1
|
Balkhi S, Bilato G, De Lerma Barbaro A, Orecchia P, Poggi A, Mortara L. Efficacy of Anti-Cancer Immune Responses Elicited Using Tumor-Targeted IL-2 Cytokine and Its Derivatives in Combined Preclinical Therapies. Vaccines (Basel) 2025; 13:69. [PMID: 39852848 PMCID: PMC11768832 DOI: 10.3390/vaccines13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Effective cancer therapies must address the tumor microenvironment (TME), a complex network of tumor cells and stromal components, including endothelial, immune, and mesenchymal cells. Durable outcomes require targeting both tumor cells and the TME while minimizing systemic toxicity. Interleukin-2 (IL-2)-based therapies have shown efficacy in cancers such as metastatic melanoma and renal cell carcinoma but are limited by severe side effects. Innovative IL-2-based immunotherapeutic approaches include immunotoxins, such as antibody-drug conjugates, immunocytokines, and antibody-cytokine fusion proteins that enhance tumor-specific delivery. These strategies activate cytotoxic CD8+ T lymphocytes and natural killer (NK) cells, eliciting a potent Th1-mediated anti-tumor response. Modified IL-2 variants with reduced Treg cell activity further improve specificity and reduce immunosuppression. Additionally, IL-2 conjugates with peptides or anti-angiogenic agents offer improved therapeutic profiles. Combining IL-2-based therapies with immune checkpoint inhibitors (ICIs), anti-angiogenic agents, or radiotherapy has demonstrated synergistic potential. Preclinical and clinical studies highlight reduced toxicity and enhanced anti-tumor efficacy, overcoming TME-driven immune suppression. These approaches mitigate the limitations of high-dose soluble IL-2 therapy, promoting immune activation and minimizing adverse effects. This review critically explores advances in IL-2-based therapies, focusing on immunotoxins, immunocytokines, and IL-2 derivatives. Emphasis is placed on their role in combination strategies, showcasing their potential to target the TME and improve clinical outcomes effectively. Also, the use of IL-2 immunocytokines in "in situ" vaccination to relieve the immunosuppression of the TME is discussed.
Collapse
Affiliation(s)
- Sahar Balkhi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
| | - Giorgia Bilato
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| | - Andrea De Lerma Barbaro
- Laboratory of Comparative Physiopathology, Department of Biotechnology and Life Sciences, University of Insubria, 20145 Varese, Italy;
| | - Paola Orecchia
- Pathology and Experimental Immunology Operative Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Alessandro Poggi
- SSD Oncologia Molecolare e Angiogenesi, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| |
Collapse
|
2
|
Noyes D, Bag A, Oseni S, Semidey-Hurtado J, Cen L, Sarnaik AA, Sondak VK, Adeegbe D. Tumor-associated Tregs obstruct antitumor immunity by promoting T cell dysfunction and restricting clonal diversity in tumor-infiltrating CD8+ T cells. J Immunother Cancer 2022; 10:e004605. [PMID: 35618289 PMCID: PMC9125763 DOI: 10.1136/jitc-2022-004605] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Accumulation of regulatory T cells (Treg) has been described to often correlate with poor prognosis in many solid tumors. How Treg presence impinges on limited functionality and clonal composition of tumor-associated CD8 +T cells has important implications for their therapeutic targeting in the tumor microenvironment. In the present study, we investigated how accumulation of Tregs contributes to T cell dysfunction and clonal constriction of tumor-infiltrating CD8 +T cells. METHODS Resected melanoma and lung adenocarcinoma tissues from tumor-bearing mice or patients were analyzed. The proportions and phenotype as well as clonal diversity of tumor-associated CD8 +T cells were evaluated by flow cytometry and single-cell T-cell receptor (TCR) sequencing, respectively, at early or advanced tumor stages or under Treg depletion conditions. Furthermore, antigen-specific T cells were evaluated on adoptive transfer into tumor-bearing mice in the presence or absence of anti-CTLA-4 antibody or CTLA-4 Ig. Lastly, tumor-bearing mice were treated with anti-KLRG1 antibody and/or bromodomain inhibitor JQ1 with interleukin (IL)-2 immune complexes to determine therapeutic efficacy. RESULTS We demonstrate that the emergence of exhaustion-like phenotype and impaired effector functionality in tumor-associated CD8 +T cells is positively correlated with Treg accumulation in the tumor bed and this dysfunctional phenotype becomes reversed on Treg reduction in murine melanoma and lung cancer models. Heightened tumor-associated Treg-expressed CTLA-4 is key to emergence and sustenance of this phenotype. Furthermore, TCR sequencing revealed a clonal shrinkage of tumor-infiltrating CD8 +T cells as tumor progressed, which was associated with reduced survival profile concomitant to increasing Treg proportions. Limited IL-2 availability was a key mechanism contributing to this peripheral repertoire reshaping as Treg depletion improved IL-2 levels, rescued CD8 +T cell viability, and improved their clonal diversity. Finally, targeted reduction of tumor but not peripheral Tregs through JQ1 and/or anti-KLRG1 antibody significantly improved antitumor response in melanoma-bearing mice when supplemented with IL-2 immune complexes. CONCLUSION Collectively, our study reveals a bimodal program enacted by Tregs to support T cell dysfunction in the tumor bed and highlights a promising therapeutic regimen for localized reprogramming of the tumor microenvironment to curb Treg impairment of antitumor CD8 +T cell response in favor of improved antitumor immunity.
