1
|
Blalock LT, Landsberg J, Messmer M, Shi J, Pardee AD, Haskell R, Vujanovic L, Kirkwood JM, Butterfield LH. Human dendritic cells adenovirally-engineered to express three defined tumor antigens promote broad adaptive and innate immunity. Oncoimmunology 2021; 1:287-357. [PMID: 22737604 PMCID: PMC3382861 DOI: 10.4161/onci.18628] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dendritic cell (DC) immunotherapy has shown a promising ability to promote anti-tumor immunity in vitro and in vivo. Many trials have tested single epitopes and single antigens to activate single T cell specificities, and often CD8(+) T cells only. We previously found that determinant spreading and breadth of antitumor immunity correlates with improved clinical response. Therefore, to promote activation and expansion of polyclonal, multiple antigen-specific CD8(+) T cells, as well as provide cognate help from antigen-specific CD4(+) T cells, we have created an adenovirus encoding three full length melanoma tumor antigens (tyrosinase, MART-1 and MAGE-A6, "AdVTMM"). We previously showed that adenovirus (AdV)-mediated antigen engineering of human DC is superior to peptide pulsing for T cell activation, and has positive biological effects on the DC, allowing for efficient activation of not only antigen-specific CD8(+) and CD4(+) T cells, but also NK cells. Here we describe the cloning and testing of "AdVTMM2," an E1/E3-deleted AdV encoding the three melanoma antigens. This novel three-antigen virus expresses mRNA and protein for all antigens, and AdVTMM-transduced DC activate both CD8(+) and CD4(+) T cells which recognize melanoma tumor cells more efficiently than single antigen AdV. Addition of physiological levels of interferon-α (IFNα) further amplifies melanoma antigen-specific T cell activation. NK cells are also activated, and show cytotoxic activity. Vaccination with multi-antigen engineered DC may provide for superior adaptive and innate immunity and ultimately, improved antitumor responses.
Collapse
Affiliation(s)
- Leeann T Blalock
- Department of Medicine; University of Pittsburgh; Pittsburgh, PA USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Vujanovic L, Ballard W, Thorne SH, Vujanovic NL, Butterfield LH. Adenovirus-engineered human dendritic cells induce natural killer cell chemotaxis via CXCL8/IL-8 and CXCL10/IP-10. Oncoimmunology 2021; 1:448-457. [PMID: 22754763 PMCID: PMC3382881 DOI: 10.4161/onci.19788] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recombinant adenovirus-engineered dendritic cells (Ad.DC) are potent vaccines for induction of anti-viral and anti-cancer T cell immunity. The effectiveness of Ad.DC vaccines may depend on the newly described ability of Ad.DC to crosstalk with natural killer (NK) cells via cell-to-cell contact, and to mediate activation, polarization and bridging of innate and adaptive immunity. For this interaction to occur in vivo, Ad.DC must be able to attract NK cells from surrounding tissues or peripheral blood. We developed a novel live mouse imaging system-based NK-cell migration test, and demonstrated for the first time that human Ad.DC induced directional migration of human NK cells across subcutaneous tissues, indicating that Ad.DC-NK cell contact and interaction could occur in vivo. We examined the mechanism of Ad.DC-induced migration of NK cells in vitro and in vivo. Ad.DC produced multiple chemokines previously reported to recruit NK cells, including immunoregulatory CXCL10/IP-10 and proinflammatory CXCL8/IL-8. In vitro chemotaxis experiments utilizing neutralizing antibodies and recombinant human chemokines showed that CXCL10/IP-10 and CXCL8/IL-8 were critical for Ad.DC-mediated recruitment of CD56hiCD16- and CD56loCD16+ NK cells, respectively. The importance of CXCL8/IL-8 was further demonstrated in vivo. Pretreatment of mice with the neutralizing anti-CXCL8/IL-8 antibody led to significant inhibition of Ad.DC-induced migration of NK cells in vivo. These data show that Ad.DC can recruit spatially distant NK cells toward a vaccine site via specific chemokines. Therefore, an Ad.DC vaccine can likely induce interaction with endogenous NK cells via transmembrane mediators, and consequently mediate Th1 polarization and amplification of immune functions in vivo.
Collapse
Affiliation(s)
- Lazar Vujanovic
- University of Pittsburgh Cancer Institute; Pittsburgh, PA USA ; Deparment of Medicine; University of Pittsburgh School of Medicine; University of Pittsburgh; Pittsburgh, PA USA
| | | | | | | | | |
Collapse
|
3
|
Gupta U, Hira SK, Singh R, Paladhi A, Srivastava P, Pratim Manna P. Essential role of TNF-α in gamma c cytokine aided crosstalk between dendritic cells and natural killer cells in experimental murine lymphoma. Int Immunopharmacol 2019; 78:106031. [PMID: 31821938 DOI: 10.1016/j.intimp.2019.106031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
Cooperative and cognitive interaction between the dendritic cells and natural killer cells was investigated for demonstrating the anti-tumor activity against an aggressive murine lymphoma, treated with doxorubicin. Crosstalk between the dendritic cells and the natural killer cells significantly reduced the proliferation of Dalton's lymphoma cells in a dose dependent manner. Treatment of Dalton's lymphoma cells with doxorubicin in vitro enhances the effects of crosstalk against the target cells. This crosstalk between the cells was regulated via stimulation with recombinant interleukin-15, and release of TNF-α which is critically important for the tumoricidal effects. Dendritic cells and the natural killer cells crosstalk activate both the cells and upregulate the expression of CD40, CD69 and CD86 on the dendritic cells. These findings provided new insight regarding these interactions and define a mechanism by which cellular immune response promotes tumoricidal activity against lymphoma in therapeutic setting.
