1
|
Huang SW, Lai YG, Liao HT, Chang CL, Ma RY, Chen YH, Liou YH, Wu ZQ, Wu YC, Liu KJ, Huang YT, Yang JL, Dai MS, Liao NS. Syngeneic natural killer cell therapy activates dendritic and T cells in metastatic lungs and effectively treats low-burden metastases. eLife 2025; 13:RP99010. [PMID: 39835538 PMCID: PMC11750138 DOI: 10.7554/elife.99010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors. Using a spontaneous metastasis mouse model of MHC-I+ breast cancer, we found that transfer of IL-15/IL-12-conditioned syngeneic NK cells after primary tumor resection promoted long-term survival of mice with low metastatic burden and induced a tumor-specific protective T cell response that is essential for the therapeutic effect. Furthermore, NK cell transfer augments activation of conventional dendritic cells (cDCs), Foxp3-CD4+ T cells and stem cell-like CD8+ T cells in metastatic lungs, to which IFN-γ of the transferred NK cells contributes significantly. These results imply direct interactions between transferred NK cells and endogenous cDCs to enhance T cell activation. We conducted an investigator-initiated clinical trial of autologous NK cell therapy in six patients with advanced cancer and observed that the NK cell therapy was safe and showed signs of effectiveness. These findings indicate that autologous NK cell therapy is effective in treating established low burden metastases of MHC-I+ tumor cells by activating the cDC-T cell axis at metastatic sites.
Collapse
Affiliation(s)
- Shih-Wen Huang
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical CenterTaipeiTaiwan
| | - Yein-Gei Lai
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Hao-Ting Liao
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Department of Life Sciences, National Central UniversityTaoyuanTaiwan
| | | | - Ruo-Yu Ma
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | | | - Yae-Huei Liou
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Zhen-Qi Wu
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Yu-Chen Wu
- National Institute of Cancer Research, National Health Research InstitutesTainanTaiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research InstitutesTainanTaiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia SinicaTaipeiTaiwan
| | - Jen-Lung Yang
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Ming-Shen Dai
- Department of Hematology-Oncology, Tri-Service General HospitalTaipeiTaiwan
| | - Nan-Shih Liao
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical CenterTaipeiTaiwan
| |
Collapse
|
2
|
Atreya I, Neurath MF. How the Tumor Micromilieu Modulates the Recruitment and Activation of Colorectal Cancer-Infiltrating Lymphocytes. Biomedicines 2022; 10:biomedicines10112940. [PMID: 36428508 PMCID: PMC9687992 DOI: 10.3390/biomedicines10112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, such as, for instance, the use of checkpoint inhibitors. As it has been well established over the past two decades that the local tumor microenvironment and, in particular, the quantity, quality, and activation status of intratumoral immune cells critically influence the clinical prognosis of patients diagnosed with colorectal cancer and their individual benefits from immunotherapy, the enhancement of the intratumoral accumulation of cytolytic effector T lymphocytes and other cellular mediators of the antitumor immune response has emerged as a targeted objective. For the future identification and clinical validation of novel therapeutic target structures, it will thus be essential to further decipher the molecular mechanisms and cellular interactions in the intestinal tumor microenvironment, which are crucially involved in immune cell recruitment and activation. In this context, our review article aims at providing an overview of the key chemokines and cytokines whose presence in the tumor micromilieu relevantly modulates the numeric composition and antitumor capacity of tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Imke Atreya
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8535204; Fax: +49-9131-8535209
| |
Collapse
|
3
|
Cui F, Qu D, Sun R, Zhang M, Nan K. NK cell-produced IFN-γ regulates cell growth and apoptosis of colorectal cancer by regulating IL-15. Exp Ther Med 2019; 19:1400-1406. [PMID: 32010315 DOI: 10.3892/etm.2019.8343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/13/2019] [Indexed: 12/24/2022] Open
Abstract
Globally, colorectal cancer (CC) is the third leading cause of mortality associated with cancer. Natural killer (NK) cells are a major class of cells that are responsible for eliminating tumor cells and cytokine production. NK cell-mediated production of interferon gamma (IFN-γ) has antiviral, immunoregulatory and anti-tumor properties. IL-15 is important in linking inflammation with cancer. For instance, IL-15 promotes humoral and cell-mediated immune responses to inhibit tumor growth. IL-15 inhibits colitis-associated colon carcinogenesis by inducing antitumor immunity. However, the effect of NK cell-mediated IFN-γ on IL-15 expression in CC progression remains unknown. mRNA and protein level were detected using reverse transcription-quantitative PCR and western blotting, respectively. IFN-γ concentrations were detected using ELISAs. The cytotoxicity of NK-92 cells on SW480 cells was detected using cytoTox 96® non-radioactive cytotoxicity assays. Cell apoptosis and cell proliferation was detected using flow cytometry and CCK-8 assays, respectively. IL-2 was used for NK-92 stimulation, IL-15 antibodies were used to neutralize IL-15 bioactivity. For the present study, 21 patients with CC and 21 healthy volunteers were enrolled at the First Affiliated Hospital of Xi'an Jiaotong University. IL-15 mRNA and protein expression were significantly lower in NK cells isolated from the CC group compared with healthy volunteer group. IL-2 enhanced the production/secretion of IFN-γ in addition to enhancing NK-92 cell-mediated killing of SW480 cells. Compared with the control group, NK-92 cells treated with IL-2 alone significantly increased cell apoptosis, BAX expression levels as well as phosphorylated (p)-Janus kinase 2 and p-STAT1 protein levels, whilst reducing cell viability and Bcl-2 protein levels in SW480 cells. These observations were not made when treated with IL-2 and polyclonal antibody (pAb) targeting IL-15. Taken together, NK cell-mediated IFN-γ served a pivotal role in CC by regulating IL-15. The effects of IL-2 induced IFN-γ were abolished by pAb IL-15 treatment. The mechanisms of action behind how IFN-γ regulates IL-2 is unclear, and is a promising area for future research.
