1
|
Geboers B, Timmer F, Vos D, Scheffer H, Bakker J, Ruarus A, Vroomen L, Stam A, Lougheed S, Schouten E, Puijk R, van den Tol P, Lagerwaard F, de Vries J, Bruynzeel A, Meijerink M, de Gruijl T. Systemic immunomodulation by irreversible electroporation versus stereotactic ablative body radiotherapy in locally advanced pancreatic cancer: the CROSSFIRE trial. J Immunother Cancer 2025; 13:e010222. [PMID: 40139834 PMCID: PMC11950998 DOI: 10.1136/jitc-2024-010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/28/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Irreversible electroporation (IRE) and stereotactic ablative body radiotherapy (SABR) are cytoreductive therapies for locally advanced pancreatic cancer (LAPC). Both may signify immunogenic cell death. We aimed to compare systemic immune responses between the treatments. METHODS As part of the randomized phase II CROSSFIRE trial (NCT02791503), comparing the oncological efficacy of IRE to SABR in patients with LAPC, pre- and post-treatment (2 weeks and 3 months) peripheral blood samples were collected. Frequency and activation status of lymphocytic and myeloid subsets were determined using flow cytometry. T cell responses to pancreatic cancer associated with Wilms tumor-1 (WT-1) and survivin tumor antigens were determined by interferon-γ enzyme-linked immunospot assay. RESULTS In total, 20 IRE and 20 SABR-treated participants were analyzed (20 men; median age 65 (IQR 55-70)). IRE induced immediate decreases in systemic regulatory T cell (Treg) and conventional type-1 dendritic cell rates, coinciding with CD4+/CD8+ T cell activation by upregulation of PD-1, which was associated with improved overall survival (OS). SABR similarly induced immediate CD4+/CD8+ T cell activation by upregulation of Ki67 and CD25 but resulted in asynchronously delayed Treg downregulation. SABR also induced a durable increase in CD4+ EM T cells, associated with improved OS. Ablation-induced WT-1 or survivin-specific T cell responses were observed in 9/16 (56%) immune competent participants (IRE n=5, SABR n=4) and were associated with longer OS. CONCLUSION Distinct immune stimulatory responses associated with improved OS, suggest that SABR might benefit from combined Treg depletion strategies while IRE could benefit from PD-1 checkpoint inhibition. TRIAL REGISTRATION NUMBER The trial was registered on clinical trials.gov (NCT02791503).
Collapse
Affiliation(s)
- Bart Geboers
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Medical Imaging, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Florentine Timmer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Danielle Vos
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Hester Scheffer
- Department of Radiology, Noord West Ziekenhuis Groep, Alkmaar, The Netherlands
| | - Joyce Bakker
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| | - Alette Ruarus
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Laurien Vroomen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | | | | | - Evelien Schouten
- Department of Radiotherapy, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robbert Puijk
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, OLVG, Amsterdam, The Netherlands
| | | | - Frank Lagerwaard
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| | - Jan de Vries
- Department of Radiology and Nuclear Medicine, OLVG, Amsterdam, The Netherlands
| | - Anna Bruynzeel
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| | - Martijn Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Tanja de Gruijl
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| |
Collapse
|
2
|
Chen J, Ma N, Chen B, Huang Y, Li J, Li J, Chen Z, Wang P, Ran B, Yang J, Bai J, Ning S, Ai J, Wei Q, Liu L, Cao D. Synergistic effects of immunotherapy and adjunctive therapies in prostate cancer management. Crit Rev Oncol Hematol 2025; 207:104604. [PMID: 39732304 DOI: 10.1016/j.critrevonc.2024.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
In recent years, cancer immunotherapy has received widespread attention due to significant tumor clearance in some malignancies. Various immunotherapy approaches, including vaccines, immune checkpoint inhibitors, oncolytic virotherapy, bispecific T cell engagers, and adoptive T cell transfer, have completed or are undergoing clinical trials for prostate cancer. Despite immune checkpoint blockade's extraordinary effectiveness in treating a variety of cancers, targeted prostate cancer treatment using the immune system is still in its infancy. Multiple factors including the heterogeneity of prostate cancer, the cold tumor microenvironment, and a low level of neoantigens, contribute to the poor immunotherapy response. Significant effort is being devoted to improving immune-based prostate cancer therapy. Recently, several key discoveries demonstrate that prostate cancer immunotherapy agents may be used to promise better prognosis for patients as part of combination strategies with other agents targeting tumor-associated immune mechanism of resistance. Here, this review comprehensively examines the recent advancements in immunotherapy for prostate cancer, exploring its potential synergistic effects when combined with other treatment modalities to enhance clinical efficacy.
Collapse
Affiliation(s)
- Jie Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd section, South Renmin Road, Chengdu 610041, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Puze Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Biao Ran
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiahao Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingxing Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Ning
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Geboers B, Scheltema MJ, Jung J, Bakker J, Timmer FE, Cerutti X, Katelaris A, Doan P, Gondoputro W, Blazevski A, Agrawal S, Matthews J, Haynes A, Robertson T, Thompson JE, Meijerink MR, Clark SJ, de Gruijl TD, Stricker PD. Irreversible electroporation of localised prostate cancer downregulates immune suppression and induces systemic anti-tumour T-cell activation - IRE-IMMUNO study. BJU Int 2025; 135:319-328. [PMID: 39101639 PMCID: PMC11745989 DOI: 10.1111/bju.16496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
OBJECTIVES To prospectively compare systemic anti-tumour immune responses induced by irreversible electroporation (IRE) and robot-assisted radical prostatectomy (RARP) in patients with localised intermediate-risk prostate cancer (PCa). PATIENTS AND METHODS Between February 2021 and June 2022, before and after treatment (at 5, 14 and 30 days) peripheral blood samples of 30 patients with localised PCa were prospectively collected. Patient inclusion criteria were: International Society of Urological Pathologists Grade 2-3, clinical cancer stage ≤T2c, prostate-specific antigen level <20 ng/mL). Patients were treated with IRE (n = 20) or RARP (n = 10). Frequency and activation status of lymphocytic and myeloid immune cell subsets were determined using flow cytometry. PCa-specific T-cell responses to prostatic acid phosphatase (PSAP) and cancer testis antigen (New York oesophageal squamous cell carcinoma 1 [NY-ESO-1]) were determined by interferon-γ enzyme-linked immunospot assay (ELISpot). Repeated-measures analysis of variance and two-sided Student's t-tests were used to compare immune responses over time and between treatment cohorts. RESULTS Patient and tumour characteristics were similar between the cohorts except for age (median 68 years [IRE] and 62 years [RARP], P = 0.01). IRE induced depletion of systemic regulatory T cells (P = 0.0001) and a simultaneous increase in activated cytotoxic T-lymphocyte antigen 4 (CTLA-4)+ cluster of differentiation (CD)4+ (P < 0.001) and CD8+ (P = 0.032) T cells, consistent with reduction of systemic immune suppression allowing for effector T-cell activation, peaking 14 days after IRE. Effects were positively correlated with tumour volume/ablation size. Accordingly, IRE induced expansion of PSAP and/or NY-ESO-1 specific T-cell responses in four of the eight immune competent patients. Temporarily increased activated myeloid derived suppressor cell frequencies (P = 0.047) were consistent with transient immunosuppression after RARP. CONCLUSIONS Irreversible electroporation induces a PCa-specific systemic immune response in patients with localised PCa, aiding conversion of the tumour microenvironment into a more immune permissive state. Therapeutic efficacy might be further enhanced by combination with CTLA-4 checkpoint inhibition, potentially opening up a new synergistic treatment paradigm for high-risk localised or (oligo)metastatic disease.