Collapse
Affiliation(s)
- Uttam Gupta
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sumit Kumar Hira
- Cellular Immunology Laboratory, Department of Zoology, The University of Burdwan, Purba, Bardhhaman 713104, India
| | - Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ankush Paladhi
- Cellular Immunology Laboratory, Department of Zoology, The University of Burdwan, Purba, Bardhhaman 713104, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Cellular Immunology Laboratory, Department of Zoology, The University of Burdwan, Purba, Bardhhaman 713104, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Butterfield LH, Vujanovic L, Santos PM, Maurer DM, Gambotto A, Lohr J, Li C, Waldman J, Chandran U, Lin Y, Lin H, Tawbi HA, Tarhini AA, Kirkwood JM. Multiple antigen-engineered DC vaccines with or without IFNα to promote antitumor immunity in melanoma. J Immunother Cancer 2019; 7:113. [PMID: 31014399 PMCID: PMC6480917 DOI: 10.1186/s40425-019-0552-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background Cancer vaccines are designed to promote systemic antitumor immunity and tumor eradication. Cancer vaccination may be more efficacious in combination with additional interventions that may build on or amplify their effects. Methods Based on our previous clinical and in vitro studies, we designed an antigen-engineered DC vaccine trial to promote a polyclonal CD8+ and CD4+ T cell response against three shared melanoma antigens. The 35 vaccine recipients were then randomized to receive one month of high-dose IFNα or observation. Results The resulting clinical outcomes were 2 partial responses, 8 stable disease and 14 progressive disease among patients with measurable disease using RECIST 1.1, and, of 11 surgically treated patients with no evidence of disease (NED), 4 remain NED at a median follow-up of 3 years. The majority of vaccinated patients showed an increase in vaccine antigen-specific CD8+ and CD4+ T cell responses. The addition of IFNα did not appear to improve immune or clinical responses in this trial. Examination of the DC vaccine profiles showed that IL-12p70 secretion did not correlate with immune or clinical responses. In depth immune biomarker studies support the importance of circulating Treg and MDSC for development of antigen-specific T cell responses, and of circulating CD8+ and CD4+ T cell subsets in clinical responses. Conclusions DC vaccines are a safe and reliable platform for promoting antitumor immunity. This combination with one month of high dose IFNα did not improve outcomes. Immune biomarker analysis in the blood identified several predictive and prognostic biomarkers for further analysis, including MDSC. Trial registration NCT01622933. Electronic supplementary material The online version of this article (10.1186/s40425-019-0552-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lisa H Butterfield
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA. .,Department of Surgery, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA. .,Department of Immunology, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA. .,UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.
| | - Lazar Vujanovic
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Patricia M Santos
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Deena M Maurer
- Department of Immunology, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Joel Lohr
- Department of Immunology, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Chunlei Li
- UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,Present address: Tsinghua University School of Medicine, Beijing, China
| | - Jacob Waldman
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yan Lin
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huang Lin
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hussein A Tawbi
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,Present address: Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmad A Tarhini
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,Present address: Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - John M Kirkwood
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| |
Collapse
|
5
|
Vujanovic L, Chuckran C, Lin Y, Ding F, Sander CA, Santos PM, Lohr J, Mashadi-Hossein A, Warren S, White A, Huang A, Kirkwood JM, Butterfield LH. CD56 dim CD16 - Natural Killer Cell Profiling in Melanoma Patients Receiving a Cancer Vaccine and Interferon-α. Front Immunol 2019; 10:14. [PMID: 30761123 PMCID: PMC6361792 DOI: 10.3389/fimmu.2019.00014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic and immunoregulatory lymphocytes that have a central role in anti-tumor immunity and play a critical role in mediating cellular immunity in advanced cancer immunotherapies, such as dendritic cell (DC) vaccines. Our group recently tested a novel recombinant adenovirus-transduced autologous DC-based vaccine that simultaneously induces T cell responses against three melanoma-associated antigens for advanced melanoma patients. Here, we examine the impact of this vaccine as well as the subsequent systemic delivery of high-dose interferon-α2b (HDI) on the circulatory NK cell profile in melanoma patients. At baseline, patient NK cells, particularly those isolated from high-risk patients with no measurable disease, showed altered distribution of CD56dim CD16+ and CD56dim CD16− NK cell subsets, as well as elevated serum levels of immune suppressive MICA, TN5E/CD73 and tactile/CD96, and perforin. Surprisingly, patient NK cells displayed a higher level of activation than those from healthy donors as measured by elevated CD69, NKp44 and CCR7 levels, and enhanced K562 killing. Elevated cytolytic ability strongly correlated with increased representation of CD56dim CD16+ NK cells and amplified CD69 expression on CD56dim CD16+ NK cells. While intradermal DC immunizations did not significantly impact circulatory NK cell activation and distribution profiles, subsequent HDI injections enhanced CD56bright CD16− NK cell numbers when compared to patients that did not receive HDI. Phenotypic analysis of tumor-infiltrating NK cells showed that CD56dim CD16− NK cells are the dominant subset in melanoma tumors. NanoString transcriptomic analysis of melanomas resected at baseline indicated that there was a trend of increased CD56dim NK cell gene signature expression in patients with better clinical response. These data indicate that melanoma patient blood NK cells display elevated activation levels, that intra-dermal DC immunizations did not effectively promote systemic NK cell responses, that systemic HDI administration can modulate NK cell subset distributions and suggest that CD56dim CD16− NK cells are a unique non-cytolytic subset in melanoma patients that may associate with better patient outcome.
Collapse
Affiliation(s)
- Lazar Vujanovic
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christopher Chuckran
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yan Lin
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Fei Ding
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cindy A Sander
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Patricia M Santos
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Joel Lohr
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Sarah Warren
- NanoString Technologies, Seattle, WA, United States
| | - Andy White
- NanoString Technologies, Seattle, WA, United States
| | - Alan Huang
- NanoString Technologies, Seattle, WA, United States
| | - John M Kirkwood
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lisa H Butterfield
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Ramachandran M, Dimberg A, Essand M. The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells. Semin Cancer Biol 2017; 45:23-35. [DOI: 10.1016/j.semcancer.2017.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/26/2017] [Indexed: 01/18/2023]
|
7
|
Abraham RS, Mitchell DA. Gene-modified dendritic cell vaccines for cancer. Cytotherapy 2017; 18:1446-1455. [PMID: 27745604 DOI: 10.1016/j.jcyt.2016.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/16/2016] [Indexed: 12/13/2022]
Abstract
Dendritic cell (DC) vaccines are an immunotherapeutic approach to cancer treatment that use the antigen-presentation machinery of DCs to activate an endogenous anti-tumor response. In this treatment strategy, DCs are cultured ex vivo, exposed to tumor antigens and administered to the patient. The ex vivo culturing provides a unique and powerful opportunity to modify and enhance the DCs. As such, a variety of genetic engineering approaches have been employed to optimize DC vaccines, including the introduction of messenger RNA and small interfering RNA, viral gene transduction, and even fusion with whole tumor cells. In general, these modifications aim to improve targeting, enhance immunogenicity, and reduce susceptibility to the immunosuppressive tumor microenvironment. It has been demonstrated that several of these modifications can be employed in tandem, allowing for fine-tuning and optimization of the DC vaccine across multiple metrics. Thus, the application of genetic engineering techniques to the dendritic cell vaccine platform has the potential to greatly enhance its efficacy in the clinic.
