1
|
Racine D, Niemann T, Nemeth B, Manzano LG, Alkadhi H, Viry A, Kubik-Huch RA, Frauenfelder T, Euler A. Dual-Split CT to Simulate Multiple Radiation Doses From a Single Scan-Liver Lesion Detection Compared With Dose-Matched Single-Energy CT. Invest Radiol 2025; 60:131-137. [PMID: 39074298 DOI: 10.1097/rli.0000000000001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
OBJECTIVES The aim of this study was to evaluate the potential use of simulated radiation doses from a dual-split CT scan for dose optimization by comparing their lesion detectability to dose-matched single-energy CT acquisitions at different radiation dose levels using a mathematical model observer. MATERIALS AND METHODS An anthropomorphic abdominal phantom with liver lesions (5-10 mm, both hyperattenuating and hypoattenuating) was imaged using a third-generation dual-source CT in single-energy dual-source mode at 100 kVp and 3 radiation doses (5, 2.5, 1.25 mGy). The tube current was 67% for tube A and 33% for tube B. For each dose, 5 simulated radiation doses (100%, 67%, 55%, 45%, 39%, and 33%) were generated through linear image blending. The phantom was also imaged using traditional single-source single-energy mode at equivalent doses. Each setup was repeated 10 times. Image noise texture was evaluated by the average spatial frequency (f av ) of the noise power spectrum. Liver lesion detection was measured by the area under the receiver operating curve (AUC), using a channelized Hotelling model observer with 10 dense Gaussian channels. RESULTS F av decreased at lower radiation doses and differed between simulated and single-energy images (eg, 0.16 mm -1 vs 0.14 mm -1 for simulated and single-energy images at 1.25 mGy), indicating slightly blotchier noise texture for dual-split CT. For hyperattenuating lesions, the mean AUC ranged between 0.92-0.99, 0.81-0.96, and 0.68-0.89 for single-energy, and between 0.91-0.99, 0.78-0.91, and 0.70-0.85 for dual-split at 5 mGy, 2.5 mGy, and 1.25 mGy, respectively. For hypoattenuating lesions, the AUC ranged between 0.90-0.98, 0.75-0.93, and 0.69-0.86 for the single-energy, and between 0.92-0.99, 0.76-0.87, and 0.67-0.81 for dual-split at 5 mGy, 2.5 mGy, and 1.25 mGy, respectively. AUC values were similar between both modes at 5 mGy, and slightly lower, albeit not significantly, for the dual-split mode at 2.5 and 1.25 mGy. CONCLUSIONS Lesion detectability was comparable between multiple simulated radiation doses from a dual-split CT scan and dose-matched single-energy CT. Noise texture was slightly blotchier in the simulated images. Simulated doses using dual-split CT can be used to assess the impact of radiation dose reduction on lesion detectability without the need for repeated patient scans.
Collapse
Affiliation(s)
- Damien Racine
- From the Institute of Radiation Physics, University Hospital Lausanne (CHUV), University of Lausanne, Lausanne, Switzerland (D.R., L.G.M., A.V.); Department of Radiology, Kantonsspital Baden, Affiliated Hospital for Research and Teaching of the Faculty of Medicine of the University of Zurich, Baden, Switzerland (T.N., R.A.K.-H., A.E.); Department of Biomedical Imaging and Image-Guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria (B.N.); and Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (H.A., T.F.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Martini K, Jungblut L, Sartoretti T, Langhart S, Yalynska T, Nemeth B, Frauenfelder T, Euler A. Impact of radiation dose on the detection of interstitial lung changes and image quality in low-dose chest CT - Assessment in multiple dose levels from a single patient scan. Eur J Radiol 2023; 166:110981. [PMID: 37478655 DOI: 10.1016/j.ejrad.2023.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
PURPOSE To assess image quality and detectability of interstitial lung changes using multiple radiation doses from the same chest CT scan of patients with suspected interstitial lung disease (ILD). METHOD Retrospective study of consecutive adult patients with suspected ILD receiving unenhanced chest CT as single-energy dual-source acquisition at 100 kVp (Dual-split mode). 67% and 33% of the overall tube current time product were assigned to tube A and B, respectively. 100%-dose was 2.34 ± 0.97 mGy. Five different radiation doses (100%, 67%, 45%, 39%, 33%) were reconstructed from this single acquisition using linear-blending technique. Two blinded radiologists assessed reticulations, ground-glass opacities (GGO) and honeycombing as well as subjective image noise. Percentage agreement (PA) as compared to 100%-dose were calculated. Non-parametric statistical tests were used. RESULTS A total of 228 patients were included (61.2 ± 14.6 years,146 female). PA was highest for honeycombing (>96%) and independent of dose reduction (P > 0.8). PA for reticulations and GGO decreased when reducing the radiation dose from 100% to 67% for both readers (reticulations: 83.3% and 93.9%; GGO: 87.7% and 79.8% for reader 1 and 2, respectively). Additional dose reduction did not significantly change PA for both readers (all P > 0.05). Subjective image noise increased with decreasing radiation dose (Spearman Rho of ρ = 0.34 and ρ = 0.53 for reader 1 and 2, respectively, P < 0.001). CONCLUSIONS Radiation dose reduction had a stronger impact on subtle interstitial lung changes. Detectability decreased with initial dose reduction indicating that a minimum dose is needed to maintain diagnostic accuracy in chest CT for suspected ILD.
