1
|
Song J, Zhang Y, Zhou C, Zhan J, Cheng X, Huang H, Mao S, Zong Z. The dawn of a new Era: mRNA vaccines in colorectal cancer immunotherapy. Int Immunopharmacol 2024; 132:112037. [PMID: 38599100 DOI: 10.1016/j.intimp.2024.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Colorectal cancer (CRC) is a typical cancer that accounts for 10% of all new cancer cases annually and nearly 10% of all cancer deaths. Despite significant progress in current classical interventions for CRC, these traditional strategies could be invasive and with numerous adverse effects. The poor prognosis of CRC patients highlights the evident and pressing need for more efficient and targeted treatment. Novel strategies regarding mRNA vaccines for anti-tumor therapy have also been well-developed since the successful application for the prevention of COVID-19. mRNA vaccine technology won the 2023 Nobel Prize in Physiology or Medicine, signaling a new direction in human anti-cancer treatment: mRNA medicine. As a promising new immunotherapy in CRC and other multiple cancer treatments, the mRNA vaccine has higher specificity, better efficacy, and fewer side effects than traditional strategies. The present review outlines the basics of mRNA vaccines and their advantages over other vaccines and informs an available strategy for developing efficient mRNA vaccines for CRC precise treatment. In the future, more exploration of mRNA vaccines for CRC shall be attached, fostering innovation to address existing limitations.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chulin Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; The Second Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianhao Zhan
- Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
2
|
Pulliam T, Jani S, Jing L, Ryu H, Jojic A, Shasha C, Zhang J, Kulikauskas R, Church C, Garnett-Benson C, Gooley T, Chapuis A, Paulson K, Smith KN, Pardoll DM, Newell EW, Koelle DM, Topalian SL, Nghiem P. Circulating cancer-specific CD8 T cell frequency is associated with response to PD-1 blockade in Merkel cell carcinoma. Cell Rep Med 2024; 5:101412. [PMID: 38340723 PMCID: PMC10897614 DOI: 10.1016/j.xcrm.2024.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/01/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Understanding cancer immunobiology has been hampered by difficulty identifying cancer-specific T cells. Merkel cell polyomavirus (MCPyV) causes most Merkel cell carcinomas (MCCs). All patients with virus-driven MCC express MCPyV oncoproteins, facilitating identification of virus (cancer)-specific T cells. We studied MCPyV-specific T cells from 27 patients with MCC using MCPyV peptide-HLA-I multimers, 26-color flow cytometry, single-cell transcriptomics, and T cell receptor (TCR) sequencing. In a prospective clinical trial, higher circulating MCPyV-specific CD8 T cell frequency before anti-PD-1 treatment was strongly associated with 2-year recurrence-free survival (75% if detectable, 0% if undetectable, p = 0.0018; ClinicalTrial.gov: NCT02488759). Intratumorally, such T cells were typically present, but their frequency did not significantly associate with response. Circulating MCPyV-specific CD8 T cells had increased stem/memory and decreased exhaustion signatures relative to their intratumoral counterparts. These results suggest that cancer-specific CD8 T cells in the blood may play a role in anti-PD-1 responses. Thus, strategies that augment their number or mobilize them into tumors could improve outcomes.
Collapse
Affiliation(s)
- Thomas Pulliam
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Saumya Jani
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Heeju Ryu
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ana Jojic
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Carolyn Shasha
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jiajia Zhang
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rima Kulikauskas
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Candice Church
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | | | - Ted Gooley
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aude Chapuis
- Department of Medicine, University of Washington, Seattle, WA 98109, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kelly Paulson
- Paul G. Allen Research Center, Providence-Swedish Cancer Institute, Seattle, WA 98104, USA; Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Kellie N Smith
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Evan W Newell
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA; Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David M Koelle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA; Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98109, USA; Benaroya Research Institute, Seattle, WA 98101, USA
| | - Suzanne L Topalian
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
3
|
Jiang C, Li J, Zhang W, Zhuang Z, Liu G, Hong W, Li B, Zhang X, Chao CC. Potential association factors for developing effective peptide-based cancer vaccines. Front Immunol 2022; 13:931612. [PMID: 35967400 PMCID: PMC9364268 DOI: 10.3389/fimmu.2022.931612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Peptide-based cancer vaccines have been shown to boost immune systems to kill tumor cells in cancer patients. However, designing an effective T cell epitope peptide-based cancer vaccine still remains a challenge and is a major hurdle for the application of cancer vaccines. In this study, we constructed for the first time a library of peptide-based cancer vaccines and their clinical attributes, named CancerVaccine (https://peptidecancervaccine.weebly.com/). To investigate the association factors that influence the effectiveness of cancer vaccines, these peptide-based cancer vaccines were classified into high (HCR) and low (LCR) clinical responses based on their clinical efficacy. Our study highlights that modified peptides derived from artificially modified proteins are suitable as cancer vaccines, especially for melanoma. It may be possible to advance cancer vaccines by screening for HLA class II affinity peptides may be an effective therapeutic strategy. In addition, the treatment regimen has the potential to influence the clinical response of a cancer vaccine, and Montanide ISA-51 might be an effective adjuvant. Finally, we constructed a high sensitivity and specificity machine learning model to assist in designing peptide-based cancer vaccines capable of providing high clinical responses. Together, our findings illustrate that a high clinical response following peptide-based cancer vaccination is correlated with the right type of peptide, the appropriate adjuvant, and a matched HLA allele, as well as an appropriate treatment regimen. This study would allow for enhanced development of cancer vaccines.