Collapse
Affiliation(s)
- Rebecca S Abraham
- UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Department of Neurosurgery, University of Florida, Gainesville, FL 32605
| | - Duane A Mitchell
- UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Department of Neurosurgery, University of Florida, Gainesville, FL 32605.
| |
Collapse
|
8
|
Vujanovic L, Stahl EC, Pardee AD, Geller DA, Tsung A, Watkins SC, Gibson GA, Storkus WJ, Butterfield LH. Tumor-Derived α-Fetoprotein Directly Drives Human Natural Killer-Cell Activation and Subsequent Cell Death. Cancer Immunol Res 2017; 5:493-502. [PMID: 28468916 DOI: 10.1158/2326-6066.cir-16-0216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/22/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) patients with reduced natural killer (NK)-cell numbers and function have been shown to have a poor disease outcome. Mechanisms underlying NK-cell deficiency and dysfunction in HCC patients remain largely unresolved. α-Fetoprotein (AFP) is an oncofetal antigen produced by HCC. Previous studies demonstrated that tumor-derived AFP (tAFP) can indirectly impair NK-cell activity by suppressing dendritic cell function. However, a direct tAFP effect on NK cells remains unexplored. The purpose of this study was to examine the ability of cord blood-derived AFP (nAFP) and that of tAFP to directly modulate human NK-cell activity and longevity in vitro Short-term exposure to tAFP and, especially, nAFP proteins induced a unique proinflammatory, IL2-hyperresponsive phenotype in NK cells as measured by IL1β, IL6, and TNF secretion, CD69 upregulation, and enhanced tumor cell killing. In contrast, extended coculture with tAFP, but not nAFP, negatively affected long-term NK-cell viability. NK-cell activation was directly mediated by the AFP protein itself, whereas their viability was affected by hydrophilic components within the low molecular mass cargo that copurified with tAFP. Identification of the distinct impact of circulating tAFP on NK-cell function and viability may be crucial to developing a strategy to ameliorate HCC patient NK-cell functional deficits. Cancer Immunol Res; 5(6); 493-502. ©2017 AACR.
Collapse
Affiliation(s)
- Lazar Vujanovic
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Elizabeth C Stahl
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania
| | - Angela D Pardee
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh, Pennsylvania
| | - David A Geller
- University of Pittsburgh School of Medicine, Department of Surgery, University of Pittsburgh, Pennsylvania
| | - Allan Tsung
- University of Pittsburgh School of Medicine, Department of Surgery, University of Pittsburgh, Pennsylvania
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh, Pennsylvania
| | - Gregory A Gibson
- Department of Cell Biology and Physiology, University of Pittsburgh, Pennsylvania
| | - Walter J Storkus
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania.,Department of Dermatology, University of Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pennsylvania
| | - Lisa H Butterfield
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania. .,Department of Medicine, University of Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Department of Surgery, University of Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Viral IL-10 down-regulates the "MHC-I antigen processing operon" through the NF-κB signaling pathway in nasopharyngeal carcinoma cells. Cytotechnology 2016; 68:2625-2636. [PMID: 27650182 DOI: 10.1007/s10616-016-9987-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/19/2016] [Indexed: 10/21/2022] Open
Abstract
The HLA-I antigen processing machinery (APM) plays a crucial role in the anticancer immune response. The loss of surface expression of HLA-I molecules is particularly important as this enables tumor cells to evade recognition and lysis by cytotoxic T-lymphocytes. Transcriptional control of the APM genes is regulated by the nuclear factor kappa B (NF-κB). BCRFl is an Epstein-Barr virus homologue of human IL-10 (hIL-10) and is known as viral IL-10 (vIL-10). vIL-10 shares many immunosuppressive effects with hIL-10 but lacks the immunostimulatory effect of hIL-10. The aim of this study was to assess whether vIL-10 inhibits APM components (TAP-1, TAP-2, LMP-2, LMP-7 and HLA-I) through the NF-κB signaling pathway in nasopharyngeal carcinoma. This work demonstrated that vIL-10 inhibited NF-κB activation by blocking IKK phosphorylation and promoting the expression of IKB. TNF-α treatment led to a strong translocation of NF-κB p65, whereas pretreatment with vIL-10 before TNF-α treatment blocked NF-κB p65 translocation. vIL-10 also inhibited TNF-α-induced DNA-binding of NF-κB p65 in the nucleus. Furthermore, chromatin immunoprecipitation analysis demonstrated that NF-κB p65 could bind to the TAP-1, TAP-2, LMP-2, LMP-7 and HLA-I gene promoters, and after TNF-α stimulation, the down-regulation of TAP-1, TAP-2, LMP-2, LMP-7 and HLA-I transcription by vIL-10 correlated with the suppression of NF-κB in CNE-2 cells. Surprisingly, vIL-10 inhibits only TAP-1 and LMP-7 transcription in CNE-1 cells. Taken together, these results suggest that the inhibition of NF-κB activity may be an important mechanism for vIL-10 suppression of APM (TAP-1, TAP-2, LMP-2, LMP-7 and HLA-I) gene transcription in CNE-2 cells.
