1
|
Stephens CA, van Hilten N, Zheng L, Grabe M. Simulation-based survey of TMEM16 family reveals that robust lipid scrambling requires an open groove. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.25.615027. [PMID: 39386458 PMCID: PMC11463437 DOI: 10.1101/2024.09.25.615027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Biological membranes are complex and dynamic structures with different populations of lipids in their inner and outer leaflets. The Ca2+-activated TMEM16 family of membrane proteins plays an important role in collapsing this asymmetric lipid distribution by spontaneously, and bidirectionally, scrambling phospholipids between the two leaflets, which can initiate signaling and alter the physical properties of the membrane. While evidence shows that lipid scrambling can occur via an open hydrophilic pathway ("groove") that spans the membrane, it remains unclear if all family members facilitate lipid movement in this manner. Here we present a comprehensive computational study of lipid scrambling by all TMEM16 members with experimentally solved structures. We performed coarse-grained molecular dynamics (MD) simulations of 27 structures from five different family members solved under activating and non-activating conditions, and we captured over 700 scrambling events in aggregate. This enabled us to directly compare scrambling rates, mechanisms, and protein-lipid interactions for fungal and mammalian TMEM16s, in both open (Ca2+-bound) and closed (Ca2+-free) conformations with statistical rigor. We show that all TMEM16 structures thin the membrane and that the majority of scrambling (>90%) occurs at the groove only when TM4 and TM6 have sufficiently separated. Surprisingly, we also observed 60 scrambling events that occurred outside the canonical groove, over 90% of which took place at the dimer-dimer interface in mammalian TMEM16s. This new site suggests an alternative mechanism for lipid scrambling in the absence of an open groove.
Collapse
Affiliation(s)
- Christina A. Stephens
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Graduate Group in Biophysics, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Niek van Hilten
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Lisa Zheng
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Graduate Group in Biophysics, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Michael Grabe
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| |
Collapse
|
2
|
Transcripts of the Prostate Cancer-Associated Gene ANO7 Are Retained in the Nuclei of Prostatic Epithelial Cells. Int J Mol Sci 2023; 24:ijms24021052. [PMID: 36674564 PMCID: PMC9865797 DOI: 10.3390/ijms24021052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer affects millions of men globally. The prostate cancer-associated gene ANO7 is downregulated in advanced prostate cancer, whereas benign tissue and low-grade cancer display varying expression levels. In this study, we assess the spatial correlation between ANO7 mRNA and protein using fluorescent in situ hybridization and immunohistochemistry for the detection of mRNA and protein in parallel sections of tissue microarrays prepared from radical prostatectomy samples. We show that ANO7 mRNA and protein expression correlate in prostate tissue. Furthermore, we show that ANO7 mRNA is enriched in the nuclei of the luminal cells at 89% in benign ducts and low-grade cancer, and at 78% in high-grade cancer. The nuclear enrichment of ANO7 mRNA was validated in prostate cancer cell lines 22Rv1 and MDA PCa 2b using droplet digital polymerase chain reaction (ddPCR) on RNA isolated from nuclear and cytoplasmic fractions of the cells. The nuclear enrichment of ANO7 mRNA was compared to the nuclearly-enriched lncRNA MALAT1, confirming the surprisingly high nuclear retention of ANO7 mRNA. ANO7 has been suggested to be used as a diagnostic marker and a target for immunotherapy, but a full comprehension of its role in prostate cancer progression is currently lacking. Our results contribute to a better understanding of the dynamics of ANO7 expression in prostatic tissue.
Collapse
|
3
|
Behuria HG, Dash S, Sahu SK. Phospholipid Scramblases: Role in Cancer Progression and Anticancer Therapeutics. Front Genet 2022; 13:875894. [PMID: 35422844 PMCID: PMC9002267 DOI: 10.3389/fgene.2022.875894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Phospholipid scramblases (PLSCRs) that catalyze rapid mixing of plasma membrane lipids result in surface exposure of phosphatidyl serine (PS), a lipid normally residing to the inner plasma membrane leaflet. PS exposure provides a chemotactic eat-me signal for phagocytes resulting in non-inflammatory clearance of apoptotic cells by efferocytosis. However, metastatic tumor cells escape efferocytosis through alteration of tumor microenvironment and apoptotic signaling. Tumor cells exhibit altered membrane features, high constitutive PS exposure, low drug permeability and increased multidrug resistance through clonal evolution. PLSCRs are transcriptionally up-regulated in tumor cells leading to plasma membrane remodeling and aberrant PS exposure on cell surface. In addition, PLSCRs interact with multiple cellular components to modulate cancer progression and survival. While PLSCRs and PS exposed on tumor cells are novel drug targets, many exogenous molecules that catalyze lipid scrambling on tumor plasma membrane are potent anticancer therapeutic molecules. In this review, we provide a comprehensive analysis of scramblase mediated signaling events, membrane alteration specific to tumor development and possible therapeutic implications of scramblases and PS exposure.
