1
|
Zhang B, Qi R. The dual-function of HSP70 in immune response and tumor immunity: from molecular regulation to therapeutic innovations. Front Immunol 2025; 16:1587414. [PMID: 40297581 PMCID: PMC12034705 DOI: 10.3389/fimmu.2025.1587414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Heat shock protein 70 (HSP70) is a highly conserved molecular chaperone that plays a core role in assisting protein folding and maintaining cellular homeostasis. In recent years, studies have revealed that HSP70 has dual functions in immune regulation: on the one hand, it enhances immune responses by activating non-specific immunity (such as Toll-like receptor 2/4 (TLR2/4) signaling pathways) and specific immunity (such as cross-presentation of antigens, T helper 1 (Th1)/T helper 17 (Th17) differentiation); on the other hand, it inhibits excessive immune reactions by inducing the differentiation of regulatory T cells (Treg) and promoting the secretion of anti-inflammatory factors [such as interleukin-10 (IL-10)]. In cancer, the duality of HSP70 is also very prominent: it can drive tumor progression through pathways such as inhibiting apoptosis, promoting angiogenesis, and tumor metastasis, and it can also inhibit tumor growth by activating immunogenic cell death (ICD), enhancing antigen presentation, and natural killer (NK) cell activity. This review aims to systematically analyze the immune regulatory functions of HSP70, focusing on its dual regulatory mechanisms and the "double-edged sword" nature of HSP70 in tumor immunotherapy and the innovative nature of targeted strategies, as well as providing a theoretical basis and research directions for precision medicine in the treatment strategies of related diseases.
Collapse
Affiliation(s)
- Beining Zhang
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education, and National Health Commission; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| |
Collapse
|
2
|
Hu B, Liu G, Zhao K, Zhang G. Diversity of extracellular HSP70 in cancer: advancing from a molecular biomarker to a novel therapeutic target. Front Oncol 2024; 14:1388999. [PMID: 38646439 PMCID: PMC11026673 DOI: 10.3389/fonc.2024.1388999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Heat shock protein 70 (HSP70) is a highly conserved protein functioning as a "molecular chaperone", which is integral to protein folding and maturation. In addition to its high expression within cells upon stressful challenges, HSP70 can be translocated to the cell membrane or released from cells in free form or within extracellular vesicles (EVs). Such trafficking of HSP70 is also present in cancer cells, as HSP70 is overexpressed in various types of patient samples across a range of common malignancies, signifying that extracellular HSP70 (eHSP70) can serve as a tumor biomarker. eHSP70 is involved in a broad range of cancer-related events, including cell proliferation and apoptosis, extracellular matrix (ECM) remodeling, epithelial-mesenchymal transition (EMT), angiogenesis, and immune response. eHSP70 can also induce cancer cell resistance to various treatments, such as chemotherapy, radiotherapy, and anti-programmed death-1 (PD-1) immunotherapy. Though the role of eHSP70 in tumors is contradictory, characterized by both pro-tumor and anti-tumor effects, eHSP70 serves as a promising target in cancer treatment. In this review, we comprehensively summarized the current knowledge about the role of eHSP70 in cancer progression and treatment resistance and discussed the feasibility of eHSP70 as a cancer biomarker and therapeutic target.
Collapse
Affiliation(s)
- Binbin Hu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guihong Liu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kejia Zhao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu, Sichuan, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Zhao K, Zhou G, Liu Y, Zhang J, Chen Y, Liu L, Zhang G. HSP70 Family in Cancer: Signaling Mechanisms and Therapeutic Advances. Biomolecules 2023; 13:601. [PMID: 37189349 PMCID: PMC10136146 DOI: 10.3390/biom13040601] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The 70 kDa heat shock proteins (HSP70s) are a group of highly conserved and inducible heat shock proteins. One of the main functions of HSP70s is to act as molecular chaperones that are involved in a large variety of cellular protein folding and remodeling processes. HSP70s are found to be over-expressed and may serve as prognostic markers in many types of cancers. HSP70s are also involved in most of the molecular processes of cancer hallmarks as well as the growth and survival of cancer cells. In fact, many effects of HSP70s on cancer cells are not only related to their chaperone activities but rather to their roles in regulating cancer cell signaling. Therefore, a number of drugs directly or indirectly targeting HSP70s, and their co-chaperones have been developed aiming to treat cancer. In this review, we summarized HSP70-related cancer signaling pathways and corresponding key proteins regulated by the family of HSP70s. In addition, we also summarized various treatment approaches and progress of anti-tumor therapy based on targeting HSP70 family proteins.
