1
|
Kon E, Benhar I. Immune checkpoint inhibitor combinations: Current efforts and important aspects for success. Drug Resist Updat 2019; 45:13-29. [DOI: 10.1016/j.drup.2019.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
|
2
|
Chandramohan V, Bao X, Yu X, Parker S, McDowall C, Yu YR, Healy P, Desjardins A, Gunn MD, Gromeier M, Nair SK, Pastan IH, Bigner DD. Improved efficacy against malignant brain tumors with EGFRwt/EGFRvIII targeting immunotoxin and checkpoint inhibitor combinations. J Immunother Cancer 2019; 7:142. [PMID: 31142380 PMCID: PMC6542114 DOI: 10.1186/s40425-019-0614-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND D2C7-IT is a novel immunotoxin (IT) targeting wild-type epidermal growth factor receptor (EGFRwt) and mutant EGFR variant III (EGFRvIII) proteins in glioblastoma. In addition to inherent tumoricidal activity, immunotoxins induce secondary immune responses through the activation of T cells. However, glioblastoma-induced immune suppression is a major obstacle to an effective and durable immunotoxin-mediated antitumor response. We hypothesized that D2C7-IT-induced immune response could be effectively augmented in combination with αCTLA-4/αPD-1/αPD-L1 therapies in murine models of glioma. METHODS To study this, we overexpressed the D2C7-IT antigen, murine EGFRvIII (dmEGFRvIII), in established glioma lines, CT-2A and SMA560. The reactivity and therapeutic efficacy of D2C7-IT against CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII cells was determined by flow cytometry and in vitro cytotoxicity assays, respectively. Antitumor efficacy of D2C7-IT was examined in immunocompetent, intracranial murine glioma models and the role of T cells was assessed by CD4+ and CD8+ T cell depletion. In vivo efficacy of D2C7-IT/αCTLA-4/αPD-1 monotherapy or D2C7-IT+αCTLA-4/αPD-1 combination therapy was evaluated in subcutaneous unilateral and bilateral CT-2A-dmEGFRvIII glioma-bearing immunocompetent mice. Further, antitumor efficacy of D2C7-IT+αCTLA-4/αPD-1/αPD-L1/αTim-3/αLag-3/αCD73 combination therapy was evaluated in intracranial CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII glioma-bearing mice. Pairwise differences in survival curves were assessed using the generalized Wilcoxon test. RESULTS D2C7-IT effectively killed CT-2A-dmEGFRvIII (IC50 = 0.47 ng/mL) and SMA560-dmEGFRvIII (IC50 = 1.05 ng/mL) cells in vitro. Treatment of intracranial CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII tumors with D2C7-IT prolonged survival (P = 0.0188 and P = 0.0057, respectively), which was significantly reduced by the depletion of CD4+ and CD8+ T cells. To augment antitumor immune responses, we combined D2C7-IT with αCTLA-4/αPD-1 in an in vivo subcutaneous CT-2A-dmEGFRvIII model. Tumor-bearing mice exhibited complete tumor regressions (4/10 in D2C7-IT+αCTLA-4 and 5/10 in D2C7-IT+αPD-1 treatment groups), and combination therapy-induced systemic antitumor response was effective against both dmEGFRvIII-positive and dmEGFRvIII-negative CT-2A tumors. In a subcutaneous bilateral CT-2A-dmEGFRvIII model, D2C7-IT+αCTLA-4/αPD-1 combination therapies showed dramatic regression of the treated tumors and measurable regression of untreated tumors. Notably, in CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII intracranial glioma models, D2C7-IT+αPD-1/αPD-L1 combinations improved survival, and in selected cases generated cures and protection against tumor re-challenge. CONCLUSIONS These data support the development of D2C7-IT and immune checkpoint blockade combinations for patients with malignant glioma.
Collapse
Affiliation(s)
- Vidyalakshmi Chandramohan
- Department of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Medical Sciences Research Building, Rm 181c, Box 3156, Durham, NC, 27710, USA.
| | - Xuhui Bao
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Xin Yu
- Department of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Medical Sciences Research Building, Rm 181c, Box 3156, Durham, NC, 27710, USA
| | - Scott Parker
- Department of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Medical Sciences Research Building, Rm 181c, Box 3156, Durham, NC, 27710, USA
| | - Charlotte McDowall
- Department of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Medical Sciences Research Building, Rm 181c, Box 3156, Durham, NC, 27710, USA
| | - Yen-Rei Yu
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Patrick Healy
- Duke Cancer Institute Biostatistics, Duke University Medical Center, Durham, NC, 27710, USA
| | - Annick Desjardins
- Department of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Medical Sciences Research Building, Rm 181c, Box 3156, Durham, NC, 27710, USA
| | - Michael D Gunn
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Matthias Gromeier
- Department of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Medical Sciences Research Building, Rm 181c, Box 3156, Durham, NC, 27710, USA
| | - Smita K Nair
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ira H Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Darell D Bigner
- Department of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Medical Sciences Research Building, Rm 181c, Box 3156, Durham, NC, 27710, USA
| |
Collapse
|
3
|
Leshem Y, Pastan I. Pseudomonas Exotoxin Immunotoxins and Anti-Tumor Immunity: From Observations at the Patient's Bedside to Evaluation in Preclinical Models. Toxins (Basel) 2019; 11:toxins11010020. [PMID: 30621280 PMCID: PMC6356957 DOI: 10.3390/toxins11010020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 01/05/2023] Open
Abstract
Immunotoxins are protein drugs composed of a targeting domain genetically fused to a protein toxin. One killing domain being explored is a truncated Pseudomonas exotoxin A (PE). PE based immunotoxins are designed to kill cells directly by inhibiting their ability to synthesize proteins. However, observations from clinical trials suggest that this alone cannot explain their anti-tumor activity. Here we discuss patterns of clinical responses suggesting that PE immunotoxins can provoke anti-tumor immunity, and review murine models that further support this ability. In addition, we describe our preclinical effort to develop a combination therapy of local PE immunotoxins with a systemic anti-CTLA-4 immune check point blocking antibody. The combination eradicated murine tumors and prolonged the survival of mice. Clinical trials that test the ability of immunotoxins to augment immunotherapy have been recently opened.