Collapse
Affiliation(s)
- Feng Cui
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Di Qu
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ruya Sun
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Mingming Zhang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Kejun Nan
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| |
Collapse
|
4
|
Toyoshima Y, Kitamura H, Xiang H, Ohno Y, Homma S, Kawamura H, Takahashi N, Kamiyama T, Tanino M, Taketomi A. IL6 Modulates the Immune Status of the Tumor Microenvironment to Facilitate Metastatic Colonization of Colorectal Cancer Cells. Cancer Immunol Res 2019; 7:1944-1957. [PMID: 31554639 DOI: 10.1158/2326-6066.cir-18-0766] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 06/11/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
Abstract
It is unknown as to how liver metastases are correlated with host immune status in colorectal cancer. In this study, we found that IL6, a proinflammatory cytokine produced in tumor-bearing states, promoted the metastatic colonization of colon cancer cells in association with dysfunctional antitumor immunity. In IL6-deficient mice, metastatic colonization of CT26 cells in the liver was reduced, and the antitumor effector function of CD8+ T cells, as well as IL12 production by CD11c+ dendritic cells, were augmented in vivo IL6-deficient mice exhibited enhanced IFN-AR1-mediated type I interferon signaling, which upregulated PD-L1 and MHC class I expression on CT26 cells. In vivo injection of anti-PD-L1 effectively suppressed the metastatic colonization of CT26 cells in Il6 -/- but not in Il6 +/+ mice. Finally, we confirmed that colorectal cancer patients with low IL6 expression in their primary tumors showed prolonged disease-free survival. These findings suggest that IL6 may be a promising target for the treatment of metastasis in colorectal cancers by improving host immunity.
Collapse
Affiliation(s)
- Yujiro Toyoshima
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| | - Huihui Xiang
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yosuke Ohno
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shigenori Homma
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideki Kawamura
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Norihiko Takahashi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mishie Tanino
- Department of Surgical Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Troschke-Meurer S, Siebert N, Marx M, Zumpe M, Ehlert K, Mutschlechner O, Loibner H, Ladenstein R, Lode HN. Low CD4⁺/CD25⁺/CD127⁻ regulatory T cell- and high INF-γ levels are associated with improved survival of neuroblastoma patients treated with long-term infusion of ch14.18/CHO combined with interleukin-2. Oncoimmunology 2019; 8:1661194. [PMID: 31741754 PMCID: PMC6844328 DOI: 10.1080/2162402x.2019.1661194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
Immunotherapy with the anti-GD2 antibody (Ab) ch14.18/CHO in combination with interleukin 2 (IL-2) has improved survival of high-risk neuroblastoma (NB) patients. Here, we report immunotherapy-related effects on circulating NK cells, regulatory T cells (Tregs), granulocytes as well as on Ab-dependent cell-mediated cytotoxicity (ADCC) and cytokines IFN-γ, IL-6, IL-10, IL-18 and CCL2 and their association with progression-free survival (PFS). In a closed single-center program, 53 patients received five cycles of 6 × 106 IU/m2 subcutaneous IL-2 (d1-5; 8–12) combined with long-term infusion (LTI) of 100 mg/m2 ch14.18/CHO (d8-18). Immune cells and cytokines were analyzed by flow cytometry and ADCC by calcein-AM-based cytotoxicity assay. IL-2 administration increased cytotoxic NK cell-, eosinophil- and Treg counts in cycle 1 (2.9-, 3.1- and 20.7-fold, respectively) followed by further increase in subsequent cycles, whereas neutrophil levels were elevated only after the ch14.18/CHO infusion (2.4-fold change). Serum concentrations of IFN-γ, IL-6, IL-10, IL-18 and CCL2 in cycle 1 were increased during the combinatorial therapy (peak levels of 3,656 ± 655 pg/ml, 162 ± 38 pg/ml, 20.91 ± 4.74 pg/ml, 1,584 ± 196 pg/ml and 2,159 ± 252 pg/ml, respectively). Surprisingly, we did not observe any correlation between NK-, eosinophil- or neutrophil levels and PFS. In contrast, patients with low Tregs showed significantly improved PFS compared to those who had high levels. Treg counts negatively correlated with INF-γ serum concentrations and patients with high INF-γ and IL-18 had significantly improved survival compared to those with low levels. In conclusion, LTI of ch14.18/CHO in combination with IL-2 resulted in Treg induction that inversely correlated with IFN-γ levels and PFS.
Collapse
Affiliation(s)
- Sascha Troschke-Meurer
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Madlen Marx
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Maxi Zumpe
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Karoline Ehlert
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Ruth Ladenstein
- St. Anna Children's Hospital and Children's Cancer Research Institute (CCRI), Department of Pediatrics, Medical University, Vienna, Austria
| | - Holger N Lode
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Modulation of cytokine level and sperm quality of mice by Lycium barbarum polysaccharides. Int J Biol Macromol 2019; 126:475-477. [DOI: 10.1016/j.ijbiomac.2018.12.250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022]
|
7
|
申 九, 熊 共, 郑 启, 张 宏, 洪 再. 自然杀伤细胞抑制肝癌肺转移. Shijie Huaren Xiaohua Zazhi 2017; 25:2028-2038. [DOI: 10.11569/wcjd.v25.i22.2028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
目的 研究自然杀伤(natural killer, NK)细胞对肝癌的抑制作用, 为临床应用提供实验依据.