Collapse
Affiliation(s)
- David Noyes
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Arup Bag
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Saheed Oseni
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jon Semidey-Hurtado
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ling Cen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Amod A Sarnaik
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Vernon K Sondak
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Dennis Adeegbe
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
3
|
De Luca AJ, Lyons AB, Flies AS. Cytokines: Signalling Improved Immunotherapy? Curr Oncol Rep 2021; 23:103. [PMID: 34269916 DOI: 10.1007/s11912-021-01095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Immune checkpoint immunotherapies (ICI) are now approved for over 20 types of cancer and there are almost 6000 ongoing clinical trials investigating immuno-modulators as cancer therapies. This review investigated the effect of monoclonal antibody-based immune checkpoint immunotherapies when combined with cytokine therapy. We reviewed published clinical trial results from 2005 to 2020 for studies that used approved monoclonal antibody ICI in combination with the cytokines. Studies that met the search criteria were assessed for treatment efficacy and immunological changes associated with treatment. RECENT FINDING ICI often fails to result in improved clinical outcomes for patients and lasting protection from cancer recurrence. The use of pro-inflammatory cytokines alongside ICI has been shown to enhance the efficacy of these therapies in vitro and in animal studies. However, the results in human clinical trials are less clear and many clinical trials do not publish results at the end of the trial. A deeper understanding of the molecular interactions between cytokines, tumors, and immune cells is needed to improve overall ICI outcomes and design combination trials. Critical examination of the design and characteristics of previous clinical trials can provide insight into the lack of effective clinical translation for many immunotherapeutic drugs.
Collapse
Affiliation(s)
- Alana J De Luca
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.,Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
4
|
Feist M, Zhu Z, Dai E, Ma C, Liu Z, Giehl E, Ravindranathan R, Kowalsky SJ, Obermajer N, Kammula US, Lee AJH, Lotze MT, Guo ZS, Bartlett DL. Oncolytic virus promotes tumor-reactive infiltrating lymphocytes for adoptive cell therapy. Cancer Gene Ther 2021; 28:98-111. [PMID: 32632271 PMCID: PMC9718357 DOI: 10.1038/s41417-020-0189-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/14/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Adoptive cell therapy (ACT) using tumor-specific tumor-infiltrating lymphocytes (TILs) has demonstrated success in patients where tumor-antigen specific TILs can be harvested from the tumor, expanded, and re-infused in combination with a preparatory regimen and IL2. One major issue for non-immunogenic tumors has been that the isolated TILs lack tumor specificity and thus possess limited in vivo therapeutic function. An oncolytic virus (OV) mediates an immunogenic cell death for cancer cells, leading to elicitation and dramatic enhancement of tumor-specific TILs. We hypothesized that the tumor-specific TILs elicited and promoted by an OV would be a great source for ACT for solid cancer. In this study, we show that a local injection of oncolytic poxvirus in MC38 tumor with low immunogenicity in C57BL/6 mice, led to elicitation and accumulation of tumor-specific TILs in the tumor tissue. Our analyses indicated that IL2-armed OV-elicited TILs contain lower quantities of exhausted PD-1hiTim-3+ CD8+ T cells and regulatory T cells. The isolated TILs from IL2-expressing OV-treated tumor tissue retained high tumor specificity after expansion ex vivo. These TILs resulted in significant tumor regression and improved survival after adoptive transfer in mice with established MC38 tumor. Our study showcases the feasibility of using an OV to induce tumor-reactive TILs that can be expanded for ACT.