Collapse
Affiliation(s)
- Yasmin Leshem
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA.
- Laboratory of Molecular Immunology, Faculty of Biology and Technion Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA.
| |
Collapse
|
4
|
SS1P Immunotoxin Induces Markers of Immunogenic Cell Death and Enhances the Effect of the CTLA-4 Blockade in AE17M Mouse Mesothelioma Tumors. Toxins (Basel) 2018; 10:toxins10110470. [PMID: 30441807 PMCID: PMC6265743 DOI: 10.3390/toxins10110470] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 01/17/2023] Open
Abstract
SS1P is an anti-mesothelin immunotoxin composed of a targeting antibody fragment genetically fused to a truncated fragment of Pseudomonas exotoxin A. Delayed responses reported in mesothelioma patients receiving SS1P suggest that anti-tumor immunity is induced. The goal of this study is to evaluate if SS1P therapy renders mesothelioma tumors more sensitive to cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) immune checkpoint blockade. We evaluated the ability of SS1P to induce adenosine triphosphate (ATP) secretion and calreticulin expression on the surface of AE17M mouse mesothelioma cells. Both properties are associated with immunogenic cell death. Furthermore, we treated these tumors with intra-tumoral SS1P and systemic CTLA-4. We found that SS1P increased the release of ATP from AE17M cells in a dose and time-dependent manner. In addition, SS1P induced calreticulin expression on the surface of AE17M cells. These results suggest that SS1P promotes immunogenic cell death and could sensitize tumors to anti-CTLA-4 based therapy. In mouse studies, we found that the combination of anti-CTLA-4 with intra-tumoral SS1P induced complete regressions in most mice and provided a statistically significant survival benefit compared to monotherapy. The surviving mice were protected from tumor re-challenge, indicating the development of anti-tumor immunity. These findings support the use of intra-tumoral SS1P in combination with anti-CTLA-4.
Collapse
|
5
|
Recombinant Immunotoxin Therapy of Glioblastoma: Smart Design, Key Findings, and Specific Challenges. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7929286. [PMID: 28752098 PMCID: PMC5511670 DOI: 10.1155/2017/7929286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
Abstract
Recombinant immunotoxins (RITs) refer to a group of recombinant protein-based therapeutics, which consists of two components: an antibody variable fragment or a specific ligand that allows RITs to bind specifically to target cells and an engineered toxin fragment that kills the target cells upon internalization. To date, over 1,000 RITs have been generated and significant success has been achieved in the therapy of hematological malignancies. However, the immunogenicity and off-target toxicities of RITs remain as significant barriers for their application to solid tumor therapy. A group of RITs have also been generated for the treatment of glioblastoma multiforme, and some have demonstrated evidence of tumor response and an acceptable profile of toxicity and safety in early clinical trials. Different from other solid tumors, how to efficiently deliver the RITs to intracranial tumors is more critical and needs to be solved urgently. In this article, we first review the design and expression of RITs, then summarize the key findings in the preclinical and clinical development of RIT therapy of glioblastoma multiforme, and lastly discuss the specific issues that still remain to forward RIT therapy to clinical practice.
Collapse
|
6
|
Abstract
Glioblastoma multiforme (GBM) is the most progressive primary brain tumor. Targeting a novel and highly specific tumor antigen is one of the strategies to overcome tumors. EGFR variant III (EGFRvIII) is present in 25%-33% of all patients with GBM and is exclusively expressed on tumor tissue cells. Currently, there are various approaches to target EGFRvIII, including CAR T-cell therapy, therapeutic vaccines, antibodies, and Bi-specific T Cell Engager. In this review, we focus on the preclinical and clinical findings of targeting EGFRvIII for GBM.
Collapse
Affiliation(s)
- Ju Yang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Jing Yan
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
7
|
Lim D, Kim KS, Kim H, Ko KC, Song JJ, Choi JH, Shin M, Min JJ, Jeong JH, Choy HE. Anti-tumor activity of an immunotoxin (TGFα-PE38) delivered by attenuated Salmonella typhimurium. Oncotarget 2017; 8:37550-37560. [PMID: 28473665 PMCID: PMC5514929 DOI: 10.18632/oncotarget.17197] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/06/2017] [Indexed: 12/22/2022] Open
Abstract
The anticancer strategy underlying the use of immunotoxins is as follows: the cancer-binding domain delivers the toxin to a cancer cell, after which the toxin enters and kills the cell. TGFα-PE38 is an immunotoxin comprising transforming growth factor alpha (TGFα), a natural ligand of epidermal growth factor receptor (EGFR), and a modified Pseudomonas exotoxin A (PE38) lacking N terminal cell-binding domain, a highly potent cytotoxic protein moiety. Tumor cells with high level of EGFR undergo apoptosis upon treatment with TGFα-PE38. However, clinical trials demonstrated that this immunotoxin delivered by an intracerebral infusion technique has only a limited inhibitory effect on intracranial tumors mainly due to inconsistent drug delivery. To circumvent this problem, we turned to tumor-seeking bacterial system. Here, we engineered Salmonella typhimurium to selectively express and release TGFα-PE38. Engineered bacteria were administered to mice implanted with mouse colon or breast tumor cells expressing high level of EGFR. We observed that controlled expression and release of TGFα-PE38 from intra-tumoral Salmonellae by either an engineered phage lysis system or by a bacterial membrane transport signal led to significant inhibition of solid tumor growth. These results demonstrated that delivery by tumor-seeking bacteria would greatly augment efficacy of immunotoxin in cancer therapeutics.