Collapse
Affiliation(s)
- Himadri Gourav Behuria
- Laboratory of Molecular Membrane Biology, Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Baripada, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Santosh Kumar Sahu
- Laboratory of Molecular Membrane Biology, Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Baripada, India
| |
Collapse
|
4
|
Ji W, Shi D, Shi S, Yang X, Chen Y, An H, Pang C. TMEM16A protein: calcium binding site and its activation mechanism. Protein Pept Lett 2021; 28:1338-1348. [PMID: 34749600 DOI: 10.2174/0929866528666211105112131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 11/22/2022]
Abstract
TMEM16A mediates calcium-activated transmembrane flow of chloride ion and a variety of physiological functions. The binding of cytoplasmic calcium ions of TMEM16A and the consequent conformational changes of it are the key issues to explore the relationship between its structure and function. In recent years, researchers have explored this issue through electrophysiological experiment, structure resolving, molecular dynamic simulation and other methods. The structures of TMEM16 family members resolved by cryo-Electron microscopy (cryo-EM) and X-ray crystallization provide the primarily basis for the investigation of the molecular mechanism of TMEM16A. However, the binding and activation mechanism of calcium ions in TMEM16A are still unclear and controversial. This review discusses four Ca2+ sensing sites of TMEM16A and analyze activation properties of TMEM16A by them, which will help to understand the structure-function relationship of TMEM16A and throw light on the molecular design targeting TMEM16A channel.
Collapse
Affiliation(s)
- Wanying Ji
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Donghong Shi
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Sai Shi
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Xiao Yang
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Yafei Chen
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Hailong An
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Chunli Pang
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| |
Collapse
|
5
|
ANO7: Insights into topology, function, and potential applications as a biomarker and immunotherapy target. Tissue Cell 2021; 72:101546. [PMID: 33940566 DOI: 10.1016/j.tice.2021.101546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/21/2021] [Accepted: 04/11/2021] [Indexed: 01/01/2023]
Abstract
Anoctamin 7 (ANO7) is a member of the transmembrane protein TMEM16 family. It has a conservative topology similar to other members in this family, such as the typical eight-transmembrane domain, but it also has unique features. Although the ion channel role of ANO7 has been well accepted, evolutionary analyses and relevant studies suggest that ANO7 may be a multi-facet protein in function. Studies have shown that ANO7 may also function as a scramblase. ANO7 is highly expressed in prostate cancer as well as normal prostate tissues. A considerable amount of evidence has confirmed that ANO7 is associated with human physiology and pathology, particularly with the development of prostate cancer, which makes ANO7 a good candidate as a diagnostic and prognostic biomarker. In addition, ANO7 may be a potential target for prostate cancer immunotherapy. Antibody-based or T cell-mediated immunotherapies against prostate cancer by targeting ANO7 have been highly anticipated. ANO7 may also correlate with several other types of cancers or diseases, where further studies are warranted.
Collapse
|
6
|
Kaikkonen E, Takala A, Pursiheimo JP, Wahlström G, Schleutker J. The interactome of the prostate-specific protein Anoctamin 7. Cancer Biomark 2021; 28:91-100. [PMID: 32176628 PMCID: PMC7306890 DOI: 10.3233/cbm-190993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Elevated Anoctamin 7 (ANO7) expression is associated with poor survival in prostate cancer patients. OBJECTIVE The aim was to discover proteins that interact with ANO7 to understand its functions and regulatory mechanisms. METHODS The proximity-dependent biotin identification (BioID) method was utilized. ANO7 fused to biotin ligase was transiently transfected into LNCaP cells, and the biotinylated proteins were collected and analysed by mass spectrometry. Four identified proteins were stained with dual fluorescent immunostaining and visualized using Stimulated emission depletion microscopy (STED). RESULTS After bioinformatic filtering steps, 64 potentially ANO7-interacting proteins were identified and analysed with the GO enrichment analysis tool. One of the most prominently enriched cellular components was cellular vesicle. Co-localization was showed for staphylococcal nuclease and tudor domain containing 1 (SND1), heat shock protein family A (Hsp70) member 1A (HSPA1A), adaptor related protein complex 2 subunit beta 1 (AP2B1) and coatomer protein complex subunit gamma 2 (COPG2). CONCLUSIONS This is the first study in which ANO7 interacting proteins have been identified. Although further studies are needed, the findings reported here expand our understanding of the role and regulation of ANO7 in prostate cancer cells. Furthermore, these results are likely to introduce new targets for the novel cancer therapies.