Collapse
Affiliation(s)
- Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Chongming Jiang, ; Cheng-Chi Chao,
| | - Jianrong Li
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Wei Zhang
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | | | - Geng Liu
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Wei Hong
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Bo Li
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Xiuqing Zhang
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Cheng-Chi Chao
- Department of Pipeline Development, Biomap, Inc, San Francisco, CA, United States
- *Correspondence: Chongming Jiang, ; Cheng-Chi Chao,
| |
Collapse
|
4
|
Wagner S, Mullins CS, Linnebacher M. Colorectal cancer vaccines: Tumor-associated antigens vs neoantigens. World J Gastroenterol 2018; 24:5418-5432. [PMID: 30622371 PMCID: PMC6319136 DOI: 10.3748/wjg.v24.i48.5418] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
Therapeutic options for the treatment of colorectal cancer (CRC) are diverse but still not always satisfying. Recent success of immune checkpoint inhibition treatment for the subgroup of CRC patients suffering from hyper-mutated tumors suggests a permanent role of immune therapy in the clinical management of CRC. Substantial improvement in treatment outcome could be achieved by development of efficient patient-individual CRC vaccination strategies. This mini-review summarizes the current knowledge on the two general classes of targets: tumor-associated antigens (TAAs) and tumor-specific antigens. TAAs like carcinoembryonic antigen and melanoma associated antigen are present in and shared by a subgroup of patients and a variety of clinical studies examined the efficacy of different TAA-derived peptide vaccines. Combinations of several TAAs as the next step and the development of personalized TAA-based peptide vaccines are discussed. Improvements of peptide-based vaccines achievable by adjuvants and immune-stimulatory chemotherapeutics are highlighted. Finally, we sum up clinical studies using tumor-specific antigens - in CRC almost exclusively neoantigens - which revealed promising results; particularly no severe adverse events were reported so far. Critical progress for clinical outcomes can be expected by individualizing neoantigen-based peptide vaccines and combining them with immune-stimulatory chemotherapeutics and immune checkpoint inhibitors. In light of these data and latest developments, truly personalized neoantigen-based peptide vaccines can be expected to fulfill modern precision medicine's requirements and will manifest as treatment pillar for routine clinical management of CRC.
