1
|
Yin C, Zhang H, Du J, Zhu Y, Zhu H, Yue H. Artificial intelligence in imaging for liver disease diagnosis. Front Med (Lausanne) 2025; 12:1591523. [PMID: 40351457 PMCID: PMC12062035 DOI: 10.3389/fmed.2025.1591523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Liver diseases, including hepatitis, non-alcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC), remain a major global health concern, with early and accurate diagnosis being essential for effective management. Imaging modalities such as ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) play a crucial role in non-invasive diagnosis, but their sensitivity and diagnostic accuracy can be limited. Recent advancements in artificial intelligence (AI) have improved imaging-based liver disease assessment by enhancing pattern recognition, automating fibrosis and steatosis quantification, and aiding in HCC detection. AI-driven imaging techniques have shown promise in fibrosis staging through US, CT, MRI, and elastography, reducing the reliance on invasive liver biopsy. For liver steatosis, AI-assisted imaging methods have improved sensitivity and grading consistency, while in HCC detection and characterization, AI models have enhanced lesion identification, classification, and risk stratification across imaging modalities. The growing integration of AI into liver imaging is reshaping diagnostic workflows and has the potential to improve accuracy, efficiency, and clinical decision-making. This review provides an overview of AI applications in liver imaging, focusing on their clinical utility and implications for the future of liver disease diagnosis.
Collapse
Affiliation(s)
- Chenglong Yin
- Department of Gastroenterology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
| | | | - Jin Du
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
- Department of Science and Education, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Yingling Zhu
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
- Department of Science and Education, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Hua Zhu
- Department of Gastroenterology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
| | - Hongqin Yue
- Department of Gastroenterology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
| |
Collapse
|
2
|
Arribas Anta J, Moreno-Vedia J, García López J, Rios-Vives MA, Munuera J, Rodríguez-Comas J. Artificial intelligence for detection and characterization of focal hepatic lesions: a review. Abdom Radiol (NY) 2025; 50:1564-1583. [PMID: 39369107 DOI: 10.1007/s00261-024-04597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
Focal liver lesions (FLL) are common incidental findings in abdominal imaging. While the majority of FLLs are benign and asymptomatic, some can be malignant or pre-malignant, and need accurate detection and classification. Current imaging techniques, such as computed tomography (CT) and magnetic resonance imaging (MRI), play a crucial role in assessing these lesions. Artificial intelligence (AI), particularly deep learning (DL), offers potential solutions by analyzing large data to identify patterns and extract clinical features that aid in the early detection and classification of FLLs. This manuscript reviews the diagnostic capacity of AI-based algorithms in processing CT and MRIs to detect benign and malignant FLLs, with an emphasis in the characterization and classification of these lesions and focusing on differentiating benign from pre-malignant and potentially malignant lesions. A comprehensive literature search from January 2010 to April 2024 identified 45 relevant studies. The majority of AI systems employed convolutional neural networks (CNNs), with expert radiologists providing reference standards through manual lesion delineation, and histology as the gold standard. The studies reviewed indicate that AI-based algorithms demonstrate high accuracy, sensitivity, specificity, and AUCs in detecting and characterizing FLLs. These algorithms excel in differentiating between benign and malignant lesions, optimizing diagnostic protocols, and reducing the needs of invasive procedures. Future research should concentrate on the expansion of data sets, the improvement of model explainability, and the validation of AI tools across a range of clinical setting to ensure the applicability and reliability of such tools.
Collapse
Affiliation(s)
- Julia Arribas Anta
- Department of Gastroenterology, University Hospital, 12 Octubre, Madrid, Spain
| | - Juan Moreno-Vedia
- Scientific and Technical Department, Sycai Technologies S.L., Barcelona, Spain
| | - Javier García López
- Scientific and Technical Department, Sycai Technologies S.L., Barcelona, Spain
| | - Miguel Angel Rios-Vives
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau - Centre CERCA, Barceona, Spain
| | - Josep Munuera
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau - Centre CERCA, Barceona, Spain
| | | |
Collapse
|
3
|
Inmutto N, Pojchamarnwiputh S, Na Chiangmai W. Multiphase Computed Tomography Scan Findings for Artificial Intelligence Training in the Differentiation of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma Based on Interobserver Agreement of Expert Abdominal Radiologists. Diagnostics (Basel) 2025; 15:821. [PMID: 40218171 PMCID: PMC11989188 DOI: 10.3390/diagnostics15070821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objective: Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the most common primary liver cancer. Computed tomography (CT) is the imaging modality used to evaluate liver nodules and differentiate HCC from ICC. Artificial intelligence (AI), machine learning (ML), and deep learning (DL) have been used in multiple studies in the field of radiology. The purpose of this study was to determine potential CT features for the differentiation of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Methods: Patients with radiological and pathologically confirmed diagnosis of HCC and ICC between January 2013 and December 2015 were included in this retrospective study. Two board-certified diagnostic radiologists independently reviewed multiphase CT images on a picture archiving and communication system (PACS). Arterial hyperenhancement, portal vein thrombosis, lymph node enlargement, and cirrhosis appearance were evaluated. We then calculated sensitivity, specificity, the likelihood ratio for diagnosis of HCC and ICC. Inter-observed agreement of categorical data was evaluated using Cohen's kappa statistic (k). Results: A total of 74 patients with a pathologically confirmed diagnosis, including 48 HCCs and 26 ICC, were included in this study. Most of HCC patients showed arterial hyperenhancement at 95.8%, and interobserver agreement was moderate (k = 0.47). Arterial enhancement in ICC was less frequent, ranging from 15.4% to 26.9%, and agreement between readers was substantial (k = 0.66). The two readers showed a moderate agreement of cirrhosis appearance in both the HCC and ICC groups, k = 0.43 and k = 0.48, respectively. Cirrhosis appeared in the HCC group more frequently than the ICC group. Lymph node enlargement was more commonly seen in ICC than HCC, and agreement between the readers was almost perfect (k = 0.84). Portal vein invasion in HCC was seen in 14.6% by both readers with a substantial agreement (k = 0.66). Portal vein invasion in ICC was seen in 11.5% to 19.2% of the patients. The diagnostic performance of the two radiologists was satisfactory, with a corrected diagnosis of 87.8% and 94.6%. The two radiologists had high sensitivity in diagnosing HCCs (95.8% to 97.9%) and specificity in diagnosing ICCs (95.8% to 97.9%). Conclusions: Cirrhosis and lymph node metastasis could be ancillary and adopted in future AI training algorithms.
Collapse
Affiliation(s)
| | | | - Wittanee Na Chiangmai
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.I.); (S.P.)
| |
Collapse
|
4
|
Cheng M, Zhang H, Guo Y, Lyu P, Yan J, Liu Y, Liang P, Ren Z, Gao J. Comparison of MRI and CT based deep learning radiomics analyses and their combination for diagnosing intrahepatic cholangiocarcinoma. Sci Rep 2025; 15:9629. [PMID: 40113926 PMCID: PMC11926170 DOI: 10.1038/s41598-025-92263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) and other subtypes of primary liver cancer (PLC) have overlapping clinical manifestations and radiological characteristics. The objective of this study was to evaluate the efficacy of deep learning (DL) radiomics analysis, performed using computed tomography (CT) and magnetic resonance imaging (MRI), in diagnosing iCCA within PLC. 178 pathologically confirmed PLC patients (training cohort: test cohort = 124: 54) who underwent both CT and MRI examinations was enrolled. Univariate and multivariate analysis was used to identify the significant factors of radiological findings for diagnosing iCCA. DL radiomics analysis was applied to CT and MRI images, respectively. We constructed and evaluated six distinct models: CT DL radiomics (DLRSCT), CT radiological (RCT), CT DL radiomics-radiological (DLRRCT), MRI DL radiomics (DLRSMRI), MRI radiological (RMRI) and MRI DL radiomics-radiological (DLRRMRI). To further explore the diagnostic and predictive value of a cross-modal approach, we developed a fused model that combined DLRRCT and DLRRMRI. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were employed to compare the performance of different models. MRI-based models demonstrated a superior predictive performance than CT-based models in test cohort (AUCs of MRI vs. CT: DLRR, 0.923 vs. 0.880, P = 0.521; DLRS, 0.875 vs. 0.867, P = 0.922; R, 0.859 vs. 0.840, P = 0.808). The CT-MRI cross-modal model yielded the highest AUC of 0.994 and 0.937 in training and test cohorts, respectively. CT- and MRI-based DL radiomics analyses exhibited good performance in diagnosing iCCA, and the CT-MRI cross-modal model may have significant clinical implications on detection of liver malignancies.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Medical Information, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Hanyue Zhang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yimin Guo
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Peijie Lyu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Pan Liang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
5
|
Yu PLH, Chiu KWH, Lu J, Lui GC, Zhou J, Cheng HM, Mao X, Wu J, Shen XP, Kwok KM, Kan WK, Ho Y, Chan HT, Xiao P, Mak LY, Tsui VW, Hui C, Lam PM, Deng Z, Guo J, Ni L, Huang J, Yu S, Peng C, Li WK, Yuen MF, Seto WK. Application of a deep learning algorithm for the diagnosis of HCC. JHEP Rep 2025; 7:101219. [PMID: 39687602 PMCID: PMC11648772 DOI: 10.1016/j.jhepr.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 12/18/2024] Open
Abstract
Background & Aims Hepatocellular carcinoma (HCC) is characterized by a high mortality rate. The Liver Imaging Reporting and Data System (LI-RADS) results in a considerable number of indeterminate observations, rendering an accurate diagnosis difficult. Methods We developed four deep learning models for diagnosing HCC on computed tomography (CT) via a training-validation-testing approach. Thin-slice triphasic CT liver images and relevant clinical information were collected and processed for deep learning. HCC was diagnosed and verified via a 12-month clinical composite reference standard. CT observations among at-risk patients were annotated using LI-RADS. Diagnostic performance was assessed by internal validation and independent external testing. We conducted sensitivity analyses of different subgroups, deep learning explainability evaluation, and misclassification analysis. Results From 2,832 patients and 4,305 CT observations, the best-performing model was Spatio-Temporal 3D Convolution Network (ST3DCN), achieving area under receiver-operating-characteristic curves (AUCs) of 0.919 (95% CI, 0.903-0.935) and 0.901 (95% CI, 0.879-0.924) at the observation (n = 1,077) and patient (n = 685) levels, respectively during internal validation, compared with 0.839 (95% CI, 0.814-0.864) and 0.822 (95% CI, 0.790-0.853), respectively for standard of care radiological interpretation. The negative predictive values of ST3DCN were 0.966 (95% CI, 0.954-0.979) and 0.951 (95% CI, 0.931-0.971), respectively. The observation-level AUCs among at-risk patients, 2-5-cm observations, and singular portovenous phase analysis of ST3DCN were 0.899 (95% CI, 0.874-0.924), 0.872 (95% CI, 0.838-0.909) and 0.912 (95% CI, 0.895-0.929), respectively. In external testing (551/717 patients/observations), the AUC of ST3DCN was 0.901 (95% CI, 0.877-0.924), which was non-inferior to radiological interpretation (AUC 0.900; 95% CI, 0.877--923). Conclusions ST3DCN achieved strong, robust performance for accurate HCC diagnosis on CT. Thus, deep learning can expedite and improve the process of diagnosing HCC. Impact and implications The clinical applicability of deep learning in HCC diagnosis is potentially huge, especially considering the expected increase in the incidence and mortality of HCC worldwide. Early diagnosis through deep learning can lead to earlier definitive management, particularly for at-risk patients. The model can be broadly deployed for patients undergoing a triphasic contrast CT scan of the liver to reduce the currently high mortality rate of HCC.