Collapse
Affiliation(s)
- Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Molecular Medicine, BK21 Plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Kwang Soo Kim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Molecular Medicine, BK21 Plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Hyunju Kim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Molecular Medicine, BK21 Plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Kyong-Cheol Ko
- Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeonbuk, Republic of Korea
| | - Jae Jun Song
- Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeonbuk, Republic of Korea
| | - Jong Hyun Choi
- Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeonbuk, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, Kyungpook National University Medical School, Daegu, Republic of Korea
| | - Jung-joon Min
- Molecular Medicine, BK21 Plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Molecular Medicine, BK21 Plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Hyon E. Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Molecular Medicine, BK21 Plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Chandramohan V, Pegram CN, Piao H, Szafranski SE, Kuan CT, Pastan IH, Bigner DD. Production and quality control assessment of a GLP-grade immunotoxin, D2C7-(scdsFv)-PE38KDEL, for a phase I/II clinical trial. Appl Microbiol Biotechnol 2017; 101:2747-2766. [PMID: 28013405 PMCID: PMC5354975 DOI: 10.1007/s00253-016-8063-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/06/2016] [Accepted: 12/10/2016] [Indexed: 01/06/2023]
Abstract
D2C7-(scdsFv)-PE38KDEL (D2C7-IT) is a novel recombinant Pseudomonas exotoxin A-based immunotoxin (IT), targeting both wild-type epidermal growth factor receptor (EGFRwt) and mutant EGFR variant III (EGFRvIII) proteins overexpressed in glioblastomas. Initial pre-clinical testing demonstrated the anti-tumor efficacy of D2C7-IT against orthotopic glioblastoma xenograft models expressing EGFRwt, EGFRvIII, or both EGFRwt and EGFRvIII. A good laboratory practice (GLP) manufacturing process was developed to produce sufficient material for a phase I/II clinical trial. D2C7-IT was expressed under the control of the T7 promoter in Escherichia coli BLR (λ DE3). D2C7-IT was produced by a 10-L batch fermentation process and was then purified from inclusion bodies using anion exchange, size exclusion, and an endotoxin removal process that achieved a yield of over 300 mg of purified protein. The final vialed batch of D2C7-IT for clinical testing was at a concentration of 0.12 ± 0.1 mg/mL, the pH was at 7.4 ± 0.4, and endotoxin levels were below the detection limit of 10 EU/mL (1.26 EU/mL). The stability of the vialed D2C7-IT has been monitored over a period of 42 months through protein concentration, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focusing, size exclusion chromatography, cytotoxicity, sterility, and pH measurements. The vialed D2C7-IT is currently being tested in a phase I/II clinical trial by intratumoral convection-enhanced delivery for 72 h in patients with recurrent glioblastoma (NCT02303678, D2C7 for Adult Patients with Recurrent Malignant Glioma; clinicaltrials.gov ).
Collapse
Affiliation(s)
- Vidyalakshmi Chandramohan
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Duke University Medical Center, Box 3156, 181 MSRB-1, 203 Research Drive, Durham, NC, 27710, USA.
| | - Charles N Pegram
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Duke University Medical Center, Box 3156, 203 Research Drive, Durham, NC, 27710, USA
| | - Hailan Piao
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Duke University Medical Center, Box 3156, 181 MSRB-1, 203 Research Drive, Durham, NC, 27710, USA
| | - Scott E Szafranski
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Duke University Medical Center, Box 3156, 163 MSRB-1, 203 Research Drive, Durham, NC, 27710, USA
| | - Chien-Tsun Kuan
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Duke University Medical Center, Box 3156, 203 Research Drive, Durham, NC, 27710, USA
| | - Ira H Pastan
- Center for Cancer Research, National Cancer Institute, Building 37, Room 5106, Bethesda, MD, 20892, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Darell D Bigner
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Duke University Medical Center, Box 3156, 177 MSRB-1, 203 Research Drive, Durham, NC, 27710, USA
| |
Collapse
|
9
|
Meng J, Liu Y, Gao S, Lin S, Gu X, Pomper MG, Wang PC, Shan L. A bivalent recombinant immunotoxin with high potency against tumors with EGFR and EGFRvIII expression. Cancer Biol Ther 2015; 16:1764-74. [PMID: 26467217 PMCID: PMC4847807 DOI: 10.1080/15384047.2015.1095403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/25/2015] [Accepted: 09/12/2015] [Indexed: 01/01/2023] Open
Abstract
EGFR and EGFRvIII are overexpressed in various types of cancer, serving as optimal targets for cancer therapy. Capitalizing on the high specificity of humanized antibody 806 (mAb806) to the EGFR and EGFRvIII overexpressed in cancer, we designed and generated a bivalent recombinant immunotoxin (RIT, DT390-BiscFv806) by fusing the mAb806-derived bivalent single-chain variable fragment with a diphtheria toxin fragment, DT390. In vitro, DT390-BiscFv806 efficiently internalized into the cells and exhibited high cytotoxicity against the U87 glioblastoma cells and the EGFRvIII-transfected U87 (U87-EGFRvIII) cells with a half maximal inhibition concentration (IC50) of 1.47 nM and 2.26 × 10(-4) nM, respectively. Notably, DT390-BiscFv806 was 4 orders of magnitude more potent against the U87-EGFRvIII cells than against the parent U87 cells. The cytotoxicity against a group of 6 head and neck squamous cell carcinoma cell lines were further analyzed, showing an IC50 ranging from 0.24 nM to 156 nM, depending on the expression level of EGFR/EGFRvIII. In animals, the U87-EGFRvIII tumor xenografts grew extremely faster than the parental U87, and systemic administration of DT390-BiscFv806 significantly inhibited the growth of established U87-EGFRvIII and U87 tumor xenografts, showing a growth inhibition rate of 76.3% (59.82-96.2%) and 59.4% (31.5-76.0%), respectively. In pathology, the RIT-treated tumors exhibited a low mitotic activity and a large number of degenerative tumor cells, compared with the control tumors. The results indicate that DT390-BiscFv806 is promising for treatment of various types of cancer, especially for those with high EGFR expression or with EGFR and EGFRvIII co-expression.