Collapse
Affiliation(s)
- Kejia Zhao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Guanyu Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong 999077, China
| | - Jian Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Yaohui Chen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong 999077, China
| |
Collapse
|
4
|
Głowska-Ciemny J, Szymański M, Kuszerska A, Malewski Z, von Kaisenberg C, Kocyłowski R. The Role of Alpha-Fetoprotein (AFP) in Contemporary Oncology: The Path from a Diagnostic Biomarker to an Anticancer Drug. Int J Mol Sci 2023; 24:ijms24032539. [PMID: 36768863 PMCID: PMC9917199 DOI: 10.3390/ijms24032539] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
This article presents contemporary opinion on the role of alpha-fetoprotein in oncologic diagnostics and treatment. This role stretches far beyond the already known one-that of the biomarker of hepatocellular carcinoma. The turn of the 20th and 21st centuries saw a significant increase in knowledge about the fundamental role of AFP in the neoplastic processes, and in the induction of features of malignance and drug resistance of hepatocellular carcinoma. The impact of AFP on the creation of an immunosuppressive environment for the developing tumor was identified, giving rise to attempts at immunotherapy. The paper presents current and prospective therapies using AFP and its derivatives and the gene therapy options. We directed our attention to both the benefits and risks associated with the use of AFP in oncologic therapy.
Collapse
Affiliation(s)
- Joanna Głowska-Ciemny
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
- Correspondence: (J.G.-C.); (R.K.)
| | - Marcin Szymański
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
| | - Agata Kuszerska
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
| | - Zbyszko Malewski
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznań, Poland
| | - Constantin von Kaisenberg
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Rafał Kocyłowski
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
- Correspondence: (J.G.-C.); (R.K.)
| |
Collapse
|
5
|
Hu X, Chen R, Wei Q, Xu X. The Landscape Of Alpha Fetoprotein In Hepatocellular Carcinoma: Where Are We? Int J Biol Sci 2022; 18:536-551. [PMID: 35002508 PMCID: PMC8741863 DOI: 10.7150/ijbs.64537] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and has been acknowledged as a leading cause of death among cirrhosis patients. Difficulties in early diagnosis and heterogeneity are obstacles to effective treatment, especially for advanced HCC. Liver transplantation (LT) is considered the best therapy for HCC. Although many biomarkers are being proposed, alpha-fetoprotein (AFP), which was identified over 60 years ago, remains the most utilized. Recently, much hope has been placed in the immunogenicity of AFP to develop novel therapies, such as AFP vaccines and AFP-specific adoptive T-cell transfer (ACT). This review summarizes the performance of AFP as a biomarker for HCC diagnosis and prognosis, as well as its correlation with molecular classes. In addition, the role of AFP in LT is also described. Finally, we highlight the mechanism and application prospects of two immune therapies (AFP vaccine and ACT) for HCC. In general, our review points out the prevalence of AFP in HCC, accompanied by some controversies and novel directions for future research.
Collapse
Affiliation(s)
- Xin Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Zhejiang University Cancer Center, Hangzhou, 310058, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Zhejiang University Cancer Center, Hangzhou, 310058, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
6
|
Lin B, Dong X, Wang Q, Li W, Zhu M, Li M. AFP-Inhibiting Fragments for Drug Delivery: The Promise and Challenges of Targeting Therapeutics to Cancers. Front Cell Dev Biol 2021; 9:635476. [PMID: 33898423 PMCID: PMC8061420 DOI: 10.3389/fcell.2021.635476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
Alpha fetoprotein (AFP) plays a key role in stimulating the growth, metastasis and drug resistance of hepatocellular carcinoma (HCC). AFP is an important target molecule in the treatment of HCC. The application of AFP-derived peptides, AFP fragments and recombinant AFP (AFP-inhibiting fragments, AIFs) to inhibit the binding of AFP to intracellular proteins or its receptors is the basis of a new strategy for the treatment of HCC and other cancers. In addition, AIFs can be combined with drugs and delivery agents to target treatments to cancer. AIFs conjugated to anticancer drugs not only destroy cancer cells with these drugs but also activate immune cells to kill cancer cells. Furthermore, AIF delivery of drugs relieves immunosuppression and enhances chemotherapy effects. The synergism of immunotherapy and targeted chemotherapy is expected to play an important role in enhancing the treatment effect of patients with cancer. AIF delivery of drugs will be an available strategy for the targeted treatment of cancer in the future.
Collapse
Affiliation(s)
- Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Qiujiao Wang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Institution of Tumor, Hainan Medical College, Haikou, China
| |
Collapse
|
7
|
Heinrich S, Castven D, Galle PR, Marquardt JU. Translational Considerations to Improve Response and Overcome Therapy Resistance in Immunotherapy for Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:E2495. [PMID: 32899197 PMCID: PMC7563159 DOI: 10.3390/cancers12092495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Over the last decade, progress in systemic therapies significantly improved the outcome of primary liver cancer. More recently, precision oncological and immunotherapeutic approaches became the focus of intense scientific and clinical research. Herein, preclinical studies showed promising results with high response rates and improvement of overall survival. However, results of phase III clinical trials revealed that only a subfraction of hepatocellular carcinoma (HCC) patients respond to therapy and display only moderate objective response rates. Further, predictive molecular characteristics are largely missing. In consequence, suitable trial design has emerged as a crucial factor for the success of a novel compound. In addition, increasing knowledge from translational studies indicate the importance of targeting the tumor immune environment to overcome resistance to immunotherapy. Thus, combination of different immunotherapies with other treatment modalities including antibodies, tyrosine kinase inhibitors, or local therapies is highly promising. However, the mechanisms of failure to respond to immunotherapy in liver cancer are still not fully understood and the modulation of the immune system and cellular tumor composition is particularly relevant in this context. Altogether, it is increasingly clear that tailoring of immunotherapy and individualized approaches are required to improve efficacy and patient outcome in liver cancer. This review provides an overview of the current knowledge as well as translational considerations to overcome therapy resistance in immunotherapy of primary liver cancer.