Collapse
Affiliation(s)
- Elina Kaikkonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Aliisa Takala
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Wu L, Wang J, Cai Q, Cavazos TB, Emami NC, Long J, Shu XO, Lu Y, Guo X, Bauer JA, Pasaniuc B, Penney KL, Freedman ML, Kote-Jarai Z, Witte JS, Haiman CA, Eeles RA, Zheng W. Identification of Novel Susceptibility Loci and Genes for Prostate Cancer Risk: A Transcriptome-Wide Association Study in Over 140,000 European Descendants. Cancer Res 2019; 79:3192-3204. [PMID: 31101764 PMCID: PMC6606384 DOI: 10.1158/0008-5472.can-18-3536] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/04/2019] [Accepted: 05/09/2019] [Indexed: 11/16/2022]
Abstract
Genome-wide association study-identified prostate cancer risk variants explain only a relatively small fraction of its familial relative risk, and the genes responsible for many of these identified associations remain unknown. To discover novel prostate cancer genetic loci and possible causal genes at previously identified risk loci, we performed a transcriptome-wide association study in 79,194 cases and 61,112 controls of European ancestry. Using data from the Genotype-Tissue Expression Project, we established genetic models to predict gene expression across the transcriptome for both prostate models and cross-tissue models and evaluated model performance using two independent datasets. We identified significant associations for 137 genes at P < 2.61 × 10-6, a Bonferroni-corrected threshold, including nine genes that remained significant at P < 2.61 × 10-6 after adjusting for all known prostate cancer risk variants in nearby regions. Of the 128 remaining associated genes, 94 have not yet been reported as potential target genes at known loci. We silenced 14 genes and many showed a consistent effect on viability and colony-forming efficiency in three cell lines. Our study provides substantial new information to advance our understanding of prostate cancer genetics and biology. SIGNIFICANCE: This study identifies novel prostate cancer genetic loci and possible causal genes, advancing our understanding of the molecular mechanisms that drive prostate cancer.
Collapse
Affiliation(s)
- Lang Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Jifeng Wang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Urology, The Fifth People's Hospital of Shanghai, Shanghai, China
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Taylor B Cavazos
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California
| | - Nima C Emami
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joshua A Bauer
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Institute of Chemical Biology, High-Throughput Screening Facility, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Kathryn L Penney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - John S Witte
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Christopher A Haiman
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Rosalind A Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
8
|
Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of Anoctamins to Cell Survival and Cell Death. Cancers (Basel) 2019; 11:E382. [PMID: 30893776 PMCID: PMC6468699 DOI: 10.3390/cancers11030382] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Before anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl- concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
9
|
Mohsenzadegan M, Saebi F, Yazdani M, Abolhasani M, Saemi N, Jahanbani F, Farajollahi MM. Autoantibody against new gene expressed in prostate protein is traceable in prostate cancer patients. Biomark Med 2018; 12:1125-1138. [DOI: 10.2217/bmm-2018-0069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: We assessed an autoantibody against new gene expressed in prostate (NGEP) protein for prostate cancer (PCa) that may better diagnosis and prognosis approaches in the patients with PCa. Methods: Autoantibodies against NGEP were measured in sera of PCa patients by ELISA. Results: The autoantibody against NGEP is present in a significantly higher proportion in the sera of PCa patients as compared with healthy controls (p < 0.001). An inverse significant correlation was found between seropositive patients and Gleason score (p < 0.05) and serum prostate-specific antigen (recombinant NGEP; p < 0.05). Conclusion: The data showed that measurement of autoantibody against NGEP as a novel prostate-specific antigen in sera can be used as a potential biomarker to discriminate well-differentiated PCa patients from normal subjects.
