1
|
Dan Y, Zhao X, Li J, Zhong H, Zhang H, Wu J, He J, Li L, Song Q, Xu B. Harnessing pseudogenes for lung cancer: A novel epigenetic target in diagnosis, prognosis and treatment. Crit Rev Oncol Hematol 2025; 208:104645. [PMID: 39900316 DOI: 10.1016/j.critrevonc.2025.104645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Pseudogenes are abundantly present in the human genome and are often thought of as nonfunctional nucleotide sequences, but a growing body of research suggests that pseudogenes can play important biological roles through a variety of pathways, and can be involved in the development of cancer. Lung cancer is one of the most prevalent cancers in the world and it is crucial to find new therapeutic strategies for the treatment of lung cancer. In recent years, studies on the effects of pseudogenes on lung carcinogenesis have increased rapidly. This has pointed to new directions in the diagnosis and treatment of lung cancer. Aim of this paper is to comprehensively discuss the role and influence of pseudogenes in the lung cancer, and the potential of pseudogenes as novel epigenetic targets in lung cancer diagnosis and prognosis and treatment, which is significant for realizing the clinical benefits of pseudogenes.
Collapse
Affiliation(s)
- Yuchao Dan
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Xinyi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Jing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Hao Zhong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Haohan Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Junju He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
2
|
Tong T, Zhai PS, Qin X, Zhang Z, Li CW, Guo HY, Ma HL. Nuclear TOP1MT Confers Cisplatin Resistance via Pseudogene in HNSCC. J Dent Res 2024; 103:1238-1248. [PMID: 39382100 DOI: 10.1177/00220345241272017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Cisplatin resistance is one of the major causes of treatment failure in head and neck squamous cell carcinoma (HNSCC). There is an urgent need to uncover the underlying mechanism for developing effective treatment strategies. A quantitative proteomics assay was used to identify differential proteins in cisplatin-resistant cells. Mitochondrial topoisomerase I (TOP1MT) localization was determined using laser confocal microscopy and nucleocytoplasmic separation assay. Chromatin immunoprecipitation sequencing, dual-luciferase reporter assay, and RNA immunoprecipitation were used to identify the interaction between pseudogenes, miRNAs, and real genes. In vivo experiments verified the interaction between TOP1MT and pseudogenes on cisplatin resistance. TOP1MT was identified as a driving factor of cisplatin resistance in vitro, in vivo, and in HNSCC patients. Moreover, TOP1MT exceptionally translocated to the nucleus in cisplatin-resistant HNSCC cells in a signal peptide-dependent manner. Nuclear TOP1MT (nTOP1MT) transcriptionally regulated the mitochondrial functional pseudogene MTATP6P1, which bound to miR-137 and miR-491-5p as a competing endogenous RNA (ceRNA) and promoted the expression of MTATP6. An increase in MTATP6 enhanced mitochondrial oxidative phosphorylation (OXPHOS), which conferred cisplatin resistance in HNSCC. Our findings revealed that nTOP1MT transcriptionally activated MTAPT6P1 and increased MTATP6 expression via ceRNA, which facilitated OXPHOS and cisplatin resistance. These results provide novel insight for overcoming cisplatin resistance in HNSCC.
Collapse
Affiliation(s)
- T Tong
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, PR China
| | - P S Zhai
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| | - X Qin
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| | - Z Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| | - C W Li
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| | - H Y Guo
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - H L Ma
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| |
Collapse
|
3
|
Nakamura-García AK, Espinal-Enríquez J. Pseudogenes in Cancer: State of the Art. Cancers (Basel) 2023; 15:4024. [PMID: 37627052 PMCID: PMC10452131 DOI: 10.3390/cancers15164024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudogenes are duplicates of protein-coding genes that have accumulated multiple detrimental alterations, rendering them unable to produce the protein they encode. Initially disregarded as "junk DNA" due to their perceived lack of functionality, research on their biological roles has been hindered by this assumption. Nevertheless, recent focus has shifted towards these molecules due to their abnormal expression in cancer phenotypes. In this review, our objective is to provide a thorough overview of the current understanding of pseudogene formation, the mechanisms governing their expression, and the roles they may play in promoting tumorigenesis.