Collapse
|
4
|
Russo M, Chen M, Mariella E, Peng H, Rehman SK, Sancho E, Sogari A, Toh TS, Balaban NQ, Batlle E, Bernards R, Garnett MJ, Hangauer M, Leucci E, Marine JC, O'Brien CA, Oren Y, Patton EE, Robert C, Rosenberg SM, Shen S, Bardelli A. Cancer drug-tolerant persister cells: from biological questions to clinical opportunities. Nat Rev Cancer 2024; 24:694-717. [PMID: 39223250 DOI: 10.1038/s41568-024-00737-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The emergence of drug resistance is the most substantial challenge to the effectiveness of anticancer therapies. Orthogonal approaches have revealed that a subset of cells, known as drug-tolerant 'persister' (DTP) cells, have a prominent role in drug resistance. Although long recognized in bacterial populations which have acquired resistance to antibiotics, the presence of DTPs in various cancer types has come to light only in the past two decades, yet several aspects of their biology remain enigmatic. Here, we delve into the biological characteristics of DTPs and explore potential strategies for tracking and targeting them. Recent findings suggest that DTPs exhibit remarkable plasticity, being capable of transitioning between different cellular states, resulting in distinct DTP phenotypes within a single tumour. However, defining the biological features of DTPs has been challenging, partly due to the complex interplay between clonal dynamics and tissue-specific factors influencing their phenotype. Moreover, the interactions between DTPs and the tumour microenvironment, including their potential to evade immune surveillance, remain to be discovered. Finally, the mechanisms underlying DTP-derived drug resistance and their correlation with clinical outcomes remain poorly understood. This Roadmap aims to provide a comprehensive overview of the field of DTPs, encompassing past achievements and current endeavours in elucidating their biology. We also discuss the prospect of future advancements in technologies in helping to unveil the features of DTPs and propose novel therapeutic strategies that could lead to their eradication.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| | - Mengnuo Chen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elisa Mariella
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Haoning Peng
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Sumaiyah K Rehman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Alberto Sogari
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Tzen S Toh
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Nathalie Q Balaban
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Matthew Hangauer
- Department of Dermatology, University of California San Diego, San Diego, CA, USA
| | | | - Jean-Christophe Marine
- Department of Oncology, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Catherine A O'Brien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yaara Oren
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Elizabeth Patton
- MRC Human Genetics Unit, and CRUK Scotland Centre and Edinburgh Cancer Research, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Caroline Robert
- Oncology Department, Dermatology Unit, Villejuif, France
- Oncology Department and INSERM U981, Villejuif, France
- Paris Saclay University, Villejuif, France
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shensi Shen
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| |
Collapse
|
5
|
Timmer FEF, Geboers B, Scheffer HJ, Bakker J, Ruarus AH, Dijkstra M, van der Lei S, Boon R, Nieuwenhuizen S, van den Bemd BAT, Schouten EAC, van den Tol PM, Puijk RS, de Vries JJJ, de Gruijl TD, Meijerink MR. Tissue Resistance Decrease during Irreversible Electroporation of Pancreatic Cancer as a Biomarker for the Adaptive Immune Response and Survival. J Vasc Interv Radiol 2023; 34:1777-1784.e4. [PMID: 37391072 DOI: 10.1016/j.jvir.2023.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
PURPOSE To correlate irreversible electroporation (IRE) procedural resistance changes with survival outcomes and the IRE-induced systemic immune response in patients with locally advanced pancreatic cancer (LAPC). MATERIALS AND METHODS Data on IRE procedural tissue resistance (R) features and survival outcomes were collected from patients with LAPC treated within the context of 2 prospective clinical trials in a single tertiary center. Preprocedural and postprocedural peripheral blood samples were prospectively collected for immune monitoring. The change (ie, decrease) in R during the first 10 test pulses (ΔR10p) and during the total procedure (ΔRtotal) were calculated. Patients were divided in 2 groups on the basis of the median change in R (large ΔR vs small ΔR) and compared for differences in overall survival (OS) and progression-free survival and immune cell subsets. RESULTS A total of 54 patients were included; of these, 20 underwent immune monitoring. Linear regression modeling showed that the first 10 test pulses reflected the change in tissue resistance during the total procedure appropriately (P < .001; R2 = 0.91). A large change in tissue resistance significantly correlated with a better OS (P = .026) and longer time to disease progression (P = .045). Furthermore, a large change in tissue resistance was associated with CD8+ T cell activation through significant upregulation of Ki-67+ (P = .02) and PD-1+ (P = .047). Additionally, this subgroup demonstrated significantly increased expression of CD80 on conventional dendritic cells (cDC1; P = .027) and PD-L1 on immunosuppressive myeloid-derived suppressor cells (P = .039). CONCLUSIONS IRE procedural resistance changes may serve as a biomarker for survival and IRE-induced systemic CD8+ T cell and cDC1 activation.
Collapse
Affiliation(s)
- Florentine E F Timmer
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Bart Geboers
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| | - Hester J Scheffer
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Joyce Bakker
- Department of Medical Oncology, Amsterdam UMC, location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Alette H Ruarus
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Madelon Dijkstra
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Susan van der Lei
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Rianne Boon
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sanne Nieuwenhuizen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Bente A T van den Bemd
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Evelien A C Schouten
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | | | - Robbert S Puijk
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Onze Lieve Vrouwen Gasthuis, Amsterdam, the Netherlands
| | - Jan J J de Vries
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Martijn R Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Inomata M, Matsumoto M, Takata N, Hayashi K, Seto Z, Hirai T, Tokui K, Taka C, Okazawa S, Kambara K, Imanishi S, Miwa T, Hayashi R, Matsui S, Tobe K. Peripheral CD4 memory T cells predict the efficacy of immune checkpoint inhibitor therapy in patients with non-small cell lung cancer. Sci Rep 2023; 13:10807. [PMID: 37402763 DOI: 10.1038/s41598-023-37736-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
Immune checkpoint inhibitors have significantly improved the prognosis in patients with non-small cell lung cancer, compared with cytotoxic agents. However, the prediction of treatment response is often difficult, even after assessing the tumor programmed death-ligand 1 expression. We conducted this observational study to analyze the association between the differentiation of peripheral CD4 + T cells and the efficacy of immune checkpoint inhibitor therapy. We enrolled patients who were diagnosed with non-small cell lung cancer and received immune checkpoint inhibitor therapy between 2020 and 2022. Blood samples were collected at the start of immune checkpoint inhibitor therapy, and the expressions of PD-1, CCR7, and CD45RA in peripheral CD4 + T cells were analyzed by flow cytometry. The association between the findings of flow cytometry and survival after the initiation of the immune checkpoint inhibitor therapy was evaluated. Forty patients with non-small cell lung cancer were enrolled. The Cox proportional hazards model showed that an increased proportion of CD45RA-CD4 + T cells was associated with a reduced risk of progression after adjustment for performance status, tumor programmed death-ligand 1 expression level, mutation status of the epidermal growth factor receptor gene, and combined therapy with cytotoxic agents. The present study showed that the proportion of peripheral CD45RA- CD4 + T cells was associated with progression-free survival after the initiation of immune checkpoint inhibitor therapy, independent of several clinical factors.
Collapse
Affiliation(s)
- Minehiko Inomata
- First Department of Internal Medicine, Toyama University Hospital, Toyama, Japan.
| | - Masahiro Matsumoto
- First Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Naoki Takata
- First Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Kana Hayashi
- First Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Zenta Seto
- First Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Takahiro Hirai
- First Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Kotaro Tokui
- First Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Chihiro Taka
- First Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Seisuke Okazawa
- First Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Kenta Kambara
- First Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Shingo Imanishi
- First Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Toshiro Miwa
- First Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Ryuji Hayashi
- Department of Clinical Oncology, Toyama University Hospital, Toyama, Japan
| | - Shoko Matsui
- First Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
| |
Collapse
|
7
|
Emerging Biomarker-Guided Therapies in Prostate Cancer. CURRENT ONCOLOGY (TORONTO, ONT.) 2022; 29:5054-5076. [PMID: 35877260 PMCID: PMC9319825 DOI: 10.3390/curroncol29070400] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 12/25/2022]
Abstract
Prostate cancer remains one of the leading causes of cancer death in men worldwide. In the past decade, several new treatments for advanced prostate cancer have been approved. With a wide variety of available drugs, including cytotoxic agents, androgen receptor axis-targeted therapies, and alpha-emitting radiation therapy, identifying their optimal sequencing remains a challenge. Progress in the understanding of the biology of prostate cancer has provided an opportunity for a more refined and personalized treatment selection process. With the advancement of molecular sequencing techniques, genomic precision through the identification of potential treatment targets and predictive biomarkers has been rapidly evolving. In this review, we discussed biomarker-driven treatments for advanced prostate cancer. First, we presented predictive biomarkers for established, global standard treatments for advanced diseases, such as chemotherapy and androgen receptor axis-targeted agents. We also discussed targeted agents with recent approval for special populations, such as poly ADP ribose polymerase (PARP) inhibitors in patients with metastatic castrate-resistant prostate cancer with homologous recombination repair-deficient tumors, pembrolizumab in patients with high levels of microsatellite instability or high tumor mutational burden, and prostate-specific membrane antigen (PSMA) directed radioligand theragnostic treatment for PSMA expressing tumors. Additionally, we discussed evolving treatments, such as cancer vaccines, chimeric antigen receptor T-cells (CAR-T), Bispecific T-cell engagers (BiTEs), other targeted agents such as AKT inhibitors, and various combination treatments. In summary, advances in molecular genetics have begun to propel personalized medicine forward in the management of advanced prostate cancer, allowing for a more precise, biomarker-driven treatment selection with the goal of improving overall efficacy.