Collapse
Affiliation(s)
- Sophia Heinrich
- Laboratory of Human Carcinogenesis, Liver Carcinogenesis Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center, 55131 Mainz, Germany;
| | - Darko Castven
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center, 55131 Mainz, Germany;
- Lichtenberg Research Group for Molecular Hepatocarcinogenesis, Department of Medicine I, University Medical Center Schleswig Holstein, 23538 Luebeck, Germany
| | - Peter R. Galle
- Department of Medicine I, University Medical Center, 55131 Mainz, Germany
| | - Jens U. Marquardt
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center, 55131 Mainz, Germany;
- Lichtenberg Research Group for Molecular Hepatocarcinogenesis, Department of Medicine I, University Medical Center Schleswig Holstein, 23538 Luebeck, Germany
| |
Collapse
|
8
|
Plasmodium parasite as an effective hepatocellular carcinoma antigen glypican-3 delivery vector. Oncotarget 2018; 8:24785-24796. [PMID: 28445973 PMCID: PMC5421888 DOI: 10.18632/oncotarget.15806] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/15/2017] [Indexed: 02/07/2023] Open
Abstract
We have previously demonstrated that malaria parasite infection has an anti-tumor effect in a mouse model. This research aimed to investigate the possibility of using Plasmodium parasite as a novel vaccine vector for hepatocellular carcinoma (HCC) immunotherapy. We constructed a Plasmodium yoelii 17XNL strain (P.y) expressing murine glypican-3 (GPC3) protein (P.y-GPC3), and examined its therapeutic potency in a murine Hepa1-6-induced hepatoma model that highly expressed GPC3 protein. The prerequisites for invoking a CD8+ T cell response were assessed after P.y-based immunization, which included obviously increased concentrations of T helper cell type 1 (Th1)-associated cytokines, such as IL-2, IFN-γ and TNF-α, in serum and preferential expansion of the CD8α+ dendritic cell (DC) subset with higher expression of CD80 and CD86 molecules. Compared with uninfected and wild-type P.y-infected mice, a significant GPC3-specific cytotoxic T lymphocyte (CTL) response was detected in P.y-GPC3 vaccinated mice. Furthermore, P.y-GPC3-based vaccination dramatically inhibited Hepa1-6-induced tumor growth in the implanted HCC and prolonged the survival of tumor-bearing mice. We concluded that a Plasmodium-based vector is highly efficient in inducing tumor antigen-specific T cell-mediated immunity and protection against tumor cells. More broadly, this strategy supported our hypothesis that Plasmodium parasites, as novel therapeutic antigen vectors, may be applicable to tumor immunotherapy for patients with HCC.
Collapse
|
9
|
Wang X, Wang Q. Alpha-Fetoprotein and Hepatocellular Carcinoma Immunity. Can J Gastroenterol Hepatol 2018; 2018:9049252. [PMID: 29805966 PMCID: PMC5899840 DOI: 10.1155/2018/9049252] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/25/2018] [Accepted: 03/18/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocarcinoma is one of the most prevalent gastroenterological cancers in the world with less effective therapy. As an oncofetal antigen and diagnostic marker for liver cancer, alpha-fetoprotein (AFP) possesses a variety of biological functions. Except for its diagnosis in liver cancer, AFP has become a target for liver cancer immunotherapy. Although the immunogenicity of AFP is weak and it could induce the immune escapes through inhibiting the function of dendritic cells, natural killer cells, and T lymphocytes, AFP has attracted more attention in liver cancer immunotherapy. By in vitro modification, the immunogenicity and immune response of AFP could be enhanced. AFP-modified immune cell vaccine or peptide vaccine has displayed the specific antitumor immunity against AFP-positive tumor cells and laid a better foundation for the immunotherapy of liver cancer.
Collapse
Affiliation(s)
- Xiaoping Wang
- Laboratory of Molecular Biology & Pathology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Qiaoxia Wang
- Department of Infectious Diseases, Xi'an Central Hospital, Xi'an, Shaanxi 710000, China
| |
Collapse
|
10
|
Procaccio L, Schirripa M, Fassan M, Vecchione L, Bergamo F, Prete AA, Intini R, Manai C, Dadduzio V, Boscolo A, Zagonel V, Lonardi S. Immunotherapy in Gastrointestinal Cancers. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4346576. [PMID: 28758114 PMCID: PMC5512095 DOI: 10.1155/2017/4346576] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
Abstract
Gastrointestinal cancers represent a major public health problem worldwide. Immunotherapeutic strategies are currently under investigation in this setting and preliminary results of ongoing trials adopting checkpoint inhibitors are striking. Indeed, although a poor immunogenicity for GI has been reported, a strong biological rationale supports the development of immunotherapy in this field. The clinical and translational research on immunotherapy for the treatment of GI cancers started firstly with the identification of immune-related mechanisms possibly relevant to GI tumours and secondly with the development of immunotherapy-based agents in clinical trials. In the present review a general overview is firstly provided followed by a focus on major findings on gastric, colorectal, and hepatocellular carcinomas. Finally, pathological and molecular perspectives are provided since many efforts are ongoing in order to identify possible predictive biomarkers and to improve patients' selection. Many issues are still unsolved in this field; however, we strongly believe that immunotherapy might positively affect the natural history of a subgroup of GI cancer patients improving outcome and the overall quality of life.