Collapse
Affiliation(s)
- Jie Meng
- Molecular Imaging Laboratory; Department of Radiology; Howard University; Washington, DC USA
| | | | | | - Stephen Lin
- Molecular Imaging Laboratory; Department of Radiology; Howard University; Washington, DC USA
| | - Xinbin Gu
- College of Dentistry; Howard University; Washington, DC USA
| | - Martin G Pomper
- Department of Radiology; Johns Hopkins University; Baltimore, MD USA
| | - Paul C Wang
- Molecular Imaging Laboratory; Department of Radiology; Howard University; Washington, DC USA
- Department of Physics; Fu Jen Catholic University; New Taipei City, Taiwan
| | - Liang Shan
- Molecular Imaging Laboratory; Department of Radiology; Howard University; Washington, DC USA
| |
Collapse
|
10
|
Immunological challenges for peptide-based immunotherapy in glioblastoma. Cancer Treat Rev 2014; 40:248-58. [DOI: 10.1016/j.ctrv.2013.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 02/04/2023]
|
11
|
Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J 2013; 280:5350-70. [DOI: 10.1111/febs.12393] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Hui K. Gan
- Tumour Targeting Program; Ludwig Institute for Cancer Research; Heidelberg Victoria Australia
| | - Anna N. Cvrljevic
- Oncogenic Signaling Laboratory; Monash University; Clayton Victoria Australia
| | - Terrance G. Johns
- Oncogenic Signaling Laboratory; Monash University; Clayton Victoria Australia
| |
Collapse
|
12
|
Sapra P, Shor B. Monoclonal antibody-based therapies in cancer: advances and challenges. Pharmacol Ther 2013; 138:452-69. [PMID: 23507041 DOI: 10.1016/j.pharmthera.2013.03.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 12/25/2022]
Abstract
Conventional anticancer therapeutics often suffer from lack of specificity, resulting in toxicities to normal healthy tissues and poor therapeutic index. Antibody-mediated delivery of anticancer drugs or toxins to tumor cells through tumor selective or overexpressed antigens is progressively being recognized as an effective strategy for increasing the therapeutic index of anticancer drugs. In this review we focus on three therapeutic modalities in the field of antibody-mediated targeting, including antibody-drug conjugates (ADCs), immunotoxins (ITs) and immunoliposomes (ILs). Design considerations for development of each of the above therapeutic modalities are discussed. Furthermore, an overview of ADCs, ITs or ILs approved for use in clinical oncology and those currently in clinical development is provided. Challenges encountered by the field of antibody-based targeting are discussed and concepts around development of the next generation of antibody therapeutics are presented.
Collapse
Affiliation(s)
- Puja Sapra
- Bioconjugates Discovery and Development, Oncology Research Unit, Pfizer Worldwide Research and Development, 401 North Middletown Road, Pearl River, NY, 10965, USA.
| | | |
Collapse
|
13
|
Schutt C, Bumm K, Mirandola L, Bernardini G, Cunha ND, Tijani L, Nguyen D, Cordero J, Jenkins MR, Cobos E, Kast WM, Chiriva-Internati M. Immunological treatment options for locoregionally advanced head and neck squamous cell carcinoma. Int Rev Immunol 2012; 31:22-42. [PMID: 22251006 DOI: 10.3109/08830185.2011.637253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Patients with squamous cell carcinoma of the head and neck (HNSCC) are usually treated by a multimodal approach with surgery and/or radiochemotherapy as the mainstay of local-regional treatment in cases with advanced disease. Both chemotherapy and radiation therapy have the disadvantage of causing severe side effects, while the clinical outcome of patients diagnosed with HNSCC has remained essentially unchanged over the last decade. The potential of immunotherapy is still largely unexplored. Here the authors review the current status of the art and discuss the future challenges in HNSCC treatment and prevention.