Collapse
|
8
|
A Mutated Prostatic Acid Phosphatase (PAP) Peptide-Based Vaccine Induces PAP-Specific CD8 + T Cells with Ex Vivo Cytotoxic Capacities in HHDII/DR1 Transgenic Mice. Cancers (Basel) 2022; 14:cancers14081970. [PMID: 35454873 PMCID: PMC9032647 DOI: 10.3390/cancers14081970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Current treatments for castrate (hormone)-resistant prostate cancer (CRPC) remain limited and are not curative, with a median survival from diagnosis of 23 months. The PAP-specific Sipuleucel-T vaccine, which was approved by the FDA in 2010, increases the Overall Survival (OS) by 4 months, but is extremely expensive. We have previously shown that a 15 amino accid (AA) PAP sequence-derived peptide could induce strong immune responses and delay the growth of murine TRAMP-C1 prostate tumors. We have now substituted one amino acid and elongated the sequence to include epitopes predicted to bind to several additional HLA haplotypes. Herein, we present the immunological properties of this 42mer-mutated PAP-derived sequence (MutPAP42mer). METHODS The presence of PAP-135-143 epitope-specific CD8+ T cells in the blood of patients with prostate cancer (PCa) was assessed by flow cytometry using Dextramer™ technology. HHDII/DR1 transgenic mice were immunized with mutated and non-mutated PAP-derived 42mer peptides in the presence of CAF®09 or CpG ODN1826 (TLR-9 agonist) adjuvants. Vaccine-induced immune responses were measured by assessing the proportion and functionality of splenic PAP-specific T cells in vitro. RESULTS PAP-135-143 epitope-specific CD8+ T cells were detected in the blood of patients with PCa and stimulation of PBMCs from patients with PCa with mutPAP42mer enhanced their capacity to kill human LNCaP PCa target cells expressing PAP. The MutPAP42mer peptide was significantly more immunogenic in HHDII/DR1 mice than the wild type sequence, and immunogenicity was further enhanced when combined with the CAF®09 adjuvant. The vaccine induced secretory (IFNγ and TNFα) and cytotoxic CD8+ T cells and effector memory splenic T cells. CONCLUSIONS The periphery of patients with PCa exhibits immune responsiveness to the MutPAP42mer peptide and immunization of mice induces/expands T cell-driven, wild-type PAP immunity, and therefore, has the potential to drive protective anti-tumor immunity in patients with PCa.
Collapse
|
9
|
Karimi A, Alilou S, Mirzaei HR. Adverse Events Following Administration of Anti-CTLA4 Antibody Ipilimumab. Front Oncol 2021; 11:624780. [PMID: 33767992 PMCID: PMC7985548 DOI: 10.3389/fonc.2021.624780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Ipilimumab, a monoclonal anti-CTLA4 antibody, paved the path for promising treatments, particularly in advanced forms of numerous cancers like melanoma. By blockading CTLA-4, ipilimumab can abolish the higher binding affinity of B7 for CTLA-4, setting CD28 free to act unlimited. This blockade can result in an amplified antitumor immune response, and thereby, boosting more effective tumor regression. However, this blockage can lead to diminished self-tolerance and yielding autoimmune complications. The current review aims to describe adverse events (AEs) following the administration of ipilimumab in different cancers as every benefit comes at a cost. We will also discuss AEs in two different categories, melanoma and non-melanoma, owing to the possible shining promises in treating non-melanoma cancers. As the melanoma settings are more studied than other cancers, it might even help predict the patterns related to the other types of cancers. This similarity also might help physicians to predict adverse events and correctly manage them in non-melanoma cancers using the extensive findings reported in the more-studied melanoma settings. Recognizing the adverse events is vital since most of the adverse events could be reverted while carefully implementing guidelines. Finally, we will also describe the observed effectiveness of ipilimumab in non-melanoma cancers. This effectiveness reveals the importance of understanding the profile of adverse events in this group, even though some have not received FDA approval yet. Further clinical trials and careful systematic reviews may be required to decipher the hidden aspects of therapies with ipilimumab and its related AEs.
Collapse
Affiliation(s)
- Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanam Alilou
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Tsaur I, Brandt MP, Juengel E, Manceau C, Ploussard G. Immunotherapy in prostate cancer: new horizon of hurdles and hopes. World J Urol 2020; 39:1387-1403. [PMID: 33106940 PMCID: PMC8514362 DOI: 10.1007/s00345-020-03497-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Prostate cancer (PCa) is the most common malignancy in men and the cause for the second most common cancer-related death in the western world. Despite ongoing development of novel approaches such as second generation androgen receptor targeted therapies, metastatic disease is still fatal. In PCa, immunotherapy (IT) has not reached a therapeutic breakthrough as compared to several other solid tumors yet. We aimed at highlighting the underlying cellular mechanisms crucial for IT in PCa and giving an update of the most essential past and ongoing clinical trials in the field. Methods We searched for relevant publications on molecular and cellular mechanisms involved in the PCa tumor microenvironment and response to IT as well as completed and ongoing IT studies and screened appropriate abstracts of international congresses. Results Tumor progression and patient outcomes depend on complex cellular and molecular interactions of the tumor with the host immune system, driven rather dormant in case of PCa. Sipuleucel-T and pembrolizumab are the only registered immune-oncology drugs to treat this malignancy. A plethora of studies assess combination of immunotherapy with other agents or treatment modalities like radiation therapy which might increase its antineoplastic activity. No robust and clinically relevant prognostic or predictive biomarkers have been established yet. Conclusion Despite immunosuppressive functional status of PCa microenvironment, current evidence, based on cellular and molecular conditions, encourages further research in this field.
Collapse
Affiliation(s)
- Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Maximilian P Brandt
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Cécile Manceau
- Department of Urology, CHU-Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Guillaume Ploussard
- Department of Urology, CHU-Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France.,Department of Urology, La Croix du Sud Hospital, Toulouse, France
| |
Collapse
|
11
|
Putting into Perspective the Future of Cancer Vaccines: Targeted Immunotherapy. EUROPEAN MEDICAL JOURNAL 2020. [DOI: 10.33590/emj/19-00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pre-clinical models and human clinical trials have confirmed the ability of cancer vaccines to induce immune responses that are tumour-specific and, in some cases, associated with clinical response. However, cancer vaccines as a targeted immunotherapy strategy have not yet come of age. So, why the discordance after so much research has been invested in cancer vaccines? There are several reasons for this that include: limited tumour immunogenicity (limited targeted antigen expression, antigen tolerance); antigenic heterogeneity in tumours; heterogeneity of individual immune responses; multiple mechanisms associated with suppressed functional activity of immune effector cells, the underlying rationale for the use of immune checkpoint inhibitors; and immune system exhaustion. The success of checkpoint therapy has refocussed investigations into defining relationships between tumours and host immune systems, appreciating the mechanisms by which tumour cells escape immune surveillance and reinforcing recognition of the potential of vaccines in the treatment and prevention of cancer. Recent developments in cancer immunotherapies, together with associated technologies, for instance, the unparalleled achievements by immune checkpoint inhibitors and neo-antigen identification tools, may foster potential improvements in cancer vaccines for the treatment of malignancies.
Collapse
|
12
|
Handa S, Hans B, Goel S, Bashorun HO, Dovey Z, Tewari A. Immunotherapy in prostate cancer: current state and future perspectives. Ther Adv Urol 2020; 12:1756287220951404. [PMID: 32952615 PMCID: PMC7476347 DOI: 10.1177/1756287220951404] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023] Open
Abstract
Metastatic castrate resistant prostate cancer (PCa) remains an incurable entity. In the era of immunotherapy, the complex PCa microenvironment poses a unique challenge to the successful application of this class of agents. However, in the last decade, a tremendous effort has been made to explore this field of therapeutics. In this review, the physiology of the cancer immunity cycle is highlighted in the context of the prostate tumor microenvironment, and the current evidence for use of various classes of immunotherapy agents including vaccines (dendritic cell based, viral vector based and DNA/mRNA based), immune checkpoint inhibitors, Chimeric antigen receptor T cell therapy, antibody-mediated radioimmunotherapy, antibody drug conjugates, and bispecific antibodies, is consolidated. Finally, the future directions for combinatorial approaches to combat PCa are discussed.
Collapse
Affiliation(s)
- Shivani Handa
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West Hospital, New York, NY, 10019, USA
| | - Bandhul Hans
- Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Shokhi Goel
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Hafis O Bashorun
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Zach Dovey
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Ashutosh Tewari
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
13
|
D'Arrigo P, Tufano M, Rea A, Vigorito V, Novizio N, Russo S, Romano MF, Romano S. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules. Curr Med Chem 2020; 27:2402-2448. [PMID: 30398102 DOI: 10.2174/0929867325666181106114421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
The immune system actively counteracts the tumorigenesis process; a breakout of the immune system function, or its ability to recognize transformed cells, can favor cancer development. Cancer becomes able to escape from immune system control by using multiple mechanisms, which are only in part known at a cellular and molecular level. Among these mechanisms, in the last decade, the role played by the so-called "inhibitory immune checkpoints" is emerging as pivotal in preventing the tumor attack by the immune system. Physiologically, the inhibitory immune checkpoints work to maintain the self-tolerance and attenuate the tissue injury caused by pathogenic infections. Cancer cell exploits such immune-inhibitory molecules to contrast the immune intervention and induce tumor tolerance. Molecular agents that target these checkpoints represent the new frontier for cancer treatment. Despite the heterogeneity and multiplicity of molecular alterations among the tumors, the immune checkpoint targeted therapy has been shown to be helpful in selected and even histologically different types of cancer, and are currently being adopted against an increasing variety of tumors. The most frequently used is the moAb-based immunotherapy that targets the Programmed Cell Death 1 protein (PD-1), the PD-1 Ligand (PD-L1) or the cytotoxic T lymphocyte antigen-4 (CTLA4). However, new therapeutic approaches are currently in development, along with the discovery of new immune checkpoints exploited by the cancer cell. This article aims to review the inhibitory checkpoints, which are known up to now, along with the mechanisms of cancer immunoediting. An outline of the immune checkpoint targeting approaches, also including combined immunotherapies and the existing trials, is also provided. Notwithstanding the great efforts devoted by researchers in the field of biomarkers of response, to date, no validated FDA-approved immunological biomarkers exist for cancer patients. We highlight relevant studies on predictive biomarkers and attempt to discuss the challenges in this field, due to the complex and largely unknown dynamic mechanisms that drive the tumor immune tolerance.