Collapse
Affiliation(s)
- Philip Leung Ho Yu
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
- Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, China
| | - Keith Wan-Hang Chiu
- Department of Diagnostic Radiology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong, China
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianliang Lu
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Gilbert C.S. Lui
- Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, China
| | - Jian Zhou
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ho-Ming Cheng
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xianhua Mao
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Juan Wu
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xin-Ping Shen
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - King Ming Kwok
- Department of Diagnostic and Interventional Radiology, Kwong Wah Hospital, Hong Kong, China
| | - Wai Kuen Kan
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Y.C. Ho
- Department of Radiology, Queen Mary Hospital, Hong Kong, China
| | - Hung Tat Chan
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Peng Xiao
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Vivien W.M. Tsui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Cynthia Hui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Pui Mei Lam
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Zijie Deng
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jiaqi Guo
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Li Ni
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jinhua Huang
- Department of Minimal Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Sarah Yu
- Department of Diagnostic Radiology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Chengzhi Peng
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Li
- Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Nishida N. Advancements in Artificial Intelligence-Enhanced Imaging Diagnostics for the Management of Liver Disease-Applications and Challenges in Personalized Care. Bioengineering (Basel) 2024; 11:1243. [PMID: 39768061 PMCID: PMC11673237 DOI: 10.3390/bioengineering11121243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Liver disease can significantly impact life expectancy, making early diagnosis and therapeutic intervention critical challenges in medical care. Imaging diagnostics play a crucial role in diagnosing and managing liver diseases. Recently, the application of artificial intelligence (AI) in medical imaging analysis has become indispensable in healthcare. AI, trained on vast datasets of medical images, has sometimes demonstrated diagnostic accuracy that surpasses that of human experts. AI-assisted imaging diagnostics are expected to contribute significantly to the standardization of diagnostic quality. Furthermore, AI has the potential to identify image features that are imperceptible to humans, thereby playing an essential role in clinical decision-making. This capability enables physicians to make more accurate diagnoses and develop effective treatment strategies, ultimately improving patient outcomes. Additionally, AI is anticipated to become a powerful tool in personalized medicine. By integrating individual patient imaging data with clinical information, AI can propose optimal plans for treatment, making it an essential component in the provision of the most appropriate care for each patient. Current reports highlight the advantages of AI in managing liver diseases. As AI technology continues to evolve, it is expected to advance personalized diagnostics and treatments and contribute to overall improvements in healthcare quality.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama 589-8511, Japan
| |
Collapse
|
7
|
Loper MR, Makary MS. Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging. Tomography 2024; 10:1814-1831. [PMID: 39590942 PMCID: PMC11598375 DOI: 10.3390/tomography10110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Advancements in artificial intelligence (AI) have significantly transformed the field of abdominal radiology, leading to an improvement in diagnostic and disease management capabilities. This narrative review seeks to evaluate the current standing of AI in abdominal imaging, with a focus on recent literature contributions. This work explores the diagnosis and characterization of hepatobiliary, pancreatic, gastric, colonic, and other pathologies. In addition, the role of AI has been observed to help differentiate renal, adrenal, and splenic disorders. Furthermore, workflow optimization strategies and quantitative imaging techniques used for the measurement and characterization of tissue properties, including radiomics and deep learning, are highlighted. An assessment of how these advancements enable more precise diagnosis, tumor description, and body composition evaluation is presented, which ultimately advances the clinical effectiveness and productivity of radiology. Despite the advancements of AI in abdominal imaging, technical, ethical, and legal challenges persist, and these challenges, as well as opportunities for future development, are highlighted.
Collapse
Affiliation(s)
| | - Mina S. Makary
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
8
|
Qiao S, Xue M, Zuo Y, Zheng J, Jiang H, Zeng X, Peng D. Four-phase CT lesion recognition based on multi-phase information fusion framework and spatiotemporal prediction module. Biomed Eng Online 2024; 23:103. [PMID: 39434126 PMCID: PMC11492744 DOI: 10.1186/s12938-024-01297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Multiphase information fusion and spatiotemporal feature modeling play a crucial role in the task of four-phase CT lesion recognition. In this paper, we propose a four-phase CT lesion recognition algorithm based on multiphase information fusion framework and spatiotemporal prediction module. Specifically, the multiphase information fusion framework uses the interactive perception mechanism to realize the channel-spatial information interactive weighting between multiphase features. In the spatiotemporal prediction module, we design a 1D deep residual network to integrate multiphase feature vectors, and use the GRU architecture to model the temporal enhancement information between CT slices. In addition, we employ CT image pseudo-color processing for data augmentation and train the whole network based on a multi-task learning framework. We verify the proposed network on a four-phase CT dataset. The experimental results show that the proposed network can effectively fuse the multi-phase information and model the temporal enhancement information between CT slices, showing excellent performance in lesion recognition.
Collapse
Affiliation(s)
- Shaohua Qiao
- HDU-ITMO Joint Institute, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Mengfan Xue
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Yan Zuo
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Jiannan Zheng
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Haodong Jiang
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Xiangai Zeng
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Dongliang Peng
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
9
|
Mostafa G, Mahmoud H, Abd El-Hafeez T, E ElAraby M. The power of deep learning in simplifying feature selection for hepatocellular carcinoma: a review. BMC Med Inform Decis Mak 2024; 24:287. [PMID: 39367397 PMCID: PMC11452940 DOI: 10.1186/s12911-024-02682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/13/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is a highly aggressive, prevalent, and deadly type of liver cancer. With the advent of deep learning techniques, significant advancements have been made in simplifying and optimizing the feature selection process. OBJECTIVE Our scoping review presents an overview of the various deep learning models and algorithms utilized to address feature selection for HCC. The paper highlights the strengths and limitations of each approach, along with their potential applications in clinical practice. Additionally, it discusses the benefits of using deep learning to identify relevant features and their impact on the accuracy and efficiency of diagnosis, prognosis, and treatment of HCC. DESIGN The review encompasses a comprehensive analysis of the research conducted in the past few years, focusing on the methodologies, datasets, and evaluation metrics adopted by different studies. The paper aims to identify the key trends and advancements in the field, shedding light on the promising areas for future research and development. RESULTS The findings of this review indicate that deep learning techniques have shown promising results in simplifying feature selection for HCC. By leveraging large-scale datasets and advanced neural network architectures, these methods have demonstrated improved accuracy and robustness in identifying predictive features. CONCLUSIONS We analyze published studies to reveal the state-of-the-art HCC prediction and showcase how deep learning can boost accuracy and decrease false positives. But we also acknowledge the challenges that remain in translating this potential into clinical reality.
Collapse
Affiliation(s)
- Ghada Mostafa
- Computer Science Department, Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt.
- Computer Science Unit, Deraya University, EL-Minia, Egypt.
| | - Hamdi Mahmoud
- Computer Science Department, Faculty of Computers and Artificial Intelligence, Beni-Suef National University, Beni-Suef, Egypt.
| | - Tarek Abd El-Hafeez
- Department of Computer Science, Faculty of Science, Minia University, EL-Minia, Egypt.
- Computer Science Unit, Deraya University, EL-Minia, Egypt.
| | - Mohamed E ElAraby
- Computer Science Department, Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
10
|
Chatzipanagiotou OP, Loukas C, Vailas M, Machairas N, Kykalos S, Charalampopoulos G, Filippiadis D, Felekouras E, Schizas D. Artificial intelligence in hepatocellular carcinoma diagnosis: a comprehensive review of current literature. J Gastroenterol Hepatol 2024; 39:1994-2005. [PMID: 38923550 DOI: 10.1111/jgh.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) diagnosis mainly relies on its pathognomonic radiological profile, obviating the need for biopsy. The project of incorporating artificial intelligence (AI) techniques in HCC aims to improve the performance of image recognition. Herein, we thoroughly analyze and evaluate proposed AI models in the field of HCC diagnosis. METHODS A comprehensive review of the literature was performed utilizing MEDLINE/PubMed and Web of Science databases with the end of search date being the 30th of September 2023. The MESH terms "Artificial Intelligence," "Liver Cancer," "Hepatocellular Carcinoma," "Machine Learning," and "Deep Learning" were searched in the title and/or abstract. All references of the obtained articles were also evaluated for any additional information. RESULTS Our search resulted in 183 studies meeting our inclusion criteria. Across all diagnostic modalities, reported area under the curve (AUC) of most developed models surpassed 0.900. A B-mode US and a contrast-enhanced US model achieved AUCs of 0.947 and 0.957, respectively. Regarding the more challenging task of HCC diagnosis, a 2021 deep learning model, trained with CT scans, classified hepatic malignant lesions with an AUC of 0.986. Finally, a MRI machine learning model developed in 2021 displayed an AUC of 0.975 when differentiating small HCCs from benign lesions, while another MRI-based model achieved HCC diagnosis with an AUC of 0.970. CONCLUSIONS AI tools may lead to significant improvement in diagnostic management of HCC. Many models fared better or comparable to experienced radiologists while proving capable of elevating radiologists' accuracy, demonstrating promising results for AI implementation in HCC-related diagnostic tasks.