方法 从人外周血分离培养及鉴定NK细胞. 在体外, 研究NK细胞抑制肝癌细胞的增殖、迁徙、转移. 在体内, 检测NK细胞在裸鼠肝脏存活情况. 利用人肝癌组织裸鼠肝脏原位移植模型来评估NK细胞在体内对肝癌生长、转移的抑制功能. 通过检测NK细胞活化受体、NKB1、穿孔素和颗粒酶的表达情况来评估白介素(interleukin, IL)-2对NK细胞免疫功能的刺激作用.
结果 采用密度梯度法可以获取较大量的外周血单个核细胞, 且能够从中分离到高活力的NK细胞. NK细胞经IL-2激活后活力增高, 成簇悬浮繁殖、扩增、生长. 在体外, NK细胞可抑制肝癌细胞的增殖、迁移和侵袭. 在体内, NK细胞在裸鼠肝脏可长期存活; NK细胞可明显抑制裸鼠肝癌肺转移. 然而, NK细胞对肝脏肿瘤生长抑制不明显. IL-2可诱导NK细胞免疫相关分子的表达并提高其肿瘤抑制功能.
结论 NK细胞的免疫学功能可被IL-2活化从而抑制肝癌的转移.
Collapse
|
8
|
Integrating Immunologic Signaling Networks: The JAK/STAT Pathway in Colitis and Colitis-Associated Cancer. Vaccines (Basel) 2016; 4:vaccines4010005. [PMID: 26938566 PMCID: PMC4810057 DOI: 10.3390/vaccines4010005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cytokines are believed to be crucial mediators of chronic intestinal inflammation in inflammatory bowel diseases (IBD) such as Crohn's disease (CD) and ulcerative colitis (UC). Many of these cytokines trigger cellular effects and functions through signaling via janus kinase (JAK) and signal transducer and activator of transcription (STAT) molecules. In this way, JAK/STAT signaling controls important events like cell differentiation, secretion of cytokines or proliferation and apoptosis in IBD in both adaptive and innate immune cells. Moreover, JAK/STAT signaling, especially via the IL-6/STAT3 axis, is believed to be involved in the transition of inflammatory lesions to tumors leading to colitis-associated cancer (CAC). In this review, we will introduce the main cellular players and cytokines that contribute to pathogenesis of IBD by JAK/STAT signaling, and will highlight the integrative function that JAK/STATs exert in this context as well as their divergent role in different cells and processes. Moreover, we will explain current concepts of the implication of JAK/STAT signaling in CAC and finally discuss present and future therapies for IBD that interfere with JAK/STAT signaling.
Collapse
|
9
|
Hong ZF, Zhao WX, Yin ZY, Xie CR, Xu YP, Chi XQ, Zhang S, Wang XM. Natural killer cells inhibit pulmonary metastasis of hepatocellular carcinoma in nude mice. Oncol Lett 2016; 11:2019-2026. [PMID: 26998115 PMCID: PMC4774462 DOI: 10.3892/ol.2016.4170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/08/2015] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells have been demonstrated to inhibit tumor growth. However, the role of NK cells in the inhibition of hepatocellular carcinoma metastasis is not well understood. The present study aimed to investigate the roles that NK cells may serve in inhibiting hepatocellular carcinoma metastasis. The role of isolated NK cells in the inhibition, proliferation, migration and invasion of the hepatoma cell line, MHCC97-H, was examined in vitro. Additionally, the survival rate of NK cells labeled with carboxyfluorescein diacetate-succinimidyl ester was assessed in vivo. An orthotopic implantation model was used to evaluate the role of NK cells in suppressing MHCC97-H cells in vivo. The effect of interleukin (IL)-2 stimulation on the tumor-inhibitory role of the NK cells was measured indirectly by analyzing the expression of various NK cell receptors and activated NK cell markers. It was observed that the NK cells inhibited the proliferation, migration and invasion of the MHCC97-H cells in vitro. Furthermore, the NK cells demonstrated long-term survival in the livers of the nude mice, and inhibited lung metastasis of hepatocellular carcinoma in vivo. However, liver tumor growth was not inhibited by the NK cells. IL-2 was identified to enhance the tumor-inhibitory effect of NK cells. The present study concludes that IL-2 may enhance the antitumor activity of the NK cells, and thereby inhibit the metastases of hepatocellular carcinoma in mice.
Collapse
Affiliation(s)
- Zai-Fa Hong
- Department of Hepatobiliary Surgery and Liver Disease Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian 361000, P.R. China; Post Graduate College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Wen-Xiu Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Zhen-Yu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Cheng-Rong Xie
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Ya-Ping Xu
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Xiao-Qin Chi
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Sheng Zhang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Xiao-Min Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
10
|
Ankathatti Munegowda M, Hu J. Transient blocking of NK cell function with small molecule inhibitors for helper dependant adenoviral vector-mediated gene delivery. Cell Biosci 2015; 5:29. [PMID: 26085921 PMCID: PMC4470062 DOI: 10.1186/s13578-015-0023-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/05/2015] [Indexed: 11/10/2022] Open
Abstract
One major challenge in gene therapy is the host immune responses against viral vectors. Previous studies indicate the involvement of NK cells in stunted gene expression in viral vector mediated gene therapy. To understand the problem of the immune responses, we have developed an in-vitro co-culture system with human NK cell line, macrophages and airway epithelial cells. We showed that small molecule blockers, CAPE and ruxolitinib, for NF-κB and JAK-STAT pathways, respectively, significantly inhibited cytokine secretion by macrophages. When NK cells are co-cultured with helper-dependent adenoviral (HD-Ad) vector activated macrophages, IFN-γ cytokine expression by NK cells increased significantly, which was inhibited effectively by ruxolitinib and CAPE, and there was an additive effect when both inhibitors were used. We demonstrated that NK cells activated by cytokines produced by HD-Ad-activated macrophages kill HD-Ad vector transduced bronchial epithelial cells. This cell killing activity was significantly reduced by CAPE and ruxolitinib. Combination of these two inhibitors had an additive effect on inhibiting NK cell mediate killing of gene transduced cells. Transient inhibition of NK cell response at its peak may enhance sustained gene expression. Our data suggest that combination of CAPE and ruxolitinib may help in protecting gene transduced airway epithelial cells to prolong transgene expression.