Collapse
Affiliation(s)
- Letizia Procaccio
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Marta Schirripa
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padova, Padova, Italy
| | - Loredana Vecchione
- Division of Molecular Carcinogenesis, Cancer Genomics Center Netherlands, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Francesca Bergamo
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Alessandra Anna Prete
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I University Hospital, Rome, Italy
| | - Rossana Intini
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Chiara Manai
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I University Hospital, Rome, Italy
| | - Vincenzo Dadduzio
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
- Department of Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alice Boscolo
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Vittorina Zagonel
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Sara Lonardi
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| |
Collapse
|
11
|
Wang XP, Wang QX, Lin HP, Xu B, Zhao Q, Chen K. Recombinant heat shock protein 70 functional peptide and alpha-fetoprotein epitope peptide vaccine elicits specific anti-tumor immunity. Oncotarget 2016; 7:71274-71284. [PMID: 27713135 PMCID: PMC5342077 DOI: 10.18632/oncotarget.12464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022] Open
Abstract
Alpha-fetoprotein (AFP) is a marker of hepatocellular carcinoma (HCC) and serves as a target for immunotherapy. However, current treatments targeting AFP are not reproducible and do not provide complete protection against cancer. This issue may be solved by developing novel therapeutic vaccines with enhanced immunogenicity that could effectively target AFP-expressing tumors. In this study, we report construction of a therapeutic peptide vaccine by linking heat shock protein 70 (HSP70) functional peptide to the AFP epitope to obtain HSP70-P/AFP-P. This novel peptide was administered into BALB/c mice to observe the effects. Quantification of AFP-specific CD8 + T cells that secrete IFN-γ in these mice via ELISPOT revealed the synergistic effects of HSP70-P/AFP-P with increased numbers of AFP-specific CD8 + T cells. Similarly, ELISA analysis showed increased granzyme B and perforin released by natural killer cells. Moreover, in vitro cytotoxic T-lymphocyte assays and in vivo tumor preventive experiments clearly showed the higher antitumor effects of HSP70-P/AFP-P against AFP-expressing tumors. These results show that treatment of BALB/c mice with HSP70-P/AFP-P induced stronger T-cells responses and improved protective immunity. Our data suggest that HSP70-P/AFP-P may be used as a therapeutic approach in the treatment of AFP-expressing cancers.
Collapse
Affiliation(s)
- Xiao-Ping Wang
- Laboratory of Molecular Biology & Pathology, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Qiao-Xia Wang
- Department of Infectious Disease, Xi'an Central Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, PR China
| | - Huan-Ping Lin
- Laboratory of Molecular Biology & Pathology, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Bing Xu
- Laboratory of Molecular Biology & Pathology, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Qian Zhao
- Laboratory of Molecular Biology & Pathology, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Kun Chen
- Laboratory of Molecular Biology & Pathology, Shaanxi University of Chinese Medicine, Xianyang, PR China
| |
Collapse
|
12
|
Sun Z, Zhu Y, Xia J, Sawakami T, Kokudo N, Zhang N. Status of and prospects for cancer vaccines against hepatocellular carcinoma in clinical trials. Biosci Trends 2015; 10:85-91. [PMID: 26522694 DOI: 10.5582/bst.2015.01128] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Current therapies to treat advanced hepatocellular carcinoma (HCC) are not satisfactory because of the high rate of recurrence after treatment and because of severe complications after surgery. Cancer vaccines have been studied for decades to achieve effective, micro-invasive, long-lasting anti-tumor action. Cancer vaccines are designed to promote tumor-specific immune responses and increase specific cytotoxic CD8-positive T cells. This review summarizes 16 phase I clinical trials of cancer vaccines against HCC that have been conducted over the past 10 years. According to those trials, the Alpha fetoprotein (AFP), Glypican-3 (GPC3), and Multidrug resistance-associated protein 3 (MRP3) vaccines were well tolerated and safe. Some early clinical trials have shown that vaccination resulted in a large number of T cells activated by a specific tumor-associated antigen in the circulation, but clinical outcomes were not satisfactory. This may be because targets for immunosuppressive agents have yet to be clearly determined in HCC. Therapeutic regimens that combine activative agents and suppressive agents may profoundly improve clinical outcomes for patients with HCC in the future.