Collapse
Affiliation(s)
- Mathilde Feist
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, CCM/CVK, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Zhi Zhu
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Enyong Dai
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Oncology and Hematology, The Third Hospital of Jilin University, Changchun, Jilin, China
| | - Congrong Ma
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Zuqiang Liu
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, CCM/CVK, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Esther Giehl
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, CCM/CVK, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Roshni Ravindranathan
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Stacy J Kowalsky
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Natasa Obermajer
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Udai S Kammula
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Andrew J H Lee
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Allegheny Health Network-Cancer Institute, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
5
|
Chulpanova DS, Solovyeva VV, James V, Arkhipova SS, Gomzikova MO, Garanina EE, Akhmetzyanova ER, Tazetdinova LG, Khaiboullina SF, Rizvanov AA. Human Mesenchymal Stem Cells Overexpressing Interleukin 2 Can Suppress Proliferation of Neuroblastoma Cells in Co-Culture and Activate Mononuclear Cells In Vitro. Bioengineering (Basel) 2020; 7:bioengineering7020059. [PMID: 32560387 PMCID: PMC7356660 DOI: 10.3390/bioengineering7020059] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
High-dose recombinant interleukin 2 (IL2) therapy has been shown to be successful in renal cell carcinoma and metastatic melanoma. However, systemic administration of high doses of IL2 can be toxic, causing capillary leakage syndrome and stimulating pro-tumor immune response. One of the strategies to reduce the systemic toxicity of IL2 is the use of mesenchymal stem cells (MSCs) as a vehicle for the targeted delivery of IL2. Human adipose tissue-derived MSCs were transduced with lentivirus encoding IL2 (hADSCs-IL2) or blue fluorescent protein (BFP) (hADSCs-BFP). The proliferation, immunophenotype, cytokine profile and ultrastructure of hADSCs-IL2 and hADSCs-BFP were determined. The effect of hADSCs on activation of peripheral blood mononuclear cells (PBMCs) and proliferation and viability of SH-SY5Y neuroblastoma cells after co-culture with native hADSCs, hADSCs-BFP or hADSCs-IL2 on plastic and Matrigel was evaluated. Ultrastructure and cytokine production by hADSCs-IL2 showed modest changes in comparison with hADSCs and hADSCs-BFP. Conditioned medium from hADSC-IL2 affected tumor cell proliferation, increasing the proliferation of SH-SY5Y cells and also increasing the number of late-activated T-cells, natural killer (NK) cells, NKT-cells and activated T-killers. Conversely, hADSC-IL2 co-culture led to a decrease in SH-SY5Y proliferation on plastic and Matrigel. These data show that hADSCs-IL2 can reduce SH-SY5Y proliferation and activate PBMCs in vitro. However, IL2-mediated therapeutic effects of hADSCs could be offset by the increased expression of pro-oncogenes, as well as the natural ability of hADSCs to promote the progression of some tumors.
Collapse
Affiliation(s)
- Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Svetlana S. Arkhipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
| | - Marina O. Gomzikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
| | - Elvira R. Akhmetzyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
| | - Leysan G. Tazetdinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
- Correspondence: ; Tel.: +7-905-316-7599
| |
Collapse
|
6
|
Nanofluidic drug-eluting seed for sustained intratumoral immunotherapy in triple negative breast cancer. J Control Release 2018; 285:23-34. [DOI: 10.1016/j.jconrel.2018.06.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
|
7
|
Den Otter W. Re: Editorial Comment on Role of Marker Lesion When Applying Intravesical Instillations of IL-2 for Non-Muscle-Invasive Bladder Cancer Comparison of the Therapeutic Effects in Two Pilot Studies. J Urol 2015; 193:734-5. [DOI: 10.1016/j.juro.2014.07.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Willem Den Otter
- Department of Urology, Free University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Zegers CML, Rekers NH, Quaden DHF, Lieuwes NG, Yaromina A, Germeraad WTV, Wieten L, Biessen EAL, Boon L, Neri D, Troost EGC, Dubois LJ, Lambin P. Radiotherapy combined with the immunocytokine L19-IL2 provides long-lasting antitumor effects. Clin Cancer Res 2014; 21:1151-60. [PMID: 25552483 DOI: 10.1158/1078-0432.ccr-14-2676] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Radiotherapy modifies the tumor microenvironment and causes the release of tumor antigens, which can enhance the effect of immunotherapy. L19 targets the extra domain B (ED-B) of fibronectin, a marker for tumor neoangiogenesis, and can be used as immunocytokine when coupled to IL2. We hypothesize that radiotherapy in combination with L19-IL2 provides an enhanced antitumor effect, which is dependent on ED-B expression. EXPERIMENTAL DESIGN Mice were injected with syngeneic C51 colon carcinoma, Lewis lung carcinoma (LLC), or 4T1 mammary carcinoma cells. Tumor growth delay, underlying immunologic parameters, and treatment toxicity were evaluated after single-dose local tumor irradiation and systemic administration of L19-IL2 or equimolar controls. RESULTS ED-B expression was high, intermediate, and low for C51, LLC, and 4T1, respectively. The combination therapy showed (i) a long-lasting synergistic effect for the C51 model with 75% of tumors being cured, (ii) an additive effect for the LLC model, and (iii) no effect for the 4T1 model. The combination treatment resulted in a significantly increased cytotoxic (CD8(+)) T-cell population for both C51 and LLC. Depletion of CD8(+) T cells abolished the benefit of the combination therapy. CONCLUSIONS These data provide the first evidence for an increased therapeutic potential by combining radiotherapy with L19-IL2 in ED-B-positive tumors. This new opportunity in cancer treatment will be investigated in a phase I clinical study for patients with an oligometastatic solid tumor (NCT02086721). An animation summarizing our results is available at https://www.youtube.com/watch?v=xHbwQuCTkRc.
Collapse
Affiliation(s)
- Catharina M L Zegers
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Nicolle H Rekers
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Dana H F Quaden
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre, Maastricht, the Netherlands. Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Natasja G Lieuwes
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ala Yaromina
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Wilfred T V Germeraad
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Erik A L Biessen
- Experimental Vascular Pathology Group, Cardiovascular Research Institute Maastricht, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Esther G C Troost
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ludwig J Dubois
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
9
|
Scalp In-Transit Metastatic Melanoma Treated with Interleukin-2 and Pulsed Dye Laser. Healthcare (Basel) 2013; 1:96-9. [PMID: 27429133 PMCID: PMC4934508 DOI: 10.3390/healthcare1010096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 11/17/2022] Open
Abstract
No particular regimen is considered standard therapy for widespread metastatic melanoma, although surgery is the primary choice for regional nodal metastases. Systemic interleukin-2 (IL-2) is an effective immunotherapy for melanoma, but standard doses are associated with severe toxicity. We report a patient who was treated with intralesional low-dose IL-2 and V-beam pulsed dye laser for the treatment of scalp melanoma metastases. This treatment resulted in rapid regression of metastatic tumors with limited adverse effects.
