1
|
Synoradzki KJ, Paduszyńska N, Solnik M, Toro MD, Bilmin K, Bylina E, Rutkowski P, Yousef YA, Bucolo C, Zweifel SA, Reibaldi M, Fiedorowicz M, Czarnecka AM. From Molecular Biology to Novel Immunotherapies and Nanomedicine in Uveal Melanoma. Curr Oncol 2024; 31:778-800. [PMID: 38392052 PMCID: PMC10887618 DOI: 10.3390/curroncol31020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 02/24/2024] Open
Abstract
Molecular biology studies of uveal melanoma have resulted in the development of novel immunotherapy approaches including tebentafusp-a T cell-redirecting bispecific fusion protein. More biomarkers are currently being studied. As a result, combined immunotherapy is being developed as well as immunotherapy with bifunctional checkpoint inhibitory T cell engagers and natural killer cells. Current trials cover tumor-infiltrating lymphocytes (TIL), vaccination with IKKb-matured dendritic cells, or autologous dendritic cells loaded with autologous tumor RNA. Another potential approach to treat UM could be based on T cell receptor engineering rather than antibody modification. Immune-mobilizing monoclonal T cell receptors (TCR) against cancer, called ImmTAC TM molecules, represent such an approach. Moreover, nanomedicine, especially miRNA approaches, are promising for future trials. Finally, theranostic radiopharmaceuticals enabling diagnosis and therapy with the same molecule bring hope to this research.
Collapse
Affiliation(s)
- Kamil J. Synoradzki
- Environmental Laboratory of Pharmacological and Toxicological Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland;
| | - Natalia Paduszyńska
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.P.); (M.S.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Malgorzata Solnik
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.P.); (M.S.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Mario Damiano Toro
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 1 Chmielna Str., 20-079 Lublin, Poland;
- Eye Clinic, Public Health Department, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Krzysztof Bilmin
- Research and Development Centre Novasome Sp. z o.o., 51-423 Wrocław, Poland;
| | - Elżbieta Bylina
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Yacoub A. Yousef
- Department of Surgery (Ophthalmology), King Hussein Cancer Centre, Amman 11941, Jordan;
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy;
| | - Sandrine Anne Zweifel
- Department of Ophthalmology, University Hospital Zurich, 8091 Zurich, Switzerland;
- Faculty of Human Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Michele Reibaldi
- Department of Surgical Sciences, Eye Clinic Section, Citta della Salute e della Scienza, Turin University, 10122 Turin, Italy;
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| |
Collapse
|
2
|
Eteghadi A, Ebrahimi M, Keshel SH. New immunotherapy approaches as the most effective treatment for uveal melanoma. Crit Rev Oncol Hematol 2024; 194:104260. [PMID: 38199429 DOI: 10.1016/j.critrevonc.2024.104260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/26/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Conventional methods of UM treatment are based on chemotherapy and radiotherapy, which have been able to control tumor growth in a limited way. But due to the inadequacy and many side effects of these treatments, many UM patients die during treatment, and approximately 50% of patients develop metastasis. Meanwhile, the 2-year survival rate of these patients from the time of metastasis is 8%. Since immunotherapy has the potential to be the most specific and efficient method in the treatment of tumors, it is considered an attractive and promising research field in the treatment of UM. This review highlights recent advances in UM immunotherapy and provides new immunological approaches on how to overcome the challenges of UM immunotherapy.