Collapse
Affiliation(s)
- Zhipeng Sun
- Beijing Key Lab of Therapeutic Cancer Vaccines, Peking University Ninth School of Clinical Medicine (Cancer Center, BeijingShijitan Hospital, Capital Medical University)
| | | | | | | | | | | |
Collapse
|
13
|
Hong YP, Li ZD, Prasoon P, Zhang Q. Immunotherapy for hepatocellular carcinoma: From basic research to clinical use. World J Hepatol 2015; 7:980-992. [PMID: 25954480 PMCID: PMC4419101 DOI: 10.4254/wjh.v7.i7.980] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/10/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer worldwide with a poor prognosis. Few strategies have been proven efficient in HCC treatment, particularly for those patients not indicated for curative resection or transplantation. Immunotherapy has been developed for decades for cancer control and is attaining more attention as a result of encouraging outcomes of new strategies such as chimeric antigen receptor T cells and immune checkpoint blockade. Right at the front of the new era of immunotherapy, we review the immunotherapy in HCC treatment, from basic research to clinical trials, covering anything from immunomodulators, tumor vaccines and adoptive immunotherapy. The mechanisms, efficacy and safety as well as the approach particulars are unveiled to assist readers to gain a concise but extensive understanding of immunotherapy of HCC.
Collapse
|
14
|
He Y, Hong Y, Mizejewski GJ. Engineering α-fetoprotein-based gene vaccines to prevent and treat hepatocellular carcinoma: review and future prospects. Immunotherapy 2015; 6:725-36. [PMID: 25041030 DOI: 10.2217/imt.14.46] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Activation of a patient's immune system offers an attractive approach to prevent and treat hepatocellular carcinoma (HCC). However, the antitumor efficacy of current HCC vaccines was weak owing to insufficient immune activation of targeting self/tumor antigens. We recently found that epitope-optimized α-fetoprotein effectively activated CD8 T cells and generated potent antitumor effects in the carcinogen-induced autochthonous HCC mouse model. We predict that the same antigen engineering approach of epitope-optimization will enable us to develop effective human vaccines to prevent HCC recurrence after liver resection. The engineered human HCC vaccines may also allow us to identify high-affinity T-cell receptors and antibodies that can be used to reprogram T cells to treat HCC tumors via adoptive transfer.
Collapse
Affiliation(s)
- Yukai He
- Georgia Regents University Cancer Center, Cancer Immunology, Inflammation & Tolerance Program, Augusta, GA 30907, USA
| | | | | |
Collapse
|
15
|
Hong Y, Peng Y, Guo ZS, Guevara-Patino J, Pang J, Butterfield LH, Mivechi N, Munn DH, Bartlett DL, He Y. Epitope-optimized alpha-fetoprotein genetic vaccines prevent carcinogen-induced murine autochthonous hepatocellular carcinoma. Hepatology 2014; 59:1448-58. [PMID: 24122861 PMCID: PMC4151349 DOI: 10.1002/hep.26893] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/25/2013] [Accepted: 10/06/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Immunization with effective cancer vaccines can offer a much needed adjuvant therapy to fill the treatment gap after liver resection to prevent relapse of hepatocellular carcinoma (HCC). However, current HCC cancer vaccines are mostly based on native shared-self/tumor antigens that are only able to induce weak immune responses. In this study we investigated whether the HCC-associated self/tumor antigen of alpha-fetoprotein (AFP) could be engineered to create an effective vaccine to break immune tolerance and potently activate CD8 T cells to prevent clinically relevant carcinogen-induced autochthonous HCC in mice. We found that the approach of computer-guided methodical epitope-optimization created a highly immunogenic AFP and that immunization with lentivector expressing the epitope-optimized AFP, but not wild-type AFP, potently activated CD8 T cells. Critically, the activated CD8 T cells not only cross-recognized short synthetic wild-type AFP peptides, but also recognized and killed tumor cells expressing wild-type AFP protein. Immunization with lentivector expressing optimized AFP, but not native AFP, completely protected mice from tumor challenge and reduced the incidence of carcinogen-induced autochthonous HCC. In addition, prime-boost immunization with the optimized AFP significantly increased the frequency of AFP-specific memory CD8 T cells in the liver that were highly effective against emerging HCC tumor cells, further enhancing the tumor prevention of carcinogen-induced autochthonous HCC. CONCLUSIONS Epitope-optimization is required to break immune tolerance and potently activate AFP-specific CD8 T cells, generating effective antitumor effect to prevent clinically relevant carcinogen-induced autochthonous HCC in mice. Our study provides a practical roadmap to develop effective human HCC vaccines that may result in an improved outcome compared to the current HCC vaccines based on wild-type AFP.