Collapse
Affiliation(s)
- Christopher Schutt
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA; and Department of Surgery at the Division of Otolaryngology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Klaus Bumm
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA
| | - Leonardo Mirandola
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA; Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas, USA; and Department of Medicine Surgery and Dentistry, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Molecular Science, University of Insubria, Varese, Italy
| | - Nicholas D' Cunha
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA
| | - Lukman Tijani
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA
| | - Diane Nguyen
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA
| | - Joehassin Cordero
- Division of Surgery, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA
| | - Marjorie R Jenkins
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA; and Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Everardo Cobos
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA; and Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - W Martin Kast
- Department of Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA; Department of Obstetrics & Gynecology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA; and Cancer Research Center of Hawaii, University of Hawaii at Manao, Honolulu, Hawaii, USA
| | - Maurizio Chiriva-Internati
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA; Division of Surgery, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA; and Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| |
Collapse
|
14
|
Camara-Quintana JQ, Nitta RT, Li G. Pathology: Commonly Monitored Glioblastoma Markers: EFGR, EGFRvIII, PTEN, and MGMT. Neurosurg Clin N Am 2012; 23:237-46, viii. [DOI: 10.1016/j.nec.2012.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Monoclonal antibody therapy for malignant glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:121-41. [PMID: 22639164 DOI: 10.1007/978-1-4614-3146-6_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Monoclonal antibody (mAb) therapy is a rapidly evolving treatment immunotherapy modality for malignant gliomas. Many studies have provided evidence that the blood brain barrier-both at baseline and in the context of malignancy-is permissive for mAbs, thus providing a rationale for their use in treating intracranial malignancy. Furthermore, techniques such as convection enhanced delivery (CED) are being implemented to maximize exposure of tumor cells to mAb therapy. The mechanisms and designs of mAbs are widely varying, including unarmed immunoglobulins as well as immunoglobulins conjugated to radioisotopes, biological toxins, boronated dendrimers and immunoliposomes. The very structure of the immunoglobulin molecule has also been manipulated to generate a diverse armamentarium including single-chain Fv, bispecific T-cell engagers and chimeric antigen receptors. The targeted neutralization capacity of mAbs has been employed to modulate the immunologic milieu in hopes of optimizing other immunotherapy platforms. Many clinical trials have evaluated these mAb strategies to treat malignant gliomas, and the implementation of mAb therapy seems imminent and optimistic.
Collapse
|
16
|
Cimini A, Ippoliti R. Innovative Therapies against Human Glioblastoma Multiforme. ISRN ONCOLOGY 2011; 2011:787490. [PMID: 22091432 PMCID: PMC3195804 DOI: 10.5402/2011/787490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 05/25/2011] [Indexed: 01/20/2023]
Abstract
Glioblastoma multiforme is the most invasive and aggressive brain tumor in humans, and despite the latest chemical and radiative therapeutic approaches, it is still scarcely sensitive to these treatments and is generally considered an incurable disease. This paper will focus on the latest approaches to the treatment of this cancer, including the new chemicals such as proautophagic drugs and kinases inhibitors, and differentiating agents. In this field, there have been opening new perspectives as the discovery of possible specific targets such as the EGFRvIII, a truncated form of the EGF receptor. Antibodies against these targets can be used as proapoptotic agents and as possible carriers for chemicals, drugs, radioisotopes, and toxins. In this paper, we review the possible mechanism of action of these therapies, with particular attention to the combined use of toxic substances (for example, immunotoxins) and antiproliferative/differentiating compounds (i.e., ATRA, PPARγ agonists). All these aspects will be discussed in the view of progress clinical trials and of possible new approaches for directed drug formulations.
Collapse
Affiliation(s)
- Annamaria Cimini
- Department of Basic and Applied Biology, University of l'Aquila, Via Vetoio No. 10, 67010 L'Aquila, Italy
| | | |
Collapse
|
17
|
Tinhofer I, Klinghammer K, Weichert W, Knödler M, Stenzinger A, Gauler T, Budach V, Keilholz U. Expression of amphiregulin and EGFRvIII affect outcome of patients with squamous cell carcinoma of the head and neck receiving cetuximab-docetaxel treatment. Clin Cancer Res 2011; 17:5197-204. [PMID: 21653686 DOI: 10.1158/1078-0432.ccr-10-3338] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Constitutive activation of epidermal growth factor receptor (EGFR) as a result of gene amplification, mutation, or overexpression of its ligands has been associated with response to EGFR targeting strategies. The role of these molecular mechanisms for the responsiveness of squamous cell carcinoma of the head and neck (SCCHN) to cetuximab-containing regimens remains unknown. EXPERIMENTAL DESIGN Tumor biopsies from 47 patients, enrolled in a single-arm phase II multicenter study for second-line treatment of recurrent or metastatic SCCHN with cetuximab and docetaxel, were analyzed by immunohistochemistry for expression of EGFR, its deletion variant III (EGFRvIII) and its ligand amphiregulin (AREG). The relation between expression levels and disease control rate (DCR) was evaluated by logistic regression. Association between expression levels, progression-free survival (PFS), and overall survival (OS) was determined by Kaplan-Meier analysis, log-rank test, and uni- and multivariate Cox regression analysis. RESULTS High expression of EGFR, EGFRvIII, and AREG was detected in 73%, 17%, and 45% of SCCHN cases, respectively. Expression levels of EGFR had no impact on PFS or OS. High expression levels of EGFRvIII were significantly associated with reduced DCR and shortened PFS (HR: 3.3, P = 0.005) but not with OS. Patients with high AREG expression in tumor cells had significantly shortened OS (HR: 2.2, P = 0.002) and PFS (HR 2.2, P = 0.019) compared with patients with low expression score. Multivariate Cox analysis revealed an independent association of AREG and EGFRvIII with PFS but only AREG was an independent prognosticator of OS. CONCLUSIONS High EGFRvIII and AREG expression levels identify SCCHN patients who are less likely to benefit from combination treatment with cetuximab and docetaxel.