Collapse
Affiliation(s)
- Odysseas P Chatzipanagiotou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Constantinos Loukas
- Laboratory of Medical Physics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Stylianos Kykalos
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Georgios Charalampopoulos
- Second Department of Radiology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Dimitrios Filippiadis
- Second Department of Radiology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Evangellos Felekouras
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
11
|
Wang L, Fatemi M, Alizad A. Artificial intelligence techniques in liver cancer. Front Oncol 2024; 14:1415859. [PMID: 39290245 PMCID: PMC11405163 DOI: 10.3389/fonc.2024.1415859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular Carcinoma (HCC), the most common primary liver cancer, is a significant contributor to worldwide cancer-related deaths. Various medical imaging techniques, including computed tomography, magnetic resonance imaging, and ultrasound, play a crucial role in accurately evaluating HCC and formulating effective treatment plans. Artificial Intelligence (AI) technologies have demonstrated potential in supporting physicians by providing more accurate and consistent medical diagnoses. Recent advancements have led to the development of AI-based multi-modal prediction systems. These systems integrate medical imaging with other modalities, such as electronic health record reports and clinical parameters, to enhance the accuracy of predicting biological characteristics and prognosis, including those associated with HCC. These multi-modal prediction systems pave the way for predicting the response to transarterial chemoembolization and microvascular invasion treatments and can assist clinicians in identifying the optimal patients with HCC who could benefit from interventional therapy. This paper provides an overview of the latest AI-based medical imaging models developed for diagnosing and predicting HCC. It also explores the challenges and potential future directions related to the clinical application of AI techniques.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Engineering, School of Technology, Reykjavık University, Reykjavík, Iceland
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
12
|
Salehi MA, Harandi H, Mohammadi S, Shahrabi Farahani M, Shojaei S, Saleh RR. Diagnostic Performance of Artificial Intelligence in Detection of Hepatocellular Carcinoma: A Meta-analysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1297-1311. [PMID: 38438694 PMCID: PMC11300422 DOI: 10.1007/s10278-024-01058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Due to the increasing interest in the use of artificial intelligence (AI) algorithms in hepatocellular carcinoma detection, we performed a systematic review and meta-analysis to pool the data on diagnostic performance metrics of AI and to compare them with clinicians' performance. A search in PubMed and Scopus was performed in January 2024 to find studies that evaluated and/or validated an AI algorithm for the detection of HCC. We performed a meta-analysis to pool the data on the metrics of diagnostic performance. Subgroup analysis based on the modality of imaging and meta-regression based on multiple parameters were performed to find potential sources of heterogeneity. The risk of bias was assessed using Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction Model Study Risk of Bias Assessment Tool (PROBAST) reporting guidelines. Out of 3177 studies screened, 44 eligible studies were included. The pooled sensitivity and specificity for internally validated AI algorithms were 84% (95% CI: 81,87) and 92% (95% CI: 90,94), respectively. Externally validated AI algorithms had a pooled sensitivity of 85% (95% CI: 78,89) and specificity of 84% (95% CI: 72,91). When clinicians were internally validated, their pooled sensitivity was 70% (95% CI: 60,78), while their pooled specificity was 85% (95% CI: 77,90). This study implies that AI can perform as a diagnostic supplement for clinicians and radiologists by screening images and highlighting regions of interest, thus improving workflow.
Collapse
Affiliation(s)
| | - Hamid Harandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Shayan Shojaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramy R Saleh
- Department of Oncology, McGill University, Montreal, QC, H3A 0G4, Canada
- Division of Medical Oncology, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
13
|
Rao F, Lyu T, Feng Z, Wu Y, Ni Y, Zhu W. A landmark-supervised registration framework for multi-phase CT images with cross-distillation. Phys Med Biol 2024; 69:115059. [PMID: 38768601 DOI: 10.1088/1361-6560/ad4e01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Objective.Multi-phase computed tomography (CT) has become a leading modality for identifying hepatic tumors. Nevertheless, the presence of misalignment in the images of different phases poses a challenge in accurately identifying and analyzing the patient's anatomy. Conventional registration methods typically concentrate on either intensity-based features or landmark-based features in isolation, so imposing limitations on the accuracy of the registration process.Method.We establish a nonrigid cycle-registration network that leverages semi-supervised learning techniques, wherein a point distance term based on Euclidean distance between registered landmark points is introduced into the loss function. Additionally, a cross-distillation strategy is proposed in network training to further improve registration performance which incorporates response-based knowledge concerning the distances between feature points.Results.We conducted experiments using multi-centered liver CT datasets to evaluate the performance of the proposed method. The results demonstrate that our method outperforms baseline methods in terms of target registration error. Additionally, Dice scores of the warped tumor masks were calculated. Our method consistently achieved the highest scores among all the comparing methods. Specifically, it achieved scores of 82.9% and 82.5% in the hepatocellular carcinoma and the intrahepatic cholangiocarcinoma dataset, respectively.Significance.The superior registration performance indicates its potential to serve as an important tool in hepatic tumor identification and analysis.
Collapse
Affiliation(s)
- Fan Rao
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 310000, People's Republic of China
| | - Tianling Lyu
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 310000, People's Republic of China
| | - Zhan Feng
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou 311100, People's Republic of China
| | - Yuanfeng Wu
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 310000, People's Republic of China
| | - Yangfan Ni
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 310000, People's Republic of China
| | - Wentao Zhu
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 310000, People's Republic of China
| |
Collapse
|
14
|
Zhang W, Tao Y, Huang Z, Li Y, Chen Y, Song T, Ma X, Zhang Y. Multi-phase features interaction transformer network for liver tumor segmentation and microvascular invasion assessment in contrast-enhanced CT. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5735-5761. [PMID: 38872556 DOI: 10.3934/mbe.2024253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Precise segmentation of liver tumors from computed tomography (CT) scans is a prerequisite step in various clinical applications. Multi-phase CT imaging enhances tumor characterization, thereby assisting radiologists in accurate identification. However, existing automatic liver tumor segmentation models did not fully exploit multi-phase information and lacked the capability to capture global information. In this study, we developed a pioneering multi-phase feature interaction Transformer network (MI-TransSeg) for accurate liver tumor segmentation and a subsequent microvascular invasion (MVI) assessment in contrast-enhanced CT images. In the proposed network, an efficient multi-phase features interaction module was introduced to enable bi-directional feature interaction among multiple phases, thus maximally exploiting the available multi-phase information. To enhance the model's capability to extract global information, a hierarchical transformer-based encoder and decoder architecture was designed. Importantly, we devised a multi-resolution scales feature aggregation strategy (MSFA) to optimize the parameters and performance of the proposed model. Subsequent to segmentation, the liver tumor masks generated by MI-TransSeg were applied to extract radiomic features for the clinical applications of the MVI assessment. With Institutional Review Board (IRB) approval, a clinical multi-phase contrast-enhanced CT abdominal dataset was collected that included 164 patients with liver tumors. The experimental results demonstrated that the proposed MI-TransSeg was superior to various state-of-the-art methods. Additionally, we found that the tumor mask predicted by our method showed promising potential in the assessment of microvascular invasion. In conclusion, MI-TransSeg presents an innovative paradigm for the segmentation of complex liver tumors, thus underscoring the significance of multi-phase CT data exploitation. The proposed MI-TransSeg network has the potential to assist radiologists in diagnosing liver tumors and assessing microvascular invasion.
Collapse
Affiliation(s)
- Wencong Zhang
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Yuxi Tao
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhanyao Huang
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
| | - Yue Li
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yingjia Chen
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
| | - Tengfei Song
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiangyuan Ma
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
| | - Yaqin Zhang
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
| |
Collapse
|
15
|
Ying H, Liu X, Zhang M, Ren Y, Zhen S, Wang X, Liu B, Hu P, Duan L, Cai M, Jiang M, Cheng X, Gong X, Jiang H, Jiang J, Zheng J, Zhu K, Zhou W, Lu B, Zhou H, Shen Y, Du J, Ying M, Hong Q, Mo J, Li J, Ye G, Zhang S, Hu H, Sun J, Liu H, Li Y, Xu X, Bai H, Wang S, Cheng X, Xu X, Jiao L, Yu R, Lau WY, Yu Y, Cai X. A multicenter clinical AI system study for detection and diagnosis of focal liver lesions. Nat Commun 2024; 15:1131. [PMID: 38326351 PMCID: PMC10850133 DOI: 10.1038/s41467-024-45325-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Early and accurate diagnosis of focal liver lesions is crucial for effective treatment and prognosis. We developed and validated a fully automated diagnostic system named Liver Artificial Intelligence Diagnosis System (LiAIDS) based on a diverse sample of 12,610 patients from 18 hospitals, both retrospectively and prospectively. In this study, LiAIDS achieved an F1-score of 0.940 for benign and 0.692 for malignant lesions, outperforming junior radiologists (benign: 0.830-0.890, malignant: 0.230-0.360) and being on par with senior radiologists (benign: 0.920-0.950, malignant: 0.550-0.650). Furthermore, with the assistance of LiAIDS, the diagnostic accuracy of all radiologists improved. For benign and malignant lesions, junior radiologists' F1-scores improved to 0.936-0.946 and 0.667-0.680 respectively, while seniors improved to 0.950-0.961 and 0.679-0.753. Additionally, in a triage study of 13,192 consecutive patients, LiAIDS automatically classified 76.46% of patients as low risk with a high NPV of 99.0%. The evidence suggests that LiAIDS can serve as a routine diagnostic tool and enhance the diagnostic capabilities of radiologists for liver lesions.