Collapse
Affiliation(s)
- Atefeh Eteghadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ebrahimi
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zhu Y, Wu W, Qiao L, Ji J, Duan L, Gong L, Ren D, Li F, Wei L, Pan K. The characteristics and clinical relevance of tumor fusion burden in non-EBV (+) gastric cancer with MSS. BMC Gastroenterol 2023; 23:153. [PMID: 37189078 DOI: 10.1186/s12876-023-02765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is maturely applied for gene fusion detection. Although tumor fusion burden (TFB) has been identified as an immune marker for cancer, the relationship between these fusions and the immunogenicity and molecular characteristics of gastric cancer (GC) patients remains unclear. GCs have different clinical significance depending on their subtypes, and thus, this study aimed to investigate the characteristics and clinical relevance of TFB in non-Epstein-Barr-virus-positive (EBV+) GC with microsatellite stability (MSS). METHODS A total of 319 GC patients from The Cancer Genome Atlas stomach adenocarcinoma (TCGA-STAD) and a cohort of 45-case from ENA (PRJEB25780) were included. The cohort characteristics and distribution of TFB among the patients were analyzed. Additionally, the correlations of TFB with mutation characteristics, pathway differences, relative abundance of immune cells, and prognosis were examined in the TCGA-STAD cohort of MSS and non-EBV (+) patients. RESULTS We observed that in the MSS and non-EBV (+) cohort, the TFB-low group exhibited significantly lower gene mutation frequency, gene copy number, loss of heterozygosity score, and tumor mutation burden than in the TFB-high group. Additionally, the TFB-low group exhibited a higher abundance of immune cells. Furthermore, the immune gene signatures were significantly upregulated in the TFB-low group, 2-year disease-specific survival was markedly increased in the TFB-low group compared with to the TFB-high group. The rates of TFB-low cases were significantly higher TFB-than high cases in durable clinical benefit (DCB) and response groups with pembrolizumab treatment. Low TFB may serve as a predictor of GC prognosis, and the TFB-low group exhibits higher immunogenicity. CONCLUSION In conclusion, this study reveals that the TFB-based classification of GC patient may be instructive for individualized immunotherapy regimens.
Collapse
Affiliation(s)
- Yongjun Zhu
- Department of Gastrointestinal surgery, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Weixin Wu
- Department of Oncology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, 361004, China
| | - Liangliang Qiao
- Oncology Department I, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jingfen Ji
- Department of General Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, China
| | - Lunxi Duan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, China
| | - Longlong Gong
- Department of Medicine, Genecast Biotechnology Co., Ltd, 214000, Wuxi, China
| | - Dandan Ren
- Department of Medicine, Genecast Biotechnology Co., Ltd, 214000, Wuxi, China
| | - Feifei Li
- Department of Medicine, Genecast Biotechnology Co., Ltd, 214000, Wuxi, China
| | - Lihui Wei
- Department of Medicine, Genecast Biotechnology Co., Ltd, 214000, Wuxi, China.
| | - Ke Pan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, China.
| |
Collapse
|
4
|
Chi H, Peng G, Yang J, Zhang J, Song G, Xie X, Strohmer DF, Lai G, Zhao S, Wang R, Yang F, Tian G. Machine learning to construct sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with uveal melanoma. Front Endocrinol (Lausanne) 2022; 13:1056310. [PMID: 36568076 PMCID: PMC9772281 DOI: 10.3389/fendo.2022.1056310] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults and is highly metastatic, resulting in a poor patient prognosis. Sphingolipid metabolism plays an important role in tumor development, diagnosis, and prognosis. This study aimed to establish a reliable signature based on sphingolipid metabolism genes (SMGs), thus providing a new perspective for assessing immunotherapy response and prognosis in patients with UVM. METHODS In this study, SMGs were used to classify UVM from the TCGA-UVM and GEO cohorts. Genes significantly associated with prognosis in UVM patients were screened using univariate cox regression analysis. The most significantly characterized genes were obtained by machine learning, and 4-SMGs prognosis signature was constructed by stepwise multifactorial cox. External validation was performed in the GSE84976 cohort. The level of immune infiltration of 4-SMGs in high- and low-risk patients was analyzed by platforms such as CIBERSORT. The prediction of 4-SMGs on immunotherapy and immune checkpoint blockade (ICB) response in UVM patients was assessed by ImmuCellAI and TIP portals. RESULTS 4-SMGs were considered to be strongly associated with the prognosis of UVM and were good predictors of UVM prognosis. Multivariate analysis found that the model was an independent predictor of UVM, with patients in the low-risk group having higher overall survival than those in the high-risk group. The nomogram constructed from clinical characteristics and risk scores had good prognostic power. The high-risk group showed better results when receiving immunotherapy. CONCLUSIONS 4-SMGs signature and nomogram showed excellent predictive performance and provided a new perspective for assessing pre-immune efficacy, which will facilitate future precision immuno-oncology studies.