Collapse
Affiliation(s)
- Paolo D'Arrigo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Rea
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Vincenza Vigorito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nunzia Novizio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
14
|
Zhao SG, Lehrer J, Chang SL, Das R, Erho N, Liu Y, Sjöström M, Den RB, Freedland SJ, Klein EA, Karnes RJ, Schaeffer EM, Xu M, Speers C, Nguyen PL, Ross AE, Chan JM, Cooperberg MR, Carroll PR, Davicioni E, Fong L, Spratt DE, Feng FY. The Immune Landscape of Prostate Cancer and Nomination of PD-L2 as a Potential Therapeutic Target. J Natl Cancer Inst 2020; 111:301-310. [PMID: 30321406 DOI: 10.1093/jnci/djy141] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/02/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Immunotherapy has been less successful in treating prostate cancer than other solid tumors. We sought to better understand the immune landscape in prostate cancer and identify immune-related biomarkers and potential therapeutic targets. METHODS We analyzed gene expression data from 7826 prospectively collected prostatectomy samples (2013-2016), and 1567 retrospective samples with long-term clinical outcomes, for a total of 9393 samples, all profiled on the same commercial clinical platform in a CLIA-certified lab. The primary outcome was distant metastasis-free survival (DMFS). Secondary outcomes included biochemical recurrence-free survival (bRFS), prostate cancer-specific survival (PCSS), and overall survival (OS). All statistical tests were two-sided. RESULTS Unsupervised hierarchical clustering of hallmark pathways demonstrated an immune-related tumor cluster. Increased estimated immune content scores based on immune-specific genes from the literature were associated with worse bRFS (hazard ratio [HR] = 1.26 [95% confidence interval [CI] = 1.12 to 1.42]; P < .001), DMFS (HR = 1.34 [95% CI = 1.13 to 1.58]; P < .001), PCSS (HR = 1.53 [95% CI = 1.21 to 1.92]; P < .001), and OS (HR = 1.27 [95% CI = 1.07 to 1.50]; P = .006). Deconvolution using Cibersort revealed that mast cells, natural killer cells, and dendritic cells conferred improved DMFS, whereas macrophages and T-cells conferred worse DMFS. Interestingly, while PD-L1 was not prognostic, consistent with its low expression in prostate cancer, PD-L2 was expressed at statistically significantly higher levels (P < .001) and was associated with worse bRFS (HR = 1.17 [95% CI = 1.03 to 1.33]; P = .01), DMFS (HR = 1.25 [95% CI = 1.05 to 1.49]; P = .01), and PCSS (HR = 1.45 [95% CI = 1.13 to 1.86]; P = .003). PD-L2 was strongly associated with immune-related pathways on gene set enrichment analysis suggesting that it is playing an important role in immune modulation in clinical prostate cancer samples. Furthermore, PD-L2 was correlated with radiation response pathways, and also predicted response to postoperative radiation therapy (PORT) on multivariable interaction analysis (P = .03). CONCLUSION In the largest study of its kind to date, these results illustrate the complex relationship between the tumor-immune interaction, prognosis, and response to radiotherapy, and nominate PD-L2 as a potential novel therapeutic target in prostate cancer, potentially in combination with radiotherapy.
Collapse
Affiliation(s)
- Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | | | - S Laura Chang
- Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | - Rajdeep Das
- Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | | | - Yang Liu
- GenomeDx Biosciences Inc., Vancouver, BC, Canada
| | - Martin Sjöström
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA
| | - Stephen J Freedland
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| | | | | | - Melody Xu
- Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Paul L Nguyen
- Dana-Farber/Brigham and Women's Cancer Center, Department of Radiation Oncology, Harvard Medical School, Boston, MA
| | - Ashley E Ross
- James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD
| | - June M Chan
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA.,Department of Epidemiology & Biostatistics, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | - Matthew R Cooperberg
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | - Peter R Carroll
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | | | - Lawrence Fong
- Department of Medicine, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Felix Y Feng
- Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA.,Department of Medicine, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA.,Department of Urology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
15
|
The Impact of Focused Ultrasound in Two Tumor Models: Temporal Alterations in the Natural History on Tumor Microenvironment and Immune Cell Response. Cancers (Basel) 2020; 12:cancers12020350. [PMID: 32033171 PMCID: PMC7072338 DOI: 10.3390/cancers12020350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Image-guided focused ultrasound (FUS) has been successfully employed as an ablative treatment for solid malignancies by exposing immune cells to tumor debris/antigens, consequently inducing an immune response within the tumor microenvironment (TME). To date, immunomodulation effects of non-ablative pulsed-FUS (pFUS) on the TME are poorly understood. In this study, the temporal differences of cytokines, chemokines, and trophic factors (CCTFs) and immune cell populations induced by pFUS were interrogated in murine B16 melanoma or 4T1 breast cancer cells subcutaneously inoculated into C57BL/6 or BALB/c mice. Natural history growth characteristics during the course of 11 days showed a progressive increase in size for both tumors, and proteomic analysis revealed a shift toward an immunosuppressive TME. With respect to tumor natural growth, pFUS applied to tumors on days 1, 5, or 9 demonstrated a decrease in the growth rate 24 h post-sonication. Flow cytometry analysis of tumors, LNs, and Sp, as well as CCTF profiles, relative DNA damage, and adaptive T-cell localization within tumors, demonstrated dynamic innate and adaptive immune-modulation following pFUS in early time points of B16 tumors and in advanced 4T1 tumors. These results provide insight into the temporal dynamics in the treatment-associated TME, which could be used to evaluate an immunomodulatory approach in different tumor types.
Collapse
|
16
|
Nixon AB, Schalper KA, Jacobs I, Potluri S, Wang IM, Fleener C. Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential? J Immunother Cancer 2019; 7:325. [PMID: 31775882 PMCID: PMC6880594 DOI: 10.1186/s40425-019-0799-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
The immunologic landscape of the host and tumor play key roles in determining how patients will benefit from immunotherapy, and a better understanding of these factors could help inform how well a tumor responds to treatment. Recent advances in immunotherapy and in our understanding of the immune system have revolutionized the treatment landscape for many advanced cancers. Notably, the use of immune checkpoint inhibitors has demonstrated durable responses in various malignancies. However, the response to such treatments is variable and currently unpredictable, the availability of predictive biomarkers is limited, and a substantial proportion of patients do not respond to immune checkpoint therapy. Identification and investigation of potential biomarkers that may predict sensitivity to immunotherapy is an area of active research. It is envisaged that a deeper understanding of immunity will aid in harnessing the full potential of immunotherapy, and allow appropriate patients to receive the most appropriate treatments. In addition to the identification of new biomarkers, the platforms and assays required to accurately and reproducibly measure biomarkers play a key role in ensuring consistency of measurement both within and between patients. In this review we discuss the current knowledge in the area of peripheral immune-based biomarkers, drawing information from the results of recent clinical studies of a number of different immunotherapy modalities in the treatment of cancer, including checkpoint inhibitors, bispecific antibodies, chimeric antigen receptor T cells, and anti-cancer vaccines. We also discuss the various technologies and approaches used in detecting and measuring circulatory biomarkers and the ongoing need for harmonization.
Collapse
Affiliation(s)
- Andrew B Nixon
- Duke University School of Medicine, Department of Medicine/Medical Oncology, 133 Jones Building, Research Drive, Durham, NC, 27710, USA.