Collapse
Affiliation(s)
- Ingeborg Tinhofer
- Department of Radiotherapy Campus Mitte, Translational Radiobiology and Radiooncology Research Laboratory, Charite Universit€atsmedizin Berlin, Chariteplatz 1, 10117Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sharafinski ME, Ferris RL, Ferrone S, Grandis JR. Epidermal growth factor receptor targeted therapy of squamous cell carcinoma of the head and neck. Head Neck 2011; 32:1412-21. [PMID: 20848399 DOI: 10.1002/hed.21365] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cumulative evidence implicates the epidermal growth factor receptor (EGFR) as an important therapeutic target in head and neck squamous cell carcinoma (HNSCC). The basis for the lack of correlation between EGFR expression in the HNSCC tumor and clinical responses to EGFR inhibitors is incompletely understood. Although a variety of mechanisms likely contribute to the effectiveness of EGFR blockade, this review focuses on the biologic implications of known EGFR variations and the role of the immune system in mediating clinical responses to EGFR inhibitors. METHODS A Medline review of articles published in the last 10 years (1999-present) on EGFR in HNSCC was performed in combination with preliminary data from our laboratories. RESULTS Studies published to date suggest no association between the expression of EGFR on HNSCC tumors and clinical responses to EGFR inhibitors. Several mechanisms have been proposed to mediate clinical response to EGFR inhibitors in HNSCC. Cumulative results from our laboratories support the role of several mechanisms, including cellular immune activation and mutated EGFR variants, in contributing to the discrepancy between level of EGFR expression and clinical response to EGFR inhibitors. CONCLUSION The efficacy of EGFR targeted therapies may be mediated, at least in part, by the immune system and the presence of the truncated EGFR variant, EGFRvIII, among other factors. Criteria to identify the subset of patients likely to be responsive to EGFR targeted therapies are needed.
Collapse
Affiliation(s)
- Mark E Sharafinski
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | | | |
Collapse
|
19
|
Rolle CE, Sengupta S, Lesniak MS. Challenges in clinical design of immunotherapy trials for malignant glioma. Neurosurg Clin N Am 2009; 21:201-14. [PMID: 19944979 DOI: 10.1016/j.nec.2009.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal primary malignant brain tumor. The traditional treatments for GBM, including surgery, radiation, and chemotherapy, only modestly improve patient survival. Therefore, immunotherapy has emerged as a novel therapeutic modality. Immunotherapeutic strategies exploit the immune system's ability to recognize and mount a specific response against tumor cells, but not normal cells. Current immunotherapeutic approaches for glioma can be divided into 3 categories: immune priming (active immunotherapy), immunomodulation (passive immunotherapy), and adoptive immunotherapy. Immune priming sensitizes the patient's immune cells to tumor antigens using various vaccination protocols. In the case of immunomodulation, strategies are aimed at reducing suppressive cytokines in the tumor microenvironment or using immune molecules to specifically target tumor cells. Adoptive immunotherapy involves harvesting the patient's immune cells, followed by ex vivo activation and expansion before reinfusion. This article provides an overview of the interactions between the central nervous system and the immune system, and discusses the challenges facing current immunotherapeutic strategies.
Collapse
Affiliation(s)
- Cleo E Rolle
- The University of Chicago Brain Tumor Center, The University of Chicago, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | | | | |
Collapse
|
20
|
Convection-enhanced delivery of free gadolinium with the recombinant immunotoxin MR1-1. J Neurooncol 2009; 98:1-7. [PMID: 19898744 DOI: 10.1007/s11060-009-0046-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
Abstract
A major obstacle in glioblastoma (GBM) therapy is the restrictive nature of the blood-brain barrier (BBB). Convection-enhanced delivery (CED) is a novel method of drug administration which allows direct parenchymal infusion of therapeutics, bypassing the BBB. MR1-1 is a novel recombinant immunotoxin that targets the GBM tumor-specific antigen EGFRvIII and can be delivered via CED infusion. However, drug distribution via CED varies dramatically, which necessitates active monitoring. Gadolinium conjugated to diethylenetriamine penta-acetic acid (Gd-DTPA) is a commonly used MRI contrast agent which can be co-infused with therapies using CED and may be useful in monitoring infusion leak and early distribution. Forty immunocompetent rats were implanted with intracerebral cannulas that were connected to osmotic pumps and subsequently randomized into four groups that each received 0.2% human serum albumin (HSA) mixed with a different experimental infusion: (1) 25 ng/ml MR1-1; (2) 0.1 micromol/ml Gd-DTPA; (3) 25 ng/ml MR1-1 and 0.1 micromol/ml Gd-DTPA; (4) 250 ng/ml MR1-1 and 0.1 micromol/ml Gd-DTPA. The rats were monitored clinically for 6 weeks then necropsied and histologically assessed for CNS toxicity. All rats survived the entirety of the study without clinical or histological toxicity attributable to the study drugs. There was no statistically significant difference in weight change over time among groups (P > 0.999). MR1-1 co-infused with Gd-DTPA via CED is safe in the long-term setting in a pre-clinical animal model. Our data supports the use of Gd-DTPA, as a surrogate tracer, co-infused with MR1-1 for drug distribution monitoring in patients with GBM.