Collapse
Affiliation(s)
- Monireh Mohsenzadegan
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saebi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yazdani
- Hasheminejad Kidney Center Laboratory, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Hasheminejad Kidney Center Laboratory, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Saemi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jahanbani
- Department of Genetic, Standford University School of Medicine, CA, USA
| | - Mohammad M Farajollahi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Falzone ME, Malvezzi M, Lee BC, Accardi A. Known structures and unknown mechanisms of TMEM16 scramblases and channels. J Gen Physiol 2018; 150:933-947. [PMID: 29915161 PMCID: PMC6028493 DOI: 10.1085/jgp.201711957] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022] Open
Abstract
Falzone et al. interpret the mechanisms underlying the activity of TMEM16 family members from recent structural and functional work. The TMEM16 family of membrane proteins is composed of both Ca2+-gated Cl− channels and Ca2+-dependent phospholipid scramblases. The functional diversity of TMEM16s underlies their involvement in numerous signal transduction pathways that connect changes in cytosolic Ca2+ levels to cellular signaling networks. Indeed, defects in the function of several TMEM16s cause a variety of genetic disorders, highlighting their fundamental pathophysiological importance. Here, we review how our mechanistic understanding of TMEM16 function has been shaped by recent functional and structural work. Remarkably, the recent determination of near-atomic-resolution structures of TMEM16 proteins of both functional persuasions has revealed how relatively minimal rearrangements in the substrate translocation pathway are sufficient to precipitate the dramatic functional differences that characterize the family. These structures, when interpreted in the light of extensive functional analysis, point to an unusual mechanism for Ca2+-dependent activation of TMEM16 proteins in which substrate permeation is regulated by a combination of conformational rearrangements and electrostatics. These breakthroughs pave the way to elucidate the mechanistic bases of ion and lipid transport by the TMEM16 proteins and unravel the molecular links between these transport activities and their function in human pathophysiology.
Collapse
Affiliation(s)
- Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical School, New York, NY
| | - Mattia Malvezzi
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY
| | - Byoung-Cheol Lee
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY
| | - Alessio Accardi
- Department of Biochemistry, Weill Cornell Medical School, New York, NY .,Department of Anesthesiology, Weill Cornell Medical School, New York, NY.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical School, New York, NY
| |
Collapse
|
11
|
Kamaleddin MA. Molecular, biophysical, and pharmacological properties of calcium-activated chloride channels. J Cell Physiol 2017; 233:787-798. [PMID: 28121009 DOI: 10.1002/jcp.25823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022]
Abstract
Calcium-activated chloride channels (CaCCs) are a family of anionic transmembrane ion channels. They are mainly responsible for the movement of Cl- and other anions across the biological membranes, and they are widely expressed in different tissues. Since the Cl- flow into or out of the cell plays a crucial role in hyperpolarizing or depolarizing the cells, respectively, the impact of intracellular Ca2+ concentration on these channels is attracting a lot of attentions. After summarizing the molecular, biophysical, and pharmacological properties of CaCCs, the role of CaCCs in normal cellular functions will be discussed, and I will emphasize how dysregulation of CaCCs in pathological conditions can account for different diseases. A better understanding of CaCCs and a pivotal regulatory role of Ca2+ can shed more light on the therapeutic strategies for different neurological disorders that arise from chloride dysregulation, such as asthma, cystic fibrosis, and neuropathic pain.
Collapse
Affiliation(s)
- Mohammad Amin Kamaleddin
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Mohsenzadegan M, Shekarabi M, Madjd Z, Asgari M, Abolhasani M, Tajik N, Farajollahi MM. Study of NGEP expression pattern in cancerous tissues provides novel insights into prognostic marker in prostate cancer. Biomark Med 2016; 9:391-401. [PMID: 25808443 DOI: 10.2217/bmm.14.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM The aim of this study was to produce a novel polyclonal antibody against extracellular domain of NGEP protein and explore its role in prognosis of prostate cancer. MATERIALS & METHODS Polyclonal antibodies against two peptides (NGEP-p1 and NGEP-p2) derived extracellular domains of NGEP were prepared and the intensity and distribution of NGEP expression analyzed in large series of prostate tissue specimens. RESULTS We found a significant inverse correlation between NGEP expression and prognostic features such as Gleason score, pathologic tumor stage and prostate-specific antigen level using anti-NGEP-p2 antibody. CONCLUSION The results indicate that the high level of expression could be associated with good prognosis in prostate cancer. However, additional studies are required to evaluate NGEP as an independent prognostic factor for prostate carcinoma.