| | - Kurt A Schalper
- Yale School of Medicine, Translational Immuno-Oncology Laboratory, Yale Cancer Center, 333 Cedar St. FMP117, New Haven, CT, 06520-8023, USA
| | - Ira Jacobs
- Pfizer Inc, Early Oncology Development and Clinical Research, 219 East 42nd St, New York, NY, 10017-5755, USA
| | - Shobha Potluri
- Pfizer Inc., Computational Biology, 230 E Grand Ave, South San Francisco, CA, 94080, USA
| | - I-Ming Wang
- Pfizer Inc., 10777 Science Center Dr., San Diego, CA, 92121, USA
| | - Catherine Fleener
- Pfizer Inc., Translational Oncology, La Jolla, CA, USA.,Present Address: Translational Science at Samumed, LLC, La Jolla, CA, USA
| |
Collapse
|
17
|
Zhao J, Chen Y, Ding ZY, Liu JY. Safety and Efficacy of Therapeutic Cancer Vaccines Alone or in Combination With Immune Checkpoint Inhibitors in Cancer Treatment. Front Pharmacol 2019; 10:1184. [PMID: 31680963 PMCID: PMC6798079 DOI: 10.3389/fphar.2019.01184] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/13/2019] [Indexed: 02/05/2023] Open
Abstract
Therapeutic cancer vaccines have proven to seldom induce dramatic clinical response when used alone, and therefore, they are being studied in combination with additional treatment modalities to achieve optimal treatment activities. Growing preclinical data show that combining vaccines and immune checkpoint inhibitors (ICIs) can prime intensified immunogenicity and modulate immunosuppressive tumor microenvironment. Herein, we focus on the safety and efficacy of approved and promising cancer vaccines alone or combined with ICIs in the treatment of several malignancies. Generally, the majority of clinical trials support the concept of synergy that combination therapy of vaccines and ICIs holds maximized potential to improve clinical outcomes. Importantly, the combination has acceptable safety and minimal additional toxicity compared with single-agent vaccines or ICIs. Additionally, the potential strategies of combining personalized tumor vaccines with ICIs will become priority option and future direction of vaccine development and application and the urgent need to develop effective biomarkers to screen appropriate patient populations and predict response to combination therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ye Chen
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Zhen-Yu Ding
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Scheffer HJ, Stam AGM, Geboers B, Vroomen LGPH, Ruarus A, de Bruijn B, van den Tol MP, Kazemier G, Meijerink MR, de Gruijl TD. Irreversible electroporation of locally advanced pancreatic cancer transiently alleviates immune suppression and creates a window for antitumor T cell activation. Oncoimmunology 2019; 8:1652532. [PMID: 31646081 PMCID: PMC6791414 DOI: 10.1080/2162402x.2019.1652532] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose: Local tumor ablation through irreversible electroporation (IRE) may offer a novel therapeutic option for locally advanced pancreatic cancer (LAPC). It may also serve as a means of in vivo vaccination. To obtain evidence of the induction of systemic antitumor immunity following local IRE-mediated ablation, we performed an explorative immune monitoring study. Methods: In ten patients enrolled in a clinical trial exploring the safety, feasibility, and efficacy of percutaneous image-guided IRE in LAPC, we determined the frequency and activation state of lymphocytic and myeloid subsets in pre- and post-treatment peripheral blood samples using flow cytometry. Tumor-specific systemic T cell responses to the pancreatic cancer associated antigen Wilms Tumor (WT)1 were determined after in vitro stimulation in an interferon-y enzyme-linked immunospot assay (Elispot), at baseline and at 2 weeks and 3 months after IRE. Results: Our data showed a transient decrease in systemic regulatory T cells (Treg) and a simultaneous transient increase in activated PD-1+ T cells, consistent with the temporary reduction of tumor-related immune suppression after the IRE procedure. Accordingly, we found post-IRE boosting of a pre-existing WT1 specific T cell response in two out of three patients as well as the de novo induction of these responses in another two patients. There was a trend for these WT1 T cell responses to be related to longer overall survival (p = .055). Conclusions: These findings are consistent with a systemic and tumor-specific immune stimulatory effect of IRE and support the combination of percutaneous IRE with therapeutic immune modulation.
Collapse
Affiliation(s)
- Hester J Scheffer
- Departments of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Anita G M Stam
- Departments of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Bart Geboers
- Departments of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Laurien G P H Vroomen
- Departments of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alette Ruarus
- Departments of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Beaunelle de Bruijn
- Departments of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - M Petrousjka van den Tol
- Departments of Surgery, Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Geert Kazemier
- Departments of Surgery, Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Martijn R Meijerink
- Departments of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Departments of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Patel VG, Oh WK. The evolving landscape of immunotherapy in advanced prostate cancer. Immunotherapy 2019; 11:903-912. [PMID: 31161846 DOI: 10.2217/imt-2019-0019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Prostate cancer exists in a clinical continuum of hormone-sensitive to castration-resistant disease. Despite the use of chemotherapy and androgen synthesis inhibitors in the castration-resistant setting, this remains a lethal disease. The advent of immune checkpoint blockade has changed the outlook for cancer treatment and survival for several tumors since its first approval in 2011; however, the clinical benefit in castration-resistant prostate cancer (CRPC) is rather limited. Currently, Sipuleucel-T remains the only immune modality to be approved in CRPC setting. Such immune resistance likely exists due to low immunogenicity of prostate tumor cells and an immunosuppressive tumor microenvironment. In this review, we describe the early experiences of immune checkpoint blockade and therapeutic vaccines in CRPC. We then outline strategies currently being implemented to overcome immune resistance, as well as genomic biomarker investigation to identify patients that may harbor more immunogenic tumors. At last, we preview emerging immunotherapeutic platforms.
Collapse
Affiliation(s)
- Vaibhav G Patel
- Department of Medicine, Division of Hematology & Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10010, USA
| | - William K Oh
- Department of Medicine, Division of Hematology & Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10010, USA
| |
Collapse
|
20
|
Bergado Báez G, Hernández Fernández DR, Mazorra Herrera Z, Sánchez Ramírez B. HER1-based vaccine: Simultaneous activation of humoral and cellular immune response. Semin Oncol 2018; 45:75-83. [PMID: 30318087 DOI: 10.1053/j.seminoncol.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023]
Abstract
The human epidermal growth factor receptor 1 (HER1) is a tumor-associated antigen that has been validated as a clinical target for several passive, non-immune therapies currently approved for the treatment of epithelial tumors. HER1 is an oncogene that not only promotes tumor progression and survival, but also immune escape. Its overexpression in some epithelial malignancies has been correlated with a poor prognosis. We developed an approach to target HER1 by specific active immunotherapy, recognizing the extracellular domain of the receptor, using a combination of VSSP and Montanide ISA 51 as adjuvants. We summarize the results obtained with this vaccine in both the preclinical and clinical settings, emphasizing the importance of the induction of both humoral and cellular responses for the success of cancer vaccines as safe therapeutic alternatives for the treatment of cancer.
Collapse
|
21
|
Gevaert T, Montironi R, Lopez-Beltran A, Van Leenders G, Allory Y, De Ridder D, Claessens F, Kockx M, Akand M, Joniau S, Netto G, Libbrecht L. Genito-urinary genomics and emerging biomarkers for immunomodulatory cancer treatment. Semin Cancer Biol 2018; 52:216-227. [DOI: 10.1016/j.semcancer.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023]
|
22
|
van de Ven R, Hilton TL, Hu HM, Dubay CJ, Haley D, Paustian C, Puri S, Urba WJ, Curti BD, Aung S, Fox BA. Autophagosome-based strategy to monitor apparent tumor-specific CD8 T cells in patients with prostate cancer. Oncoimmunology 2018; 7:e1466766. [PMID: 30524883 PMCID: PMC6279418 DOI: 10.1080/2162402x.2018.1466766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/23/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023] Open
Abstract
The immune system plays an essential role in eradicating cancer in concert with various treatment modalities. In the absence of autologous tumor material, no standardized method exists to assess T cell responses against the many antigens that may serve as cancer rejection antigens. Thus, development of methods to screen for therapy-induced anti-tumor responses is a high priority that could help tailor therapy. Here we tested whether a tumor-derived antigen source called DRibbles®, which contain a pool of defective ribosomal products (DRiPs), long-lived and short-lived proteins (SLiPs) and danger-associated molecular patterns (DAMPs), can be used to identify tumor-associated antigen (TAA)-specific responses in patients before or after immunotherapy treatment. Protein content, gene expression and non-synonymous - single nucleotide variants (ns-SNVs) present in UbiLT3 DRibbles were compared with prostate adenocarcinomas and the prostate GVAX vaccine cell lines (PC3/LNCaP). UbiLT3 DRibbles were found to share proteins, as well as match tumor sequences for ns-SNVs with prostate adenocarcinomas and with the cell lines PC3 and LNCaP. UbiLT3 DRibbles were used to monitor anti-tumor responses in patients vaccinated with allogeneic prostate GVAX. UbiLT3-DRibble-reactive CD8+ T-cell responses were detected in post-vaccine PBMC of 6/12 patients (range 0.85-22% of CD8+ cells) after 1 week in vitro stimulation (p = 0.007 vs. pre-vaccine). In conclusion, a cancer-derived autophagosome-enriched preparation, packaging over 100 proteins over-expressed in prostate cancer into microvesicles containing DAMPs, could be used to identify CD8+ T cells in peripheral blood from patients after prostate GVAX vaccination and may represent a general method to monitor anti-cancer T cell responses following immunotherapy.