Collapse
|
4
|
Abstract
Pseudogenes are commonly labeled as "junk DNA" given their perceived nonfunctional status. However, the advent of large-scale genomics projects prompted a revisit of pseudogene biology, highlighting their key functional and regulatory roles in numerous diseases, including cancers. Integrative analyses of cancer data have shown that pseudogenes can be transcribed and even translated, and that pseudogenic DNA, RNA, and proteins can interfere with the activity and function of key protein coding genes, acting as regulators of oncogenes and tumor suppressors. Capitalizing on the available clinical research, we are able to get an insight into the spread and variety of pseudogene biomarker and therapeutic potential. In this chapter, we describe pseudogenes that fulfill their role as diagnostic or prognostic biomarkers, both as unique elements and in collaboration with other genes or pseudogenes. We also report that the majority of prognostic pseudogenes are overexpressed and exert an oncogenic role in colorectal, liver, lung, and gastric cancers. Finally, we highlight a number of pseudogenes that can establish future therapeutic avenues.
Collapse
|
5
|
Chen X, Wan L, Wang W, Xi WJ, Yang AG, Wang T. Re-recognition of pseudogenes: From molecular to clinical applications. Theranostics 2020; 10:1479-1499. [PMID: 32042317 PMCID: PMC6993246 DOI: 10.7150/thno.40659] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Pseudogenes were initially regarded as "nonfunctional" genomic elements that did not have protein-coding abilities due to several endogenous inactivating mutations. Although pseudogenes are widely expressed in prokaryotes and eukaryotes, for decades, they have been largely ignored and classified as gene "junk" or "relics". With the widespread availability of high-throughput sequencing analysis, especially omics technologies, knowledge concerning pseudogenes has substantially increased. Pseudogenes are evolutionarily conserved and derive primarily from a mutation or retrotransposon, conferring the pseudogene with a "gene repository" role to store and expand genetic information. In contrast to previous notions, pseudogenes have a variety of functions at the DNA, RNA and protein levels for broadly participating in gene regulation to influence the development and progression of certain diseases, especially cancer. Indeed, some pseudogenes have been proven to encode proteins, strongly contradicting their "trash" identification, and have been confirmed to have tissue-specific and disease subtype-specific expression, indicating their own value in disease diagnosis. Moreover, pseudogenes have been correlated with the life expectancy of patients and exhibit great potential for future use in disease treatment, suggesting that they are promising biomarkers and therapeutic targets for clinical applications. In this review, we summarize the natural properties, functions, disease involvement and clinical value of pseudogenes. Although our knowledge of pseudogenes remains nascent, this field deserves more attention and deeper exploration.
Collapse
|
6
|
A disparate role of RP11-424C20.2/UHRF1 axis through control of tumor immune escape in liver hepatocellular carcinoma and thymoma. Aging (Albany NY) 2019; 11:6422-6439. [PMID: 31442209 PMCID: PMC6738438 DOI: 10.18632/aging.102197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022]
Abstract
The immune system is critical in modulating cancer progression. Pseudogenes are a special type of long non-coding RNAs that regulate different tumorigenic processes. However, the potential roles of pseudogenes in tumor-immune interaction remain largely unclear. Here, we reported that pseudogene RP11-424C20.2 and its parental gene UHRF1 were frequently up-regulated and positively correlated in liver hepatocellular carcinoma (LIHC) and thymoma (THYM), but associated with distinct clinical outcomes. We further found that RP11-424C20.2 may act as a competing endogenous RNA (ceRNA) to increase UHRF1 expression through sponging miR-378a-3p. Functional enrichment analysis showed a strong association of UHRF1 with immune-related biological processes. We also observed that UHRF1 expression significantly correlated with immune infiltration, and different types of tumor-infiltrating immune cells displayed different impacts on clinical outcomes. Furthermore, UHRF1 expression in LIHC and THYM showed an opposite correlation with biomarkers from monocyte, dendritic cell, Th1 and T cell exhaustion. Mechanism investigations revealed that RP11-424C20.2/UHRF1 axis regulated immune escape of LIHC and THYM at least partly through IFN-γ-mediated CLTA-4 and PD-L1 pathway. These findings demonstrate a disparate role of RP11-424C20.2/UHRF1 axis in LIHC and THYM via regulating immune infiltrates, and also indicate a therapeutic value for UHRF1 inhibitors in combination with anti-PD-L1/CLTA-4 blockade.