Collapse
Affiliation(s)
- Monireh Mohsenzadegan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
13
|
Mohsenzadegan M, Tajik N, Madjd Z, Shekarabi M, Farajollahi MM. Study of NGEP expression in androgen sensitive prostate cancer cells: A potential target for immunotherapy. Med J Islam Repub Iran 2015; 29:159. [PMID: 26000254 PMCID: PMC4431361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/12/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Prostate cancer is one of the leading causes of cancer deaths among men. New gene expressed in prostate (NGEP), is a prostate-specific gene expressed only in normal prostate and prostate cancer tissue. Because of its selective expression in prostate cancer cell surface, NGEP is a potential immunotherapeutic target. To target the NGEP in prostate cancer, it is essential to investigate its expression in prostate cancer cells. METHODS In the present study, we investigated NGEP expression in LNCaP and DU145 cells by real time and RT-PCR, flow cytometric and immunocytochemical analyses. RESULTS Real time and RT-PCR analyses of NGEP expression showed that NGEP was expressed in the LNCaP cells but not in DU145 cells. The detection of NGEP protein by flow cytometric and immunocytochemistry analyses indicated that NGEP protein was weakly expressed only in LNCaP cell membrane. CONCLUSION Our results demonstrate that LNCaP cell line is more suitable than DU145 for NGEP expression studies; however, its low-level expression is a limiting issue. NGEP expression may be increased by androgen supplementation of LNCaP cell culture medium.
Collapse
Affiliation(s)
- Monireh Mohsenzadegan
- 1 PhD student, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran & Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Nader Tajik
- 2 Associate Professor, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran & Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Madjd
- 3 Associate Professor, Oncopathology Research Centre and Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Shekarabi
- 4 Associate Professor, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad M Farajollahi
- 5 Professor, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran, Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran & Food and Drug Laboratory, Fardis, Alborz, Iran.
| |
Collapse
|
14
|
Tucker JA, Jochems C, Boyerinas B, Fallon J, Greiner JW, Palena C, Rodell TC, Schlom J, Tsang KY. Identification and characterization of a cytotoxic T-lymphocyte agonist epitope of brachyury, a transcription factor involved in epithelial to mesenchymal transition and metastasis. Cancer Immunol Immunother 2014; 63:1307-17. [PMID: 25186612 DOI: 10.1007/s00262-014-1603-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/12/2014] [Indexed: 12/31/2022]
Abstract
The transcription factor brachyury is a major driver of epithelial to mesenchymal transition in human carcinoma cells. It is overexpressed in several human tumor types versus normal adult tissues, except for testes and thyroid. Overexpression is associated with drug resistance and poor prognosis. Previous studies identified a brachyury HLA-A2 cytotoxic T-lymphocyte epitope. The studies reported here describe an enhancer epitope of brachyury. Compared to the native epitope, the agonist epitope: (a) has enhanced binding to MHC class I, (b) increased the IFN-γ production from brachyury-specific T cells, (c) generated brachyury-specific T cells with greater levels of perforin and increased proliferation, (d) generated T cells more proficient at lysing human carcinoma cells endogenously expressing the native epitope, and (e) achieved greater brachyury-specific T-cell responses in vivo in HLA-A2 transgenic mice. These studies also report the generation of a heat-killed recombinant Saccharomyces cerevisiae (yeast) vector expressing the full-length brachyury gene encoding the agonist epitope. Compared to yeast-brachyury (native) devoid of the agonist epitope, the yeast-brachyury (agonist) enhanced the activation of brachyury-specific T cells, which efficiently lysed human carcinoma cells. In addition to providing the rationale for the recombinant yeast-brachyury (agonist) as a potential vaccine in cancer therapy, these studies also provide the rationale for the use of the agonist in (a) dendritic cell (DC) vaccines, (b) adjuvant or liposomal vaccines, (c) recombinant viral and/or bacterial vaccines, (d) protein/polypeptide vaccines, (e) activation of T cells ex vivo in adoptive therapy protocols, and (f) generation of genetically engineered targeted T cells.