Collapse
Affiliation(s)
- Rieneke van de Ven
- Laboratory of Molecular and Tumor Immunology
- Department of Medical Oncology, VU University medical center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Hong-Ming Hu
- Laboratory of Cancer Immunobiology
- UbiVac LLC, Portland, OR
| | | | | | | | - Sachin Puri
- Laboratory of Molecular and Tumor Immunology
| | - Walter J. Urba
- Robert W. Franz Cancer Research Center at the Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR
| | - Brendan D. Curti
- Robert W. Franz Cancer Research Center at the Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR
| | | | - Bernard A. Fox
- Laboratory of Molecular and Tumor Immunology
- UbiVac LLC, Portland, OR
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| |
Collapse
|
23
|
van de Loosdrecht AA, van Wetering S, Santegoets SJAM, Singh SK, Eeltink CM, den Hartog Y, Koppes M, Kaspers J, Ossenkoppele GJ, Kruisbeek AM, de Gruijl TD. A novel allogeneic off-the-shelf dendritic cell vaccine for post-remission treatment of elderly patients with acute myeloid leukemia. Cancer Immunol Immunother 2018; 67:1505-1518. [PMID: 30039426 PMCID: PMC6182404 DOI: 10.1007/s00262-018-2198-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 06/29/2018] [Indexed: 01/31/2023]
Abstract
In elderly acute myeloid leukemia (AML) patients post-remission treatment options are associated with high comorbidity rates and poor survival. Dendritic cell (DC)-based immunotherapy is a promising alternative treatment strategy. A novel allogeneic DC vaccine, DCP-001, was developed from an AML-derived cell line that uniquely combines the positive features of allogeneic DC vaccines and expression of multi-leukemia-associated antigens. Here, we present data from a phase I study conducted with DCP-001 in 12 advanced-stage elderly AML patients. Patients enrolled were in complete remission (CR1/CR2) (n = 5) or had smoldering disease (n = 7). All patients were at high risk of relapse and ineligible for post-remission intensification therapies. A standard 3 + 3 dose escalation design with extension to six patients in the highest dose was performed. Patients received four biweekly intradermal DCP-001 injections at different dose levels (10, 25, and 50 million cells DCP-001) and were monitored for clinical and immunological responses. Primary objectives of the study (feasibility and safety) were achieved with 10/12 patients completing the vaccination program. Treatment was well tolerated. A clear-cut distinction between patients with and without detectable circulating leukemic blasts during the vaccination period was noted. Patients with no circulating blasts showed an unusually prolonged survival [median overall survival 36 months (range 7–63) from the start of vaccination] whereas patients with circulating blasts, died within 6 months. Long-term survival was correlated with maintained T cell levels and induction of multi-functional immune responses. It is concluded that DCP-001 in elderly AML patients is safe, feasible and generates both cellular and humoral immune responses.
Collapse
Affiliation(s)
- Arjan A van de Loosdrecht
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | - Saskia J A M Santegoets
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Corien M Eeltink
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Yvonne den Hartog
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Malika Koppes
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jorn Kaspers
- DCPrime BV, Galileiweg 8, 2333 BD, Leiden, The Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Metastatic castration-resistant prostate cancer is in critical need of new and innovative treatment strategies. Since the approval of sipuleucel-T, the investigatory climate of prostate cancer immunotherapy has been rapidly evolving with promising developments in vaccine and immune checkpoint therapies. RECENT FINDINGS Sipuleucel-T remains the first and only therapeutic cancer vaccine approved for its survival benefit in metastatic castration-resistant prostate cancer. Additional cancer vaccines are currently being evaluated, with the most promising being a peptide vaccine encoding prostate-specific antigen, known as prostate-specific antigen-TRICOM. Emerging data supports combinatorial strategies for vaccine therapy and a potential role for implementation in earlier stages of advanced disease. Immune checkpoint therapies have demonstrated limited success in prostate cancer with negative late phase trials for ipilimumab monotherapy and discouraging early phase results for programmed cell death protein 1 blockade. Novel immune-modulatory targets and rational combination strategies aim to produce more favorable results. Recent progress has been made to determine biologic predictors for response and toxicity in prostate cancer immunotherapy aiming to improve patient selection and safety. SUMMARY Steady progress is anticipated in the field of prostate cancer immunotherapy including ongoing development of novel cancer vaccines, immune checkpoint therapies, and combinatorial strategies.
Collapse
|
25
|
Zeidan AM, Knaus HA, Robinson TM, Towlerton AMH, Warren EH, Zeidner JF, Blackford AL, Duffield AS, Rizzieri D, Frattini MG, Levy YM, Schroeder MA, Ferguson A, Sheldon KE, DeZern AE, Gojo I, Gore SD, Streicher H, Luznik L, Smith BD. A Multi-center Phase I Trial of Ipilimumab in Patients with Myelodysplastic Syndromes following Hypomethylating Agent Failure. Clin Cancer Res 2018; 24:3519-3527. [PMID: 29716921 DOI: 10.1158/1078-0432.ccr-17-3763] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/11/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Purpose: After failure of hypomethylating agents (HMA), patients with myelodysplastic syndromes (MDS) have dismal survival and no approved treatment options.Patients and Methods: We conducted a phase 1b investigator-initiated trial of ipilimumab in patients with higher risk MDS who have failed HMAs. Patients received monotherapy at two dose levels (DL; 3 and 10 mg/kg) with an induction followed by a maintenance phase. Toxicities and responses were evaluated with CTCAE.4 and IWG-2006 criteria, respectively. We also performed immunologic assays and T-cell receptor sequencing on serial samples.Results: Twenty-nine patients from 7 centers were enrolled. In the initial DL1 (3 mg), 3 of 6 patients experienced grade 2-4 immune-related adverse events (IRAE) that were reversible with drug discontinuation and/or systemic steroids. In DL2, 4 of 5 patients experienced grade 2 or higher IRAE; thus, DL1 (3 mg/kg) was expanded with no grade 2-4 IRAEs reported in 18 additional patients. Best responses included marrow complete response (mCR) in one patient (3.4%). Prolonged stable disease (PSD) for ≥46 weeks occurred in 7 patients (24% of entire cohort and 29% of those treated with 3 mg/kg dose), including 3 patients with more than a year of SD. Five patients underwent allografting without excessive toxicity. Median survival for the group was 294 days (95% CI, 240-671+). Patients who achieved PSD or mCR had significantly higher frequency of T cells expressing ICOS (inducible T-cell co-stimulator).Conclusions: Our findings suggest that ipilimumab dosed at 3 mg/kg in patients with MDS after HMA failure is safe but has limited efficacy as a monotherapy. Increased frequency of ICOS-expressing T cells might predict clinical benefit. Clin Cancer Res; 24(15); 3519-27. ©2018 AACR.
Collapse
Affiliation(s)
- Amer M Zeidan
- Section of Hematology, Department of Medicine, and the Smilow Cancer Center at Yale University, New Haven, Connecticut
| | - Hanna A Knaus
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Tara M Robinson
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Andrea M H Towlerton
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington
| | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington
| | - Joshua F Zeidner
- Lineberger Comprehensive Cancer Center at University of North Carolina, Raleigh, North Carolina
| | - Amanda L Blackford
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Amy S Duffield
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | | | | | - Yair M Levy
- Texas Oncology at Baylor University Medical Center, Dallas, Texas
| | - Mark A Schroeder
- Siteman Cancer Center at Washington University, St. Louis, Missouri
| | - Anna Ferguson
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Katherine E Sheldon
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Ivana Gojo
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Steven D Gore
- Section of Hematology, Department of Medicine, and the Smilow Cancer Center at Yale University, New Haven, Connecticut
| | | | - Leo Luznik
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - B Douglas Smith
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Immunotherapy in urological cancer has made substantial progress during the last 20 years, but recent advances in immunotherapy have completely transformed the present treatment landscape. In this review, we summarize major clinical achievements of immunotherapy in genitourinary cancers, as well as address potential new directions for these therapies, including new agents, combinations, and biomarkers. RECENT FINDINGS Recently, nivolumab and atezolizumab have joined sipuleucel-T as Food and Drug Administration-approved therapies in urological malignancies. Additional checkpoint inhibitors and vaccines are being tested in clinical trials. Furthermore, significant work has been done exploring predictors of response to therapy. SUMMARY Immunotherapy has changed the treatment of urologic malignancies. New immunotherapies and novel combinations will continue to create new treatment options in urologic tumors.
Collapse
|
27
|
Bjoern J, Lyngaa R, Andersen R, Hölmich LR, Hadrup SR, Donia M, Svane IM. Influence of ipilimumab on expanded tumour derived T cells from patients with metastatic melanoma. Oncotarget 2018; 8:27062-27074. [PMID: 28423678 PMCID: PMC5432318 DOI: 10.18632/oncotarget.16003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/20/2017] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Tumour infiltrating lymphocyte (TIL) based adoptive cell therapy (ACT) is a promising treatment for patients with advanced melanoma. Retrospective studies suggested an association between previous treatment with anti-CTLA-4 antibodies and long term survival after subsequent ACT. Thus, we hypothesized that treatment with anti-CTLA-4 antibodies can induce favourable changes to be detected in TILs. RESULTS Expanded T cells from Ipilimumab treated patients had a higher proportion of cells expressing CD27, intracellular CTLA-4, TIM-3 and LAG-3. In addition, broader and more frequent T cell responses against common tumour antigens were detected in patients treated with Ipilimumab as compared to anti-CTLA-4 naïve patients. MATERIALS AND METHODS Expanded TILs were obtained from patients with advanced melanoma who had received Ipilimumab in the previous six months, or had not received any type of anti-CTLA-4 antibody. T cell specificity and expression of phenotypic and exhaustion markers were scrutinized as well as functional properties. CONCLUSIONS Ipilimumab may induce tumor-infiltration of T cells of a more naïve phenotype expressing markers related to activation or exhaustion. Additionally, Ipilimumab may increase the frequency of T cells recognizing common tumour associated antigens.