Collapse
|
7
|
Kovalenko TF, Patrushev LI. Pseudogenes as Functionally Significant Elements of the Genome. BIOCHEMISTRY (MOSCOW) 2018; 83:1332-1349. [PMID: 30482145 DOI: 10.1134/s0006297918110044] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudogene is a gene copy that has lost its original function. For a long time, pseudogenes have been considered as "junk DNA" that inevitably arises as a result of ongoing evolutionary process. However, experimental data obtained during recent years indicate this understanding of the nature of pseudogenes is not entirely correct, and many pseudogenes perform important genetic functions. In the review, we have addressed classification of pseudogenes, methods of their detection in the genome, and the problem of their evolutionary conservatism and prevalence among species belonging to different taxonomic groups in the light of modern data. The mechanisms of gene expression regulation by pseudogenes and the role of pseudogenes in pathogenesis of various human diseases are discussed.
Collapse
Affiliation(s)
- T F Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - L I Patrushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
8
|
Xiao-Jie L, Ai-Mei G, Li-Juan J, Jiang X. Pseudogene in cancer: real functions and promising signature. J Med Genet 2014; 52:17-24. [DOI: 10.1136/jmedgenet-2014-102785] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Szajnik M, Szczepanski MJ, Elishaev E, Visus C, Lenzner D, Zabel M, Glura M, DeLeo AB, Whiteside TL. 17β Hydroxysteroid dehydrogenase type 12 (HSD17B12) is a marker of poor prognosis in ovarian carcinoma. Gynecol Oncol 2012; 127:587-94. [PMID: 22903146 PMCID: PMC3607433 DOI: 10.1016/j.ygyno.2012.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVE 17β-hydroxysteroid dehydrogenase isoform 12 (HSD17B12) overexpression is associated with poor clinical outcome in invasive ductal carcinoma of the breast. Here, we evaluated HSD17B12 overexpression and its activity in ovarian carcinoma (OvCa) to determine its role in the growth and progression of this tumor. METHODS Immunohistochemical analysis of HSD17B12 expression was performed in 100 tissue samples of untreated OvCa and was correlated with clinicopathologic characteristics and patient outcome. In A2780 OvCa cell line expressing HSD17B12, siRNA knockdown of the enzyme was performed, and its effects on tumor cell growth and Annexin V binding were determined. RESULTS HSD17B12 expression was detected in all tumor samples, but the staining intensity was variable. Normal ovarian epithelium was negative. Patients with tumor showing weak/moderate expression of HSD17B12 had a better overall survival than those with strongly positive tumors (p<0.001). The time to first recurrence was longer for patients with tumors with heterogeneous staining relative to patients with tumors that were uniformly positive (p<0.001). Upon silencing of HSD17B12 in tumor cells, their growth was inhibited (p<0.005) and apoptosis was increased (p<0.05). Arachidonic acid but not estradiol reversed the growth inhibition mediated by HSD17B12 knockdown. CONCLUSION HSD17B12 overexpression is shown to be a marker of poor survival in patients with OvCa. Expression in the tumor and function of this enzyme facilitates OvCa progression.