Collapse
Affiliation(s)
- Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jinyan Yang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Guobin Song
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Rui Wang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Fang Yang
- Department of Ophthalmology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Recent Advances and Challenges in Uveal Melanoma Immunotherapy. Cancers (Basel) 2022; 14:cancers14133094. [PMID: 35804863 PMCID: PMC9264803 DOI: 10.3390/cancers14133094] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Uveal melanoma is the most common primary intraocular malignancy in adults. Although it can be controlled locally, half of the patients still develop metastases. To date, there have been no standard therapeutic strategies for the prevention or treatment of metastases. Existing therapies, such as chemotherapy and targeted therapies, induce only minimal responses. This review focuses on newly published research on immunotherapy. We highlight expanding treatments and their clinical outcomes, as well as propose promising new treatments and feasible checkpoints. Based on these findings, we provide innovative insights into feasible strategies for the treatment of patients with uveal melanoma. Abstract Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Compared to cutaneous melanoma (CM), which mainly harbors BRAF or NRAS mutations, UM predominantly harbors GNAQ or GNA11 mutations. Although primary UM can be controlled locally, approximately 50% of patients still develop metastases. To date, there have been no standard therapeutic strategies for the prevention or treatment of metastases. Unfortunately, chemotherapy and targeted therapies only induce minimal responses in patients with metastatic UM, with a median survival time of only 4–5 months after metastasis detection. Immunotherapy agents, such as immune checkpoint inhibitors, have achieved pioneering outcomes in CM but have shown limited effects in UM. Researchers have explored several feasible checkpoints to identify options for future therapies. Cancer vaccines have shown little in the way of therapeutic benefit in patients with UM, and there are few ongoing trials providing favorable evidence, but adoptive cell transfer-related therapies seem promising and deserve further investigation. More recently, the immune-mobilizing monoclonal T-cell receptor against the cancer molecule tebentafusp showed impressive antitumor effects. Meanwhile, oncolytic viruses and small molecule inhibitors have also gained ground. This review highlights recent progress in burgeoning treatments and provides innovative insights on feasible strategies for the treatment of UM.
Collapse
|
6
|
Masaoutis C, Kokkali S, Theocharis S. Immunotherapy in uveal melanoma: novel strategies and opportunities for personalized treatment. Expert Opin Investig Drugs 2021; 30:555-569. [PMID: 33650931 DOI: 10.1080/13543784.2021.1898587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Uveal melanoma (UM) is the most common intraocular cancer and represents a discrete subtype of melanoma. Metastatic disease, which occurs in half of patients, has a dismal prognosis. Immunotherapy with immune checkpoint inhibitors has produced promising results in cutaneous melanoma but has failed to show analogous efficacy in metastatic UM. This is attributable to UM's distinct genetics and its complex interaction with the immune system. Hence, more efficacious immunotherapeutic approaches are under investigation. AREAS COVERED We discuss those novel immunotherapeutic strategies in clinical and preclinical studies for advanced disease and which are thought to overcome the hurdles set by UM in terms of immune recognition. We also highlight the need to determine predictive markers in relation to these strategies to improve clinical outcomes. We used a simple narrative analysis to summarize the data. The search methodology is located in the Introduction. EXPERT OPINION Novel immunotherapeutic strategies focus on transforming immune excluded tumor microenvironment in metastatic UM to T cell inflamed. Preliminary results of approaches such as vaccines, adoptive cell transfer and other novel molecules are encouraging. Factors such as HLA compatibility and expression level of targeted antigens should be considered to optimize personalized management.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,First Medical Oncology Clinic, Saint-Savvas Anticancer Hospital, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Mallone F, Sacchetti M, Lambiase A, Moramarco A. Molecular Insights and Emerging Strategies for Treatment of Metastatic Uveal Melanoma. Cancers (Basel) 2020; 12:E2761. [PMID: 32992823 PMCID: PMC7600598 DOI: 10.3390/cancers12102761] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Uveal melanoma (UM) is the most common intraocular cancer. In recent decades, major advances have been achieved in the diagnosis and prognosis of UM allowing for tailored treatments. However, nearly 50% of patients still develop metastatic disease with survival rates of less than 1 year. There is currently no standard of adjuvant and metastatic treatment in UM, and available therapies are ineffective resulting from cutaneous melanoma protocols. Advances and novel treatment options including liver-directed therapies, immunotherapy, and targeted-therapy have been investigated in UM-dedicated clinical trials on single compounds or combinational therapies, with promising results. Therapies aimed at prolonging or targeting metastatic tumor dormancy provided encouraging results in other cancers, and need to be explored in UM. In this review, the latest progress in the diagnosis, prognosis, and treatment of UM in adjuvant and metastatic settings are discussed. In addition, novel insights into tumor genetics, biology and immunology, and the mechanisms underlying metastatic dormancy are discussed. As evident from the numerous studies discussed in this review, the increasing knowledge of this disease and the promising results from testing of novel individualized therapies could offer future perspectives for translating in clinical use.