Collapse
|
10
|
Peng Y, Lai M, Lou Y, Liu Y, Wang H, Zheng X. Efficient induction of cross-presentating human B cell by transduction with human adenovirus type 7 vector. Immunol Lett 2015; 169:41-51. [PMID: 26620361 DOI: 10.1016/j.imlet.2015.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/22/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
Abstract
Although human autologous B cells represent a promising alternative to dendritic cells (DCs) for easy large-scale preparation, the naive human B cells are always poor at antigen presentation. The safe and effective usage record of human adenovirus type 7 (HAdV7) live vaccines makes it attractive as a promising vaccine vector candidate. To investigate whether HAdV7 vector could be used to induce the human B cells cross-presentation, in the present study, we constructed the E3-defective recombinant HAdV7 vector encoding green fluorescent protein (GFP) and carcinoembryonic antigen (CEA). We demonstrated that naive human B cells can efficiently be transduced, and that the MAPKs/NF-κB pathway can be activated by recombinant HAdV7. We proved that cytokine TNF-α, IL-6 and IL-10, surface molecule MHC class I and the CD86, antigen-processing machinery (APM) compounds ERp57, TAP-1, and TAP-2. were upregulated in HAdV7 transduced human B cells. We also found that CEA-specific IFNγ expression, degranulation, and in vitro and ex vivo cytotoxicities are induced in autologous CD8(+) T cells presensitized by HAd7CEA modified human B cells. Meanwhile, our evidences clearly show that Toll-like receptors 9 (TLR9) antagonist IRS 869 significantly eliminated most of the HAdV7 initiated B cell activation and CD8(+) T cells response, supporting the role and contribution of TLR9 signaling in HAdV7 induced human B cell cross-presentation. Besides a better understanding of the interactions between recombinant HAdV7 and human naive B cells, to our knowledge, the present study provides the first evidence to support the use of HAdV7-modified B cells as a vehicle for vaccines and immunotherapy.
Collapse
Affiliation(s)
- Ying Peng
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meimei Lai
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Laboratory Medicine,Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| | - Yunyan Lou
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Laboratory Medicine,Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| | - Yanqing Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Laboratory Medicine,Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| | - Huiyan Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Laboratory Medicine,Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| | - Xiaoqun Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Laboratory Medicine,Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Pardee AD, Yano H, Weinstein AM, Ponce AAK, Ethridge AD, Normolle DP, Vujanovic L, Mizejewski GJ, Watkins SC, Butterfield LH. Route of antigen delivery impacts the immunostimulatory activity of dendritic cell-based vaccines for hepatocellular carcinoma. J Immunother Cancer 2015. [PMID: 26199728 PMCID: PMC4509479 DOI: 10.1186/s40425-015-0077-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Dendritic cells (DC) are uniquely equipped to capture, process, and present antigens from their environment. The context in which an antigen is acquired by DC helps to dictate the subsequent immune response. Cancer vaccination promotes antitumor immunity by directing an immune response to antigens expressed by tumors. We have tested the tumor-associated antigen alpha-fetoprotein (AFP) as an immunotherapy target. The majority of hepatocellular carcinomas (HCC) upregulate and secrete this oncofetal antigen. Methods To develop cancer vaccines for HCC capable of promoting potent tumor-specific T cell responses, we tested adenovirally-encoded synthetic AFP, with or without its signal sequence, as well as protein forms of AFP and compared intracellular routing and subsequent antigen-specific CD8+ and CD4+ T cell responses. Results Surprisingly, the secreted form of antigen was superior for both CD4+ and CD8+ T cell activation. We also examined the mechanism through which AFP protein is endocytosed and trafficked in human DC. We identify the mannose receptor (MR/CD206) as the primary uptake pathway for both normal cord blood-derived AFP (nAFP) and tumor-derived AFP (tAFP) proteins. While in healthy donors, nAFP and tAFP were cross-presented to CD8+ T cells similarly and CD4+ T cell responses were dependent upon MR-mediated uptake. In HCC patient cells, tAFP was more immunogenic, and CD4+ T cell responses were not MR-dependent. Conclusions Secreted, cytoplasmically retained, and endocytosed forms of AFP utilize unique uptake and processing pathways, resulting in different immunologic responses from the induced antigen-specific CD4+ and CD8+ T cells and between healthy donors and HCC patients. Collectively, these data elucidate pathways of spontaneous and induced anti-tumor immunity in HCC patients to this secreted antigen. Electronic supplementary material The online version of this article (doi:10.1186/s40425-015-0077-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Hiroshi Yano
- Departments of Medicine, Pittsburgh, PA 15261 USA
| | | | | | | | | | - Lazar Vujanovic
- Departments of Medicine, Pittsburgh, PA 15261 USA ; Departments of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Gerald J Mizejewski
- Non-paid Advisor at the Wadsworth Center, New York State Department of Health, Albany, NY 12201 USA
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Lisa H Butterfield
- Departments of Medicine, Pittsburgh, PA 15261 USA ; Departments of Surgery, Pittsburgh, PA 15261 USA ; Departments of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA ; University of Pittsburgh Cancer Institute, Hillman Cancer Center 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213 USA
| |
Collapse
|
12
|
Vujanovic L, Shi J, Kirkwood JM, Storkus WJ, Butterfield LH. Molecular mimicry of MAGE-A6 and Mycoplasma penetrans HF-2 epitopes in the induction of antitumor CD8 + T-cell responses. Oncoimmunology 2014; 3:e954501. [PMID: 25960935 DOI: 10.4161/21624011.2014.954501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/11/2014] [Indexed: 11/19/2022] Open
Abstract
A promising vaccine strategy for the treatment of cancer involves the use of vaccines incorporating tumor antigen-derived synthetic peptides that can be coordinately recognized by specific CD4+ and CD8+ T-cells. Previously, we reported that a MAGE-A6-derived peptide (MAGE-A6172-187) and its highly-immunogenic and cross-reactive homolog derived from Mycoplasma penetrans HF-2 permease (HF-2216-229) are promiscuously presented by multiple HLA-DR alleles to responder CD4+ T-cells obtained from healthy donors and melanoma patients. Here, we investigated whether these same peptides could concomitantly stimulate cross-reactive MAGE-A6-specific CD8+ T-cell responses in vitro using cells isolated from HLA-A*0201 (HLA-A2)+ healthy individuals and patients with melanoma. We now show that MAGE-A6172-187 and, even more so, HF-2216-229, induce memory CD8+ T cells that recognize HLA-A2+ MAGE-A6+ tumor target cells. The immunogenicity of these peptides was at least partially attributed to their embedded MAGE-A6176-185 and HF-2220-229 "homologous" sequences. The functional avidity of HF-2216-229 peptide-primed CD8+ T cells for the MAGE-A6172-187 peptide was more than 100-fold greater than that of CD8+ T cells primed with the corresponding MAGE-A6 peptide. Additionally, these 2 peptides were recognized in interferon γ (IFNγ) and granzyme B ELISPOT assays by CD8+ T-cell clones displaying variable T-cell receptor (TCR) Vβ usage. These data suggest that the immune cross-reactivity of the MAGE-A6172-187 and HF-2216-229 peptides extends to CD8+ T cells, at least in HLA-A2+ donors, and supports the potential translational utility of these epitopes in clinical vaccine formulations and for immunomonitoring of cancer patients.