Collapse
Affiliation(s)
- Marta Szajnik
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
- Departments of Gynecology/Oncology, Clinical Immunology, Histology/Embryology and Informatics and Statistic, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Gynecology and Gynecologic Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Miroslaw J. Szczepanski
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
- Departments of Gynecology/Oncology, Clinical Immunology, Histology/Embryology and Informatics and Statistic, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Esther Elishaev
- University of Pittsburgh Department of Pathology, Magee-Womens Hospital, PA 15213, USA
| | - Carmen Visus
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
| | - Diana Lenzner
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213 USA
| | - Maciej Zabel
- Departments of Gynecology/Oncology, Clinical Immunology, Histology/Embryology and Informatics and Statistic, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Histology and Embryology, Medical University of Wroclaw, 50-368 Wroclaw, Poland
| | - Marta Glura
- Departments of Gynecology/Oncology, Clinical Immunology, Histology/Embryology and Informatics and Statistic, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Albert B. DeLeo
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
10
|
Abstract
Because they are generally noncoding and thus considered nonfunctional and unimportant, pseudogenes have long been neglected. Recent advances have established that the DNA of a pseudogene, the RNA transcribed from a pseudogene, or the protein translated from a pseudogene can have multiple, diverse functions and that these functions can affect not only their parental genes but also unrelated genes. Therefore, pseudogenes have emerged as a previously unappreciated class of sophisticated modulators of gene expression, with a multifaceted involvement in the pathogenesis of human cancer.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori (CRL-ITT), c/o IFC-CNR Via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
11
|
Visus C, Ito D, Dhir R, Szczepanski MJ, Chang YJ, Latimer JJ, Grant SG, DeLeo AB. Identification of Hydroxysteroid (17β) dehydrogenase type 12 (HSD17B12) as a CD8+ T-cell-defined human tumor antigen of human carcinomas. Cancer Immunol Immunother 2011; 60:919-29. [PMID: 21409596 DOI: 10.1007/s00262-011-1001-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/01/2011] [Indexed: 01/13/2023]
Abstract
Hydroxysteroid (17β) dehydrogenase type 12 (HSD17B12) is a multifunctional isoenzyme functional in the conversion of estrone to estradiol (E2), and elongation of long-chain fatty acids, in particular the conversion of palmitic to archadonic (AA) acid, the precursor of sterols and the inflammatory mediator, prostaglandin E(2). Its overexpression together with that of COX-2 in breast carcinoma is associated with a poor prognosis. We have identified the HSD17B12(114-122) peptide (IYDKIKTGL) as a naturally presented HLA-A*0201 (HLA-A2)-restricted CD8(+) T-cell-defined epitope. The HSD17B12(114-122) peptide, however, is poorly immunogenic in its in vitro ability to induce peptide-specific CD8(+) T cells. Acting as an "optimized peptide", a peptide (TYDKIKTGL), which is identical to the HSD17B12(114-122) peptide except for threonine at residue 1, was required for inducing in vitro the expansion of CD8(+) T-cell effectors cross-reactive against the HSD17B12(114-122) peptide. In IFN-γ ELISPOT assays, these effector cells recognize HSD17B12(114-122) peptide-pulsed target cells, as well as HLA-A2(+) squamous cell carcinoma of the head and neck (SCCHN) and breast carcinoma cell lines overexpressing HSD17B12 and naturally presenting the epitope. Whereas growth inhibition of a breast carcinoma cell line induced by HSD17B12 knockdown was only reversed by AA, in a similar manner, the growth inhibition of the SCCHN PCI-13 cell line by HSD17B12 knockdown was reversed by E2 and AA. Our findings provide the basis for future studies aimed at developing cancer vaccines for targeting HSD17B12, which apparently can be functional in critical metabolic pathways involved in inflammation and cancer.
Collapse
Affiliation(s)
- Carmen Visus
- Division of Basic Research, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|