based on CT images and 3D texture analysis for preoperative prediction of the malignant potential in gastrointestinal stromal tumors. Cancer Imaging 2020; 20:5. [PMID: 31931874 PMCID: PMC6958787 DOI: 10.1186/s40644-019-0284-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/29/2019] [Indexed: 12/15/2022] Open
Abstract
Background Gastrointestinal stromal tumors (GISTs), which are the most common mesenchymal tumors of the digestive system, are treated varyingly according to the malignancy. The purpose of this study is to develop and validate a nomogram for preoperative prediction of the malignant potential in patients with GIST. Methods A total of 440 patients with pathologically confirmed GIST after surgery in our hospital from January 2011 to July 2019 were retrospectively analyzed. They were randomly divided into the training set (n = 308) and validation set (n = 132). CT signs and texture features of each patient were analyzed and predictive model were developed using the least absolute shrinkage and selection operator (lasso) regression. Then a nomogram based on selected parameters was developed. The predictive effectiveness of nomogram was evaluated by the area under receiver operating characteristic (ROC) curve (AUC). Concordance index (C-index) and calibration plots were formulated to evaluate the reliability and accuracy of the nomogram by bootstrapping based on internal (training set) and external (validation set) validity. The clinical application value of the nomogram was determined through the decision curve analysis (DCA). Results Totally 156 GIST patients with low-malignant (very low and low risk) and 284 ones with high-malignant potential (intermediate and high risk) are enrolled in this study. The prediction nomogram consisting of size, cystoid variation and meanValue had an excellent discrimination both in training and validation sets (AUCs (95% confidence interval(CI)): 0.935 (0.908, 0.961), 0.933 (0.892, 0.974); C-indices (95% CI): 0.941 (0.912, 0.956), 0.935 (0.901, 0.982); sensitivity: 81.4, 90.6%; specificity: 75.0, 75.7%; accuracy: 88.0, 88.6%, respectively). The calibration curves indicated a good consistency between the actual observation and nomogram prediction for differentiating GIST malignancy. Decision curve analysis demonstrated that the nomogram was clinically useful. Conclusion This study presents a prediction nomogram that incorporates the CT signs and texture parameter, which can be conveniently used to facilitate the preoperative individualized prediction of malignancy in GIST patients.
Collapse
Affiliation(s)
- Caiyue Ren
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201315, China.,Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai, 200032, China
| | - Shengping Wang
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai, 200032, China
| | - Shengjian Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai, 200032, China.
| |
Collapse
|
24
|
Wu G, Xie R, Li Y, Hou B, Morelli JN, Li X. Histogram analysis with computed tomography angiography for discriminating soft tissue sarcoma from benign soft tissue tumor. Medicine (Baltimore) 2020; 99:e18742. [PMID: 31914093 PMCID: PMC6959892 DOI: 10.1097/md.0000000000018742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To investigate the feasibility of histogram analysis with computed tomography angiography (CTA) in distinguishing between soft tissue sarcomas and benign soft tissue tumors. Fourty nine patients (23 men, mean age = 44.3 years, age range = 25-64) with pathologically-confirmed soft tissue sarcoma (n = 24) or benign soft tissue tumors (n = 25) in the lower extremities undergoing CTA for tumor evaluation were retrospectively analyzed. Two radiologists separately performed histogram analyses of CT density with CTA images by drawing a region of interest (ROI). The 10th (P10), 25th (P25), 50th (P50), 75th (P75), 90th percentiles (P90), mean, and standard deviations (SD) of measured tumor density were obtained along with measurements of the absolute value of kurtosis (AVK), absolute value of skewness (AVS), and inhomogeneity for each tumor. Intra-class correlation coefficients (ICC) were calculated to determine inter- and intra-reader variability in parameter measurements. The Mann-Whitney U test was used to compare histogram parameters between soft tissue sarcomas and benign soft tissue tumors. Receiver operator characteristic (ROC) curves were constructed to evaluate the accuracy of tumor discrimination. ICC was greater than 0.7 for AVS, AVK, and inhomogeneity, and >0.9 for mean, SD, and all percentile measures. There was no significant difference in P10, P25, P50, P75, P90, mean, or SD between soft tissue sarcomas and benign tumors (P > .05). AVS, AVK, and inhomogeneity were significantly higher in soft tissue sarcomas (P < .05). Areas under the curve (AUC) were 0.81, 0.83, and 0.84 for AVS, AVK, and inhomogeneity respectively. AUC were below 0.6 for mean, SD, and all percentiles.Skewness, kurtosis, and inhomogeneity measurements derived from histogram analysis from CTA distinguish between soft tissue sarcomas and benign soft tissue tumors.
Collapse
Affiliation(s)
- Gang Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruyi Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yitong Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Hou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Xiaoming Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|