Collapse
Affiliation(s)
- Jo A Tucker
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B09, MSC 1750, Bethesda, MD, 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jochems C, Tucker JA, Vergati M, Boyerinas B, Gulley JL, Schlom J, Tsang KY. Identification and characterization of agonist epitopes of the MUC1-C oncoprotein. Cancer Immunol Immunother 2013; 63:161-74. [PMID: 24233342 DOI: 10.1007/s00262-013-1494-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/19/2013] [Indexed: 12/31/2022]
Abstract
The MUC1 tumor-associated antigen is overexpressed in the majority of human carcinomas and several hematologic malignancies. Much attention has been paid to the hypoglycosylated variable number of tandem repeats (VNTR) region of the N-terminus of MUC1 as a vaccine target, and recombinant viral vector vaccines are also being evaluated that express the entire MUC1 transgene. While previous studies have described MUC1 as a tumor-associated tissue differentiation antigen, studies have now determined that the C-terminus of MUC1 (MUC1-C) is an oncoprotein, and its expression is an indication of poor prognosis in numerous tumor types. We report here the identification of nine potential CD8⁺ cytotoxic T lymphocyte epitopes of MUC1, seven in the C-terminus and two in the VNTR region, and have identified enhancer agonist peptides for each of these epitopes. These epitopes span HLA-A2, HLA-A3, and HLA-A24 major histocompatibility complex (MHC) class I alleles, which encompass the majority of the population. The agonist peptides, compared to the native peptides, more efficiently (a) generate T-cell lines from the peripheral blood mononuclear cells of cancer patients, (b) enhance the production of IFN-γ by peptide-activated human T cells, and (c) lyse human tumor cell targets in an MHC-restricted manner. The agonist epitopes described here can be incorporated into various vaccine platforms and for the ex vivo generation of human T cells. These studies provide the rationale for the T-cell-mediated targeting of the oncogenic MUC1-C, which has been shown to be an important factor in both drug resistance and poor prognosis for numerous tumor types.
Collapse
|
16
|
Kim H, Ahn J, Park C, Yoon Y, Park S. ICP: A novel approach to predict prognosis of prostate cancer with inner-class clustering of gene expression data. Comput Biol Med 2013; 43:1363-73. [DOI: 10.1016/j.compbiomed.2013.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 05/10/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
|
17
|
Mohsenzadegan M, Madjd Z, Asgari M, Abolhasani M, Shekarabi M, Taeb J, Shariftabrizi A. Reduced expression of NGEP is associated with high-grade prostate cancers: a tissue microarray analysis. Cancer Immunol Immunother 2013; 62:1609-18. [PMID: 23955683 PMCID: PMC11029587 DOI: 10.1007/s00262-013-1463-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
Abstract
New gene expressed in prostate (NGEP) is a newly diagnosed prostate-specific gene that is expressed only in normal prostate and prostate cancer cells. Discovery of tissue-specific markers may promote the development of novel targets for immunotherapy of prostate cancer. In the present study, the staining pattern and clinical significance of NGEP were evaluated in a series of prostate tissues composed of 123 prostate cancer, 19 high-grade prostatic intraepithelial neoplasia and 44 samples of benign prostate tissue included in tissue microarrays using immunohistochemistry. Our study demonstrated that NGEP localized mainly in the apical and lateral membranes and was also partially distributed in the cytoplasm of epithelial cells of normal prostate tissue. All of the examined prostate tissues expressed NGEP with a variety of intensities; the level of expression was significantly more in the benign prostate tissues compared to malignant prostate samples (P value <0.001). Among prostate adenocarcinoma samples, a significant and inverse correlation was observed between the intensity of NGEP expression and increased Gleason score (P = 0.007). Taken together, we found that NGEP protein is widely expressed in low-grade to high-grade prostate adenocarcinomas as well as benign prostate tissues, and the intensity of expression is inversely proportional to the level of malignancy. NGEP could be an attractive target for immune-based therapy of prostate cancer patients as an alternative to the conventional therapies particularly in indolent patients.
Collapse
Affiliation(s)
- Monireh Mohsenzadegan
- Immunology Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Department of Pathology, Oncopathology Research Centre, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, 14496-14530 Tehran, Iran
- Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asgari
- Department of Pathology, Oncopathology Research Centre, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, 14496-14530 Tehran, Iran
- Department of Pathology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Department of Pathology, Oncopathology Research Centre, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, 14496-14530 Tehran, Iran
- Department of Pathology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Jaleh Taeb
- Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Shariftabrizi
- Department of Pathology, Oncopathology Research Centre, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, 14496-14530 Tehran, Iran
- Department of Pathology, Danbury Hospital, Yale University, Danbury, CT 06810 USA
| |
Collapse
|
18
|
Immunotherapy: shifting the balance of cell-mediated immunity and suppression in human prostate cancer. Cancers (Basel) 2012; 4:1333-48. [PMID: 24213509 PMCID: PMC3712722 DOI: 10.3390/cancers4041333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 12/23/2022] Open
Abstract
Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.