Collapse
Affiliation(s)
- Sandra Wagner
- Section of Molecular Oncology and Immunotherapy, General Surgery, University Medical Center, Rostock D-18057, Germany
| | - Christina S Mullins
- Section of Molecular Oncology and Immunotherapy, General Surgery, University Medical Center, Rostock D-18057, Germany
| | - Michael Linnebacher
- Section of Molecular Oncology and Immunotherapy, General Surgery, University Medical Center, Rostock D-18057, Germany
| |
Collapse
|
5
|
Smith HA, Rekoske BT, McNeel DG. DNA vaccines encoding altered peptide ligands for SSX2 enhance epitope-specific CD8+ T-cell immune responses. Vaccine 2014; 32:1707-15. [PMID: 24492013 DOI: 10.1016/j.vaccine.2014.01.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/19/2013] [Accepted: 01/18/2014] [Indexed: 12/22/2022]
Abstract
Plasmid DNA serves as a simple and easily modifiable form of antigen delivery for vaccines. The USDA approval of DNA vaccines for several non-human diseases underscores the potential of this type of antigen delivery method as a cost-effective approach for the treatment or prevention of human diseases, including cancer. However, while DNA vaccines have demonstrated safety and immunological effect in early phase clinical trials, they have not consistently elicited robust anti-tumor responses. Hence many recent efforts have sought to increase the immunological efficacy of DNA vaccines, and we have specifically evaluated several target antigens encoded by DNA vaccine as treatments for human prostate cancer. In particular, we have focused on SSX2 as one potential target antigen, given its frequent expression in metastatic prostate cancer. We have previously identified two peptides, p41-49 and p103-111, as HLA-A2-restricted SSX2-specific epitopes. In the present study we sought to determine whether the efficacy of a DNA vaccine could be enhanced by an altered peptide ligand (APL) strategy wherein modifications were made to anchor residues of these epitopes to enhance or ablate their binding to HLA-A2. A DNA vaccine encoding APL modified to increase epitope binding elicited robust peptide-specific CD8+ T cells producing Th1 cytokines specific for each epitope. Ablation of one epitope in a DNA vaccine did not enhance immune responses to the other epitope. These results demonstrate that APL encoded by a DNA vaccine can be used to elicit increased numbers of antigen-specific T cells specific for multiple epitopes simultaneously, and suggest this could be a general approach to improve the immunogenicity of DNA vaccines encoding tumor antigens.
Collapse
Affiliation(s)
- Heath A Smith
- Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Brian T Rekoske
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
6
|
Weichselbaumer M, Willmann M, Reifinger M, Singer J, Bajna E, Sobanov Y, Mechtcherikova D, Selzer E, Thalhammer JG, Kammerer R, Jensen-Jarolim E. Phylogenetic discordance of human and canine carcinoembryonic antigen (CEA, CEACAM) families, but striking identity of the CEA receptors will impact comparative oncology studies. PLOS CURRENTS 2011; 3:RRN1223. [PMID: 21436956 PMCID: PMC3059814 DOI: 10.1371/currents.rrn1223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/14/2011] [Indexed: 12/20/2022]
Abstract
Comparative oncology aims at speeding up developments for both, human and companion animal cancer patients. Following this line, carcinoembryonic antigen (CEA, CEACAM5) could be a therapeutic target not only for human but also for canine (Canis lupus familiaris; dog) patients. CEACAM5 interacts with CEA-receptor (CEAR) in the cytoplasm of human cancer cells. Our aim was, therefore, to phylogenetically verify the antigenic relationship of CEACAM molecules and CEAR in human and canine cancer. Anti-human CEACAM5 antibody Col-1, previously being applied for cancer diagnosis in dogs, immunohistochemically reacted to 23 out of 30 canine mammary cancer samples. In immunoblot analyses Col-1 specifically detected human CEACAM5 at 180 kDa in human colon cancer cells HT29, and the canine antigen at 60, 120, or 180 kDa in CF33 and CF41 mammary carcinoma cells as well as in spontaneous mammary tumors. While according to phylogenicity canine CEACAM1 molecules should be most closely related to human CEACAM5, Col-1 did not react with canine CEACAM1, -23, -24, -25, -28 or -30 transfected to canine TLM-1 cells. By flow cytometry the Col-1 target molecule was localized intracellularly in canine CF33 and CF41 cells, in contrast to membranous and cytoplasmic expression of human CEACAM5 in HT29. Col-1 incubation had neither effect on canine nor human cancer cell proliferation. Yet, Col-1 treatment decreased AKT-phosphorylation in canine CF33 cells possibly suggestive of anti-apoptotic function, whereas Col-1 increased AKT-phosphorylation in human HT29 cells. We report further a 99% amino acid similarity of human and canine CEA receptor (CEAR) within the phylogenetic tree. CEAR could be detected in four canine cancer cell lines by immunoblot and intracellularly in 10 out of 10 mammary cancer specimens from dog by immunohistochemistry. Whether the specific canine Col-1 target molecule may as functional analogue to human CEACAM5 act as ligand to canine CEAR, remains to be defined. This study demonstrates the limitations of comparative oncology due to the complex functional evolution of the different CEACAM molecules in humans versus dogs. In contrast, CEAR may be a comprehensive interspecies target for novel cancer therapeutics.