Collapse
Affiliation(s)
- Jon Bjoern
- Center for Cancer Immune Therapy, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Lyngaa
- Section for Immunology and Vaccinology, Technical University of Denmark, Copenhagen, Denmark.,Center for Cancer Immune Therapy, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Andersen
- Center for Cancer Immune Therapy, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Sine Reker Hadrup
- Section for Immunology and Vaccinology, Technical University of Denmark, Copenhagen, Denmark.,Center for Cancer Immune Therapy, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Marco Donia
- Center for Cancer Immune Therapy, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Gorczynski RM, Zhu F. Checkpoint blockade in solid tumors and B-cell malignancies, with special consideration of the role of CD200. Cancer Manag Res 2017; 9:601-609. [PMID: 29180896 PMCID: PMC5691938 DOI: 10.2147/cmar.s147326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the ontogeny of a normal immune response, a series of checkpoints must be overcome to ensure that unwanted and/or harmful self-directed activation responses are avoided. Many of the molecules now known to be active in this overseeing of the evolving immune activation cascade, contributing inhibitory signals to dampen an overexuberant response, belong to the immunoglobulin supergene family. These include members of the CD28/CTLA-4:B7.1/B7.2 receptor/ligand family, PD-1 and PDL-1, CD200 and CD200R, and the more recently described V-domain immunoglobulin suppressor of T-cell activation and its ligand (VSIG-3/IGSF11). Unfortunately, from the point of view of improving immunotargeting of cancer cells, triggering these checkpoint inhibitory signaling pathways, so necessary to maintain self-tolerance, simultaneously acts to prevent effective tumor immunity. The recent development of reagents, predominantly antibodies, to act as checkpoint blockade agents, has had a dramatic effect on human cancer treatment, with a marked reported success for anti-CTLA-4 and PD-1 in particular in clinical trials. This review provides a general overview of the data now available showing the promise of such treatments to our cancer armamentarium and elaborates in depth on the potential promise of what can be regarded as an underappreciated target molecule for checkpoint blockade in chronic lymphocytic leukemia and solid tumors, CD200.
Collapse
Affiliation(s)
| | - Fang Zhu
- Department of Surgical Research, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Panek WK, Kane JR, Young JS, Rashidi A, Kim JW, Kanojia D, Lesniak MS. Hitting the nail on the head: combining oncolytic adenovirus-mediated virotherapy and immunomodulation for the treatment of glioma. Oncotarget 2017; 8:89391-89405. [PMID: 29179527 PMCID: PMC5687697 DOI: 10.18632/oncotarget.20810] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/26/2017] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma is a highly aggressive malignant brain tumor with a poor prognosis and the median survival 14.6 months. Immunomodulatory proteins and oncolytic viruses represent two treatment approaches that have recently been developed for patients with glioblastoma that could extend patient survival and result in better treatment outcomes for patients with this disease. Together, these approaches could potentially augment the treatment efficacy and strength of these anti-tumor therapies. In addition to oncolytic activities, this combinatory approach introduces immunomodulation locally only where cancerous cells are present. This thereby results in the change of the tumor microenvironment from immune-suppressive to immune-vulnerable via activation of cytotoxic T cells or through the removal of glioma cells immune-suppressive capability. This review discusses the strengths and weaknesses of adenoviral oncolytic therapy, and highlights the genetic modifications that result in more effective and targeted viral agents. Additionally, the mechanism of action of immune-activating agents is described and the results of previous clinical trials utilizing these treatments in other solid tumors are reviewed. The feasibility, synergy, and limitations for treatments that combine these two approaches are outlined and areas for which more work is needed are considered.
Collapse
Affiliation(s)
- Wojciech K Panek
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - J Robert Kane
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Jacob S Young
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Julius W Kim
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
30
|
Gatti-Mays ME, Redman JM, Collins JM, Bilusic M. Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations. Hum Vaccin Immunother 2017; 13:2561-2574. [PMID: 28857666 DOI: 10.1080/21645515.2017.1364322] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Therapeutic cancer vaccines have gained significant popularity in recent years as new approaches for specific oncologic indications emerge. Three therapeutic cancer vaccines are FDA approved and one is currently approved by the EMA as monotherapy with modest treatment effects. Combining therapeutic cancer vaccines with other treatment modalities like radiotherapy (RT), hormone therapy, immunotherapy, and/or chemotherapy have been investigated as a means to enhance immune response and treatment efficacy. There is growing preclinical and clinical data that combination of checkpoint inhibitors and vaccines can induce immunogenic intensification with favorable outcomes. Additionally, novel methods for identifying targetable neoantigens hold promise for personalized vaccine development. In this article, we review the rationale for various therapeutic combinations, clinical trial experiences, and future directions. We also highlight the most promising developments that could lead to approval of novel therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Margaret E Gatti-Mays
- a Medical Oncology Branch , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Jason M Redman
- a Medical Oncology Branch , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Julie M Collins
- a Medical Oncology Branch , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Marijo Bilusic
- b Genitourinary Malignancy Branch , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
31
|
Johnson LE, Olson BM, McNeel DG. Pretreatment antigen-specific immunity and regulation - association with subsequent immune response to anti-tumor DNA vaccination. J Immunother Cancer 2017; 5:56. [PMID: 28716080 PMCID: PMC5514519 DOI: 10.1186/s40425-017-0260-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/23/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Immunotherapies have demonstrated clinical benefit for many types of cancers, however many patients do not respond, and treatment-related adverse effects can be severe. Hence many efforts are underway to identify treatment predictive biomarkers. We have reported the results of two phase I trials using a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with biochemically recurrent prostate cancer. In both trials, persistent PAP-specific Th1 immunity developed in some patients, and this was associated with favorable changes in serum PSA kinetics. In the current study, we sought to determine if measures of antigen-specific or antigen non-specific immunity were present prior to treatment, and associated with subsequent immune response, to identify possible predictive immune biomarkers. METHODS Patients who developed persistent PAP-specific, IFNγ-secreting immune responses were defined as immune "responders." The frequency of peripheral T cell and B cell lymphocytes, natural killer cells, monocytes, dendritic cells, myeloid derived suppressor cells, and regulatory T cells were assessed by flow cytometry and clinical laboratory values. PAP-specific immune responses were evaluated by cytokine secretion in vitro, and by antigen-specific suppression of delayed-type hypersensitivity to a recall antigen in an in vivo SCID mouse model. RESULTS The frequency of peripheral blood cell types did not differ between the immune responder and non-responder groups. Non-responder patients tended to have higher PAP-specific IL-10 production pre-vaccination (p = 0.09). Responder patients had greater preexisting PAP-specific bystander regulatory responses that suppressed DTH to a recall antigen (p = 0.016). CONCLUSIONS While our study population was small (n = 38), these results suggest that different measures of antigen-specific tolerance or regulation might help predict immunological outcome from DNA vaccination. These will be prospectively evaluated in an ongoing randomized, phase II trial.
Collapse
Affiliation(s)
- Laura E Johnson
- University of Wisconsin Carbone Cancer Center, 7007 Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Brian M Olson
- University of Wisconsin Carbone Cancer Center, 7007 Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, 7007 Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
32
|
Takahashi Y, Matsutani N, Nakayama T, Dejima H, Uehara H, Kawamura M. Immunological effect of local ablation combined with immunotherapy on solid malignancies. CHINESE JOURNAL OF CANCER 2017; 36:49. [PMID: 28592286 PMCID: PMC5463413 DOI: 10.1186/s40880-017-0216-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Recent comprehensive investigations clarified that immune microenvironment surrounding tumor cells are deeply involved in tumor progression, metastasis, and response to treatment. Furthermore, several immunotherapeutic trials have achieved successful results, and the immunotherapeutic agents are available in clinical practice. To enhance their demonstrated efficacy, combination of immunotherapy and ablation has begun to emerge. Local ablations have considerable advantages as an alternative therapeutic option, especially its minimal invasiveness. In addition, local ablations have shown immune-regulatory effect in preclinical and clinical studies. Although the corresponding mechanisms are still unclear, the local ablations combined with immunotherapy have been suggested in the treatment of several solid malignancies. This article aims to review the published data on the immune-regulatory effects of local ablations including stereotactic body radiotherapy, cryoablation, radiofrequency ablation, and high-intensity-focused ultrasound. We also discuss the value of local ablations combined with immunotherapy. Local ablations have the potential to improve future patient outcomes; however, the effectiveness and safety of local ablations combined with immunotherapy should be further investigated.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan.
| | - Noriyuki Matsutani
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Takashi Nakayama
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hitoshi Dejima
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hirofumi Uehara
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Masafumi Kawamura
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| |
Collapse
|
33
|
Siniard RC, Harada S. Immunogenomics: using genomics to personalize cancer immunotherapy. Virchows Arch 2017; 471:209-219. [DOI: 10.1007/s00428-017-2140-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 01/06/2023]
|
34
|
Nguyen Them L, Ibañez-Julia MJ, Alentorn A, Duran-Peña A, Royer-Perron L, Sanson M, Hoang-Xuan K, Delattre JY, Idbaih A. Targeting the immune system in glioblastoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1309256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
The prognostic value of cytotoxic T-lymphocyte antigen 4 in cancers: a systematic review and meta-analysis. Sci Rep 2017; 7:42913. [PMID: 28211499 PMCID: PMC5314410 DOI: 10.1038/srep42913] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/17/2017] [Indexed: 12/21/2022] Open
Abstract
The outcomes of studies analyzing the prognostic role of CTLA-4 in cancers are controversial. Therefore, the aim of our meta-analysis was to clarify the correlation between CTLA-4 expression and OS in different cancer cases. Relevant literature was searched using PubMed, EMBASE, Web of Science, and the Cochrane Library. The clinicopathological features, hazard ratio (HR) and 95% confidence intervals (CI) were collected from these studies and were analyzed using Stata version 12.0 software. The pooled HR values showed no significant correlation between CTLA-4 expression levels and OS in relation to tumors (HR: 1.24, 95% CI: 0.98–1.56, I2 = 71.7%, P = 0.000). Further subgroup analyses were conducted and categorized by experimental methods, CTLA-4 sources and cancer types. The survey showed a significant correlation (HR: 1.47, 95% CI: 1.14–1.89) between high expression of CTLA-4 and OS in the SNP subgroup, and subgroups analyzing by PCR (HR: 1.50, 95% CI: 1.20–1.86) and flow cytometry (HR: 2.76, 95% CI: 1.49–5.14). In addition, our analysis observed significant differences between patients and controls in inCTLA-4+CD4+ lymphocytes, surCTLA-4+CD4+ lymphocytes, inCTLA-4+CD8+ lymphocytes, and surCTLA-4+CD8+ lymphocytes. Knowledge of the effects of CTLA-4 could potentially be used to effectively guide appropriate prognosis and therapeutic strategies in cancer patients.