Collapse
Affiliation(s)
- Yuan Hong
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA
| | - Yibing Peng
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA
| | - Z. Sheng Guo
- Department of Surgery and University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Jose Guevara-Patino
- Depart of Surgery, Cardinal Bernardin Cancer Center, Loyola University, Maywood, IL
| | - Junfeng Pang
- Department of Radiology and Molecular Chaperone Program, Georgia Regents University Cancer Center, Augusta, GA
| | - Lisa H. Butterfield
- Department of Medicine, Surgery, and Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Nahid Mivechi
- Department of Radiology and Molecular Chaperone Program, Georgia Regents University Cancer Center, Augusta, GA
| | - David H Munn
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA,Department of Pediatrics, Medical College of Georgia, Augusta, GA
| | - David L Bartlett
- Department of Surgery and University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Yukai He
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA,Department of Medicine, Medical College of Georgia, Augusta, GA
| |
Collapse
|
16
|
Wang XP, Wang QX, Lin HP, Wang YL, Yang Y. Glycoprotein 96 and α-fetoprotein cross-linking complexes elicited specific antitumor immunity. Cancer Biother Radiopharm 2013; 28:406-14. [PMID: 23484810 DOI: 10.1089/cbr.2012.1404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant gastroenterological cancers over the world. α-fetoprotein (AFP) is an oncofetal protein produced during HCC development that could generate weaker and less reproducible antitumor protection, and it may serve as a target for immunotherapy. Therefore, it is imperative to enhance its immunogenicity and develop therapeutic vaccines to eliminate AFP-expressing tumors. In this study, by way of glutaraldehyde cross-linking, we constructed a potential therapeutic protein vaccine, glycoprotein 96 (gp96)/AFP. Our results demonstrated that AFP and gp96 synergistically exhibited significant increase in AFP-specific CD8⁺ T-cell responses and impressive cytotoxic antitumor effect against AFP-expressing tumors. Priming mice with the reconstructed vaccine, we elicited robust strong protective immunity. Our study suggests that tumor vaccine by cross-linking tumor antigen and gp96 is a promising approach to cancer therapy.
Collapse
Affiliation(s)
- Xiao-Ping Wang
- Laboratory of Molecular Biology & Pathology, Shaanxi University of Chinese Medicine, Xianyang, China.
| | | | | | | | | |
Collapse
|
17
|
Wang X, Wang Q, Lin H, Li S, Sun L, Yang Y. HSP72 and gp96 in gastroenterological cancers. Clin Chim Acta 2012; 417:73-9. [PMID: 23266770 DOI: 10.1016/j.cca.2012.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 11/30/2022]
Abstract
Heat shock protein 72 (HSP72) and glycoprotein 96 (gp96) are highly expressed in cancer tissues. Recent studies indicate the possible roles of HSP72 and gp96 in the development and progression of gastrointestinal carcinomas but detailed mechanisms are still ambiguous. Human esophageal cancer, gastric cancer, colon cancer and liver cancer are common gastrointestinal malignant carcinomas in the world. The studies indicated that there existed a significant correlation between the expression of HSP72, gp96 and the development and progression of digestive carcinomas. HSP72 and gp96 expression were significantly associated with the presence of tumor infiltration, lymph node and remote metastasis. Interestingly, studies have found that HSP72 chaperoned alpha-fetoprotein (AFP), HBx in hepatocellular carcinoma, and CD44 in colonic carcinomas. The further researches demonstrated that HSP72-AFP or gp96-AFP recombined vaccine could elicit specific anti-tumor immunity. The high-level expression of HSP72 and gp96 may be not only used as diagnostic or prognostic markers for gastrointestinal carcinomas but also as better immunotherapeutic vaccines in the cancers.
Collapse
Affiliation(s)
- Xiaoping Wang
- Key Laboratory of Molecular Biology and Pathology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China.
| | | | | | | | | | | |
Collapse
|
18
|
Morozov AV, Morozov VA, Astakhova TM, Timofeev AV, Karpov VL. DNA vaccine encoding α-fetoprotein fused with the ornithine decarboxylase degradation signal significantly suppresses the hepatocellular carcinoma growth in mice. Mol Biol 2012. [DOI: 10.1134/s0026893312030089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Gao J, Luo SM, Peng ML, Deng T. Enhanced immunity against hepatoma induced by dendritic cells pulsed with Hsp70-H22 peptide complexes and CD40L. J Cancer Res Clin Oncol 2012; 138:917-26. [PMID: 22327301 DOI: 10.1007/s00432-012-1166-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/25/2012] [Indexed: 11/24/2022]
Abstract
PURPOSE Dendritic cell (DC)-based cancer vaccines have become an attractive antitumour therapeutic approach. However, clinical application of current DC-based cancer vaccines has been limited by their ineffectiveness. Heat shock protein 70 from Mycobacterium tuberculosis (TBhsp70) is known to have a potent adjuvant capability to induce maturation of DCs and thus acts as an alternative ligand to the CD40 ligand (CD40L) on T cells to induce a T-cell response. The aim of this study is to investigate whether the combination of TBhsp70-H22 tumour-peptide complexes and CD40L might improve the antitumour efficacy for development of therapeutic DC-based vaccines against hepatoma. METHODS The CD40, CD80, CD86 and HLA-DR expression on DCs pulsed with TBhsp70-H22 tumour-peptide complexes and soluble CD40L was studied by flow cytometric analysis, and T-helper type 1 cytokine secretion, such as IL-12p70 secretion, was tested by ELISA. The H22-specific cytotoxic T-lymphocytes (CTLs) were detected by a (51)Cr-release assay, and the in vivo antitumour immunity against hepatoma was measured by utilising H22-tumour-bearing mice after therapeutic administration. RESULTS Up-regulation of CD40, CD80, CD86 and HLA-DR expression on DCs pulsed with TBhsp70-H22 tumour-peptide complexes and CD40L was found, which stimulated a high level of T-helper type 1 cytokine secretion, such as IL-12p70, and resulted in the induction of H22-specific CTLs. The therapeutic administration of DCs pulsed in vitro with TBhsp70-H22 tumour-peptide complexes and CD40L significantly reduced the progression of H22 tumours in mice compared with DC-Hsp70-H22 peptide complexes or DC-CD40L alone. CONCLUSIONS Our findings demonstrate that DCs pulsed with Hsp70-H22-peptide complexes and CD40L enhance the antitumour immunity against hepatoma, which provides a novel immunotherapeutic approach against cancer.