Collapse
Affiliation(s)
| | | | - Alessandro Lambiase
- Department of Sense Organs, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (M.S.); (A.M.)
| | | |
Collapse
|
8
|
Kittler JM, Sommer J, Fischer A, Britting S, Karg MM, Bock B, Atreya I, Heindl LM, Mackensen A, Bosch JJ. Characterization of CD4+ T cells primed and boosted by MHCII primary uveal melanoma cell-based vaccines. Oncotarget 2019; 10:1812-1828. [PMID: 30956760 PMCID: PMC6442993 DOI: 10.18632/oncotarget.26737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/09/2019] [Indexed: 02/03/2023] Open
Abstract
Uveal melanoma is the most common primary malignancy of the eye in adults. Despite significant improvements in treatment of the primary tumor, to date none of these therapies prevent metastatic disease or improve overall survival. We are exploring immunotherapeutic options for metastatic uveal melanoma using MHC II uveal melanoma cell-based vaccines that target the activation of tumor-reactive CD4+ T cells. Previously, we showed that these uveal melanoma cell-based vaccines activate CD4+ T cells within total peripheral blood lymphocytes (PBMC). Since PBMC include professional antigen presenting cells, we now demonstrate that Mel202/DR1/CD80 vaccine cells directly activate a diverse repertoire of purified, naïve CD4+ T cells. The activated CD4+ T cells proliferated, secreted high amounts of interferon gamma (IFNγ) and produced a heterogeneous profile of Th1, Th2 and Th17 cytokines. Analysis of the TCR-Vβ-repertoire showed that a polyclonal T cell response was induced, suggesting the capacity of vaccine-activated CD4+ T cells to target multiple tumor (neo)antigens. In addition, a subset of the responding CD4+ T cells expressed forkhead box protein P3 (FoxP3), indicating that although a regulatory component of the vaccine-activated CD4+ T cell response was induced, the anti-tumor vaccine response was not limited by these regulatory CD4+ T cells. Finally, Mel202/DR1/CD80 uveal melanoma vaccine cells expressed the intercellular adhesion molecule 1 (ICAM-1) that was pivotal for CD4+ T cell activation via lymphocyte function-associated antigen 1(LFA-1). In conclusion, MHC II uveal melanoma vaccines activate purified CD4+ T cells and may serve as a novel immunotherapy for uveal melanoma patients.
Collapse
Affiliation(s)
- Julia M Kittler
- Department of Internal Medicine 5 - Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Jonas Sommer
- Department of Internal Medicine 5 - Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Anika Fischer
- Department of Internal Medicine 1 - Gastroenterology, Pneumology and Endocrinology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Sabine Britting
- Department of Internal Medicine 5 - Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Margarete M Karg
- Department of Internal Medicine 5 - Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Barbara Bock
- Department of Internal Medicine 5 - Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Imke Atreya
- Department of Internal Medicine 1 - Gastroenterology, Pneumology and Endocrinology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Ludwig M Heindl
- Department of Ophthalmology and Center for Integrated Oncology (CIO) Cologne-Bonn, University of Cologne, Cologne, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5 - Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Jacobus J Bosch
- Department of Internal Medicine 5 - Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
9
|
Philiponnet A, Grange JD, Baggetto LG. [Application of gene therapy to oncologic ophthalmology]. J Fr Ophtalmol 2014; 37:155-65. [PMID: 24503203 DOI: 10.1016/j.jfo.2013.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/03/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
Since the discovery of the structure of DNA in 1953 by Watson and Crick, our understanding of the genetic causes and the regulations involved in tumor development have hugely increased. The important amount of research developed since then has led to the development of gene therapy, which specifically targets and treats cancer cells by interacting with, and correcting their genetic material. This study is a review of the most accomplished research using gene therapy aimed at treating malignant ophthalmologic diseases, and focuses more specifically on uveal melanoma and retinoblastoma. Such approaches are remarkable regarding the efficiency and the cellular targeting specificity. However, gene therapy-based treatments are so recent that many long-term interrogations subsist. The majority of the reviewed studies are conducted in vitro or in murine models, thereby requiring several years before the resulting therapies become part of the daily ophthalmologists' arsenal. However, the recent spectacular developments based on advanced scientific knowledge justify an up-to-date review that would benefit the ophthalmologist community.