Collapse
Affiliation(s)
- Manjunatha Ankathatti Munegowda
- Department of Physiology & Experimental Medicine, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning (PGCRL), 9th floor, 686 Bay Street, Toronto, ON M5G 0A4 Canada ; University of Toronto, Toronto, ON Canada
| | - Jim Hu
- Department of Physiology & Experimental Medicine, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning (PGCRL), 9th floor, 686 Bay Street, Toronto, ON M5G 0A4 Canada ; University of Toronto, Toronto, ON Canada
| |
Collapse
|
11
|
Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N, Czapla J, Matuszczak S, Szala S. Combined Tumor Cell-Based Vaccination and Interleukin-12 Gene Therapy Polarizes the Tumor Microenvironment in Mice. Arch Immunol Ther Exp (Warsz) 2015; 63:451-64. [PMID: 25801067 PMCID: PMC4633448 DOI: 10.1007/s00005-015-0337-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Tumor progression depends on tumor milieu, which influences neovasculature formation and immunosuppression. Combining immunotherapy with antiangiogenic/antivascular therapy might be an effective therapeutic approach. The aim of our study was to elaborate an anticancer therapeutic strategy based on the induction of immune response which leads to polarization of tumor milieu. To achieve this, we developed a tumor cell-based vaccine. CAMEL peptide was used as a B16-F10 cell death-inducing agent. The lysates were used as a vaccine to immunize mice bearing B16-F10 melanoma tumors. To further improve the therapeutic effect of the vaccine, we combined it with interleukin (IL)-12 gene therapy. IL-12, a cytokine with antiangiogenic properties, activates nonspecific and specific immune responses. We observed that combined therapy is significantly more effective (as compared with monotherapies) in inhibiting tumor growth. Furthermore, the tested combination polarizes the tumor microenvironment, which results in a switch from a proangiogenic/immunosuppressive to an antiangiogenic/immunostimulatory one. The switch manifests itself as a decreased number of tumor blood vessels, increased levels of tumor-infiltrating CD4+, CD8+ and NK cells, as well as lower level of suppressor lymphocytes (Treg). Our results suggest that polarizing tumor milieu by such combined therapy does inhibit tumor growth and seems to be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Natalia Kułach
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
- Department of Animal Physiology and Ecotoxycology, University of Silesia, Katowice, Poland
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Stanisław Szala
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| |
Collapse
|
12
|
Wang Y, Qu A, Wang H. Signal transducer and activator of transcription 4 in liver diseases. Int J Biol Sci 2015; 11:448-55. [PMID: 25798064 PMCID: PMC4366643 DOI: 10.7150/ijbs.11164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/24/2015] [Indexed: 12/14/2022] Open
Abstract
STAT4 is a member of the signal transducer and activator of transcription (STAT) family of molecules that localizes to the cytoplasm. STAT4 regulates various genes expression as a transcription factor after it is phosphorylated, dimerizes and translocates to the nucleus. STAT4 activation is detected virtually in the liver of several mouse models of liver injury, as well as the human liver of chronic liver diseases. STAT4 gene polymorphism has been shown to be associated with the antiviral response in chronic hepatitis C and drug-induced liver injury (DILI), primary biliary cirrhosis (PBC), HCV-associated liver fibrosis and in hepatocellular carcinoma (HCC). However, the roles of STAT4 in the pathogeneses of liver diseases are still not understood entirely. This review summarizes the recent advances on the functional roles of STAT4 and its related cytokines in liver diseases, especially in regulating hepatic anti-viral responses, inflammation, proliferation, apoptosis and tumorigenesis. Targeting STAT4 signaling pathway might be a promising strategy in developing therapeutic approaches for treating hepatitis in order to prevent further injury like cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Yan Wang
- 1. Department of Infectious Diseases, Peking University First Hospital, Beijing 100034
| | - Aijuan Qu
- 3. Institute of Hypoxic Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069 ; 4. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hua Wang
- 2. Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032
| |
Collapse
|
13
|
Pyo KH, Jung BK, Xin CF, Lee YW, Chai JY, Shin EH. Prominent IL-12 production and tumor reduction in athymic nude mice after Toxoplasma gondii lysate antigen treatment. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:605-12. [PMID: 25548411 PMCID: PMC4277022 DOI: 10.3347/kjp.2014.52.6.605] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/12/2014] [Accepted: 10/13/2014] [Indexed: 01/18/2023]
Abstract
Toxoplasma gondii is an intracellular protozoan parasite that causes a Th1 cellular immunity. Our previous study showed that T. gondii lysate antigen (TLA) treatment in S180 tumor-bearing mice resulted in tumor reduction by suppressing CD31 expression, a marker of angiogenesis. In the present study, to investigate tumor suppressive effect of TLA under the absence of T lymphocytes, athymic nude mice were compared with euthymic mice in the anti-tumorigenic effect triggered by TLA in CT26 tumors. According to the results, intratumorally injected TLA reduced tumor growth and TIMP-1 level, a metastatic marker, in both euthymic and athymic mice. TLA treatment led to a sharp increase in IL-12 expression in serum cytokine profiling of athymic mice, and increased MyD88 signals in macrophages derived from the bone marrow, implying the activation of innate immunity. The selective induction of IL-12 by TLA treatment had an anti-tumorigenic effect.