Collapse
|
10
|
Haagsman AN, Witkamp ACS, Sjollema BE, Kik MJL, Kirpensteijn J. The effect of interleukin-2 on canine peripheral nerve sheath tumours after marginal surgical excision: a double-blind randomized study. BMC Vet Res 2013; 9:155. [PMID: 23927575 PMCID: PMC3751239 DOI: 10.1186/1746-6148-9-155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/31/2013] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this study was to evaluate the effect on outcomes of intraoperative recombinant human interleukin-2 injection after surgical resection of peripheral nerve sheath tumours. In this double-blind trial, 40 patients due to undergo surgical excision (<5 mm margins) of presumed peripheral nerve sheath tumours were randomized to receive intraoperative injection of interleukin-2 or placebo into the wound bed. Results There were no significant differences in any variable investigated or in median survival between the two groups. The median recurrence free interval was 874 days (range 48–2141 days), The recurrence-free interval and overall survival time were significantly longer in dogs that undergone the primary surgery by a specialist-certified surgeon compared to a referring veterinarian regardless of whether additional adjunct therapy was given. Conclusion Overall, marginal excision of peripheral nerve sheath tumours in dogs resulted in a long survival time, but adjuvant treatment with recombinant human interleukin-2 (rhIL-2) did not provide a survival advantage.
Collapse
|
11
|
Triozzi PL, Tuthill RJ, Borden E. Re-inventing intratumoral immunotherapy for melanoma. Immunotherapy 2011; 3:653-71. [DOI: 10.2217/imt.11.46] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Immunotherapeutics have been applied intratumorally to manage accessible lesions and to induce systemic immunity in malignant melanoma. Intratumoral bacillus Calmette-Guérin (BCG) has been used for 40 years, and intratumoral BCG, IL-2, IFN-α and imiquimod are recommended as treatment options for patients with in-transit melanoma metastases. Regression of cutaneous metastases can be achieved. Subcutaneous metastases are more refractory, and regression of uninjected, visceral metastases is infrequent. Other microbial products, cytokines, chemicals, immune cells, antibody and viral and plasmid vectors expressing immunologically active molecules have been tested. Antitumor activity has not been demonstrated to be superior to that of intratumoral BCG. There are few controlled trials, and whether survival is impacted with any approach has not yet been established. The immunotherapeutics applied and the intratumoral administration procedure itself can activate responses that are immune inhibitory. More rigorous clinical testing and improved understanding and modulation of regulatory immune responses are necessary.
Collapse
Affiliation(s)
- Pierre L Triozzi
- Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/R40, Cleveland, OH 44195, USA
| | - Ralph J Tuthill
- Melanoma Program, The Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Ernest Borden
- Melanoma Program, The Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Stewart RJE, Jacobs JJL, Koten JW, Den Otter W. Local interleukin-2 therapy of bovine vulval papilloma and carcinoma complex. Vet Rec 2010; 167:825-6. [PMID: 21262632 DOI: 10.1136/vr.c5766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- R J E Stewart
- National Association of Dairy Farmers, Commercial Farmers Union, Adylinn Road/Marlborough Drive, Marlborough, Harare, Zimbabwe
| | | | | | | |
Collapse
|
13
|
Weide B, Derhovanessian E, Pflugfelder A, Eigentler TK, Radny P, Zelba H, Pföhler C, Pawelec G, Garbe C. High response rate after intratumoral treatment with interleukin-2. Cancer 2010; 116:4139-46. [DOI: 10.1002/cncr.25156] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Hamanishi J, Mandai M, Matsumura N, Baba T, Yamaguchi K, Fujii S, Konishi I. Activated local immunity by CC chemokine ligand 19-transduced embryonic endothelial progenitor cells suppresses metastasis of murine ovarian cancer. Stem Cells 2010; 28:164-73. [PMID: 19911426 DOI: 10.1002/stem.256] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although tumor microenvironments play a key role in successful tumor immunotherapy, effective manipulation of local immunity is difficult because of the lack of an appropriate target system. It is well known that bone marrow-derived endothelial progenitor cells (EPCs) are actively recruited during tumor angiogenesis. Using this feature, we attempted to establish a novel therapeutic modality that targets tumor vessels of multiple metastases using embryonic endothelial progenitor cells (eEPCs) transduced with an immune-activating gene. The eEPCs were retrovirally transduced with the mouse CC chemokine ligand 19 (CCL19) gene, a lymphocyte-migrating chemokine. The mouse ovarian cancer cell line OV2944-HM-1 (HM-1) was inoculated subcutaneously into B6C3F1 mice, along with CCL19-tranduced eEPCs (eEPC-CCL19), resulting in immunologic activity and tumor-inhibitory effects. In this model, eEPC-CCL19 showed tumor repression accompanied by increased tumor-infiltrating CD8+ lymphocytes compared with the control group. In contrast, no tumor repression was observed when the same experiment was done in immunodeficient (SCID) mice, suggesting a crucial role of T-cell function in this system. Next, we established a lung metastasis model by injecting HM-1 cells or B16 melanoma cells via the tail vein. Subsequent intravenous injection of eEPC-CCL19 leads to a decrease in the number of lung metastasis and prolonged survival. Antitumor effects were also observed in a peritoneal dissemination model using HM-1. These results suggest that systemic delivery of an immune-activating signal using EPCs can alter the tumor immune microenvironment and lead to a therapeutic effect, which may provide a novel strategy for targeting multiple metastases of various malignancies.