Collapse
Key Words
- APC, antigen presenting cell
- AdV, recombinant adenoviral vector
- CD8+ T-cell
- CTL, cytotoxic T lymphocyte
- EBV, Epstein-Barr virus
- FBS, fetal bovine serum
- HD, healthy donor
- HLA, human leukocyte antigen
- HPLC, high-performance liquid chromatography
- IVS, in vitro stimulation
- MACS, Magnetic-Activated Cell Sorting
- MAGE-A6
- MOI, multiplicity of infection
- Mycoplasma penetrans
- PBMC, peripheral blood mononuclear cell
- PFU, plaque forming units
- RT-PCR, reverse transcription polymerase chain reaction
- TAA, tumor associated antigen
- TCM, T cell media
- TCR, T-cell receptor
- epitope mimic
- iDC, immature dendritic cells
- mDC, mature dendritic cells
- melanoma
Collapse
Affiliation(s)
- Lazar Vujanovic
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Medicine ; Pittsburgh, PA USA
| | - Jian Shi
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Medicine ; Pittsburgh, PA USA
| | - John M Kirkwood
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Medicine ; Pittsburgh, PA USA
| | - Walter J Storkus
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Immunology ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Dermatology ; Pittsburgh, PA USA
| | - Lisa H Butterfield
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Medicine ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Immunology ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Surgery ; Pittsburgh, PA USA
| |
Collapse
|
13
|
Adenovirus expressing β2-microglobulin recovers HLA class I expression and antitumor immunity by increasing T-cell recognition. Cancer Gene Ther 2014; 21:317-32. [PMID: 24971583 DOI: 10.1038/cgt.2014.32] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/31/2014] [Accepted: 06/04/2014] [Indexed: 01/11/2023]
Abstract
Optimal tumor cell surface expression of human leukocyte antigen (HLA) class I molecules is essential for the presentation of tumor-associated peptides to T-lymphocytes. However, a hallmark of many types of tumor is the loss or downregulation of HLA class I expression associated with ineffective tumor antigen presentation to T cells. Frequently, HLA loss can be caused by structural alterations in genes coding for HLA class I complex, including the light chain of the complex, β2-microglobulin (β2m). Its best-characterized function is to interact with HLA heavy chain and stabilize the complex leading to a formation of antigen-binding cleft recognized by T-cell receptor on CD8+ T cells. Our previous study demonstrated that alterations in the β2m gene are frequently associated with cancer immune escape leading to metastatic progression and resistance to immunotherapy. These types of defects require genetic transfer strategies to recover normal expression of HLA genes. Here we characterize a replication-deficient adenoviral vector carrying human β2m gene, which is efficient in recovering proper tumor cell surface HLA class I expression in β2m-negative tumor cells without compromising the antigen presentation machinery. Tumor cells transduced with β2m induced strong activation of T cells in a peptide-specific HLA-restricted manner. Gene therapy using recombinant adenoviral vectors encoding HLA genes increases tumor antigen presentation and represents a powerful tool for modulation of tumor cell immunogenicity by restoration of missing or altered HLA genes. It should be considered as part of cancer treatment in combination with immunotherapy.
Collapse
|
14
|
Lopez-Gordo E, Podgorski II, Downes N, Alemany R. Circumventing antivector immunity: potential use of nonhuman adenoviral vectors. Hum Gene Ther 2014; 25:285-300. [PMID: 24499174 DOI: 10.1089/hum.2013.228] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles.
Collapse
Affiliation(s)
- Estrella Lopez-Gordo
- 1 Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow , Glasgow G12 8TA, United Kingdom
| | | | | | | |
Collapse
|
15
|
Naveh HP, Vujanovic L, Butterfield LH. Cellular immunity induced by a recombinant adenovirus- human dendritic cell vaccine for melanoma. J Immunother Cancer 2013; 1:19. [PMID: 24829755 PMCID: PMC4019908 DOI: 10.1186/2051-1426-1-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/13/2013] [Indexed: 11/17/2022] Open
Abstract
Background Human Adenoviral vectors (HAdV) are immunogenic vectors which have been tested in many vaccination and gene therapy settings. Dendritic cells (DC) transduced by genetically engineered HAdV-5 (HAdV-5/DC), are investigational cancer vaccines being tested clinically. We have previously examined immune responses to HAdV-5 -encoded melanoma tumor antigens. Here, we determined whether the HAdV-5/DC also present immunogenic HAdV-5 vector-derived antigens, and characterized the cellular immune response to the viral as well as encoded melanoma tumor antigens. Methods Both CD4+ and CD8+ HAdV-5-specific T cell responses were examined in vitro, with cells from both 8 healthy donors (HD) and 2 melanoma patients. PBMC were stimulated weekly with HAdV-5/DC and responses were examined after each stimulation. We also tested HAdV-5 neutralizing antibody levels and natural killer (NK) cell and regulatory T cell (Treg) activation and expansion in vitro. Results HAdV-5/DC rapidly induced a high frequency of type 1 cytokine producing HAdV-5-specific CD8+ and CD4+ T cells. IFNγ and TNFα-producing T cells predominate. Those with pre-existing cellular memory to HAdV-5 had more robust responses to the HAdV-5 as well as tumor-associated antigens. NK cells are activated while Treg are only minimally and transiently expanded. Conclusions This study demonstrates that HAdV-5/DC promote strong type I cellular immunity to viral vector-derived antigens as well as to the encoded tumor antigens. The cytokine and chemokine milieu produced by HAdV-5/DC and the activated HAdV-5-specific T cells may enhance responses to encoded tumor antigens as well. These properties make HAdV-5/DC a cancer vaccine capable of activating type 1 virus and tumor antigen-specific immunity in a cooperative way.