Collapse
Affiliation(s)
- Kyoung-Ho Pyo
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Korea
| | - Bong-Kwang Jung
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Korea
| | - Chun-Feng Xin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Korea
| | - You-Won Lee
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Korea
| | - Jong-Yil Chai
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Korea
| | - Eun-Hee Shin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Korea. ; Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| |
Collapse
|
14
|
Liu H, Yang B, Sun T, Lin L, Hu Y, Deng M, Yang J, Liu T, Li J, Sun S, Jiao S. Specific growth inhibition of ErbB2‑expressing human breast cancer cells by genetically modified NK‑92 cells. Oncol Rep 2014; 33:95-102. [PMID: 25333815 DOI: 10.3892/or.2014.3548] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/10/2014] [Indexed: 11/06/2022] Open
Abstract
The natural killer cell line NK‑92 shows great cytotoxicity against various types of cancer. Several types of solid tumor cells, however, can effectively resist NK-mediated lysis by interaction of major histocompatibility complex (MHC) molecules with NK cell inhibitory receptors. To generate a eukaryotic expression vector encoding chimeric antigen receptor scFv anti-erbB2-CD28-ζ and to investigate the expression and action of this chimeric antigen receptor in cancer cells both in vitro and in vivo, NK‑92 cells were genetically modified with an scFv anti-erbB2-CD28-ζ chimeric recep-tor by optimized electro-poration using the Amaxa Nucleofector system. The expression of the chimeric receptor was evaluated by RT-PCR and immunofluorescence. The ability of the genetically modified NK‑92 cells to induce cell death in tumor targets was assessed in vitro and in vivo. The transduced NK‑92-anti-erbB2 scFv-CD28-ζ cells expressing high levels of the fusion protein on the cell surface were analyzed by fluorescence-activated cell-sorting (FACS) analysis. These cells specifically enhanced the cell death of the erbB2‑expressing human breast cancer cell lines MDA-MB-453 and SKBr3. Furthermore, adoptive transfer of genetically modified NK‑92 cells specifically reduced tumor size and lung metastasis of nude mice bearing established MDA-MB-453 cells, and significantly enhanced the survival period of these mice. The genetically modified NK‑92 cells significantly enhanced the killing of erbB2‑expressing cancer and may be a novel therapeutic strategy for erbB2‑expressing cancer cells.
Collapse
Affiliation(s)
- Hui Liu
- Department of Internal Oncology, 301 General Hospital, Beijing, P.R. China
| | - Bo Yang
- Department of Internal Oncology, 301 General Hospital, Beijing, P.R. China
| | - Tingting Sun
- Department of Internal Neurology, Hainan Branch of 301 General Hospital, Hainan, P.R. China
| | - Lin Lin
- Department of Internal Oncology, 301 General Hospital, Beijing, P.R. China
| | - Yi Hu
- Department of Internal Oncology, 301 General Hospital, Beijing, P.R. China
| | - Muhong Deng
- Department of Internal Oncology, 301 General Hospital, Beijing, P.R. China
| | - Junlan Yang
- Department of Internal Oncology, 301 General Hospital, Beijing, P.R. China
| | - Tianyi Liu
- Tumor Central Laboratory, 301 General Hospital, Beijing, P.R. China
| | - Jinyu Li
- Department of Internal Oncology, 301 General Hospital, Beijing, P.R. China
| | - Shengjie Sun
- Department of Internal Oncology, 301 General Hospital, Beijing, P.R. China
| | - Shunchang Jiao
- Department of Internal Oncology, 301 General Hospital, Beijing, P.R. China
| |
Collapse
|
15
|
Abstract
INTRODUCTION STAT4, which acts as the major signaling transducing STATs in response to IL-12, is a central mediator in generating inflammation during protective immune responses and immune-mediated diseases. AREAS COVERED This review summarizes that STAT4 is essential for the differentiation and function of a wide variety of immune cells, including natural killer cells, mast cells, dendritic cells and T helper cells. In addition, STAT4-mediated signaling promoted the production of autoimmune-associated components, which are implicated in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis and psoriasis. EXPERT OPINION Due to its crucial roles in inflammation and autoimmunity, STAT4 may have promise as an effective therapeutic target for autoimmune diseases. Understanding the molecular mechanisms driving STAT4, together with knowledge on the ability of current immunosuppressive treatment to target this process, may open an avenue to novel therapeutic options.
Collapse
Affiliation(s)
- Yan Liang
- Anhui Medical University, School of Public Health, Department of Epidemiology and Biostatistics , Anhui, PR China
| | | | | |
Collapse
|
16
|
Wang Z, Zhong M, Fu M, Dou T, Bian Z. Evidence of positive selection at signal peptide region of interferon gamma. Biosci Biotechnol Biochem 2014; 78:588-92. [PMID: 25036954 DOI: 10.1080/09168451.2014.896732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Interferon gamma (IFNG) is a major cytokine and plays crucial roles in pathogen clearance. About the course of evolution of IFNG, it has been reported that IFNG is being subjected to adaptive selection, which is proved at the level of gene. Neighbor-joining method was used to reconstruct the phylogenetic tree of all IFNG protein-coding sequences. The pair-wise computation of Ka/Ks between every exon homologs, branch-specific model, and site-specific model of the likelihood method were performed to detect positive selection of IFNG. We reported, for the first time, that the signal peptide region of IFNG is under significant positive selection, evolving faster than other parts. We provide evidence at the level of individual exon and individual amino acid site that IFNG is under adaptive evolution, which establishes the basis for further researches about IFNG.