Collapse
Affiliation(s)
- Junzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Shaker MA, Younes HM. Interleukin-2: Evaluation of Routes of Administration and Current Delivery Systems in Cancer Therapy. J Pharm Sci 2009; 98:2268-98. [DOI: 10.1002/jps.21596] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Jacobs JJL, Characiejus D, Scheper RJ, Stewart RJE, Tan JFV, Tomova R, Krastev Z, Den Otter W. The Amiens Strategy: small phase III trials for clinically relevant progress in the war against cancer. J Clin Oncol 2009; 27:3062-3; author reply 3063-4. [PMID: 19398563 DOI: 10.1200/jco.2009.22.5359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Celikoglu F, Celikoglu SI, Goldberg EP. Bronchoscopic intratumoral chemotherapy of lung cancer. Lung Cancer 2008; 61:1-12. [DOI: 10.1016/j.lungcan.2008.03.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 10/17/2007] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
|
18
|
Den Otter W, Jacobs JJL, Battermann JJ, Hordijk GJ, Krastev Z, Moiseeva EV, Stewart RJE, Ziekman PGPM, Koten JW. Local therapy of cancer with free IL-2. Cancer Immunol Immunother 2008; 57:931-50. [PMID: 18256831 PMCID: PMC2335290 DOI: 10.1007/s00262-008-0455-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/14/2008] [Indexed: 12/30/2022]
Abstract
This is a position paper about the therapeutic effects of locally applied free IL-2 in the treatment of cancer. Local therapy: IL-2 therapy of cancer was originally introduced as a systemic therapy. This therapy led to about 20% objective responses. Systemic therapy however was very toxic due to the vascular leakage syndrome. Nevertheless, this treatment was a break-through in cancer immunotherapy and stimulated some interesting questions: Supposing that the mechanism of IL-2 treatment is both proliferation and tumoricidal activity of the tumor infiltrating cells, then locally applied IL-2 should result in a much higher local IL-2 concentration than systemic IL-2 application. Consequently a greater beneficial effect could be expected after local IL-2 application (peritumoral = juxtatumoral, intratumoral, intra-arterial, intracavitary, or intratracheal = inhalation). Free IL-2: Many groups have tried to prepare a more effective IL-2 formulation than free IL-2. Examples are slow release systems, insertion of the IL-2 gene into a tumor cell causing prolonged IL-2 release. However, logistically free IL-2 is much easier to apply; hence we concentrated in this review and in most of our experiments on the use of free IL-2. Local therapy with free IL-2 may be effective against transplanted tumors in experimental animals, and against various spontaneous carcinomas, sarcomas, and melanoma in veterinary and human cancer patients. It may induce rejection of very large, metastasized tumor loads, for instance advanced clinical tumors. The effects of even a single IL-2 application may be impressive. Not each tumor or tumor type is sensitive to local IL-2 application. For instance transplanted EL4 lymphoma or TLX9 lymphoma were not sensitive in our hands. Also the extent of sensitivity differs: In Bovine Ocular Squamous Cell Carcinoma (BOSCC) often a complete regression is obtained, whereas with the Bovine Vulval Papilloma and Carcinoma Complex (BVPCC) mainly stable disease is attained. Analysis of the results of local IL-2 therapy in 288 cases of cancer in human patients shows that there were 27% Complete Regressions (CR), 23% Partial Regressions (PR), 18% Stable Disease (SD), and 32% Progressive Disease (PD). In all tumors analyzed, local IL-2 therapy was more effective than systemic IL-2 treatment. Intratumoral IL-2 applications are more effective than peritumoral application or application at a distant site. Tumor regression induced by intratumoral IL-2 application may be a fast process (requiring about a week) in the case of a highly vascular tumor since IL-2 induces vascular leakage/edema and consequently massive tumor necrosis. The latter then stimulates an immune response. In less vascular tumors or less vascular tumor sites, regression may require 9-20 months; this regression is mainly caused by a cytotoxic leukocyte reaction. Hence the disadvantageous vascular leakage syndrome complicating systemic treatment is however advantageous in local treatment, since local edema may initiate tumor necrosis. Thus the therapeutic effect of local IL-2 treatment is not primarily based on tumor immunity, but tumor immunity seems to be useful as a secondary component of the IL-2 induced local processes. If local IL-2 is combined with surgery, radiotherapy or local chemotherapy the therapeutic effect is usually greater than with either therapy alone. Hence local free IL-2 application can be recommended as an addition to standard treatment protocols. Local treatment with free IL-2 is straightforward and can readily be applied even during surgical interventions. Local IL-2 treatment is usually without serious side effects and besides minor complaints it is generally well supported. Only small quantities of IL-2 are required. Hence the therapy is relatively cheap. A single IL-2 application of 4.5 million U IL-2 costs about 70 Euros. Thus combined local treatment may offer an alternative in those circumstances when more expensive forms of treatment are not available, for instance in resource poor countries.