Collapse
Affiliation(s)
- Hadas Prag Naveh
- Department of Medicine, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213, USA
| | - Lazar Vujanovic
- Department of Medicine, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213, USA
| | - Lisa H Butterfield
- Department of Medicine, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213, USA ; Department of Surgery, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213, USA ; Department of Immunology, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213, USA ; University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Ren YX, Yang J, Zhang LJ, Sun RM, Zhao LF, Zhang M, Chen Y, Ma J, Qiao K, Sun QM, Long HT, Huang YC, Li XJ. Downregulation of expression of transporters associated with antigen processing 1 and 2 and human leukocyte antigen I and its effect on immunity in nasopharyngeal carcinoma patients. Mol Clin Oncol 2013; 2:51-58. [PMID: 24649307 DOI: 10.3892/mco.2013.194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/31/2013] [Indexed: 11/06/2022] Open
Abstract
The human leukocyte antigen (HLA)-I and antigen-processing machinery (APM) are crucial in the anti-cancer immune response. The aim of this study was to assess the clinical significance of the APM components [transporters associated with antigen processing (TAP)-1 and -2 and HLA-I] in nasopharyngeal carcinoma (NPC). A total of 58 NPC specimens and 20 healthy specimens used as control were evaluated by semiquantitative immunohistochemistry for three APM components (TAP-1, TAP-2 and HLA-I). The expression of the APM components in NPC was downregulated. CD4+ and CD8+ T cells were measured by flow cytometry and IL-10 was measured by ELISA. The number of CD8+ T cells and the expression of IL-10 were higher and the number of CD4+ T cells was lower in NPC, compared to the controls. The number of CD8+ T cells and the expression of IL-10 were negatively correlated with TAP-1, TAP-2 and HLA-I expression. The clinical phase, lymph node metastasis, distant metastasis, pathological type, TAP-1 expression, TAP-2 expression and HLA-I expression were identified as prognostic factors by the Kaplan-Meier analysis. A multivariate analysis using a Cox regression model indicated that distant metastasis and the downregulation of HLA-I expression were independent unfavorable prognostic factors. In conclusion, the lower expression of HLA-I induced immunosuppression in NPC patients and was associated with a poor prognosis.
Collapse
Affiliation(s)
- Yan-Xin Ren
- Head and Neck Tumor Research Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118
| | - Jie Yang
- Head and Neck Tumor Research Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118
| | - Li-Juan Zhang
- Departments of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118
| | - Rui-Mei Sun
- Head and Neck Tumor Research Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118
| | - Liu-Fang Zhao
- Head and Neck Tumor Research Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118
| | - Ming Zhang
- Radiotherapy, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118
| | - Yun Chen
- Departments of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118
| | - Jing Ma
- Department of Otolaryngology, Kunming Children's Hospital, Kunming, Yunnan 650034
| | - Kun Qiao
- Head and Neck Tumor Research Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118
| | - Qiang-Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Hai-Ting Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Yun-Chao Huang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Xiao-Jiang Li
- Head and Neck Tumor Research Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118
| |
Collapse
|
17
|
Cui H, Zhang W, Hu W, Liu K, Wang T, Ma N, Liu X, Liu Y, Jiang Y. Recombinant mammaglobin A adenovirus-infected dendritic cells induce mammaglobin A-specific CD8+ cytotoxic T lymphocytes against breast cancer cells in vitro. PLoS One 2013; 8:e63055. [PMID: 23650543 PMCID: PMC3641140 DOI: 10.1371/journal.pone.0063055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/30/2013] [Indexed: 12/23/2022] Open
Abstract
Mammaglobin A (MGBA) is a novel breast cancer-associated antigen almost exclusively over-expressed in primary and metastatic human breast cancers, making it a potential therapeutic target for breast cancer. The development of dendritic cell (DC)-induced tumor antigen specific CD8+ cytotoxic T lymphocytes (CTLs) may hold promise in cancer immunotherapy. In this study we constructed recombinant replication-defective adenoviral (Ad) vectors encoding MGBA and evaluated their ability to trigger anti-tumor immunity in vitro. DCs were isolated from the human peripheral blood monocyte cells (PBMCs) of two HLA-A33+ healthy female volunteers, and infected with adenovirus carrying MGBA cDNA (Ad-MGBA). After that, the Ad-MGBA-infected DCs were used to stimulate CD8+ CTLs in vitro and the latter was used for co-culture with breast cancer cell lines. The data revealed that infection with Ad-MGBA improved DC maturation and up-regulated the expression of co-stimulatory molecules and the secretion of interleukin-12 (IL-12), but down-regulated interleukin-10 (IL-10) secretion from DCs. Ad-MGBA-infected DC-stimulated CD8+CTLs displayed the highest cytotoxicity towards HLA-A33+/MGBA+ breast cancer MDA-MB-415 cells compared with other CD8+CTL populations, and compared with the cytotoxicity towards HLA-A33−/MGBA+ breast cancer HBL-100 cells and HLA-A33−/MGBA− breast cancer MDA-MB 231 cells. In addition, Ad-MGBA-infected DC-stimulated CD8+ CTLs showed a high level of IFNγ secretion when stimulated with HLA-A33+/MGBA+ breast cancer MDA-MB-415 cells, but not when stimulated with HLA-A33−/MGBA+ HBL-100 and HLA-A33−/MGBA−MDA-MB-231 cells. In addition, killing of CD8+CTLs against breast cancer was in a major histocompability complex (MHC)-limited pattern. Finally, the data also determined the importance of TNF-α in activating DCs and T cells. These data together suggest that MGBA recombinant adenovirus-infected DCs could induce specific anti-tumor immunity against MGBA+ breast cancers, which could provide a novel strategy in the immunotherapy of breast cancer.
Collapse
Affiliation(s)
- Huixia Cui
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
- College of Nursing, Liaoning Medical University, Jinzhou, China
| | - Wenlu Zhang
- Department of Oncology, The First Hospital of Liaoning Medical University, Jinzhou, China
| | - Wei Hu
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
| | - Kun Liu
- College of Nursing, Liaoning Medical University, Jinzhou, China
| | - Tong Wang
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
| | - Nan Ma
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
| | - Xiaohui Liu
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Youhong Jiang
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
18
|
Dendritic cell-based vaccines positively impact natural killer and regulatory T cells in hepatocellular carcinoma patients. Clin Dev Immunol 2011; 2011:249281. [PMID: 21969837 PMCID: PMC3182577 DOI: 10.1155/2011/249281] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 12/24/2022]
Abstract
Immunotherapy of cancer must promote antitumor effector cells for tumor eradication as well as counteract immunoregulatory mechanisms which inhibit effectors. Immunologic therapies of cancer are showing promise, including dendritic cell-(DC-) based strategies. DC are highly malleable antigen-presenting cells which can promote potent antitumor immunity as well as tolerance, depending on the environmental signals received. Previously, we tested a peptide-pulsed DC vaccine to promote Alpha-fetoprotein (AFP-) specific anti-tumor immunity in patients with hepatocellular carcinoma (HCC), and reported on the CD8+ T cell responses induced by this vaccine and the clinical trial results. Here, we show that the peptide-loaded DC enhanced NK cell activation and decreased regulatory T cells (Treg) frequencies in vaccinated HCC patients. We also extend these data by testing several forms of DC vaccines in vitro to determine the impact of antigen loading and maturation signals on both NK cells and Treg from healthy donors and HCC patients.