Collapse
Affiliation(s)
- Katharina Martini
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Lisa Jungblut
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Thomas Sartoretti
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Sabinne Langhart
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Tetyana Yalynska
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Bence Nemeth
- Department of Neuroradiology, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Thomas Frauenfelder
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - André Euler
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; Department of Radiology, Kantonsspital Baden, University of Zurich, Im Ergel 1, 5404 Baden, Switzerland.
| |
Collapse
|
3
|
Ippolito D, Maino C, Vernuccio F, Cannella R, Inchingolo R, Dezio M, Faletti R, Bonaffini PA, Gatti M, Sironi S. Liver involvement in patients with COVID-19 infection: A comprehensive overview of diagnostic imaging features. World J Gastroenterol 2023; 29:834-850. [PMID: 36816623 PMCID: PMC9932422 DOI: 10.3748/wjg.v29.i5.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/06/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
During the first wave of the pandemic, coronavirus disease 2019 (COVID-19) infection has been considered mainly as a pulmonary infection. However, different clinical and radiological manifestations were observed over time, including involvement of abdominal organs. Nowadays, the liver is considered one of the main affected abdominal organs. Hepatic involvement may be caused by either a direct damage by the virus or an indirect damage related to COVID-19 induced thrombosis or to the use of different drugs. After clinical assessment, radiology plays a key role in the evaluation of liver involvement. Ultrasonography (US), computed tomography (CT) and magnetic resonance imaging (MRI) may be used to evaluate liver involvement. US is widely available and it is considered the first-line technique to assess liver involvement in COVID-19 infection, in particular liver steatosis and portal-vein thrombosis. CT and MRI are used as second- and third-line techniques, respectively, considering their higher sensitivity and specificity compared to US for assessment of both parenchyma and vascularization. This review aims to the spectrum of COVID-19 liver involvement and the most common imaging features of COVID-19 liver damage.
Collapse
Affiliation(s)
- Davide Ippolito
- Milano Bicocca School of Medicine and Surgery, Milano 20126, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Cesare Maino
- Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Federica Vernuccio
- Institute of Radiology (DIMED), University Hospital of Padova, Padova 35128, Italy
| | - Roberto Cannella
- Section of Radiology-Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo 90127, Italy
| | - Riccardo Inchingolo
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Michele Dezio
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Pietro Andrea Bonaffini
- Milano Bicocca School of Medicine and Surgery, Milano 20126, Italy
- Department of Diagnostic Radiology, Papa Giovanni XXIII Hospital, Bergamo 24127, Italy
| | - Marco Gatti
- Department of Diagnostic Radiology, University of Turin, Turin 10126, Italy
| | - Sandro Sironi
- Milano Bicocca School of Medicine and Surgery, Milano 20126, Italy
- Department of Diagnostic Radiology, Papa Giovanni XXIII Hospital, Bergamo 24127, Italy
| |
Collapse
|
4
|
Vernuccio F, Cannella R, Bartolotta TV, Galia M, Tang A, Brancatelli G. Advances in liver US, CT, and MRI: moving toward the future. Eur Radiol Exp 2021; 5:52. [PMID: 34873633 PMCID: PMC8648935 DOI: 10.1186/s41747-021-00250-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, the epidemiology of chronic liver disease has changed with an increase in the prevalence of nonalcoholic fatty liver disease in parallel to the advent of curative treatments for hepatitis C. Recent developments provided new tools for diagnosis and monitoring of liver diseases based on ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI), as applied for assessing steatosis, fibrosis, and focal lesions. This narrative review aims to discuss the emerging approaches for qualitative and quantitative liver imaging, focusing on those expected to become adopted in clinical practice in the next 5 to 10 years. While radiomics is an emerging tool for many of these applications, dedicated techniques have been investigated for US (controlled attenuation parameter, backscatter coefficient, elastography methods such as point shear wave elastography [pSWE] and transient elastography [TE], novel Doppler techniques, and three-dimensional contrast-enhanced ultrasound [3D-CEUS]), CT (dual-energy, spectral photon counting, extracellular volume fraction, perfusion, and surface nodularity), and MRI (proton density fat fraction [PDFF], elastography [MRE], contrast enhancement index, relative enhancement, T1 mapping on the hepatobiliary phase, perfusion). Concurrently, the advent of abbreviated MRI protocols will help fulfill an increasing number of examination requests in an era of healthcare resource constraints.
Collapse
Affiliation(s)
- Federica Vernuccio
- Section of Radiology- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University Hospital "Paolo Giaccone", Via del Vespro 129, 90127, Palermo, Italy.
| | - Roberto Cannella
- Section of Radiology- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University Hospital "Paolo Giaccone", Via del Vespro 129, 90127, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University Hospital of Palermo, Via del Vespro 129, 90127, Palermo, Italy.,Service de radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France
| | - Tommaso Vincenzo Bartolotta
- Section of Radiology- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University Hospital "Paolo Giaccone", Via del Vespro 129, 90127, Palermo, Italy.,Department of Radiology, Fondazione Istituto Giuseppe Giglio Ct.da Pietrapollastra, Via Pisciotto, 90015, Cefalù (Palermo), Italy
| | - Massimo Galia
- Section of Radiology- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University Hospital "Paolo Giaccone", Via del Vespro 129, 90127, Palermo, Italy
| | - An Tang
- Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada.,Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada.,Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Canada
| | - Giuseppe Brancatelli
- Section of Radiology- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University Hospital "Paolo Giaccone", Via del Vespro 129, 90127, Palermo, Italy
| |
Collapse
|