Collapse
Affiliation(s)
- Willem Den Otter
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jahnke A, Hirschberger J, Fischer C, Brill T, Köstlin R, Plank C, Küchenhoff H, Krieger S, Kamenica K, Schillinger U. Intra-tumoral gene delivery of feIL-2, feIFN-gamma and feGM-CSF using magnetofection as a neoadjuvant treatment option for feline fibrosarcomas: a phase-I study. ACTA ACUST UNITED AC 2008; 54:599-606. [PMID: 18045346 DOI: 10.1111/j.1439-0442.2007.01002.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Despite aggressive pre- or postoperative treatment, feline fibrosarcomas have a high relapse rate. In this study, a new treatment option based on immune stimulation by intra-tumoral delivery of three feline cytokine genes was performed. The objective of this phase-I dose-escalation study was to determine a safe dose for further evaluation in a subsequent phase-II trial. Twenty-five client-owned cats with clinical diagnosis of fibrosarcoma - primary tumours as well as recurrences - entered the study. Four increasing doses of plasmids coding for feIL-2, feIFN-gamma or feGM-CSF, respectively, were previously defined. In groups I, II, III and IV these doses were 15, 50, 150 and 450 microg per plasmid and a corresponding amount of magnetic nanoparticles. Two preoperative intra-tumoral injections of the magnetic DNA solution were followed by magnetofection. A group of four control cats received only surgical treatment. Side effects were registered and graded according to the VCOG-CTCAE scale and correlated to treatment. Statistical analyses included one-way anova, post hoc and Kruskal-Wallis tests. ELISA tests detecting plasma feIFN-gamma and plasma feGM-CSF were performed. One cat out of group IV (450 microg per plasmid) showed adverse events probably related to gene delivery. As these side effects were self-limiting and occurred only in one of eight cats in group IV, this dose was determined to be well tolerable. Altogether six cats developed local recurrences during a 1-year observation period. Four of these cats had been treated with dose IV. Regarding these observations, a subsequent phase-II trial including a representative amount of cats should be tested for the efficacy of dose IV as well as dose III.
Collapse
Affiliation(s)
- A Jahnke
- Clinic of Small Animal Medicine, Ludwig Maximilian University Munich, Veterinärstr. 13, 80539 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee JJ, Chen PB, Yang SH, Cheng CH, Chueh LL, Pang VF, Hsiao M, Lin CT. Effect of the VP3 gene of chicken anemia virus on canine mammary tumor cells. Am J Vet Res 2007; 68:411-22. [PMID: 17397298 DOI: 10.2460/ajvr.68.4.411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the antitumor effect of the chicken anemia virus (CAV) VP3 gene in canine mammary tumor (CMT) cells. SAMPLE POPULATIONS: Established primary canine cell lines that originated from epithelial cells of resected CMTs and nonneoplastic mammary gland epithelial (MGE) cells. PROCEDURES Expression vectors and lentiviral vectors encoding the VP3 gene from a Taiwan-Ilan isolate of CAV were used to deliver the VP3 gene into CMT cells and nonneoplastic MGE cells. Ectopic gene expression and the pro-apoptotic effect of the VP3 gene on CMT and nonneoplastic MGE cells by either transfection or viral infection were evaluated via immunofluorescence microscopy, western blot analysis, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling analysis. RESULTS Overexpression of the enhanced green fluorescent protein-VP3 fusion protein was detected predominantly in the nuclei of CMT cells. In contrast, the VP3 protein was localized to the cytoplasm of nonneoplastic MGE cells. Among the fusion protein-expressing CMT cells, most underwent characteristic changes of apoptosis, whereas apoptosis was not detected in fusion protein-expressing, nonneoplastic MGE cells. Induction of apoptosis by VP3 gene overexpression in CMT cells was associated with the caspase-9-, but not the caspase-8-, mediated apoptosis pathway. CONCLUSIONS AND CLINICAL RELEVANCE These data indicate that the VP3 gene of the CAV induces apoptosis in malignant CMT cells, but not in nonneoplastic canine MGE cells. On the basis of such tumor cell-specific killing, the VP3 gene may be a promising agent for the treatment of malignant mammary gland tumors in dogs.