Collapse
Affiliation(s)
- Zhengshi Wang
- a Department of General Surgery, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| | | | | | | | | |
Collapse
|
17
|
Cichoń T, Smolarczyk R, Matuszczak S, Barczyk M, Jarosz M, Szala S. D-K6L 9 peptide combination with IL-12 inhibits the recurrence of tumors in mice. Arch Immunol Ther Exp (Warsz) 2014; 62:341-51. [PMID: 24487722 PMCID: PMC4092230 DOI: 10.1007/s00005-014-0268-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/11/2013] [Indexed: 01/01/2023]
Abstract
D-K6L9 peptide is bound by phosphatidylserine and induces necrosis in cancer cells. In our therapeutic experience, this peptide, when administered directly into B16-F10 murine melanoma tumors, inhibited their growth. Cessation of therapy results, however, in tumor relapse. We aimed at developing a combined therapy involving D-K6L9 and additional factors that would yield complete elimination of tumor cells in experimental animals. To this purpose, we employed glycyrrhizin, an inhibitor of HMGB1 protein, BP1 peptide and interleukin (IL)-12. Glycyrrhizin or BP1, when combined with D-K6L9, inhibits growth of primary tumors only during the period of their administration. A long-term tumor growth inhibitory effect was obtained only in combining D-K6L9 with IL-12. At 2 months following therapy cessation, 60 % of animals were alive. Prolonged survival was noted in mice bearing B16-F10 tumors as well as in mice bearing C26 colon carcinoma tumors.
Collapse
Affiliation(s)
- Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland,
| | | | | | | | | | | |
Collapse
|
18
|
Antitumor effects of recombinant antivascular protein ABRaA-VEGF121 combined with IL-12 gene therapy. Arch Immunol Ther Exp (Warsz) 2013; 62:161-8. [PMID: 24220932 PMCID: PMC3950566 DOI: 10.1007/s00005-013-0259-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Development and neoplastic progression strongly rely on tumor microenvironment cells. Various kinds of cells that form such tumor milieu play substantial roles in angiogenesis and immunosuppression. Attempts to inhibit tumor vascularization alter tumor milieu and enhance immune response against the tumor. Anticancer therapeutic strategy bringing together antiangiogenic and immunostimulating agents has emerged as a promising approach. We here investigated whether therapy directed against preexisting vessels, combined with an immunomodulatory factor would be equally effective in arresting tumor growth. To this goal, we investigated the effectiveness of ABRaA-vascular endothelial growth factor isoform 121 (VEGF121), an antivascular drug constructed by us. It is a fusion protein composed of VEGF121, and abrin A chain (translation-inhibiting toxin). We used it in combination with interleukin (IL-12) gene therapy and tried to inhibit B16-F10 melanoma tumor growth. ABRaA-VEGF121 is a chimeric recombinant protein capable of destroying tumor vasculature and triggering necrosis in the vicinity of damaged vessels. IL-12 cytokine, in turn, activates both specific and non-specific immune responses. Our results demonstrate that combination of ABRaA-VEGF121 antivascular agent with immunostimulatory cytokine IL-12 indeed inhibits tumor growth more effectively than either agent alone, leading to complete cure of ca. 20 % mice. Post-therapeutic analysis of tumors excised from mice treated with combination therapy showed decreased numbers of blood microvessels in the tumor microenvironment, lowered numbers of regulatory T lymphocytes, as well as showed higher levels of CD4+ and CD8+ as compared to control mice. It seems that bringing together antivascular strategy and the action of immunostimulating agents indeed inhibits growth of tumors.
Collapse
|
19
|
Shigekawa M, Hikita H, Kodama T, Shimizu S, Li W, Uemura A, Miyagi T, Hosui A, Kanto T, Hiramatsu N, Tatsumi T, Takeda K, Akira S, Takehara T. Pancreatic STAT3 protects mice against caerulein-induced pancreatitis via PAP1 induction. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2105-13. [PMID: 23064197 DOI: 10.1016/j.ajpath.2012.08.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/13/2012] [Accepted: 08/28/2012] [Indexed: 02/07/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that controls expressions of several genes involved in cell survival, proliferation and differentiation, and tissue inflammation. However, the significance of pancreatic STAT3 in acute pancreatitis remains unclear. We generated conditional STAT3 knockout (stat3(Δ/Δ)) mice by crossing stat3(flox/flox) mice with Pdx1-promoter Cre transgenic mice. Caerulein administration activated pancreatic STAT3 and induced acute pancreatitis as early as 3 hours in wild-type mice, and full recovery from the induced pancreatic injury was observed within 7 days. The levels of serum amylase and lipase and histologic scores of pancreatic necrosis and inflammatory cell infiltration were significantly higher at 3 hours in stat3(Δ/Δ) mice than in stat3(flox/flox) mice. Pancreatic recovery after pancreatitis was significantly delayed in stat3(Δ/Δ) mice compared with stat3(flox/flox) mice. Although stat3(flox/flox) mice had marked production in the pancreas of pancreatitis-associated protein 1 (PAP1), a serum acute phase protein, this induction was completely abrogated in stat3(Δ/Δ) mice. Enforced production of PAP1 by a hydrodynamic procedure in the liver significantly suppressed pancreatic necrosis and inflammation and also promoted pancreatic regeneration and recovery in stat3(Δ/Δ) mice to levels similar to those observed in stat3(flox/flox) mice. In conclusion, pancreatic STAT3 is indispensable for PAP1 production, and this STAT3/PAP1 pathway plays a protective role in caerulein-induced pancreatitis.