Collapse
Affiliation(s)
- Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqing Liu
- Deepwise Artificial Intelligence Laboratory, Beijing, China
| | - Min Zhang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Yiyue Ren
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Shihui Zhen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojie Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Liu
- Deepwise Artificial Intelligence Laboratory, Beijing, China
| | - Peng Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lian Duan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingzhi Cai
- Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou, China
| | | | - Xiangdong Cheng
- Cancer Hospital of the University of Chinese Academy of Sciences (ZheJiang Cancer Hospital), Hangzhou, China
| | | | - Haitao Jiang
- Cancer Hospital of the University of Chinese Academy of Sciences (ZheJiang Cancer Hospital), Hangzhou, China
| | - Jianshuai Jiang
- Department of Hepatopancreatobiliary Surgery, Ningbo First Hospital, Ningbo, China
| | - Jianjun Zheng
- Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, China
| | - Kelei Zhu
- Department of Hepatopancreatobiliary Surgery, Yinzhou People's Hospital, Ningbo, China
| | - Wei Zhou
- Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Baochun Lu
- Shaoxing People's Hospital, Shaoxing, China
| | - Hongkun Zhou
- The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yiyu Shen
- The Second Hospital of Jiaxing Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jinlin Du
- Jinhua Municipal Central Hospital, Jinhua, China
| | | | | | - Jingang Mo
- Taizhou Municipal Central Hospital, Taizhou, China
| | - Jianfeng Li
- The First People's Hospital of Wenling, Taizhou, China
| | | | - Shizheng Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Liu
- Central Laboratory of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiming Li
- Deepwise Artificial Intelligence Laboratory, Beijing, China
| | - Xingxin Xu
- Deepwise Artificial Intelligence Laboratory, Beijing, China
| | - Huiping Bai
- Deepwise Artificial Intelligence Laboratory, Beijing, China
| | - Shuxin Wang
- Deepwise Artificial Intelligence Laboratory, Beijing, China
| | | | - Xiaoyin Xu
- Brigham and Women' Hospital, Harvard Medical School, Boston, MA, USA.
| | - Long Jiao
- Faculty of Medicine, Imperial College London, London, UK.
| | - Risheng Yu
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Wan Yee Lau
- Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Yizhou Yu
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
16
|
Ahn JC, Shah VH. Artificial intelligence in gastroenterology and hepatology. ARTIFICIAL INTELLIGENCE IN CLINICAL PRACTICE 2024:443-464. [DOI: 10.1016/b978-0-443-15688-5.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Wei Q, Tan N, Xiong S, Luo W, Xia H, Luo B. Deep Learning Methods in Medical Image-Based Hepatocellular Carcinoma Diagnosis: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:5701. [PMID: 38067404 PMCID: PMC10705136 DOI: 10.3390/cancers15235701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 06/24/2024] Open
Abstract
(1) Background: The aim of our research was to systematically review papers specifically focused on the hepatocellular carcinoma (HCC) diagnostic performance of DL methods based on medical images. (2) Materials: To identify related studies, a comprehensive search was conducted in prominent databases, including Embase, IEEE, PubMed, Web of Science, and the Cochrane Library. The search was limited to studies published before 3 July 2023. The inclusion criteria consisted of studies that either developed or utilized DL methods to diagnose HCC using medical images. To extract data, binary information on diagnostic accuracy was collected to determine the outcomes of interest, namely, the sensitivity, specificity, and area under the curve (AUC). (3) Results: Among the forty-eight initially identified eligible studies, thirty studies were included in the meta-analysis. The pooled sensitivity was 89% (95% CI: 87-91), the specificity was 90% (95% CI: 87-92), and the AUC was 0.95 (95% CI: 0.93-0.97). Analyses of subgroups based on medical image methods (contrast-enhanced and non-contrast-enhanced images), imaging modalities (ultrasound, magnetic resonance imaging, and computed tomography), and comparisons between DL methods and clinicians consistently showed the acceptable diagnostic performance of DL models. The publication bias and high heterogeneity observed between studies and subgroups can potentially result in an overestimation of the diagnostic accuracy of DL methods in medical imaging. (4) Conclusions: To improve future studies, it would be advantageous to establish more rigorous reporting standards that specifically address the challenges associated with DL research in this particular field.
Collapse
Affiliation(s)
- Qiuxia Wei
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China; (Q.W.); (S.X.); (W.L.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| | - Nengren Tan
- School of Electronic and Information Engineering, Guangxi Normal University, 15 Qixing District, Guilin 541004, China;
| | - Shiyu Xiong
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China; (Q.W.); (S.X.); (W.L.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| | - Wanrong Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China; (Q.W.); (S.X.); (W.L.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| | - Haiying Xia
- School of Electronic and Information Engineering, Guangxi Normal University, 15 Qixing District, Guilin 541004, China;
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China; (Q.W.); (S.X.); (W.L.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| |
Collapse
|
18
|
Xu Y, Zhou C, He X, Song R, Liu Y, Zhang H, Wang Y, Fan Q, Chen W, Wu J, Wang J, Guo D. Deep learning-assisted LI-RADS grading and distinguishing hepatocellular carcinoma (HCC) from non-HCC based on multiphase CT: a two-center study. Eur Radiol 2023; 33:8879-8888. [PMID: 37392233 DOI: 10.1007/s00330-023-09857-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/14/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVES To develop a deep learning (DL) method that can determine the Liver Imaging Reporting and Data System (LI-RADS) grading of high-risk liver lesions and distinguish hepatocellular carcinoma (HCC) from non-HCC based on multiphase CT. METHODS This retrospective study included 1049 patients with 1082 lesions from two independent hospitals that were pathologically confirmed as HCC or non-HCC. All patients underwent a four-phase CT imaging protocol. All lesions were graded (LR 4/5/M) by radiologists and divided into an internal (n = 886) and external cohort (n = 196) based on the examination date. In the internal cohort, Swin-Transformer based on different CT protocols were trained and tested for their ability to LI-RADS grading and distinguish HCC from non-HCC, and then validated in the external cohort. We further developed a combined model with the optimal protocol and clinical information for distinguishing HCC from non-HCC. RESULTS In the test and external validation cohorts, the three-phase protocol without pre-contrast showed κ values of 0.6094 and 0.4845 for LI-RADS grading, and its accuracy was 0.8371 and 0.8061, while the accuracy of the radiologist was 0.8596 and 0.8622, respectively. The AUCs in distinguishing HCC from non-HCC were 0.865 and 0.715 in the test and external validation cohorts, while those of the combined model were 0.887 and 0.808. CONCLUSION The Swin-Transformer based on three-phase CT protocol without pre-contrast could feasibly simplify LI-RADS grading and distinguish HCC from non-HCC. Furthermore, the DL model have the potential in accurately distinguishing HCC from non-HCC using imaging and highly characteristic clinical data as inputs. CLINICAL RELEVANCE STATEMENT The application of deep learning model for multiphase CT has proven to improve the clinical applicability of the Liver Imaging Reporting and Data System and provide support to optimize the management of patients with liver diseases. KEY POINTS • Deep learning (DL) simplifies LI-RADS grading and helps distinguish hepatocellular carcinoma (HCC) from non-HCC. • The Swin-Transformer based on the three-phase CT protocol without pre-contrast outperformed other CT protocols. • The Swin-Transformer provide help in distinguishing HCC from non-HCC by using CT and characteristic clinical information as inputs.
Collapse
Affiliation(s)
- Yang Xu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Chaoyang Zhou
- Department of Radiology, The First Affiliated Hospital of Army Military Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaojuan He
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Rao Song
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yangyang Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Haiping Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yudong Wang
- Institute of Research, Ocean International Center, InferVision, Chaoyang District, Beijing, 100025, China
| | - Qianrui Fan
- Institute of Research, Ocean International Center, InferVision, Chaoyang District, Beijing, 100025, China
| | - Weidao Chen
- Institute of Research, Ocean International Center, InferVision, Chaoyang District, Beijing, 100025, China
| | - Jiangfen Wu
- Institute of Research, Ocean International Center, InferVision, Chaoyang District, Beijing, 100025, China
| | - Jian Wang
- Department of Radiology, The First Affiliated Hospital of Army Military Medical University, Chongqing, 400038, People's Republic of China.
| | - Dajing Guo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
19
|
Radiya K, Joakimsen HL, Mikalsen KØ, Aahlin EK, Lindsetmo RO, Mortensen KE. Performance and clinical applicability of machine learning in liver computed tomography imaging: a systematic review. Eur Radiol 2023; 33:6689-6717. [PMID: 37171491 PMCID: PMC10511359 DOI: 10.1007/s00330-023-09609-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES Machine learning (ML) for medical imaging is emerging for several organs and image modalities. Our objectives were to provide clinicians with an overview of this field by answering the following questions: (1) How is ML applied in liver computed tomography (CT) imaging? (2) How well do ML systems perform in liver CT imaging? (3) What are the clinical applications of ML in liver CT imaging? METHODS A systematic review was carried out according to the guidelines from the PRISMA-P statement. The search string focused on studies containing content relating to artificial intelligence, liver, and computed tomography. RESULTS One hundred ninety-one studies were included in the study. ML was applied to CT liver imaging by image analysis without clinicians' intervention in majority of studies while in newer studies the fusion of ML method with clinical intervention have been identified. Several were documented to perform very accurately on reliable but small data. Most models identified were deep learning-based, mainly using convolutional neural networks. Potentially many clinical applications of ML to CT liver imaging have been identified through our review including liver and its lesion segmentation and classification, segmentation of vascular structure inside the liver, fibrosis and cirrhosis staging, metastasis prediction, and evaluation of chemotherapy. CONCLUSION Several studies attempted to provide transparent result of the model. To make the model convenient for a clinical application, prospective clinical validation studies are in urgent call. Computer scientists and engineers should seek to cooperate with health professionals to ensure this. KEY POINTS • ML shows great potential for CT liver image tasks such as pixel-wise segmentation and classification of liver and liver lesions, fibrosis staging, metastasis prediction, and retrieval of relevant liver lesions from similar cases of other patients. • Despite presenting the result is not standardized, many studies have attempted to provide transparent results to interpret the machine learning method performance in the literature. • Prospective studies are in urgent call for clinical validation of ML method, preferably carried out by cooperation between clinicians and computer scientists.
Collapse
Affiliation(s)
- Keyur Radiya
- Department of Gastroenterological Surgery at University Hospital of North Norway (UNN), Tromso, Norway.
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.
| | - Henrik Lykke Joakimsen
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Centre for Clinical Artificial Intelligence (SPKI), University Hospital of North Norway, Tromso, Norway
| | - Karl Øyvind Mikalsen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Centre for Clinical Artificial Intelligence (SPKI), University Hospital of North Norway, Tromso, Norway
- UiT Machine Learning Group, Department of Physics and Technology, UiT the Arctic University of Norway, Tromso, Norway
| | - Eirik Kjus Aahlin
- Department of Gastroenterological Surgery at University Hospital of North Norway (UNN), Tromso, Norway
| | - Rolv-Ole Lindsetmo
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Head Clinic of Surgery, Oncology and Women Health, University Hospital of North Norway, Tromso, Norway
| | - Kim Erlend Mortensen
- Department of Gastroenterological Surgery at University Hospital of North Norway (UNN), Tromso, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
| |
Collapse
|
20
|
Hüseynova M, Bayramov N, Məmmədova M. РОЛЬ АЛГОРИТМОВ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В ДИАГНОСТИКЕ. AZERBAIJAN MEDICAL JOURNAL 2023:164-171. [DOI: 10.34921/amj.2023.2.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Hepatosellülyar karsinoma (HSK) ən çox yayılan bədxassəli törəmələr arasında beşinci yeri tutur və dünyada xərçənglə əlaqəli ölümün üçüncü ən çox yayılmış səbəbidir. Süni intellekt (Sİ) sürətlə artan maraq sahəsidir. Müəlliflər HSK-ın diaqnostikasında və qiymətləndirilməsində Sİ-nin tətbiqi barədə məlumat verən məqalələri araşdırmışlar. Bu məqsədlə 27 məqalə təhlil edilmişdir. Təhlil edilmiş məqalələrdən KT görüntülərinin tədqiqinə dair 19 məqalədə (41,30%), USQ görüntülərinin öyrənilməsini əks etdirən 20 (43,47%) və MRT görüntülərindən bəhs edən 7 məqalədə (15,21%) müxtəlif Sİ alqoritmləri qəbul edilmişdir. Heç bir məqalədə PET və rentgen texnologiyasında süni intellektin istifadəsi müzakirə edilməyib. Sistematik yanaşma göstərmişdir ki, HSK-nin diaqnostikası və qiymətləndirilməsi üzrə əvvəlki işlərdə USQ, KT və MRT istifadə edilərək ənənəvi şərhin maşın öyrənməsi ilə müqayisəliliyi qiymətləndirilmişdir. Təhlillərimizdə görüntüləmə üsullarının istifadəsi HSK diaqnostikası üçün tibbi görüntüləmənin faydalılığını və təkamülünü əks etdirir. Bundan əlavə, nəticələrimiz lazımsız təkrarlanmanı və resursların israfını minimuma endirmək üçün birgə məlumat bazasında məlumat mübadiləsinə qaçılmaz ehtiyac olduğunu vurğulayır.