Collapse
Affiliation(s)
- A Philiponnet
- Clinique ophtalmologique universitaire, hôpital de la Croix-Rousse, 103, Grande-rue-de-la-Croix-Rousse, 69317 Lyon cedex 04, France
| | - J-D Grange
- Clinique ophtalmologique universitaire, hôpital de la Croix-Rousse, 103, Grande-rue-de-la-Croix-Rousse, 69317 Lyon cedex 04, France
| | - L G Baggetto
- UMR5305, laboratoire de biologie tissulaire & ingénierie thérapeutique (LBTI), CNRS UCBL, 7, Passage-du-Vercors, 69367 Lyon cedex 07, France.
| |
Collapse
|
10
|
Chornoguz O, Gapeev A, O'Neill MC, Ostrand-Rosenberg S. Major histocompatibility complex class II+ invariant chain negative breast cancer cells present unique peptides that activate tumor-specific T cells from breast cancer patients. Mol Cell Proteomics 2012; 11:1457-67. [PMID: 22942358 DOI: 10.1074/mcp.m112.019232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major histocompatibility complex (MHC) class II-associated Invariant chain (Ii) is present in professional antigen presenting cells where it regulates peptide loading onto MHC class II molecules and the peptidome presented to CD4+ T lymphocytes. Because Ii prevents peptide loading in neutral subcellular compartments, we reasoned that Ii- cells may present peptides not presented by Ii+ cells. Based on the hypothesis that patients are tolerant to MHC II-restricted tumor peptides presented by Ii+ cells, but will not be tolerant to novel peptides presented by Ii- cells, we generated MHC II vaccines to activate cancer patients' T cells. The vaccines are Ii- tumor cells expressing syngeneic HLA-DR and the costimulatory molecule CD80. We used liquid chromatography coupled with mass spectrometry to sequence MHC II-restricted peptides from Ii+ and Ii- MCF10 human breast cancer cells transfected with HLA-DR7 or the MHC Class II transactivator CIITA to determine if Ii- cells present novel peptides. Ii expression was induced in the HLA-DR7 transfectants by transfection of Ii, and inhibited in the CIITA transfectants by RNA interference. Peptides were analyzed and binding affinity predicted by artificial neural net analysis. HLA-DR7-restricted peptides from Ii- and Ii+ cells do not differ in size or in subcellular location of their source proteins; however, a subset of HLA-DR7-restricted peptides of Ii- cells are not presented by Ii+ cells, and are derived from source proteins not used by Ii+ cells. Peptides from Ii- cells with the highest predicted HLA-DR7 binding affinity were synthesized, and activated tumor-specific HLA-DR7+ human T cells from healthy donors and breast cancer patients, demonstrating that the MS-identified peptides are bonafide tumor antigens. These results demonstrate that Ii regulates the repertoire of tumor peptides presented by MHC class II+ breast cancer cells and identify novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.
Collapse
Affiliation(s)
- Olesya Chornoguz
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
11
|
Haile ST, Bosch JJ, Agu NI, Zeender AM, Somasundaram P, Srivastava MK, Britting S, Wolf JB, Ksander BR, Ostrand-Rosenberg S. Tumor cell programmed death ligand 1-mediated T cell suppression is overcome by coexpression of CD80. THE JOURNAL OF IMMUNOLOGY 2011; 186:6822-9. [PMID: 21555531 DOI: 10.4049/jimmunol.1003682] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Programmed death ligand 1 (PDL1, or B7-H1) is expressed constitutively or is induced by IFN-γ on the cell surface of most human cancer cells and acts as a "molecular shield" by protecting tumor cells from T cell-mediated destruction. Using seven cell lines representing four histologically distinct solid tumors (lung adenocarcinoma, mammary carcinoma, cutaneous melanoma, and uveal melanoma), we demonstrate that transfection of human tumor cells with the gene encoding the costimulatory molecule CD80 prevents PDL1-mediated immune suppression by tumor cells and restores T cell activation. Mechanistically, CD80 mediates its effects through its extracellular domain, which blocks the cell surface expression of PDL1 but does not prevent intracellular expression of PDL1 protein. These studies demonstrate a new role for CD80 in facilitating antitumor immunity and suggest new therapeutic avenues for preventing tumor cell PDL1-induced immune suppression.