Collapse
Affiliation(s)
- Jian Gao
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| | | | | | | |
Collapse
|
20
|
Wang XP, Lin HP, Wang QX, Gu Y. Specific Antitumor Immunity Induced by Cross-linking Complex Heat Shock Protein 72 and Alpha-fetoprotein. Cancer Biother Radiopharm 2012; 27:189-97. [DOI: 10.1089/cbr.2011.1135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Xiao-Ping Wang
- Laboratory of Molecular Pathology, Shaanxi University of Chinese Medicine, Xianyang, China
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Huan-Ping Lin
- Laboratory of Molecular Pathology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qiao-Xia Wang
- Laboratory of Molecular Pathology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yan Gu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
21
|
Pakravan N, Soudi S, Hassan ZM. N-terminally fusion of Her2/neu to HSP70 decreases efficiency of Her2/neu DNA vaccine. Cell Stress Chaperones 2010; 15:631-8. [PMID: 20224916 PMCID: PMC3006617 DOI: 10.1007/s12192-010-0175-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/27/2010] [Accepted: 01/29/2010] [Indexed: 01/23/2023] Open
Abstract
DNA vaccines consisted of tumor-associated antigen (TAA) are well suited for immunotherapy against tumor. The construct can contain TAA fused to an appropriate molecule (biologic adjuvant) to improve the efficacy of anti-tumor immune response. Heat shock protein 70 (HSP70) has been shown to be an excellent candidate, capable of cross-priming TAA by antigen presenting cells leading to a robust T-cell response. However, the relationship between strong T-cell responses and tumor rejection is not always mutually exclusive, for which TAA loss or activation of suppressive mechanisms may occur. HSP70 fused to downstream of Her2/neu as DNA vaccine has been shown to be efficient against Her2-expressing tumors. In this study, we examined if N-terminally fusion of Her2/neu to HSP70 could also improve efficiency of Her2/neu DNA vaccine. Therefore, mice with an established Her2/neu expressing tumor were immunized with DNA vaccine consisting of extracellular and trans-membrane domain (EC+TM) of rat Her2/neu alone or N-terminally fused to HSP70 and immune response was evaluated. Administration of rat Her2/neu led to partial control of tumor progression. Surprisingly, fusion of HSP70 to N-terminal of rat Her2/neu led to tumor progression. Our result proposes that fusion direction of biologic adjuvant is an important consideration when Her2/neu is used.
Collapse
Affiliation(s)
- Nafiseh Pakravan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Ale-Ahmad Avenue, P.O. Box 14115-331, Tehran, Iran.
| | | | | |
Collapse
|
22
|
Li H, Yu Y, Sun L, Wang H, Zhang P, Wei H, Wang L, Wan M, Cao Z, Wang Y, Chen Y, Dong B, Wang L. Vaccination with B16 tumor cell lysate plus recombinant Mycobacterium tuberculosis Hsp70 induces antimelanoma effect in mice. Cancer Biother Radiopharm 2010; 25:185-91. [PMID: 20423232 DOI: 10.1089/cbr.2009.0716] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tumor cell lysate (TCL) has an advantage of containing an extensive repertoire of tumor antigens but requires proper adjuvants to enhance its immunogenicity when used as an efficient tumor vaccine. Mycobacterium tuberculosis-derived heat shock protein 70 (TBHsp70) has been shown to assist crosspresentation of exogenously applied tumor antigens and activate innate immunity against tumor cells. In this study, TBHsp70-B16TCL, a preparation generated by mixing recombinant TBHsp70 and TCL of B16 melanoma cells directly, was tested for its immunogenicity as a tumor vaccine. The TBHsp70-B16TCL induced a significant inhibition of the growth and metastasis of B16 melanoma in mice and prolonged the survival of B16 melanoma-bearing mice. The inhibition was correlated with the specific immune responses induced by TBHsp70-B16TCL. The data suggest that recombinant TBHsp70-adjuvanted TCL might be developed into effective tumor vaccines for melanomas and possibly for other tumors.