Гепатоцеллюлярная карцинома является пятым по распространенности злокачественным новообразованием и третьей по частоте причиной смерти от рака во всём мире. Искусственный интеллект — это быстрорастущая область интересов. Авторами были рассмотрены статьи, в которых сообщается о применении алгоритмов ИИ в диагностике и оценке ГЦК. Для этого проанализированы 27 статей. В проанализированных статьях в 19 статьях, посвящённых КТ-изображениям (41,30%), в 20 статьях, посвящённых изображениям УЗИ (43,47%), и в 7 статьях, посвящённым МРТ-изображениям (15,21%), использовали разные алгоритмы ИИ. Ни в одной статье не обсуждалось использование искусственного интеллекта в ПЭТ и рентгеновские технологии. Системный подход показал, что предыдущая работа по диагностике и оценке ГЦК оценивала сопоставимость традиционной интерпретации с машинным обучением с использованием УЗИ, КТ и МРТ. Использование методов визуализации в проведенном анализе отражает полезность и эволюцию медицинской визуализации для диагностики ГЦК. Кроме того, результаты поиска литературы подчёркивают острую необходимость совместного использования данных в совместных базах данных, чтобы свести к минимуму ненужное дублирование и растрату ресурсов.
Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third leading cause of cancer death worldwide. Artificial intelligence (AI) is a rapidly growing area of interest. We have reviewed articles reporting the application of AI algorithms in the diagnosis and evaluation of HCC. To do this, we analyzed 27 articles. In the analyzed articles, 19 articles on CT images (41.30%), 20 articles on ultrasound images (43.47%), and 7 articles on MRI images (15.21%) used different AI algorithms. None of the articles discussed the use of artificial intelligence in PET and X-ray technologies. Our systematic approach showed that previous work on the diagnosis and evaluation of HCC assessed the comparability of traditional interpretation with machine learning using ultrasound, CT, and MRI. The use of imaging modalities in our analysis reflects the usefulness and evolution of medical imaging for diagnosing HCC. In addition, our results highlight the critical need to share data across collaborative databases to minimize unnecessary duplication and waste of resources.
Collapse
|
21
|
Bakrania A, Joshi N, Zhao X, Zheng G, Bhat M. Artificial intelligence in liver cancers: Decoding the impact of machine learning models in clinical diagnosis of primary liver cancers and liver cancer metastases. Pharmacol Res 2023; 189:106706. [PMID: 36813095 DOI: 10.1016/j.phrs.2023.106706] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
Liver cancers are the fourth leading cause of cancer-related mortality worldwide. In the past decade, breakthroughs in the field of artificial intelligence (AI) have inspired development of algorithms in the cancer setting. A growing body of recent studies have evaluated machine learning (ML) and deep learning (DL) algorithms for pre-screening, diagnosis and management of liver cancer patients through diagnostic image analysis, biomarker discovery and predicting personalized clinical outcomes. Despite the promise of these early AI tools, there is a significant need to explain the 'black box' of AI and work towards deployment to enable ultimate clinical translatability. Certain emerging fields such as RNA nanomedicine for targeted liver cancer therapy may also benefit from application of AI, specifically in nano-formulation research and development given that they are still largely reliant on lengthy trial-and-error experiments. In this paper, we put forward the current landscape of AI in liver cancers along with the challenges of AI in liver cancer diagnosis and management. Finally, we have discussed the future perspectives of AI application in liver cancer and how a multidisciplinary approach using AI in nanomedicine could accelerate the transition of personalized liver cancer medicine from bench side to the clinic.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, ON, Canada; Ajmera Transplant Program, University Health Network, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | | | - Xun Zhao
- Toronto General Hospital Research Institute, Toronto, ON, Canada; Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, ON, Canada; Ajmera Transplant Program, University Health Network, Toronto, ON, Canada; Division of Gastroenterology, Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada; Department of Medical Sciences, Toronto, ON, Canada.
| |
Collapse
|
22
|
Candita G, Rossi S, Cwiklinska K, Fanni SC, Cioni D, Lencioni R, Neri E. Imaging Diagnosis of Hepatocellular Carcinoma: A State-of-the-Art Review. Diagnostics (Basel) 2023; 13:diagnostics13040625. [PMID: 36832113 PMCID: PMC9955560 DOI: 10.3390/diagnostics13040625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains not only a cause of a considerable part of oncologic mortality, but also a diagnostic and therapeutic challenge for healthcare systems worldwide. Early detection of the disease and consequential adequate therapy are imperative to increase patients' quality of life and survival. Imaging plays, therefore, a crucial role in the surveillance of patients at risk, the detection and diagnosis of HCC nodules, as well as in the follow-up post-treatment. The unique imaging characteristics of HCC lesions, deriving mainly from the assessment of their vascularity on contrast-enhanced computed tomography (CT), magnetic resonance (MR) or contrast-enhanced ultrasound (CEUS), allow for a more accurate, noninvasive diagnosis and staging. The role of imaging in the management of HCC has further expanded beyond the plain confirmation of a suspected diagnosis due to the introduction of ultrasound and hepatobiliary MRI contrast agents, which allow for the detection of hepatocarcinogenesis even at an early stage. Moreover, the recent technological advancements in artificial intelligence (AI) in radiology contribute an important tool for the diagnostic prediction, prognosis and evaluation of treatment response in the clinical course of the disease. This review presents current imaging modalities and their central role in the management of patients at risk and with HCC.
Collapse
|
23
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
24
|
Park HJ, Kim KW, Lee SS. Artificial intelligence in radiology and its application in liver disease. ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, AND DEEP LEARNING IN PRECISION MEDICINE IN LIVER DISEASES 2023:53-79. [DOI: 10.1016/b978-0-323-99136-0.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Artificial intelligence: A review of current applications in hepatocellular carcinoma imaging. Diagn Interv Imaging 2023; 104:24-36. [PMID: 36272931 DOI: 10.1016/j.diii.2022.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and currently the third-leading cause of cancer-related death worldwide. Recently, artificial intelligence (AI) has emerged as an important tool to improve clinical management of HCC, including for diagnosis, prognostication and evaluation of treatment response. Different AI approaches, such as machine learning and deep learning, are both based on the concept of developing prediction algorithms from large amounts of data, or big data. The era of digital medicine has led to a rapidly expanding amount of routinely collected health data which can be leveraged for the development of AI models. Various studies have constructed AI models by using features extracted from ultrasound imaging, computed tomography imaging and magnetic resonance imaging. Most of these models have used convolutional neural networks. These tools have shown promising results for HCC detection, characterization of liver lesions and liver/tumor segmentation. Regarding treatment, studies have outlined a role for AI in evaluation of treatment response and improvement of pre-treatment planning. Several challenges remain to fully integrate AI models in clinical practice. Future research is still needed to robustly evaluate AI algorithms in prospective trials, and improve interpretability, generalizability and transparency. If such challenges can be overcome, AI has the potential to profoundly change the management of patients with HCC. The purpose of this review was to sum up current evidence on AI approaches using imaging for the clinical management of HCC.
Collapse
|
26
|
Antony Asir Daniel V, Ramaraj R. A novel modified long short term memory architecture for automatic liver disease prediction from patient records. CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE 2022; 34. [DOI: 10.1002/cpe.7372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/19/2022] [Indexed: 01/07/2025]
Abstract
SummaryThe liver is the second largest organ in the human body after the skin and liver disease mainly impacts the liver's functionality by properly separating the nutrients and waste into the digestive system and also causes scarring (cirrhosis) as time passes. The scarring over time affects the healthy liver tissue and also affects its proper functioning and if left untreated for a prolonged period it can also result in severe complications such as liver failure or liver cancer. The patients can be prevented from the severe complications if the disease is detected at an earlier stage and the existing research for liver disease prediction mainly encouraged the usage of intelligent machine learning‐based techniques. However, these techniques have several complexities such as low accuracy, overfitting, higher training time, poor feature extraction capabilities and so on. To overcome these problems, we present modified long short term emory (MLSTM) architecture for chronic liver disease prediction. The proposed methodology has three stages: information enhancement, feature extraction, and classification. The modified generative adversarial network uses an autoencoder system for sample augmentation which helps to enrich the diversity present in both the normal and abnormal classes. The outlier information is eliminated via the criminal search algorithm which captures the differences and correlation associated with multiple samples. The fast independent component analysis algorithm and enhanced whale optimization algorithm are used for feature extraction. This step mainly identifies the crucial features for liver disease prediction and leaves out the irrelevant and duplicate features thus enhancing the convergence, computational time, and prediction accuracy. The MLSTM architecture is used to classify the samples present in the liver disease datasets into normal and abnormal (liver disease) classes. The proposed methodology offers improved performance in terms of accuracy, recall, means square error, and F‐measure. The results show that the proposed methodology will be efficient for doctors to diagnose liver disease in the earlier stage.
Collapse
Affiliation(s)
- V. Antony Asir Daniel
- Department of Electronics & Communication Engineering Loyola Institute of Technology & Science Kanyakumari India
| | - Ravi Ramaraj
- Department of Computer Science Engineering Francis Xavier Engineering College Tirunelveli India
| |
Collapse
|
27
|
Fahmy D, Alksas A, Elnakib A, Mahmoud A, Kandil H, Khalil A, Ghazal M, van Bogaert E, Contractor S, El-Baz A. The Role of Radiomics and AI Technologies in the Segmentation, Detection, and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14246123. [PMID: 36551606 PMCID: PMC9777232 DOI: 10.3390/cancers14246123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning.