Collapse
Affiliation(s)
- Samuel T Haile
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Current world literature. Curr Opin Oncol 2011; 23:227-34. [PMID: 21307677 DOI: 10.1097/cco.0b013e328344b687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Srivastava MK, Bosch JJ, Wilson AL, Edelman MJ, Ostrand-Rosenberg S. MHC II lung cancer vaccines prime and boost tumor-specific CD4+ T cells that cross-react with multiple histologic subtypes of nonsmall cell lung cancer cells. Int J Cancer 2010; 127:2612-21. [PMID: 20473949 DOI: 10.1002/ijc.25462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) is the major cause of lung cancer-related deaths in the United States. We are developing cell-based vaccines as a new approach for the treatment of NSCLC. NSCLC is broadly divided into 3 histologic subtypes: adenocarcinoma, squamous cell carcinoma and large cell carcinoma. Since these subtypes are derived from the same progenitor cells, we hypothesized that they share common tumor antigens, and vaccines that induce immune reactivity against 1 subtype may also induce immunity against other subtypes. Our vaccine strategy has focused on activating tumor-specific CD4(+) T cells, a population of lymphocytes that facilitates the optimal activation of effector and memory cytotoxic CD8(+) T cells. We now report that our NSCLC MHC II vaccines prepared from adeno, squamous or large cell carcinomas each activate CD4(+) T cells that cross-react with the other NSCLC subtypes and do not react with HLA-DR-matched normal lung fibroblasts or other HLA-DR-matched nonlung tumor cells. Using MHC II NSCLC vaccines expressing the DR1, DR4, DR7 or DR15 alleles, we also demonstrate that antigens shared among the different subtypes are presented by multiple HLA-DR alleles. Therefore, MHC II NSCLC vaccines expressing a single HLA-DR allele activate NSCLC-specific CD4(+) T cells that react with the 3 major classes of NSCLC, and the antigens recognized by the activated T cells are presented by several common HLA-DR alleles, suggesting that the MHC II NSCLC vaccines are potential immunotherapeutics for a range of NSCLC patients.
Collapse
Affiliation(s)
- Minu K Srivastava
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | | | | | |
Collapse
|
14
|
Kloor M, Michel S, von Knebel Doeberitz M. Immune evasion of microsatellite unstable colorectal cancers. Int J Cancer 2010; 127:1001-10. [PMID: 20198617 DOI: 10.1002/ijc.25283] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Colorectal cancers (CRC) develop through 2 major pathways of genetic instability. In contrast to the majority of CRCs, which are characterized by chromosomal instability, high-level microsatellite unstable (MSI-H) CRCs arise as a consequence of the loss of DNA mismatch repair (MMR) functions and show accumulation of insertion and deletion mutations particularly in microsatellite sequences. MSI-H occurs in about 15% of CRCs, and virtually all CRCs occurring in the context of the hereditary cancer-predisposing Lynch syndrome. These tumors are characterized by a comparably good prognosis and a low frequency of distant metastases. Because of the expression of a defined set of tumor-specific antigens, MSI-H CRCs elicit a strong local and systemic antitumoral immune response of the host and therefore use different strategies to evade the control of the immune system. In this review, we will summarize novel molecular mechanisms that at the same time drive pathogenesis, immunogenicity and immune evasion during the development and progression of MSI-H CRCs. We will focus on the current knowledge about alterations in human leukocyte antigen (HLA) antigen presentation and discuss how immune evasion-while offering protection against local antitumoral immune responses-paradoxically might interfere with the ability of the tumor to form distant organ metastases.
Collapse
Affiliation(s)
- Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | | | | |
Collapse
|