Collapse
|
21
|
Bullain SS, Sahin A, Szentirmai O, Sanchez C, Lin N, Baratta E, Waterman P, Weissleder R, Mulligan RC, Carter BS. Genetically engineered T cells to target EGFRvIII expressing glioblastoma. J Neurooncol 2009; 94:373-82. [PMID: 19387557 PMCID: PMC2730985 DOI: 10.1007/s11060-009-9889-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
Glioblastoma remains a significant therapeutic challenge, warranting further investigation of novel therapies. We describe an immunotherapeutic strategy to treat glioblastoma based on adoptive transfer of genetically modified T-lymphocytes (T cells) redirected to kill EGFRvIII expressing gliomas. We constructed a chimeric immune receptor (CIR) specific to EGFRvIII, (MR1-zeta). After in vitro selection and expansion, MR1-zeta genetically modified primary human T-cells specifically recognized EGFRvIII-positive tumor cells as demonstrated by IFN-gamma secretion and efficient tumor lysis compared to control CIRs defective in EGFRvIII binding (MRB-zeta) or signaling (MR1-delzeta). MR1-zeta expressing T cells also inhibited EGFRvIII-positive tumor growth in vivo in a xenografted mouse model. Successful targeting of EGFRvIII-positive tumors via adoptive transfer of genetically modified T cells may represent a new immunotherapy strategy with great potential for clinical applications.
Collapse
Affiliation(s)
- Szofia S. Bullain
- Neurosurgical Service, Massachusetts General Hospital, 55 Fruit Street, Yawkey 9026, Boston, MA 02114, USA
| | - Ayguen Sahin
- Neurosurgical Service, Massachusetts General Hospital, 55 Fruit Street, Yawkey 9026, Boston, MA 02114, USA
| | - Oszkar Szentirmai
- Neurosurgical Service, Massachusetts General Hospital, 55 Fruit Street, Yawkey 9026, Boston, MA 02114, USA
| | - Carlos Sanchez
- Neurosurgical Service, Massachusetts General Hospital, 55 Fruit Street, Yawkey 9026, Boston, MA 02114, USA
| | - Ning Lin
- Neurosurgical Service, Massachusetts General Hospital, 55 Fruit Street, Yawkey 9026, Boston, MA 02114, USA
| | - Elizabeth Baratta
- Neurosurgical Service, Massachusetts General Hospital, 55 Fruit Street, Yawkey 9026, Boston, MA 02114, USA
| | - Peter Waterman
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Richard C. Mulligan
- Harvard Medical School Department of Genetics, 77 Louis Pasteur Avenue, Boston, MA 02115, USA
| | - Bob S. Carter
- Neurosurgical Service, Massachusetts General Hospital, 55 Fruit Street, Yawkey 9026, Boston, MA 02114, USA
| |
Collapse
|
22
|
Abstract
Conventional therapies for glioblastoma multiforme (GBM) fail to target tumor cells exclusively, resulting in non-specific toxicity. Immune targeting of tumor-specific mutations may allow for more precise eradication of neoplastic cells. EGFR variant III (EGFRvIII) is a tumor-specific mutation that is widely expressed in GBM and other neoplasms and its expression enhances tumorigenicity. This in-frame deletion mutation splits a codon, resulting in a novel glycine at the fusion junction producing a tumor-specific epitope target for cellular or humoral immunotherapy. We have previously shown that vaccination with a peptide that spans the EGFRvIII fusion junction (PEPvIII-KLH/CDX-110) is an efficacious immunotherapy in syngeneic murine models. In this review, we summarize our results in GBM patients targeting this mutation in multiple, multi-institutional Phase II immunotherapy trials. These trials demonstrated that a selected population of GBM patients who received vaccines targeting EGFRvIII had an unexpectedly long survival time. Further therapeutic strategies and potential pitfalls of using this approach are discussed.
Collapse
Affiliation(s)
- Amy B Heimberger
- University of Texas MD Anderson Cancer Center, Department of Neurosurgery, Unit 422, Houston, TX 77230-1402, USA.
| | | |
Collapse
|
23
|
Abstract
Despite the many overall advances in understanding cancer biology and therapeutic development in the last 50 years, most CNS malignancies are still clinically difficult, incurable diseases. Current combinations of aggressive surgical resection, radiation therapy and chemotherapy regimens do not significantly improve long-term patient survival for these cancers. Cancer immunotherapy is a potentially promising new therapeutic strategy that primes a patient's immune system to attack neoplastic cells. We review the preclinical and clinical progress in developing vaccination-based therapy for CNS malignancies to date, including peptide-based vaccinations, dendritic cell-based vaccinations and other potential modalities. Some of the challenges for developing an effective vaccination strategy, such as abnormal immune molecules on glioma cells and abnormal lymphocyte populations within a glioma, are also discussed.
Collapse
Affiliation(s)
- Johnathan D Ebben
- Brain Tumor Research Laboratory, Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | |
Collapse
|
24
|
Li G, Wong AJ. EGF receptor variant III as a target antigen for tumor immunotherapy. Expert Rev Vaccines 2008; 7:977-85. [PMID: 18767947 DOI: 10.1586/14760584.7.7.977] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The EGF receptor (EGFR) is the first tyrosine kinase receptor ever cloned and remains at the forefront of targeted therapies against cancer. Currently, there are four US FDA-approved drugs and several more in Phase III studies that target the EGFR. These drugs, while resulting in some dramatic remissions, have not resulted in strong nor consistent improvements in survival. EGFR variant III (EGFRvIII) is the most common variant of the EGFR and is present in many different cancer types but not in normal tissue. It results from the fusion of exon 1 to exon 8 of the EGFR gene, which results in a novel glycine at the junction. This mutant receptor is constitutively active in these tumors and can lead directly to cancer phenotypes due to its oncogenic properties. EGFRvIII is an attractive target antigen for cancer immunotherapy because it is not expressed in normal tissue and because cells producing EGFRvIII have an enhanced capacity for dysregulated growth, survival, invasion and angiogenesis. In this review, we will discuss preclinical and clinical data from studies using EGFRvIII as the target antigen for immunotherapy, with a focus on the potential for greatly improved survival for patients diagnosed with glioblastoma multiforme.