Collapse
|
19
|
Abstract
Therapeutic cancer vaccines represent an emerging therapeutic modality that may play a more prominent role in cancer treatment in the future. Therapeutic cancer vaccines are designed to generate a targeted, immune-mediated antitumor response. There are 2 main types of therapeutic vaccines: patient-specific (generated either from a patient's own cells or tumor) and patient- nonspecific, where a peptide- or vector-based vaccine induces an immune response in vivo against specific tumor-associated antigens. Studies are currently underway to investigate methods to enhance vaccine strategies, including combinations with standard anticancer therapies or immune-modulating agents. Cancer vaccines are usually well tolerated, with minimal toxicity compared with chemotherapy. This review summarizes selected therapeutic cancer vaccines in late clinical development.
Collapse
Affiliation(s)
- Marijo Bilusic
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A. Madan
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Joniau S, Abrahamsson PA, Bellmunt J, Figdor C, Hamdy F, Verhagen P, Vogelzang NJ, Wirth M, Van Poppel H, Osanto S. Current vaccination strategies for prostate cancer. Eur Urol 2011; 61:290-306. [PMID: 22001436 DOI: 10.1016/j.eururo.2011.09.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/23/2011] [Indexed: 12/29/2022]
Abstract
CONTEXT The first therapeutic cancer vaccine demonstrating effectiveness in a phase 3 study was approved by the US Food and Drug Administration on 29 April 2010. The pivotal trial demonstrated overall survival (OS) benefit in patients treated with antigen-loaded leukapheresis cells compared with a control infusion. Results of other prostate cancer (PCa) vaccination strategies are awaited, as this approach may herald a new era in the care for patients with advanced PCa. OBJECTIVE Consider effectiveness and safety of vaccination strategies in the treatment of PCa. EVIDENCE ACQUISITION We searched three bibliographic databases (January 1995 through October 2010) for randomised phase 2 and 3 studies of vaccination strategies for PCa based on predetermined relevant Medical Subject Heading terms and free text terms. EVIDENCE SYNTHESIS Data from 3 randomised phase 3 and 10 randomised phase 2 vaccination trials are discussed with respect to clinical outcome in terms of progression-free survival and OS, toxicity, prostate-specific antigen (PSA) response, and immunologic response. Three phase 3 trials (D9901, D9902A, and D9902B) that enrolled a total of 737 patients, all controlled and double-blinded, tested the efficacy of sipuleucel-T. The largest of these three trials, called Immunotherapy for Prostate Adenocarcinoma Treatment (IMPACT), has demonstrated safety and effectiveness of sipuleucel-T (now marketed as Provenge) as measured by prolonged survival of 512 asymptomatic patients with metastatic castration-resistant PCa (mCRPC). The study showed a 4.1-mo median survival benefit in the sipuleucel-T vaccine-treated group compared with the control group (25.8 vs 21.7 mo; hazard ratio [HR]: 0.78; 95% confidence interval [CI], 0.62-0.98; p=0.032) and extended 3-yr survival (31.7% vs 23.0%). In contrast, two phase 3 vaccination trials with a whole-tumour-cell mixture of two PCa cell lines (GVAX) and testing GVAX either alone or in combination with chemotherapy versus chemotherapy alone (VITAL1 and 2) were terminated prematurely based on futility and increased deaths. Other phase 2 vaccination trials testing different types of vaccines in castration-resistant PCa patients have been reported with variable outcomes. Notably, a controlled, double-blind, randomised phase 2 vaccine trial of PROSTVAC-VF, a recombinant viral vector containing complementary DNA encoding PSA, in 125 patients with chemotherapy-naïve, minimally symptomatic mCRPC also demonstrated safety but no significant effect on the time to disease progression. In comparison with controls (n=40), PROSTVAC-VF-treated patients (n=82) experienced longer median survival of 8.5 mo (25.1 vs 16.6 mo; HR: 0.56; 95% CI, 0.37-0.85; p=0.0061) and extended 3-yr survival (30% vs 17%). In general, PCa vaccines are perceived to have less toxicity compared with current cytotoxic or targeted therapies. Evaluation of clinical efficacy of different vaccination strategies (eg, protein-, peptide- and DNA-based vaccines) in the context of properly designed and controlled phase 3 studies is warranted. CONCLUSIONS Cancer vaccines represent a new paradigm in the treatment of PCa. The IMPACT trial showed improved survival but no difference in time to disease progression in mCRPC patients with minimal tumour burden. Observations in phase 2 and 3 trials pave the way for other vaccination approaches for this disease, raise questions regarding the most appropriate clinical trial designs, and underscore the importance of identifying biomarkers for antitumour effect to better implement such therapies.