Collapse
Affiliation(s)
- Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hafidh RR, Abdulamir AS, Bakar FA, Jalilian FA, Abas F, Sekawi Z. Novel molecular, cytotoxical, and immunological study on promising and selective anticancer activity of mung bean sprouts. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:208. [PMID: 23122182 PMCID: PMC3522559 DOI: 10.1186/1472-6882-12-208] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 10/31/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND The anticancer and immunomodulatory activity of mung bean sprouts (MBS) and the underlying mechanisms against human cervical and hepatocarcinoma cancer cells were explored. METHODS MBS cytotoxicity and MBS-induced anticancer cytokines, TNF-α and IFN-β from cancer cells, and immunological cytokines, IL-4, IFN-γ, and IL-10 from peripheral mononuclear cells (PMNC) were assessed by MTS and ELISA assays. Apoptotic cells were investigated by flow cytometry. The expression level of apoptotic genes (Bax, BCL-2, Capsases 7-9) and cell cycle regulatory genes (cyclin D, E, and A) and tumor suppressor proteins (p27, p21, and p53) was assessed by real-time qPCR in the cancer cells treated with extract IC50. RESULTS The cytotoxicity on normal human cells was significantly different from HeLa and HepG2 cells, 163.97 ± 5.73, 13.3 ± 0.89, and 14.04 ± 1.5 mg/ml, respectively. The selectivity index (SI) was 12.44 ± 0.83 for HeLa and 11.94 ± 1.2 for HepG2 cells. Increased levels of TNF-α and IFN-β were observed in the treated HeLa and HepG2 culture supernatants when compared with untreated cells. MBS extract was shown to be an immunopolarizing agent by inducing IFNγ and inhibiting IL-4 production by PBMC; this leads to triggering of CMI and cellular cytotoxicity. The extract induced apoptosis, in a dose and time dependent manner, in treated HeLa and HepG2, but not in untreated, cells (P < 0.05). The treatment significantly induced cell cycle arrest in G0/G1 in HeLa cells. The percentage of cells in G0/G1 phase of the treated HeLa cells increased from 62.87 ± 2.1%, in untreated cells, to 80.48 ± 2.97%. Interestingly, MBS IC50 induced the expression of apoptosis and tumor suppressor related genes in both HeLa and HepG2 cells. MBS extract succeeded in inducing cdk-inhibitors, p21, p53, and p27 in HeLa cells while it induced only p53 in HepG2 cells (P < 0.05). This is a clue for the cell type- specific interaction of the studied extract. These proteins inhibit the cyclin-cdk complexes apart from the presence of some other components that might stimulate some cyclins such as cyclin E, A, and D. CONCLUSION MBS extract was shown to be a potent anticancer agent granting new prospects of anticancer therapy using natural products.
Collapse
|
21
|
Jarosz M, Jazowiecka-Rakus J, Cichoń T, Głowala-Kosińska M, Smolarczyk R, Smagur A, Malina S, Sochanik A, Szala S. Therapeutic antitumor potential of endoglin-based DNA vaccine combined with immunomodulatory agents. Gene Ther 2012; 20:262-73. [PMID: 22495576 DOI: 10.1038/gt.2012.28] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Therapy targeting tumor blood vessels ought to inhibit tumor growth. However, tumors become refractory to antiangiogenic drugs. Therefore, therapeutic solutions should be sought to address cellular resistance to antiangiogenic therapy. In this regard, reversal of the proangiogenic and immunosuppressive phenotype of cancer cells, and the shift of the tumor microenvironment towards more antiangiogenic and immune-stimulating phenotype may hold some promise. In our study, we sought to validate the effects of a combination therapy aimed at reducing tumor blood vessels, coupled with the abrogation of the immunosuppressive state. To achieve this, we developed an oral DNA vaccine against endoglin. This antigen was carried by an attenuated Salmonella Typhimurium and applied before or after tumor cell inoculation into immunocompetent mice. Our results show that this DNA vaccine effectively inhibited tumor growth, in both the prophylactic and therapeutic settings. It also activated both specific and nonspecific immune responses in immunized mice. Activated cytotoxic T-lymphocytes were directed specifically against endothelial and tumor cells overexpressing endoglin. The DNA vaccine inhibited angiogenesis but did not affect wound healing. In combination with interleukin-12-mediated gene therapy, or with cyclophosphamide administration, the DNA vaccine resulted in reduced microvessel density and lowered the level of Treg lymphocytes in the experimental tumors. This effectively inhibited tumor growth and prolonged survival of the treated animals. Polarization of tumor milieu, from proangiogenic and immunosuppressive, towards an immunostimulatory and antiangiogenic profile represents a promising avenue in anticancer therapy.
Collapse
Affiliation(s)
- M Jarosz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Genomic views of STAT function in CD4+ T helper cell differentiation. Nat Rev Immunol 2011; 11:239-50. [PMID: 21436836 DOI: 10.1038/nri2958] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signal transducer and activator of transcription (STAT) proteins are well known for their essential roles in transmitting cytokine-mediated signals and specifying T helper (T(H)) cell differentiation. Recent technological advances have revealed that STAT proteins have broad and complex roles in gene regulation and epigenetic control, including important roles as functional repressors. However, the challenge of how to link signal transduction, nucleosome biology and gene regulation remains. The relevance of tackling this problem is highlighted by genome-wide association studies that link cytokine signalling and STATs to various autoimmune or immune deficiency disorders. Defining exactly how extrinsic signals control the specification and plasticity of T(H) cells will provide important insights and perhaps therapeutic opportunities in these diseases.