Collapse
Affiliation(s)
- Dalia Fahmy
- Diagnostic Radiology Department, Mansoura University Hospital, Mansoura 35516, Egypt
| | - Ahmed Alksas
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Heba Kandil
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Faculty of Computer Sciences and Information, Mansoura University, Mansoura 35516, Egypt
| | - Ashraf Khalil
- College of Technological Innovation, Zayed University, Abu Dhabi 4783, United Arab Emirates
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Eric van Bogaert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
28
|
Wang H, Liu Y, Xu N, Sun Y, Fu S, Wu Y, Liu C, Cui L, Liu Z, Chang Z, Li S, Deng K, Song J. Development and validation of a deep learning model for survival prognosis of transcatheter arterial chemoembolization in patients with intermediate-stage hepatocellular carcinoma. Eur J Radiol 2022; 156:110527. [PMID: 36152524 DOI: 10.1016/j.ejrad.2022.110527] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/17/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE We aimed to develop a deep learning-based approach to evaluate both time-to-progression (TTP) and overall survival (OS) prognosis of transcatheter arterial chemoembolization (TACE) in treatment-naïve patients with intermediate-stage hepatocellular carcinoma (HCC) and compare the approach's performance with those of radiomics and clinical models. METHODS EfficientNetV2 was used to build a prognosis model for treatment-naïve patients with HCC. Data of 414 intermediate-stage HCC patients from one participant center were collected to construct the training and validation datasets (70%:30%) for TTP prognosis, while data of 129 intermediate-stage HCC patients from another participant center were collected as the test dataset for both TTP and OS prognosis. Three radiomics and three clinical models were then constructed for comparison. RESULTS Patients with EfficientNetV2-based model score ≤ 0.5 had better TTP than those with higher scores (hazard ratio [HR]: 0.32, 95%CI: 0.22-0.46, P < 0.0001; HR: 0.28, 95%CI: 0.20-0.41, P < 0.0001; and HR: 0.55, 95%CI: 0.36-0.88, P = 0.005 in the training, validation, and test datasets, respectively). Patients with model score ≤ 0.5 had better OS (38.8 months vs 20.9 months, HR: 0.58, 95%CI: 0.37-0.90, P = 0.008). Compared with the radiomics (intra-tumoral and peri-tumoral) and three clinical models, the EfficientNetV2-based model showed better survival prognosis for TACE (P < 0.05) in the test dataset. CONCLUSIONS The EfficientNetV2-based model enables assessment of both TTP and OS prognosis of TACE in treatment-naïve, intermediate-stage HCC. Patients with lower scores will benefit from TACE. The model can potentially be used by clinicians to improve decision making regarding TACE treatment choices.
Collapse
Affiliation(s)
- Hairui Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuchan Liu
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, Anhui 230036, China
| | - Nan Xu
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, China
| | - Yuanyuan Sun
- Department of Genetics, College of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Shihan Fu
- International School, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yunuo Wu
- School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Chunhe Liu
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, China
| | - Lei Cui
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zhihui Chang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shu Li
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, China
| | - Kexue Deng
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, Anhui 230036, China
| | - Jiangdian Song
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
29
|
Martinino A, Aloulou M, Chatterjee S, Scarano Pereira JP, Singhal S, Patel T, Kirchgesner TPE, Agnes S, Annunziata S, Treglia G, Giovinazzo F. Artificial Intelligence in the Diagnosis of Hepatocellular Carcinoma: A Systematic Review. J Clin Med 2022; 11:6368. [PMID: 36362596 PMCID: PMC9655417 DOI: 10.3390/jcm11216368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 09/21/2023] Open
Abstract
Hepatocellular carcinoma ranks fifth amongst the most common malignancies and is the third most common cause of cancer-related death globally. Artificial Intelligence is a rapidly growing field of interest. Following the PRISMA reporting guidelines, we conducted a systematic review to retrieve articles reporting the application of AI in HCC detection and characterization. A total of 27 articles were included and analyzed with our composite score for the evaluation of the quality of the publications. The contingency table reported a statistically significant constant improvement over the years of the total quality score (p = 0.004). Different AI methods have been adopted in the included articles correlated with 19 articles studying CT (41.30%), 20 studying US (43.47%), and 7 studying MRI (15.21%). No article has discussed the use of artificial intelligence in PET and X-ray technology. Our systematic approach has shown that previous works in HCC detection and characterization have assessed the comparability of conventional interpretation with machine learning using US, CT, and MRI. The distribution of the imaging techniques in our analysis reflects the usefulness and evolution of medical imaging for the diagnosis of HCC. Moreover, our results highlight an imminent need for data sharing in collaborative data repositories to minimize unnecessary repetition and wastage of resources.
Collapse
Affiliation(s)
| | | | - Surobhi Chatterjee
- Department of Internal Medicine, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | | | - Saurabh Singhal
- Department of HPB Surgery and Liver Transplantation, BLK-MAX Superspeciality Hospital, New Delhi 110005, Delhi, India
| | - Tapan Patel
- Department of Surgery, Baroda Medical College and SSG Hospital, Vadodara 390001, Gujarat, India
| | - Thomas Paul-Emile Kirchgesner
- Département of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1348 Brussels, Belgium
| | - Salvatore Agnes
- General Surgery and Liver Transplantation Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Salvatore Annunziata
- Unit of Nuclear Medicine, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giorgio Treglia
- Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Francesco Giovinazzo
- General Surgery and Liver Transplantation Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
30
|
Guo WL, Geng AK, Geng C, Wang J, Dai YK. Combination of UNet++ and ResNeSt to classify chronic inflammation of the choledochal cystic wall in patients with pancreaticobiliary maljunction. Br J Radiol 2022; 95:20201189. [PMID: 35451311 PMCID: PMC10996311 DOI: 10.1259/bjr.20201189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES The aim of this study was to establish an automatic classification model for chronic inflammation of the choledoch wall using deep learning with CT images in patients with pancreaticobiliary maljunction (PBM). METHODS CT images were obtained from 76 PBM patients, including 61 cases assigned to the training set and 15 cases assigned to the testing set. The region of interest (ROI) containing the choledochal lesion was extracted and segmented using the UNet++ network. The degree of severity of inflammation in the choledochal wall was initially classified using the ResNeSt network. The final classification result was determined per decision rules. Grad-CAM was used to explain the association between the classification basis of the network and clinical diagnosis. RESULTS Segmentation of the lesion on the common bile duct wall was roughly obtained with the UNet++ segmentation model and the average value of Dice coefficient of the segmentation model in the testing set was 0.839 ± 0.150, which was verified through fivefold cross-validation. Inflammation was initially classified with ResNeSt18, which resulted in accuracy = 0.756, sensitivity = 0.611, specificity = 0.852, precision = 0.733, and area under curve (AUC) = 0.711. The final classification sensitivity was 0.8. Grad-CAM revealed similar distribution of inflammation of the choledochal wall and verified the inflammation classification. CONCLUSIONS By combining the UNet++ network and the ResNeSt network, we achieved automatic classification of chronic inflammation of the choledoch in PBM patients and verified the robustness through cross-validation performed five times. This study provided an important basis for classification of inflammation severity of the choledoch in PBM patients. ADVANCES IN KNOWLEDGE We combined the UNet++ network and the ResNeSt network to achieve automatic classification of chronic inflammation of the choledoch in PBM. These results provided an important basis for classification of choledochal inflammation in PBM and for surgical therapy.
Collapse
Affiliation(s)
- Wan-liang Guo
- Department of Radiology, Children’s Hospital of Soochow
University, Suzhou,
China
| | - An-kang Geng
- School of Biomedical Engineering (Suzhou), Division of Life
Sciences and Medicine, University of Science and Technology of China, 88
Keling Road, Suzhou,
China
- Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, 88 Keling Road,
Suzhou, China
| | - Chen Geng
- Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, 88 Keling Road,
Suzhou, China
| | - Jian Wang
- Pediatric Surgery, Children’s Hospital of Soochow
University, Suzhou,
China
| | - Ya-kang Dai
- Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, 88 Keling Road,
Suzhou, China
- Jinan Guoke Medical Engineering Technology Development Co.
LTD, Jinan,
China
| |
Collapse
|
31
|
Calderaro J, Seraphin TP, Luedde T, Simon TG. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma. J Hepatol 2022; 76:1348-1361. [PMID: 35589255 PMCID: PMC9126418 DOI: 10.1016/j.jhep.2022.01.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/26/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) currently represents the fifth most common malignancy and the third-leading cause of cancer-related death worldwide, with incidence and mortality rates that are increasing. Recently, artificial intelligence (AI) has emerged as a unique opportunity to improve the full spectrum of HCC clinical care, by improving HCC risk prediction, diagnosis, and prognostication. AI approaches include computational search algorithms, machine learning (ML) and deep learning (DL) models. ML consists of a computer running repeated iterations of models, in order to progressively improve performance of a specific task, such as classifying an outcome. DL models are a subtype of ML, based on neural network structures that are inspired by the neuroanatomy of the human brain. A growing body of recent data now apply DL models to diverse data sources - including electronic health record data, imaging modalities, histopathology and molecular biomarkers - to improve the accuracy of HCC risk prediction, detection and prediction of treatment response. Despite the promise of these early results, future research is still needed to standardise AI data, and to improve both the generalisability and interpretability of results. If such challenges can be overcome, AI has the potential to profoundly change the way in which care is provided to patients with or at risk of HCC.
Collapse
Affiliation(s)
- Julien Calderaro
- Assistance Publique-Hôpitaux de Paris, Henri Mondor University Hospital, Department of Pathology, Créteil, France; Inserm U955 and Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
| | - Tobias Paul Seraphin
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tracey G. Simon
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Clinical and Translational Epidemiology Unit (CTEU), Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
32
|
Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol 2022; 14:765-793. [PMID: 35582107 PMCID: PMC9048537 DOI: 10.4251/wjgo.v14.i4.765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes the fifth most frequent malignancy worldwide and the third most frequent cause of cancer-related deaths. Currently, treatment selection is based on the stage of the disease. Emerging fields such as three-dimensional (3D) printing, 3D bioprinting, artificial intelligence (AI), and machine learning (ML) could lead to evidence-based, individualized management of HCC. In this review, we comprehensively report the current applications of 3D printing, 3D bioprinting, and AI/ML-based models in HCC management; we outline the significant challenges to the broad use of these novel technologies in the clinical setting with the goal of identifying means to overcome them, and finally, we discuss the opportunities that arise from these applications. Notably, regarding 3D printing and bioprinting-related challenges, we elaborate on cost and cost-effectiveness, cell sourcing, cell viability, safety, accessibility, regulation, and legal and ethical concerns. Similarly, regarding AI/ML-related challenges, we elaborate on intellectual property, liability, intrinsic biases, data protection, cybersecurity, ethical challenges, and transparency. Our findings show that AI and 3D printing applications in HCC management and healthcare, in general, are steadily expanding; thus, these technologies will be integrated into the clinical setting sooner or later. Therefore, we believe that physicians need to become familiar with these technologies and prepare to engage with them constructively.