Collapse
Affiliation(s)
- Steven Joniau
- Department of Urology, University Hospital, K.U. Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bilusic M, Heery C, Madan RA. Immunotherapy in prostate cancer: emerging strategies against a formidable foe. Vaccine 2011; 29:6485-97. [PMID: 21741424 PMCID: PMC3605720 DOI: 10.1016/j.vaccine.2011.06.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 11/29/2022]
Abstract
Recent clinical trials have shown therapeutic vaccines to be promising treatment modalities against prostate cancer. Unlike preventive vaccines that teach the immune system to fight off specific microorganisms, therapeutic vaccines stimulate the immune system to recognize and attack certain cancer-associated proteins. Additional strategies are being investigated that combine vaccines and standard therapeutics, including radiation, chemotherapy, targeted therapies, and hormonal therapy, to optimize the vaccines' effects. Recent vaccine late-phase clinical trials have reported evidence of clinical benefit while maintaining excellent quality of life. One such vaccine, sipuleucel-T, was recently FDA-approved for the treatment of metastatic prostate cancer. Another vaccine, PSA-TRICOM, is also showing promise in completed and ongoing randomized multicenter clinical trials in both early- and late-stage prostate cancer. Clinical results available to date indicate that immune-based therapies could play a significant role in the treatment of prostate and other malignancies.
Collapse
Affiliation(s)
- Marijo Bilusic
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christopher Heery
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ravi A. Madan
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
22
|
Physiological roles and diseases of Tmem16/Anoctamin proteins: are they all chloride channels? Acta Pharmacol Sin 2011; 32:685-92. [PMID: 21642943 DOI: 10.1038/aps.2011.48] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Tmem16 gene family was first identified by bioinformatic analysis in 2004. In 2008, it was shown independently by 3 laboratories that the first two members (Tmem16A and Tmem16B) of this 10-gene family are Ca(2+)-activated Cl(-) channels. Because these proteins are thought to have 8 transmembrane domains and be anion-selective channels, the alternative name, Anoctamin (anion and octa=8), has been proposed. However, it remains unclear whether all members of this family are, in fact, anion channels or have the same 8-transmembrane domain topology. Since 2008, there have been nearly 100 papers published on this gene family. The excitement about Tmem16 proteins has been enhanced by the finding that Ano1 has been linked to cancer, mutations in Ano5 are linked to several forms of muscular dystrophy (LGMDL2 and MMD-3), mutations in Ano10 are linked to autosomal recessive spinocerebellar ataxia, and mutations in Ano6 are linked to Scott syndrome, a rare bleeding disorder. Here we review some of the recent developments in understanding the physiology and structure-function of the Tmem16 gene family.
Collapse
|
23
|
Abstract
Sipuleucel-T (Provenge) is the first therapeutic cancer vaccine approved by the US FDA. The approval heralds the long-awaited promise of improved patient survival with minimal toxicity by therapies designed to generate an active, specific anticancer immune response. The development of this first-in-class agent as well as other therapeutic vaccines in clinical evaluation has also led to a better understanding of relevant patient populations and end points for clinical trials. This article discusses the development and approval of sipuleucel-T in the context of other approved therapies for prostate cancer, as well as controversies and novel paradigms brought about by this new agent.
Collapse
Affiliation(s)
- Ravi A. Madan
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Bethesda, MD 20892, USA
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Bethesda, MD 20892, USA
| | - James L. Gulley
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Bethesda, MD 20892, USA
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Strategies for cancer vaccine development. J Biomed Biotechnol 2010; 2010. [PMID: 20706612 PMCID: PMC2914453 DOI: 10.1155/2010/596432] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 05/17/2010] [Indexed: 12/29/2022] Open
Abstract
Treating cancer with vaccines has been a challenging field of investigation since the 1950s. Over the years, the lack of effective active immunotherapies has led to the development of numerous novel strategies. However, the use of therapeutic cancer vaccines may be on the verge of becoming an effective modality. Recent phase II/III clinical trials have achieved hopeful results in terms of overall survival. Yet despite these encouraging successes, in general, very little is known about the basic immunological mechanisms involved in vaccine immunotherapy. Gaining a better understanding of the mechanisms that govern the specific immune responses (i.e., cytotoxic T lymphocytes, CD4 T helper cells, T regulatory cells, cells of innate immunity, tumor escape mechanisms) elicited by each of the various vaccine platforms should be a concern of cancer vaccine clinical trials, along with clinical benefits. This review focuses on current strategies employed by recent clinical trials of therapeutic cancer vaccines and analyzes them both clinically and immunologically.
Collapse
|