Collapse
Affiliation(s)
- He Li
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Han L, Wang W, Fang Y, Feng Z, Liao S, Li W, Li Y, Li C, Maitituoheti M, Dong H, Lai Z, Gao Q, Xi L, Wu M, Wang D, Zhou J, Meng L, Wang S, Ma D. Soluble B and T lymphocyte attenuator possesses antitumor effects and facilitates heat shock protein 70 vaccine-triggered antitumor immunity against a murine TC-1 cervical cancer model in vivo. THE JOURNAL OF IMMUNOLOGY 2010; 183:7842-50. [PMID: 19923459 DOI: 10.4049/jimmunol.0804379] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
B and T lymphocyte attenuator (BTLA)-herpesvirus entry mediator (HVEM) signaling coinhibitory pathway is believed to impair antitumor immune competences. An intriguing unresolved question is whether blockade of BTLA-HVEM guides an effective therapeutic tool against established tumors. To address this issue, we constructed a eukaryotic expression plasmid (psBTLA) that expressed the extracellular domain of murine BTLA (soluble form of BTLA), which could bind HVEM, the ligand of BTLA, and block BTLA-HVEM interactions. The data in this study showed that treatment by injection of psBTLA resulted in down-regulation of IL-10 and TGF-beta and promotion of dendritic cell function by increasing the expression of B7-1 and IL-12, but the adaptive antitumor immune responses achieved by psBTLA administration alone were limited and could not eradicate the tumor effectively. Next, we evaluated the immunotherapeutic efficacy and mechanism of combination therapy of heat shock protein 70 (HSP70) vaccine/psBTLA by using murine TC-1 cervical cancer mice as an ectopic tumor model. Our in vivo studies revealed that treatment with HSP70 vaccine alone did not lead to satisfactory tumor growth inhibition, whereas cotreatment with psBTLA significantly improved antitumor immunity and compensated the deficiency of HSP70 vaccine by increasing the expression of Th1 cytokines, IL-2, and IFN-gamma and decreasing transcription levels of IL-10, TGF-beta, and Foxp3 in the tumor microenvironment. Taken together, our findings indicate that blocking the BTLA-HVEM interaction with sBTLA enhances antitumor efficacy and results in a significant synergistic effect against existent tumor cells in vivo when combined with the HSP70 vaccine.
Collapse
Affiliation(s)
- Lingfei Han
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wan Y, Ma X, Li X, Yi J. A novel immunotherapy to hepatocellular carcinoma: CD40-activated B lymphocytes transfected with AFPmRNA. Med Hypotheses 2009; 73:835-7. [PMID: 19632790 DOI: 10.1016/j.mehy.2008.12.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 12/02/2008] [Accepted: 12/07/2008] [Indexed: 01/08/2023]
Abstract
Alpha-fetoprotein (AFP) is overexpressed in the majority of hepatocellular carcinomas (HCCs), and thus may offer attractive target for immunotherapy against this neoplasm. CD40 ligand (CD40L) is the major signal that induces B cells to efficiently present antigen to T cells, and CD40-activated B (CD40-B) lymphocyte cells may boost cytotoxic T lymphocytes (CTLs) when they are pulsed with tumour antigens. CTL is considered to be a promising therapeutic means for the treatment of cancers. Here, we intend to build a plasmid pGEM4Z/AFP/A64 and to prepare AFPmRNA, then separate B lymphocyte cells. These CD40-B cells are pulsed with AFPmRNA, and they may boost robust T-cell responses, but more importantly, they also may prime naive T-cell responses against hepatocarcinoma. These CD40-B cells will be a powerful source of APCs generated by simple and reliable technology that may be applied to antigen responses, immune treatment for cancer, vaccination approaches, and ex vivo T-cell expansion for adoptive therapy. AFPmRNA-transfected B cells may represent a broadly applicable vaccine strategy to induce potentially therapeutic CTL responses against AFP-positive target cells in HCC. Vaccine strategies such as these may contribute to the effective future treatment of HCC.
Collapse
Affiliation(s)
- Yafeng Wan
- Department of General surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | | | | | | |
Collapse
|
25
|
Rinaldi M, Iurescia S, Fioretti D, Ponzetto A, Carloni G. Strategies for Successful Vaccination against Hepatocellular Carcinoma. Int J Immunopathol Pharmacol 2009; 22:269-77. [DOI: 10.1177/039463200902200203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Current therapies against hepatocellular carcinoma (HCC) are not curative in the majority of patients. In the past, immunotherapy approaches aimed to non-specifically stimulate immune response were quite ineffective. New treatments based on stimulation of specific anti-tumor immune response are currently proposed and appear more promising. Tumor-specific antigens identified in HCC demonstrated immunogenicity both in preclinical and clinical trials. Effectiveness in animal studies raised interest in the clinical applicability of non-specific adoptive immunotherapy that prevented disease recurrence after tumor resection. Dendritic cell (DC)-based tumor vaccines achieved encouraging results, and cellular vaccines based on DCs have already entered clinical trials. Preventive and therapeutic DNA vaccination have been proposed, all based on tumor-associated antigens (TAAs), either modified or not, an example being alpha-fetoprotein (AFP). The concomitant expression of co-stimulatory molecules and cytokines was used to increase tumor immunogenicity. Syngeneic or nude mice models indicated that immunotherapy for HCC could stimulate an anti-tumor T-cell response leading to clinical benefit devoid of significant toxicity. The use of DNA-based vaccination raises exciting possibilities in preventing HCC in high-risk individuals such as those with cirrhosis. Novel immunotherapy strategies may contribute in the future to prevention and treatment of HCC.
Collapse
Affiliation(s)
| | | | | | - A. Ponzetto
- Department of Internal Medicine, University of Turin, Italy
| | | |
Collapse
|