Collapse
Affiliation(s)
- Jih-Jong Lee
- Department and Graduate Institute of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei 106, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hiemstra C, Zhong Z, Van Tomme SR, van Steenbergen MJ, Jacobs JJL, Otter WD, Hennink WE, Feijen J. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)–poly(lactide) hydrogels. J Control Release 2007; 119:320-7. [PMID: 17475360 DOI: 10.1016/j.jconrel.2007.03.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/16/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
Previous studies have shown that stereocomplexed hydrogels are rapidly formed in situ by mixing aqueous solutions of eight-arm poly(ethylene glycol)-poly(L-lactide) and poly(ethylene glycol)-poly(D-lactide) star block copolymers (denoted as PEG-(PLLA)(8) and PEG-(PDLA)(8), respectively). In this study, in vitro and in vivo protein release from stereocomplexed hydrogels was investigated. These hydrogels were fully degradable under physiological conditions. Proteins could be easily loaded into the stereocomplexed hydrogels by mixing protein containing aqueous solutions of PEG-(PLLA)(8) and PEG-(PDLA)(8) copolymers. The release of the relatively small protein lysozyme (d(h)=4.1 nm) followed first order kinetics and approximately 90% was released in 10 days. Bacteria lysis experiments showed that the released lysozyme had retained its activity. The relatively large protein IgG (d(h)=10.7 nm) could be released from stereocomplexed hydrogels with nearly zero order kinetics, wherein up to 50% was released in 16 days. The in vitro release of the therapeutic protein rhIL-2 from stereocomplexed hydrogels also showed nearly zero order kinetics, wherein up to 45% was released in 7 days. The therapeutic efficacy of stereocomplexed hydrogels loaded with 1x10(6) IU of rhIL-2 was studied using SL2-lymphoma bearing DBA/2 mice. The PEG-(PLLA)(8)/PEG-(PDLA)(8)/rhIL-2 mixture could be easily injected intratumorally. The released rhIL-2 was therapeutically effective as the tumor size was reduced and the cure rate was 30%, whereas no therapeutic effect was achieved when no rhIL-2 was given. However, the cure rate of rhIL-2 loaded stereocomplexed hydrogels was lower, though not statistically significant, compared to that of a single injection with 1x10(6) IU of free rhIL-2 at the start of the therapy (cure rate=70%). The therapeutic effect of rhIL-2 loaded stereocomplexed hydrogels was retarded for approximately 1-2 weeks compared to free rhIL-2, most likely due to a slow, constant release of rhIL-2 from the hydrogels.
Collapse
Affiliation(s)
- Christine Hiemstra
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, Institute for Biomedical Technology, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Imai H, Saio M, Nonaka K, Suwa T, Umemura N, Ouyang GF, Nakagawa J, Tomita H, Osada S, Sugiyama Y, Adachi Y, Takami T. Depletion of CD4+CD25+ regulatory T cells enhances interleukin-2-induced antitumor immunity in a mouse model of colon adenocarcinoma. Cancer Sci 2007; 98:416-23. [PMID: 17270031 PMCID: PMC11158133 DOI: 10.1111/j.1349-7006.2006.00385.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Interleukin 2 (IL)-2 induces antitumor immunity and clinical responses in melanoma and renal cell carcinoma. However, IL-2 also increases the number of CD4(+)CD25(+) regulatory T (Treg) cells that suppress antitumor immune responses. The aim of the present study was to elucidate the effect of depletion of Treg cells on IL-2-induced antitumor immunity. IL-2-transfected mouse colon adenocarcinoma (MC38/IL-2) cells were implanted subcutaneously or intrahepatically into male C57BL/6 mice, and tumor growth and the proportion of tumor-infiltrating lymphocytes with Treg-cell depletion in response to treatment with anti-CD25 monoclonal antibody (PC61) were determined. In mice treated with phosphate-buffered saline, 40-60% of MC38/IL-2 tumors were rejected. In contrast, all MC38/IL-2 tumors were rejected in mice treated with PC61. The number of tumor-infiltrating CD8(+) T cells in mice treated with PC61 was approximately twice that in mice treated with PBS. The numbers of tumor-infiltrating CD4(+) and natural killer cells were also increased significantly. To test the antimetastatic effects of IL-2 treatment in combination with Treg-cell depletion, human recombinant IL-2 (rIL-2) and PC61 were administered to mice implanted with MC38/mock cells in the spleen, and hepatic metastasis was investigated. The average liver weight in mice treated with rIL-2 plus PC61 was 1.04 +/- 0.03 g, less than that in mice treated with rIL-2 (2.04 +/- 0.51 g) or PC61 alone (1.81 +/- 0.38 g). We conclude that IL-2-induced antitumor immunity is enhanced by Treg-cell depletion and is due to expansion of the tumor-infiltrating cytotoxic CD8(+) T-cell population.