Collapse
Affiliation(s)
- Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards Building Room 213, Stanford, CA 94305, USA
| | | |
Collapse
|
25
|
Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Bigner DD. Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma. Semin Immunol 2008; 20:267-75. [PMID: 18539480 PMCID: PMC2633865 DOI: 10.1016/j.smim.2008.04.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 04/08/2008] [Accepted: 04/17/2008] [Indexed: 01/07/2023]
Abstract
Conventional therapies for malignant gliomas (MGs) fail to target tumor cells exclusively, such that their efficacy is ultimately limited by non-specific toxicity. Immunologic targeting of tumor-specific gene mutations, however, may allow more precise eradication of neoplastic cells. The epidermal growth factor receptor variant III (EGFRvIII) is a consistent tumor-specific mutation that is widely expressed in MGs and other neoplasms. This mutation encodes a constitutively active tyrosine kinase that enhances tumorgenicity and migration and confers radiation and chemotherapeutic resistance. This in-frame deletion mutation splits a codon resulting in the creation of a novel glycine at the fusion junction between normally distant parts of the molecule and producing a sequence re-arrangement which creates a tumor-specific epitope for cellular or humoral immunotherapy in patients with MGs. We have previously shown that vaccination with a peptide that spans the EGFRvIII fusion junction is an efficacious immunotherapy in syngeneic murine models, but patients with MGs have a profound immunosuppression that may inhibit the ability of antigen presenting cells (APCs), even those generated ex vivo, to induce EGFRvIII-specific immune responses. In this report, we summarize our results in humans targeting this mutation in two consecutive and one multi-institutional Phase II immunotherapy trials. These trials demonstrated that vaccines targeting EGFRvIII are capable of inducing potent T- and B-cell immunity in these patients, and lead to an unexpectedly long survival time. Most importantly, vaccines targeting EGFRvIII were universally successful at eliminating tumor cells expressing the targeted antigen without any evidence of symptomatic collateral toxicity. These studies establish the tumor-specific EGFRvIII mutation as a novel target for humoral- and cell-mediated immunotherapy in a variety of cancers. The recurrence of EGFRvIII-negative tumors in our patients, however, highlights the need for targeting a broader repertoire of tumor-specific antigens.
Collapse
Affiliation(s)
- John H Sampson
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Despite maximal therapy, malignant gliomas have a very poor prognosis. Patients with glioma express significant immune defects, including CD4 lymphopenia, increased fractions of regulatory T cells in peripheral blood and shifts in cytokine profiles from Th1 to Th2. Recent studies have focused on ways to combat immunosuppression in patients with glioma as well as in animal models for glioma. We concentrate on two specific ways to combat immunosuppression: inhibition of TGF-beta signaling and modulation of regulatory T cells. TGF-beta signaling can be interrupted by antisense oligonucleotide technology, TGF-beta receptor I kinase inhibitors, soluble TGF-beta receptors and antibodies against TGF-beta. Regulatory T cells have been targeted with antibodies against T-cell markers, such as CD25, CTLA-4 and GITR. In addition, vaccination against Foxp3 has been explored. The results of these studies have been encouraging; combating immunosuppression may be one key to improving prognosis in malignant glioma.
Collapse
Affiliation(s)
- Eleanor A Vega
- Duke University School of Medicine, Department of Surgery, Division of Neurosurgery, 221 Sands Building, Durham, NC 27710, USA
| | | | | |
Collapse
|
27
|
Gao J, Kou G, Wang H, Chen H, Li B, Lu Y, Zhang D, Wang S, Hou S, Qian W, Dai J, Zhao J, Zhong Y, Guo Y. PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity. Breast Cancer Res Treat 2008; 115:29-41. [PMID: 18481173 DOI: 10.1007/s10549-008-0043-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 04/23/2008] [Indexed: 02/07/2023]
Abstract
The clinical use of Pseudomonas exotoxin A (PE)-based immunotoxins is limited by the toxicity and immunogenicity of PE. To overcome the limitations, we have developed PE38KDEL-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles conjugated with Fab' fragments of a humanized anti-HER2 monoclonal antibody (rhuMAbHER2). The PE38KDEL-loaded nanoparticles-anti-HER2 Fab' bioconjugates (PE-NP-HER) were constructed modularly with Fab' fragments of rhuMAbHER2 covalently linked to PLGA nanoparticles containing PE38KDEL. Compared with nontargeted nanoparticles that lack anti-HER2 Fab', PE-NP-HER specifically bound to and were sequentially internalized into HER2 overexpressing breast cancer cells, which result in significant cytotoxicity in vitro. In HER2 overexpressing tumor xenograft model system, administration of PE-NP-HER showed a superior efficacy in inhibiting tumor growth compared with PE-HER referring to PE38KDEL conjugated directly to rhuMAbHER2. Moreover, PE-NP-HER was well tolerated in mice with a higher LD(50) (LD(50) of 6.86 +/- 0.47 mg/kg vs. 2.21 +/- 0.32 mg/kg for PE-NP-HER vs. PE-HER (mean +/- SD); n = 3), and had no influence on the plasma level of plasma alanine aminotransferase (ALT) of animals when injected at a dose of 1 mg/kg where PE-HER caused significant increase of serum ALT in the treated mice. Notably, PE-NP-HER was of low immunogenicity in development of anti-PE38KDEL neutralizing antibodies and was less susceptible to inactivation by anti-PE38KDEL antibodies compared with PE-HER. This novel bioconjugate, PE-NP-HER, may represent a useful strategy for cancer treatment.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmaceutical Science of College of Pharmacy, International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|