Collapse
|
19
|
Hasumi K, Aoki Y, Watanabe R, Hankey KG, Mann DL. Therapeutic response in patients with advanced malignancies treated with combined dendritic cell-activated T cell based immunotherapy and intensity-modulated radiotherapy. Cancers (Basel) 2011; 3:2223-42. [PMID: 24212806 PMCID: PMC3757414 DOI: 10.3390/cancers3022223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/14/2011] [Accepted: 04/19/2011] [Indexed: 12/28/2022] Open
Abstract
Successful cancer immunotherapy is confounded by the magnitude of the tumor burden and the presence of immunoregulatory elements that suppress an immune response. To approach these issues, 26 patients with advanced treatment refractory cancer were enrolled in a safety/feasibility study wherein a conventional treatment modality, intensity modulated radiotherapy (IMRT), was combined with dendritic cell-based immunotherapy. We hypothesized that radiation would lower the tumor burdens, decrease the number/function of regulatory cells in the tumor environment, and release products of tumor cells that could be acquired by intratumoral injected immature dendritic cells (iDC). Metastatic lesions identified by CT (computed tomography) were injected with autologous iDC combined with a cytokine-based adjuvant and KLH (keyhole limpet hemocyanin), followed 24 h later by IV-infused T-cells expanded with anti-CD3 and IL-2 (AT). After three to five days, each of the injected lesions was treated with fractionated doses of IMRT followed by another injection of intratumoral iDC and IV-infused AT. No toxicity was observed with cell infusion while radiation-related toxicity was observed in seven patients. Five patients had progressive disease, eight demonstrated complete resolution at treated sites but developed recurrent disease at other sites, and 13 showed complete response at various follow-up times with an overall estimated Kaplan-Meier disease-free survival of 345 days. Most patients developed KLH antibodies supporting our hypothesis that the co-injected iDC are functional with the capacity to acquire antigens from their environment and generate an adaptive immune response. These results demonstrate the safety and effectiveness of this multimodality strategy combining immunotherapy and IMRT in patients with advanced malignancies.
Collapse
Affiliation(s)
- Kenichiro Hasumi
- Hasumi International Research Foundation, Tokyo Research Center, 1-44-6 Asagaya-kita, Suginami- ku, Tokyo 166-0001, Japan; E-Mails: (K.H.); (Y.A.); (R.W.)
| | - Yukimasa Aoki
- Hasumi International Research Foundation, Tokyo Research Center, 1-44-6 Asagaya-kita, Suginami- ku, Tokyo 166-0001, Japan; E-Mails: (K.H.); (Y.A.); (R.W.)
| | - Ryuko Watanabe
- Hasumi International Research Foundation, Tokyo Research Center, 1-44-6 Asagaya-kita, Suginami- ku, Tokyo 166-0001, Japan; E-Mails: (K.H.); (Y.A.); (R.W.)
| | - Kim G. Hankey
- Department of Pathology, University of Maryland School of Medicine, MSTF Room 700, 10 South Pine Street, Baltimore, Maryland 21040, USA; E-Mail: (K.G.H.)
| | - Dean L. Mann
- Department of Pathology, University of Maryland School of Medicine, MSTF Room 700, 10 South Pine Street, Baltimore, Maryland 21040, USA; E-Mail: (K.G.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-410-706-1820; Fax: +1-410-706-8414
| |
Collapse
|
20
|
Butterfield LH, Vujanovic L. New approaches to the development of adenoviral dendritic cell vaccines in melanoma. CURRENT OPINION IN INVESTIGATIONAL DRUGS (LONDON, ENGLAND : 2000) 2010; 11:1399-408. [PMID: 21154122 PMCID: PMC3758558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Considerable research in the field of immunotherapy for melanoma has demonstrated that this tumor type can be responsive to therapeutic immune activation strategies. In early clinical trials, vaccine strategies using dendritic cells (DCs) and adenovirus (Ad) vectors (AdVs) were safe and immunogenic, and induced clinical responses in a minority of patients. Research from the past several years has yielded an improved mechanistic understanding of DC biology, AdV effects on DCs and the crosstalk that occurs between antigen-loaded DCs and specific lymphocyte subsets. This knowledge base is being combined with technological advances in cytokine delivery, AdV design and in vivo DC targeting. These developments are leading to novel AdV-transduced DC-based therapeutic modalities that may further advance melanoma immunotherapy. Interactions between AdVs and DCs, initial clinical trial results, and new developments in DC engineering and in AdV biology are reviewed.
Collapse
Affiliation(s)
- Lisa H Butterfield
- University of Pittsburgh, Cancer Institute, and Departments of Medicine, Hematology/Oncology, Surgery and Immunology, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, USA,
| | - Lazar Vujanovic
- University of Pittsburgh, Cancer Institute, and Departments of Medicine, Hematology/Oncology, Surgery and Immunology, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, USA,
| |
Collapse
|
21
|
Virally infected and matured human dendritic cells activate natural killer cells via cooperative activity of plasma membrane-bound TNF and IL-15. Blood 2010; 116:575-83. [PMID: 20430958 DOI: 10.1182/blood-2009-08-240325] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recombinant adenovirus-engineered dendritic cells (Ad.DCs) are potent immunologic adjuvants of antiviral and anticancer vaccines. The effectiveness of Ad.DC-based vaccines may depend on the ability of Ad.DCs to crosstalk with natural killer (NK) cells and to activate, polarize, and bridge innate and adaptive immunity. We investigated, for the first time, whether and how human Ad.DCs activate NK cells, and compared the Ad.DC function with that of immature DCs and matured DCs (mDCs). We found that adenovirus transduction and lipopolysaccharide/interferon-gamma-induced maturation increased expression of transmembrane tumor necrosis factor (TNF) and trans-presented (trans) interleukin-15 (IL-15) on DCs, leading to enhanced NK cell activation without enhancing DC susceptibility to NK cell-mediated killing. This crosstalk enhanced NK cell CD69 expression, interferon-gamma secretion, proliferation, and antitumor activities, with Ad.DCs being significantly more effective than immature DCs, but less effective than mDCs. The Ad.DC and mDC crosstalk with NK cells was largely prevented by physical separation of DCs and NK cells, and neutralization of total TNF and IL-15, but not by selective sequestration of soluble TNF. These findings demonstrate that both Ad.DCs and mDCs can efficiently promote innate immune functions by activation of NK cells through the cooperative activities of tmTNF and trans-IL-15 mediated by cell-to-cell contact.