Collapse
|
23
|
Maglioco A, Machuca D, Mundiñano J, Cabrera G, Camicia G, Bruzzo J, Camerano G, Costa H, Ruggiero RA, Dran GI. Lymphadenectomy exacerbates tumor growth while lymphadenectomy plus the adoptive transfer of autologous cytotoxic cells and low-dose cyclophosphamide induces regression of an established murine fibrosarcoma. Cancer Immunol Immunother 2011; 60:389-99. [PMID: 21153814 PMCID: PMC11029519 DOI: 10.1007/s00262-010-0949-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/19/2010] [Indexed: 01/18/2023]
Abstract
Tumor-draining lymph node (TDLN) ablation is routinely performed in the management of cancer; nevertheless, its usefulness is at present a matter of debate. TDLN are central sites where T cell priming to tumor antigens and onset of the antitumor immune response occur. However, tumor-induced immunosuppression has been demonstrated at TDLN, leading to downregulation of antitumor reaction and tolerance induction. Tolerance in turn is a main impairment for immunotherapy trials. We used a murine immunogenic fibrosarcoma that evolves to a tolerogenic state, to study the cellular and molecular mechanisms underlying tolerance induction at the level of TDLN and to design an appropriate immunotherapy. We determined that following a transient activation, the established tumor induces signs of immunosuppression at TDLN that coexist with local and systemic evidences of antitumor response. Therefore, we evaluated the feasibility of removing TDLN in order to eliminate a focus of immunosuppression and favor tumor rejection; but instead, a marked exacerbation of tumor growth was induced. Combining TDLN ablation with the in vivo depletion of regulatory cells by low-dose cyclophosphamide and the restoring of the TDLN-derived cells into the donor mouse by adoptive transference, resulted in lowered tumor growth, enhanced survival and a considerable degree of tumor regression. Our results demonstrate that important antitumor elements can be eliminated by lymphadenectomy and proved that the concurrent administration of low-dose chemotherapy along with the reinoculation of autologous cytotoxic cells provides protection. We suggest that this protocol may be useful, especially in the cases where lymphadenectomy is mandatory.
Collapse
Affiliation(s)
- Andrea Maglioco
- División Medicina Experimental, Academia Nacional de Medicina de Buenos Aires, ILEX-CONICET, Buenos Aires, Argentina
| | - Damián Machuca
- División Medicina Experimental, Academia Nacional de Medicina de Buenos Aires, ILEX-CONICET, Buenos Aires, Argentina
| | - Juliana Mundiñano
- División Medicina Experimental, Academia Nacional de Medicina de Buenos Aires, ILEX-CONICET, Buenos Aires, Argentina
| | - Gabriel Cabrera
- División Medicina Experimental, Academia Nacional de Medicina de Buenos Aires, ILEX-CONICET, Buenos Aires, Argentina
| | - Gabriela Camicia
- División Medicina Experimental, Academia Nacional de Medicina de Buenos Aires, ILEX-CONICET, Buenos Aires, Argentina
| | - Juan Bruzzo
- División Medicina Experimental, Academia Nacional de Medicina de Buenos Aires, ILEX-CONICET, Buenos Aires, Argentina
| | - Gabriela Camerano
- División Medicina Experimental, Academia Nacional de Medicina de Buenos Aires, ILEX-CONICET, Buenos Aires, Argentina
| | - Héctor Costa
- División Medicina Experimental, Academia Nacional de Medicina de Buenos Aires, ILEX-CONICET, Buenos Aires, Argentina
| | - Raúl A. Ruggiero
- División Medicina Experimental, Academia Nacional de Medicina de Buenos Aires, ILEX-CONICET, Buenos Aires, Argentina
| | - Graciela I. Dran
- División Medicina Experimental, Academia Nacional de Medicina de Buenos Aires, ILEX-CONICET, Buenos Aires, Argentina
| |
Collapse
|
24
|
Tatsumi T, Takehara T, Miyagi T, Sugiyama T, Aketa H, Sasakawa A, Kanto T, Hiramatsu N, Hayashi N. α-Galactosylceramide activates antitumor immunity against liver tumor. Hepatol Res 2011; 41:160-9. [PMID: 21108702 DOI: 10.1111/j.1872-034x.2010.00743.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIM α-Galactosylceramide (α-GalCer) has been attracting attention as a novel approach to treat metastatic liver cancer. We investigated the detailed process of activating liver dendritic cells (DC) and immune cells after α-GalCer treatment in the mouse liver tumor model. METHODS BALB/c mice bearing CMS4 liver tumor (p53 peptide-expressing tumor) were treated by α-GalCer. We evaluated the activation of liver DC and immune cells after α-GalCer treatment. Interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISPOT) assay was performed to detect p53 peptide-specific cytotoxic T lymphocytes (CTL). To assess the impact of systemic acquired immunity by α-GalCer treatment, 28 days after liver tumor treatment, CMS4 cells or Colon26 cells were re-challenged s.c. RESULTS The liver weights of α-GalCer-treated mice were significantly lighter than those of vehicle-treated mice. Depletion experiments revealed that natural killer (NK) cells were essential for the antitumor effect of α-GalCer. α-GalCer treatment significantly increased the population of DC and NK cells in the liver. The expressions of co-stimulatory molecules on liver DC significantly increased with the peak at 1 day after α-GalCer administration. IFN-γ ELISPOT assay demonstrated that p53 peptide-specific CTL was generated efficiently in α-GalCer-treated mice. (51) Cr-release assay revealed that CD8(+) , not CD4(+) , CTL against CMS4 cells were generated in α-GalCer-treated mice. The mice that had been protected from CMS4 liver tumor by α-GalCer injection became resistant against s.c. CMS4 re-challenge, but not against Colon26 re-challenge. CONCLUSION These results demonstrated the therapeutic potential of α-GalCer against liver cancer through activating liver DC and immune cells in the liver.
Collapse
Affiliation(s)
- Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka Kansai-Rosai Hospital, Amagasaki, Hyogo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|