Collapse
Affiliation(s)
- Marlene Weichselbaumer
- Clinic for Internal Medicine & Infectious Diseases, Dept. 4, University of Veterinary Medicine Vienna and Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chemokine expression from oncolytic vaccinia virus enhances vaccine therapies of cancer. Mol Ther 2011; 19:650-7. [PMID: 21266959 DOI: 10.1038/mt.2010.312] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumor vaccines can induce robust immune responses targeting tumor antigens in the clinic, but antitumor effects have been disappointing. One reason for this is ineffective tumor infiltration of the cytotoxic T lymphocytes (CTLs) produced. Oncolytic viruses are capable of selectively replicating within tumor tissue and can induce a strong immune response. We therefore sought to determine whether these therapies could be rationally combined such that modulation of the tumor microenvironment by the viral therapy could help direct beneficial CTLs induced by the vaccine. As such, we examined the effects of expressing chemokines from oncolytic vaccinia virus, including CCL5 (RANTES), whose receptors are expressed on CTLs induced by different vaccines, including type-1-polarized dendritic cells (DC1). vvCCL5, an oncolytic vaccinia virus expressing CCL5, induced chemotaxis of lymphocyte populations in vitro and in vivo, and displayed improved safety in vivo. Interestingly, enhanced therapeutic benefits with vvCCL5 in vivo correlated with increased persistence of the viral agent exclusively within the tumor. When tumor-bearing mice were both vaccinated with DC1 and treated with vvCCL5 a further significant enhancement in tumor response was achieved which correlated with increased levels of tumor infiltrating lymphocytes. This approach therefore represents a novel means of combining biological therapies for cancer treatment.
Collapse
|
8
|
Wang X, Zhou K, Huang L, Yan Y. Induction of anti-tumor immunity by dendritic cells pulsed with an endoplasmic reticulum retrieval signal modifies heparanase epitope in mice. Cytotherapy 2010; 12:735-42. [DOI: 10.3109/14653241003615156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Gnjatic S, Cao Y, Reichelt U, Yekebas EF, Nölker C, Marx AH, Erbersdobler A, Nishikawa H, Hildebrandt Y, Bartels K, Horn C, Stahl T, Gout I, Filonenko V, Ling KL, Cerundolo V, Luetkens T, Ritter G, Friedrichs K, Leuwer R, Hegewisch-Becker S, Izbicki JR, Bokemeyer C, Old LJ, Atanackovic D. NY-CO-58/KIF2C is overexpressed in a variety of solid tumors and induces frequent T cell responses in patients with colorectal cancer. Int J Cancer 2010; 127:381-93. [PMID: 19937794 DOI: 10.1002/ijc.25058] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NY-CO-58/KIF2C has been identified as a tumor antigen by screening antibody responses in patients with colorectal cancer. However, expression had not consequently been examined, and nothing was known about its ability to induce spontaneous T cell responses, which have been suggested to play a role in the development of colorectal cancer. We analyzed 5 colorectal cancer cell lines, and tumor samples and adjacent healthy tissues from 176 patients with epithelial cancers for the expression of NY-CO-58/KIF2C by RT-PCR and Western Blot. T cell responses of 43 colorectal cancer patients and 35 healthy donors were evaluated by ELISpot following stimulation with 30mer peptides or full-length protein. All cell lines and tumor samples from colorectal cancer patients expressed NY-CO-58/KIF2C on the protein and RNA level, and expression levels correlated strongly with Ki-67 expression (r = 0.69; p = 0.0003). Investigating NY-CO-58/KIF2C-specific T cell responses, CD8(+) T cells directed against 1 or more peptides were found in less than 10% of patients, whereas specific CD4(+) T cells were detected in close to 50% of patients. These T cells were of high avidity, recognized the naturally processed antigen and secreted IFN-gamma and TNF-alpha. Depletion of CD4(+)CD25(+) T cells before stimulation significantly increased the intensity of the preexisting response. NY-CO-58/KIF2C is significantly overexpressed in colorectal and other epithelial cancers and expression levels correlate with the proliferative activity of the tumor. Importantly, NY-CO-58/KIF2C was able to induce spontaneous CD4(+) T cell responses of the Th1-type, which were tightly controlled by peripheral T regulatory cells.