Collapse
Affiliation(s)
- Chrysanthos D Christou
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| |
Collapse
|
33
|
Sato M, Kobayashi T, Soroida Y, Tanaka T, Nakatsuka T, Nakagawa H, Nakamura A, Kurihara M, Endo M, Hikita H, Sato M, Gotoh H, Iwai T, Tateishi R, Koike K, Yatomi Y. Development of novel deep multimodal representation learning-based model for the differentiation of liver tumors on B-mode ultrasound images. J Gastroenterol Hepatol 2022; 37:678-684. [PMID: 34911147 DOI: 10.1111/jgh.15763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/16/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM Recently, multimodal representation learning for images and other information such as numbers or language has gained much attention. The aim of the current study was to analyze the diagnostic performance of deep multimodal representation model-based integration of tumor image, patient background, and blood biomarkers for the differentiation of liver tumors observed using B-mode ultrasonography (US). METHOD First, we applied supervised learning with a convolutional neural network (CNN) to 972 liver nodules in the training and development sets to develop a predictive model using segmented B-mode tumor images. Additionally, we also applied a deep multimodal representation model to integrate information about patient background or blood biomarkers to B-mode images. We then investigated the performance of the models in an independent test set of 108 liver nodules. RESULTS Using only the segmented B-mode images, the diagnostic accuracy and area under the curve (AUC) values were 68.52% and 0.721, respectively. As the information about patient background and blood biomarkers was integrated, the diagnostic performance increased in a stepwise manner. The diagnostic accuracy and AUC value of the multimodal DL model (which integrated B-mode tumor image, patient age, sex, aspartate aminotransferase, alanine aminotransferase, platelet count, and albumin data) reached 96.30% and 0.994, respectively. CONCLUSION Integration of patient background and blood biomarkers in addition to US image using multimodal representation learning outperformed the CNN model using US images. We expect that the deep multimodal representation model could be a feasible and acceptable tool for the definitive diagnosis of liver tumors using B-mode US.
Collapse
Affiliation(s)
- Masaya Sato
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tamaki Kobayashi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Soroida
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayaka Nakamura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makiko Kurihara
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Momoe Endo
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromi Hikita
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mamiko Sato
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Gotoh
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomomi Iwai
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Ahn JC, Qureshi TA, Singal AG, Li D, Yang JD. Deep learning in hepatocellular carcinoma: Current status and future perspectives. World J Hepatol 2021; 13:2039-2051. [PMID: 35070007 PMCID: PMC8727204 DOI: 10.4254/wjh.v13.i12.2039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the leading causes of cancer incidence and death. Despite decades of research and development of new treatment options, the overall outcomes of patients with HCC continue to remain poor. There are areas of unmet need in risk prediction, early diagnosis, accurate prognostication, and individualized treatments for patients with HCC. Recent years have seen an explosive growth in the application of artificial intelligence (AI) technology in medical research, with the field of HCC being no exception. Among the various AI-based machine learning algorithms, deep learning algorithms are considered state-of-the-art techniques for handling and processing complex multimodal data ranging from routine clinical variables to high-resolution medical images. This article will provide a comprehensive review of the recently published studies that have applied deep learning for risk prediction, diagnosis, prognostication, and treatment planning for patients with HCC.
Collapse
Affiliation(s)
- Joseph C Ahn
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55904, United States
| | - Touseef Ahmad Qureshi
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Amit G Singal
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Ju-Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
35
|
Ballotin VR, Bigarella LG, Soldera J, Soldera J. Deep learning applied to the imaging diagnosis of hepatocellular carcinoma. Artif Intell Gastrointest Endosc 2021; 2:127-135. [DOI: 10.37126/aige.v2.i4.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/05/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
|
36
|
Feng B, Ma XH, Wang S, Cai W, Liu XB, Zhao XM. Application of artificial intelligence in preoperative imaging of hepatocellular carcinoma: Current status and future perspectives. World J Gastroenterol 2021; 27:5341-5350. [PMID: 34539136 PMCID: PMC8409162 DOI: 10.3748/wjg.v27.i32.5341] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor in China. Preoperative diagnosis of HCC is challenging because of atypical imaging manifestations and the diversity of focal liver lesions. Artificial intelligence (AI), such as machine learning (ML) and deep learning, has recently gained attention for its capability to reveal quantitative information on images. Currently, AI is used throughout the entire radiomics process and plays a critical role in multiple fields of medicine. This review summarizes the applications of AI in various aspects of preoperative imaging of HCC, including segmentation, differential diagnosis, prediction of histopathology, early detection of recurrence after curative treatment, and evaluation of treatment response. We also review the limitations of previous studies and discuss future directions for diagnostic imaging of HCC.
Collapse
Affiliation(s)
- Bing Feng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao-Hong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuang Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Cai
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xia-Bi Liu
- Beijing Laboratory of Intelligent Information Technology, School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xin-Ming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
37
|
Chronic Liver Disease and Liver Cancer: What the Hepatologists, Oncologists, and Surgeons Want to Know from Radiologists. Magn Reson Imaging Clin N Am 2021; 29:269-278. [PMID: 34243916 DOI: 10.1016/j.mric.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Effective communication between radiologists and physicians involved in the management of patients with chronic liver disease is paramount to ensuring appropriate and advantageous incorporation of liver imaging findings into patient care. This review discusses the clinical benefits of innovations in radiology reporting, what information the various stakeholders wish to know from the radiologist, and how radiology can help to ensure the effective communication of findings.
Collapse
|
38
|
Xiang K, Jiang B, Shang D. The overview of the deep learning integrated into the medical imaging of liver: a review. Hepatol Int 2021; 15:868-880. [PMID: 34264509 DOI: 10.1007/s12072-021-10229-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Deep learning (DL) is a recently developed artificial intelligent method that can be integrated into numerous fields. For the imaging diagnosis of liver disease, several remarkable outcomes have been achieved with the application of DL currently. This advanced algorithm takes part in various sections of imaging processing such as liver segmentation, lesion delineation, disease classification, process optimization, etc. The DL optimized imaging diagnosis shows a broad prospect instead of the pathological biopsy for the advantages of convenience, safety, and inexpensiveness. In this paper, we reviewed the published representative DL-related hepatic imaging works, described the general situation of this new-rising technology in medical liver imaging and explored the future direction of DL development.
Collapse
Affiliation(s)
- Kailai Xiang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.,Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Baihui Jiang
- Department of Ophthalmology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Dong Shang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China. .,Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| |
Collapse
|
39
|
Castaldo A, De Lucia DR, Pontillo G, Gatti M, Cocozza S, Ugga L, Cuocolo R. State of the Art in Artificial Intelligence and Radiomics in Hepatocellular Carcinoma. Diagnostics (Basel) 2021; 11:1194. [PMID: 34209197 PMCID: PMC8307071 DOI: 10.3390/diagnostics11071194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
The most common liver malignancy is hepatocellular carcinoma (HCC), which is also associated with high mortality. Often HCC develops in a chronic liver disease setting, and early diagnosis as well as accurate screening of high-risk patients is crucial for appropriate and effective management of these patients. While imaging characteristics of HCC are well-defined in the diagnostic phase, challenging cases still occur, and current prognostic and predictive models are limited in their accuracy. Radiomics and machine learning (ML) offer new tools to address these issues and may lead to scientific breakthroughs with the potential to impact clinical practice and improve patient outcomes. In this review, we will present an overview of these technologies in the setting of HCC imaging across different modalities and a range of applications. These include lesion segmentation, diagnosis, prognostic modeling and prediction of treatment response. Finally, limitations preventing clinical application of radiomics and ML at the present time are discussed, together with necessary future developments to bring the field forward and outside of a purely academic endeavor.
Collapse
Affiliation(s)
- Anna Castaldo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Davide Raffaele De Lucia
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy;
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
40
|
Cardobi N, Dal Palù A, Pedrini F, Beleù A, Nocini R, De Robertis R, Ruzzenente A, Salvia R, Montemezzi S, D’Onofrio M. An Overview of Artificial Intelligence Applications in Liver and Pancreatic Imaging. Cancers (Basel) 2021; 13:2162. [PMID: 33946223 PMCID: PMC8124771 DOI: 10.3390/cancers13092162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Artificial intelligence (AI) is one of the most promising fields of research in medical imaging so far. By means of specific algorithms, it can be used to help radiologists in their routine workflow. There are several papers that describe AI approaches to solve different problems in liver and pancreatic imaging. These problems may be summarized in four different categories: segmentation, quantification, characterization and image quality improvement. Segmentation is usually the first step of successive elaborations. If done manually, it is a time-consuming process. Therefore, the semi-automatic and automatic creation of a liver or a pancreatic mask may save time for other evaluations, such as quantification of various parameters, from organs volume to their textural features. The alterations of normal liver and pancreas structure may give a clue to the presence of a diffuse or focal pathology. AI can be trained to recognize these alterations and propose a diagnosis, which may then be confirmed or not by radiologists. Finally, AI may be applied in medical image reconstruction in order to increase image quality, decrease dose administration (referring to computed tomography) and reduce scan times. In this article, we report the state of the art of AI applications in these four main categories.