Collapse
|
22
|
Clarke JM, Morse MA, Lyerly HK, Clay T, Osada T. Adenovirus vaccine immunotherapy targeting WT1-expressing tumors. Expert Opin Biol Ther 2010; 10:875-83. [DOI: 10.1517/14712591003798278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Thacker EE, Timares L, Matthews QL. Strategies to overcome host immunity to adenovirus vectors in vaccine development. Expert Rev Vaccines 2009; 8:761-77. [PMID: 19485756 DOI: 10.1586/erv.09.29] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first clinical evaluations of adenovirus (Ad)-based vectors for gene therapy were initiated in the mid-1990s and led to great anticipation for future utility. However, excitement surrounding gene therapy, particularly Ad-based therapy, was diminished upon the death of Jesse Gelsinger, and recent discouraging results from the HIV vaccine STEP trial have brought efficacy and safety issues to the forefront again. Even so, Ad vectors are still considered among the safest and most effective vaccine vectors. Innate and pre-existing immunity to Ad mediate much of the acute toxicities and reduced therapeutic efficacies observed following vaccination with this vector. Thus, innovative strategies must continue to be developed to reduce Ad-specific antigenicity and immune recognition. This review provides an overview and critique of the most promising strategies, including results from preclinical trials in mice and nonhuman primates, which aim to revive the future of Ad-based vaccines.
Collapse
Affiliation(s)
- Erin E Thacker
- Division of Human Gene Therapy, Departments of Medicine, University of Alabama at Birmingham, BMR2 470, 901 19th Street South, Birmingham, AL 35294-32172, USA.
| | | | | |
Collapse
|
24
|
Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci U S A 2009; 106:10746-51. [PMID: 19520829 DOI: 10.1073/pnas.0811817106] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The RNase III endonuclease Dicer plays a key role in generation of microRNAs (miRs). We hypothesized that Dicer regulates cancer cell susceptibility to immune surveillance through miR processing. Indeed, Dicer disruption up-regulated intercellular cell adhesion molecule (ICAM)-1 and enhanced the susceptibility of tumor cells to antigen-specific lysis by cytotoxic T-lymphocytes (CTLs), while expression of other immunoregulatory proteins examined was not affected. Blockade of ICAM-1 inhibited the specific lysis of CTLs against Dicer-disrupted cells, indicating a pivotal role of ICAM-1 in the interaction between tumor cells and CTL. Both miR-222 and -339 are down-regulated in Dicer-disrupted cells and directly interacted with the 3' untranslated region (UTR) of ICAM-1 mRNA. Modulation of Dicer or these miRs inversely correlated with ICAM-1 protein expression and susceptibility of U87 glioma cells to CTL-mediated cytolysis while ICAM-1 mRNA levels remained stable. Immunohistochemical and in situ hybridization analyses of 30 primary glioblastoma tissues demonstrated that expression of Dicer, miR-222, or miR-339 was inversely associated with ICAM-1 expression. Taken together, Dicer is responsible for the generation of the mature miR-222 and -339, which suppress ICAM-1 expression on tumor cells, thereby down-regulating the susceptibility of tumor cells to CTL-mediated cytolysis. This study suggests development of novel miR-targeted therapy to promote cytolysis of tumor cells.
Collapse
|
25
|
Ahlers JD, Belyakov IM. Strategies for recruiting and targeting dendritic cells for optimizing HIV vaccines. Trends Mol Med 2009; 15:263-74. [DOI: 10.1016/j.molmed.2009.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/03/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
|
26
|
Osada T, Woo CY, McKinney M, Yang XY, Lei G, Labreche HG, Hartman ZC, Niedzwiecki D, Chao N, Amalfitano A, Morse MA, Lyerly HK, Clay TM. Induction of Wilms' tumor protein (WT1)-specific antitumor immunity using a truncated WT1-expressing adenovirus vaccine. Clin Cancer Res 2009; 15:2789-96. [PMID: 19351755 DOI: 10.1158/1078-0432.ccr-08-2589] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Wilms' tumor protein (WT1) is overexpressed in most leukemias and many solid tumors and is a promising target for tumor immunotherapy. WT1 peptide-based cancer vaccines have been reported but have limited application due to HLA restriction of the peptides. We sought to vaccinate using adenoviral (Ad) vectors encoding tumor-associated antigens such as WT1 that can stimulate tumor-associated antigen-specific immunity across a broad array of HLA types and multiple class I and class II epitopes. EXPERIMENTAL DESIGN We developed a novel Ad vector encoding a truncated version of WT1 (Ad-tWT1) lacking the highly conserved COOH terminus zinc finger domains and tested its ability to stimulate WT1-specific immune responses and antitumor immunity in two murine models of WT1-expressing tumors. RESULTS Despite encoding a transcription factor, we found that Ad-tWT1-transduced murine and human dendritic cells showed cytoplasmic expression of the truncated WT1 protein. In addition, vaccination of C57BL/6 mice with Ad-tWT1 generated WT1-specific cell-mediated and humoral immune responses and conferred protection against challenge with the leukemia cell line, mWT1-C1498. Moreover, in a tumor therapy model, Ad-tWT1 vaccination of TRAMP-C2 tumor-bearing mice significantly suppressed tumor growth. CONCLUSIONS This is the first report of a WT1-encoding Ad vector that is capable of inducing effective immunity against WT1-expressing malignancies. Based on these findings, Ad-tWT1 warrants investigation in human clinical trials to evaluate its applications as a vaccine for patients with WT1-expressing cancers.
Collapse
Affiliation(s)
- Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|