Collapse
Affiliation(s)
- Sacha Gnjatic
- Ludwig Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Patil R, Clifton GT, Holmes JP, Amin A, Carmichael MG, Gates JD, Benavides LH, Hueman MT, Ponniah S, Peoples GE. Clinical and immunologic responses of HLA-A3+ breast cancer patients vaccinated with the HER2/neu-derived peptide vaccine, E75, in a phase I/II clinical trial. J Am Coll Surg 2009; 210:140-7. [PMID: 20113933 DOI: 10.1016/j.jamcollsurg.2009.10.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 12/22/2022]
Abstract
BACKGROUND We have treated disease-free breast cancer patients with an HER2/neu-derived peptide, E75, as an adjuvant vaccine. E75 was originally described as HLA-A2-restricted and has been previously tested in this population. Based on computer modeling, E75 is predicted to bind to HLA-A3, and preclinical data support this. We conducted a clinical trial of E75 in HLA-A3(+), A2(-) (A3) patients. STUDY DESIGN Disease-free breast cancer patients were enrolled after standard therapy in phase I/II trials. A3 patients were enrolled in parallel with A2 patients and vaccinated with E75 and granulocyte-macrophage colony-stimulating factor immunoadjuvant. A2(-), A3(-) patients were followed as controls. Toxicities were graded. Immunologic responses were assessed by delayed-type hypersensitivity reactions and E75-specific interferon-gamma enzyme-linked immunosorbent spot assay. Clinical recurrences were documented. RESULTS Thirteen A3 patients completed the vaccine schedule. Clinicopathologic features were similar between A3, A2, and control patients, except for more HER2/neu-overexpressing tumors in the A2 group and more estrogen-receptor/progesterone-receptor-negative tumors in A2 and A3 groups. Toxicity profiles and postvaccination delayed-type hypersensitivity were similar in A3 and A2 patients. Enzyme-linked immunosorbent spot assay results varied, but A3 patients' median spots increased pre- to postvaccination (p = 0.2). Recurrences were lower in the A3 group (7.7%) at 30-month median follow-up compared with published recurrence in A2-vaccinated (8.3%) and control groups (14.8%) at 26-month median follow-up. CONCLUSIONS HLA restriction limits potential use of peptide-based cancer vaccines. This trial demonstrates that HLA-A3 patients respond similarly to E75 vaccination as HLA-A2 patients, suggesting the potential use of the E75 vaccine in up to 76% of the population.
Collapse
Affiliation(s)
- Ritesh Patil
- Joyce Murtha Breast Care Center, Windber Medical Center, Windber, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Parkhurst MR, Joo J, Riley JP, Yu Z, Li Y, Robbins PF, Rosenberg SA. Characterization of genetically modified T-cell receptors that recognize the CEA:691-699 peptide in the context of HLA-A2.1 on human colorectal cancer cells. Clin Cancer Res 2009; 15:169-80. [PMID: 19118044 PMCID: PMC3474199 DOI: 10.1158/1078-0432.ccr-08-1638] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Carcinoembryonic antigen (CEA) is a tumor-associated protein expressed on a variety of adenocarcinomas. To develop an immunotherapy for patients with cancers that overexpress CEA, we isolated and genetically modified a T-cell receptors (TCRs) that specifically bound a CEA peptide on human cancer cells. EXPERIMENTAL DESIGN HLA-A2.1 transgenic mice were immunized with CEA:691-699. A CEA-reactive TCR was isolated from splenocytes of these mice and was genetically introduced into human peripheral blood lymphocytes via RNA electroporation or retroviral transduction. Amino acid substitutions were introduced throughout the complementarity determining regions (CDR1, CDR2, and CDR3) of both TCR alpha and beta chains to improve recognition of CEA. RESULTS Murine lymphocytes bearing the CEA-reactive TCR specifically recognized peptide-loaded T2 cells and HLA-A2.1(+) CEA(+) human colon cancer cells. Both CD8(+) and CD4(+) human lymphocytes expressing the murine TCR specifically recognized peptide-loaded T2 cells. However, only gene-modified CD8(+) lymphocytes specifically recognized HLA-A2.1(+) CEA(+) colon cancer cell lines, and tumor cell recognition was weak and variable. We identified two substitutions in the CDR3 of the alpha chain that significantly influenced tumor cell recognition by human peripheral blood lymphocytes. One substitution, T for S at position 112 (S112T), enhanced tumor cell recognition by CD8(+) lymphocytes, and a second dually substituted receptor (S112T L110F) enhanced tumor cell recognition by CD4(+) T cells. CONCLUSIONS The modified CEA-reactive TCRs are good candidates for future gene therapy clinical trials and show the power of selected amino acid substitutions in the antigen-binding regions of the TCR to enhance desired reactivities.
Collapse
Affiliation(s)
- Maria R Parkhurst
- Surgery Branch, National Cancer Institute/NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|