Collapse
Affiliation(s)
- Nicolò Cardobi
- Radiology Unit, Department of Pathology and Diagnostics, University Hospital of Verona, Piazzale Aristide Stefani, 1, 37126 Verona, Italy; (R.D.R.); (S.M.)
| | - Alessandro Dal Palù
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43121 Parma, Italy;
| | - Federica Pedrini
- Department of Radiology, G.B. Rossi University Hospital, University of Verona, 37129 Verona, Italy; (F.P.); (A.B.); (M.D.)
| | - Alessandro Beleù
- Department of Radiology, G.B. Rossi University Hospital, University of Verona, 37129 Verona, Italy; (F.P.); (A.B.); (M.D.)
| | - Riccardo Nocini
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Verona, Piazzale Aristide Stefani, 1, 37126 Verona, Italy;
| | - Riccardo De Robertis
- Radiology Unit, Department of Pathology and Diagnostics, University Hospital of Verona, Piazzale Aristide Stefani, 1, 37126 Verona, Italy; (R.D.R.); (S.M.)
| | - Andrea Ruzzenente
- Department of Surgery, General and Hepatobiliary Surgery, University Hospital G.B. Rossi, University and Hospital Trust of Verona, 37126 Verona, Italy;
| | - Roberto Salvia
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, 37126 Verona, Italy;
| | - Stefania Montemezzi
- Radiology Unit, Department of Pathology and Diagnostics, University Hospital of Verona, Piazzale Aristide Stefani, 1, 37126 Verona, Italy; (R.D.R.); (S.M.)
| | - Mirko D’Onofrio
- Department of Radiology, G.B. Rossi University Hospital, University of Verona, 37129 Verona, Italy; (F.P.); (A.B.); (M.D.)
| |
Collapse
|
41
|
Cao JS, Lu ZY, Chen MY, Zhang B, Juengpanich S, Hu JH, Li SJ, Topatana W, Zhou XY, Feng X, Shen JL, Liu Y, Cai XJ. Artificial intelligence in gastroenterology and hepatology: Status and challenges. World J Gastroenterol 2021; 27:1664-1690. [PMID: 33967550 PMCID: PMC8072192 DOI: 10.3748/wjg.v27.i16.1664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Originally proposed by John McCarthy in 1955, artificial intelligence (AI) has achieved a breakthrough and revolutionized the processing methods of clinical medicine with the increasing workloads of medical records and digital images. Doctors are paying attention to AI technologies for various diseases in the fields of gastroenterology and hepatology. This review will illustrate AI technology procedures for medical image analysis, including data processing, model establishment, and model validation. Furthermore, we will summarize AI applications in endoscopy, radiology, and pathology, such as detecting and evaluating lesions, facilitating treatment, and predicting treatment response and prognosis with excellent model performance. The current challenges for AI in clinical application include potential inherent bias in retrospective studies that requires larger samples for validation, ethics and legal concerns, and the incomprehensibility of the output results. Therefore, doctors and researchers should cooperate to address the current challenges and carry out further investigations to develop more accurate AI tools for improved clinical applications.
Collapse
Affiliation(s)
- Jia-Sheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Zi-Yi Lu
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Ming-Yu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Bin Zhang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Sarun Juengpanich
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jia-Hao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Shi-Jie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Win Topatana
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xue-Yin Zhou
- School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Xu Feng
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Ji-Liang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiu-Jun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
42
|
Kim DW, Lee G, Kim SY, Ahn G, Lee JG, Lee SS, Kim KW, Park SH, Lee YJ, Kim N. Deep learning-based algorithm to detect primary hepatic malignancy in multiphase CT of patients at high risk for HCC. Eur Radiol 2021; 31:7047-7057. [PMID: 33738600 DOI: 10.1007/s00330-021-07803-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To develop and evaluate a deep learning-based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC). METHODS A total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) in 1320 patients at high risk for HCC were retrospectively analyzed. Following the delineation of the focal hepatic lesions according to reference standards, the CT scans were categorized randomly into the training (568 scans), tuning (193 scans), and test (589 scans) sets. Multiphase CT information was subjected to multichannel integration, and livers were automatically segmented before model development. A deep learning-based model capable of detecting malignancies was developed using a mask region-based convolutional neural network. The thresholds of the prediction score and the intersection over union were determined on the tuning set corresponding to the highest sensitivity with < 5 false-positive cases per CT scan. The sensitivity and the number of false-positives of the proposed model on the test set were calculated. Potential causes of false-negatives and false-positives on the test set were analyzed. RESULTS This model exhibited a sensitivity of 84.8% with 4.80 false-positives per CT scan on the test set. The most frequent potential causes of false-negatives and false-positives were determined to be atypical enhancement patterns for HCC (71.7%) and registration/segmentation errors (42.7%), respectively. CONCLUSIONS The proposed deep learning-based model developed to automatically detect primary hepatic malignancies exhibited an 84.8% of sensitivity with 4.80 false-positives per CT scan in the test set. KEY POINTS • Image processing, including multichannel integration of multiphase CT and automatic liver segmentation, enabled the application of a deep learning-based model to detect primary hepatic malignancy. • Our model exhibited a sensitivity of 84.8% with a false-positive rate of 4.80 per CT scan.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Gaeun Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Geunhwi Ahn
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - June-Goo Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seong Ho Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yoon Jin Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Namkug Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
43
|
Sato M, Tateishi R, Yatomi Y, Koike K. Artificial intelligence in the diagnosis and management of hepatocellular carcinoma. J Gastroenterol Hepatol 2021; 36:551-560. [PMID: 33709610 DOI: 10.1111/jgh.15413] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Despite recent improvements in therapeutic interventions, hepatocellular carcinoma is still associated with a poor prognosis in patients with an advanced disease at diagnosis. Recently, significant progress has been made in image recognition through advances in the field of artificial intelligence (AI) (or machine learning), especially deep learning. AI is a multidisciplinary field that draws on the fields of computer science and mathematics for developing and implementing computer algorithms capable of maximizing the predictive accuracy from static or dynamic data sources using analytic or probabilistic models. Because of the multifactorial and complex nature of liver diseases, the machine learning approach to integrate multiple factors would appear to be an advantageous approach to improve the likelihood of making a precise diagnosis and predicting the response of treatment and prognosis of liver diseases. In this review, we attempted to summarize the potential use of AI in the diagnosis and management of liver diseases, especially hepatocellular carcinoma.
Collapse
Affiliation(s)
- Masaya Sato
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Moldogazieva NT, Mokhosoev IM, Zavadskiy SP, Terentiev AA. Proteomic Profiling and Artificial Intelligence for Hepatocellular Carcinoma Translational Medicine. Biomedicines 2021; 9:biomedicines9020159. [PMID: 33562077 PMCID: PMC7914649 DOI: 10.3390/biomedicines9020159] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver with high morbidity and mortality rates worldwide. Since 1963, when alpha-fetoprotein (AFP) was discovered as a first HCC serum biomarker, several other protein biomarkers have been identified and introduced into clinical practice. However, insufficient specificity and sensitivity of these biomarkers dictate the necessity of novel biomarker discovery. Remarkable advancements in integrated multiomics technologies for the identification of gene expression and protein or metabolite distribution patterns can facilitate rising to this challenge. Current multiomics technologies lead to the accumulation of a huge amount of data, which requires clustering and finding correlations between various datasets and developing predictive models for data filtering, pre-processing, and reducing dimensionality. Artificial intelligence (AI) technologies have an enormous potential to overcome accelerated data growth, complexity, and heterogeneity within and across data sources. Our review focuses on the recent progress in integrative proteomic profiling strategies and their usage in combination with machine learning and deep learning technologies for the discovery of novel biomarker candidates for HCC early diagnosis and prognosis. We discuss conventional and promising proteomic biomarkers of HCC such as AFP, lens culinaris agglutinin (LCA)-reactive L3 glycoform of AFP (AFP-L3), des-gamma-carboxyprothrombin (DCP), osteopontin (OPN), glypican-3 (GPC3), dickkopf-1 (DKK1), midkine (MDK), and squamous cell carcinoma antigen (SCCA) and highlight their functional significance including the involvement in cell signaling such as Wnt/β-catenin, PI3K/Akt, integrin αvβ3/NF-κB/HIF-1α, JAK/STAT3 and MAPK/ERK-mediated pathways dysregulated in HCC. We show that currently available computational platforms for big data analysis and AI technologies can both enhance proteomic profiling and improve imaging techniques to enhance the translational application of proteomics data into precision medicine.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Laboratory of Bioinformatics, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence: or
| | - Innokenty M. Mokhosoev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| | - Sergey P. Zavadskiy
- Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Alexander A. Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| |
Collapse
|
45
|
Bousabarah K, Letzen B, Tefera J, Savic L, Schobert I, Schlachter T, Staib LH, Kocher M, Chapiro J, Lin M. Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning. Abdom Radiol (NY) 2021; 46:216-225. [PMID: 32500237 PMCID: PMC7714704 DOI: 10.1007/s00261-020-02604-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Liver Imaging Reporting and Data System (LI-RADS) uses multiphasic contrast-enhanced imaging for hepatocellular carcinoma (HCC) diagnosis. The goal of this feasibility study was to establish a proof-of-principle concept towards automating the application of LI-RADS, using a deep learning algorithm trained to segment the liver and delineate HCCs on MRI automatically. METHODS In this retrospective single-center study, multiphasic contrast-enhanced MRIs using T1-weighted breath-hold sequences acquired from 2010 to 2018 were used to train a deep convolutional neural network (DCNN) with a U-Net architecture. The U-Net was trained (using 70% of all data), validated (15%) and tested (15%) on 174 patients with 231 lesions. Manual 3D segmentations of the liver and HCC were ground truth. The dice similarity coefficient (DSC) was measured between manual and DCNN methods. Postprocessing using a random forest (RF) classifier employing radiomic features and thresholding (TR) of the mean neural activation was used to reduce the average false positive rate (AFPR). RESULTS 73 and 75% of HCCs were detected on validation and test sets, respectively, using > 0.2 DSC criterion between individual lesions and their corresponding segmentations. Validation set AFPRs were 2.81, 0.77, 0.85 for U-Net, U-Net + RF, and U-Net + TR, respectively. Combining both RF and TR with the U-Net improved the AFPR to 0.62 and 0.75 for the validation and test sets, respectively. Mean DSC between automatically detected lesions using the DCNN + RF + TR and corresponding manual segmentations was 0.64/0.68 (validation/test), and 0.91/0.91 for liver segmentations. CONCLUSION Our DCNN approach can segment the liver and HCCs automatically. This could enable a more workflow efficient and clinically realistic implementation of LI-RADS.
Collapse
Affiliation(s)
- Khaled Bousabarah
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, Germany
- Visage Imaging GmbH, Lepsiusstraße 70, Berlin, 12163, Germany
| | - Brian Letzen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Jonathan Tefera
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Institute of Radiology, 10117, Berlin, Germany
| | - Lynn Savic
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Institute of Radiology, 10117, Berlin, Germany
| | - Isabel Schobert
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Institute of Radiology, 10117, Berlin, Germany
| | - Todd Schlachter
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Lawrence H Staib
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, 06520, USA
- Department of Electrical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, 06520, USA
| | - Martin Kocher
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, Germany
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Visage Imaging, Inc, 12625 High Bluff Dr., Suite 205, San Diego, CA, 92130, USA
| |
Collapse
|