Collapse
Affiliation(s)
- Hisashi Imai
- Department of Oncologic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido Gifu, 501-1194, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
L'Eplattenier HF, van Nimwegen SA, van Sluijs FJ, Kirpensteijn J. Partial Prostatectomy Using Nd:YAG Laser for Management of Canine Prostate Carcinoma. Vet Surg 2006; 35:406-11. [PMID: 16756624 DOI: 10.1111/j.1532-950x.2006.00165.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To report a technique for partial prostatectomy by laser dissection and to evaluate outcome and complications in dogs with prostate carcinoma (PCA). STUDY DESIGN Experimental and clinical case series. ANIMALS Four normal dogs and 8 dogs with PCA. METHODS Subcapsular partial prostatectomy, sparing the urethra and the dorsal aspect of the prostatic capsule, using Nd:YAG laser dissection to remove the prostatic parenchyma and control hemorrhage was performed in 4 normal dogs and subsequently in 8 dogs with histologically confirmed PCA. Additional treatment of PCA dogs included local application of interleukin-2 and systemic administration of meloxicam. Prostate size, complications, and survival time were recorded. Laser-associated thermal damage to surrounding tissue was evaluated by histology. RESULTS In normal dogs, no damage to the dorsal prostatic capsule or urethra was detected. In PCA dogs, median survival was 103 days (range, 5-239 days). Three dogs died from complications within 16 days, whereas 5 (median survival, 183 days; range, 91-239 days) had improvement or resolution of clinical signs. Urinary incontinence did not occur. CONCLUSION Laser assisted subcapsular partial prostatectomy can be performed in dogs with PCA without development of postoperative incontinence. CLINICAL RELEVANCE Subcapsular partial prostatectomy is a potential palliative treatment for PCA in dogs and may lead to the resolution of clinical signs for several months.
Collapse
Affiliation(s)
- Henry F L'Eplattenier
- Department of Clinical Sciences of Companion Animals, University of Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Krastev Z, Koltchakov V, Tomova R, Deredjian S, Alexiev A, Popov D, Tomov B, Koten JW, Jacobs J, Den Otter W. Locoregional IL-2 low dose applications for gastrointestinal tumors. World J Gastroenterol 2005; 11:5525-9. [PMID: 16222748 PMCID: PMC4320365 DOI: 10.3748/wjg.v11.i35.5525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the feasibility of local interleukin 2 (IL-2) in patients with different forms of abdominal cancer. This required experimentation with the time interval between IL-2 applications and the methods of application.
METHODS: Sixteen patients with stages III and IV of gastrointestinal malignancies (primary or metastatic) who were admitted to our Department of Gastroenterology were treated with locoregionally applied IL-2 in low doses.
RESULTS: No major problems applying locoregional IL-2 were encountered. In 6 out of 16 patients, a modest but clinically worthwhile improvement was obtained. Adverse effects were minimal. The therapeutic scheme was well tolerated, even in patients in a poor condition.
CONCLUSION: This study demonstrates the feasibility of low dose locoregional IL-2 application in advanced abdominal cancer. Local IL-2 therapy gives only negligible adverse effects. The results suggest that it is important to apply intratumorally. Local IL-2 may be given adjunct to standard therapeutic regimes and does not imply complex surgical interventions. These initial results are encouraging.
Collapse
|
25
|
Jacobs JJL, Hordijk GJ, Jürgenliemk-Schulz IM, Terhaard CHJ, Koten JW, Battermann JJ, Den Otter W. Treatment of stage III-IV nasopharyngeal carcinomas by external beam irradiation and local low doses of IL-2. Cancer Immunol Immunother 2005; 54:792-8. [PMID: 15627211 PMCID: PMC11034237 DOI: 10.1007/s00262-004-0641-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 10/23/2004] [Indexed: 02/06/2023]
Abstract
The therapeutic effect of intratumoural application of Interleukin-2 (IL-2) was studied in patients with stage III-IV nasopharyngeal carcinoma (NPC) that received radiotherapy. Patients with stage III-IV NPC receiving a standard treatment of 7,000 cGy external beam irradiation have a mean disease-free survival of about 1.5 years. In this paper, we describe ten of these patients who were treated with additional peritumoural and intratumoural injections with 3 x 10(4) U IL-2 on 5 days in weeks 2, 4, and 6 of the 7-weeks' irradiation period. This combined treatment group was compared with a historical group of patients treated with standard irradiation alone. Local IL-2 therapy showed a marked clinical and statistical significant improvement of disease-free survival. After 5 years, 63% of the IL-2 treated patients were disease-free versus 8% of the control patients. These results suggest that the therapeutic results of radiotherapy can be significantly improved by combining it with local IL-2 treatment. To our knowledge, this is the first clinical report showing that local IL-2 therapy is effective against an infiltrative and locally metastasizing tumour in human patients.
Collapse
Affiliation(s)
- John J. L. Jacobs
- Department of Pathobiology, Utrecht Medical Centre, Yalelaan 1, P.O.Box 80.158, 3508 TD Utrecht, The Netherlands
| | - Gerrit J. Hordijk
- Department of Otolaryngology, Utrecht Medical Centre, Utrecht, The Netherlands
| | | | - Chris H. J. Terhaard
- Department of Radiation Oncology, Utrecht Medical Centre, Utrecht, The Netherlands
| | - Jan W. Koten
- Department of Pathobiology, Utrecht Medical Centre, Yalelaan 1, P.O.Box 80.158, 3508 TD Utrecht, The Netherlands
| | - Jan J. Battermann
- Department of Radiation Oncology, Utrecht Medical Centre, Utrecht, The Netherlands
| | - Willem Den Otter
- Department of Pathobiology, Utrecht Medical Centre, Yalelaan 1, P.O.Box 80.158, 3508 TD Utrecht, The Netherlands
| |
Collapse
|