Collapse
|
36
|
Dynamic versus static biomarkers in cancer immune checkpoint blockade: unravelling complexity. Nat Rev Drug Discov 2017; 16:264-272. [PMID: 28057932 DOI: 10.1038/nrd.2016.233] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, there has been a coordinated effort from academic institutions and the pharmaceutical industry to identify biomarkers that can predict responses to immune checkpoint blockade in cancer. Several biomarkers have been identified; however, none has reliably predicted response in a sufficiently rigorous manner for routine use. Here, we argue that the therapeutic response to immune checkpoint blockade is a critical state transition of a complex system. Such systems are highly sensitive to initial conditions, and critical transitions are notoriously difficult to predict far in advance. Nevertheless, warning signals can be detected closer to the tipping point. Advances in mathematics and network biology are starting to make it possible to identify such warning signals. We propose that these dynamic biomarkers could prove to be useful in distinguishing responding from non-responding patients, as well as facilitate the identification of new therapeutic targets for combination therapy.
Collapse
|
37
|
Hegde PS, Karanikas V, Evers S. The Where, the When, and the How of Immune Monitoring for Cancer Immunotherapies in the Era of Checkpoint Inhibition. Clin Cancer Res 2016; 22:1865-74. [PMID: 27084740 DOI: 10.1158/1078-0432.ccr-15-1507] [Citation(s) in RCA: 678] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/26/2016] [Indexed: 12/13/2022]
Abstract
Clinical trials with immune checkpoint inhibitors have provided important insights into the mode of action of anticancer immune therapies and potential mechanisms of immune escape. Development of the next wave of rational clinical combination strategies will require a deep understanding of the mechanisms by which combination partners influence the battle between the immune system's capabilities to fight cancer and the immune-suppressive processes that promote tumor growth. This review focuses on our current understanding of tumor and circulating pharmacodynamic correlates of immune modulation and elaborates on lessons learned from human translational research with checkpoint inhibitors. Actionable tumor markers of immune activation including CD8(+)T cells, PD-L1 IHC as a pharmacodynamic marker of T-cell function, T-cell clonality, and challenges with conduct of trials that ask scientific questions from serial biopsies are addressed. Proposals for clinical trial design, as well as future applications of peripheral pharmacodynamic endpoints as potential surrogates of early clinical activity, are discussed. On the basis of emerging mechanisms of response and immune escape, we propose the concept of the tumor immunity continuum as a framework for developing rational combination strategies.
Collapse
Affiliation(s)
- Priti S Hegde
- Oncology Biomarker Development, Genentech, South San Francisco, California.
| | - Vaios Karanikas
- Roche Pharmaceutical Research and Early Development, Translational Medicine Oncology, Roche Innovation Center, Zurich, Switzerland
| | - Stefan Evers
- Roche Pharmaceutical Research and Early Development, Translational Medicine Oncology, Roche Innovation Center, Zurich, Switzerland
| |
Collapse
|
38
|
Rekoske BT, McNeel DG. Immunotherapy for prostate cancer: False promises or true hope? Cancer 2016; 122:3598-3607. [PMID: 27649312 PMCID: PMC5115970 DOI: 10.1002/cncr.30250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 01/05/2023]
Abstract
Prostate cancer is the most commonly diagnosed cancer, and the second leading cause of cancer-related death for men in the United States. Despite the approval of several new agents for advanced disease, each of these has prolonged survival by only a few months. Consequently, new therapies are sorely needed. For other cancer types, immunotherapy has demonstrated dramatic and durable treatment responses, causing many to hope that immunotherapies might provide an ideal treatment approach for patients with advanced prostate cancer. However, apart from sipuleucel-T, prostate cancer has been conspicuously absent from the list of malignancies for which immunotherapies have received recent approval from the US Food and Drug Administration. This has left some wondering whether immunotherapy will "work" for this disease. In this review, the authors describe current developments in immunotherapy, including approaches to engage tumor-targeting T cells, disrupt immune regulation, and alter the immunosuppressive tumor microenvironment. The authors then describe the recent application of these approaches to the treatment of prostate cancer. Given the Food and Drug Administration approval of 1 agent, and the finding that several others are in advanced stages of clinical testing, the authors believe that immunotherapies offer real hope to improve patient outcomes for men with prostate cancer, especially as investigators begin to explore rational combinations of immunotherapies and combine these therapies with other conventional therapies. Cancer 2016;122:3598-607. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Brian T. Rekoske
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705
| | - Douglas G. McNeel
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
39
|
Clonal expansion of CD8 T cells in the systemic circulation precedes development of ipilimumab-induced toxicities. Proc Natl Acad Sci U S A 2016; 113:11919-11924. [PMID: 27698113 DOI: 10.1073/pnas.1611421113] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immune checkpoint therapies, such as ipilimumab, induce dramatic antitumor responses in a subset of patients with advanced malignancies, but they may also induce inflammatory responses and toxicities termed immune-related adverse events (irAEs). These irAEs are often low grade and manageable, but severe irAEs may lead to prolonged hospitalizations or fatalities. Early intervention is necessary to minimize morbidities that occur with severe irAEs. However, correlative biomarkers are currently lacking. In a phase II clinical trial that treated 27 patients with metastatic prostate cancer, we aimed to test the safety and efficacy of androgen deprivation therapy plus ipilimumab. In this study, we observed grade 3 toxicities in >40% of treated patients, which led to early closure of the study. Because ipilimumab enhances T-cell responses, we hypothesized that increased clonal T-cell responses in the systemic circulation may contribute to irAEs. Sequencing of the T-cell receptor β-chains in purified T cells revealed clonal expansion of CD8 T cells, which occurred in blood samples collected before the onset of grade 2-3 irAEs. These initial results suggested that expansion of ≥55 CD8 T-cell clones preceded the development of severe irAEs. We further evaluated available blood samples from a second trial and determined that patients who experienced grade 2-3 irAEs also had expansion of ≥55 CD8 T-cell clones in blood samples collected before the onset of irAEs. We propose that CD8 T-cell clonal expansion may be a correlative biomarker to enable close monitoring and early intervention for patients receiving ipilimumab.
Collapse
|
40
|
Wei XX, Chan S, Kwek S, Lewis J, Dao V, Zhang L, Cooperberg MR, Ryan CJ, Lin AM, Friedlander TW, Rini B, Kane C, Simko JP, Carroll PR, Small EJ, Fong L. Systemic GM-CSF Recruits Effector T Cells into the Tumor Microenvironment in Localized Prostate Cancer. Cancer Immunol Res 2016; 4:948-958. [PMID: 27688020 DOI: 10.1158/2326-6066.cir-16-0042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022]
Abstract
Granulocytic-macrophage colony-stimulating factor (GM-CSF) is used as an adjuvant in cancer vaccine trials and has the potential to enhance antitumor efficacy with immunotherapy; however, its immunologic effects are not fully understood. Here, we report results from a phase I study of neoadjuvant GM-CSF in patients with localized prostate cancer undergoing radical prostatectomy. Patients received subcutaneous injections of GM-CSF (250 μg/m2/day) daily for 2 weeks (cohort 1; n = 6), 3 weeks (cohort 2; n = 6), or 4 weeks (cohort 3; n = 6). Treatment was well tolerated with all grade 1 or 2 adverse events. Two patients had a decline in prostate-specific antigen (PSA) of more than 50%. GM-CSF treatment increased the numbers of circulating mature myeloid dendritic cells, proliferating conventional CD4 T cells, proliferating CD8 T cells, and to a lesser magnitude FoxP3+ regulatory CD4 T cells. Although GM-CSF treatment did not augment antigen-presenting cell localization to the prostate, treatment was associated with recruitment of CD8+ T cells to the tumor. These results suggest that systemic GM-CSF can modulate T-cell infiltration in the tumor microenvironment. Cancer Immunol Res; 4(11); 948-58. ©2016 AACR.
Collapse
Affiliation(s)
- Xiao X Wei
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Division of Hematology/Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Stephen Chan
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Division of Hematology/Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Serena Kwek
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Division of Hematology/Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Jera Lewis
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Division of Hematology/Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Vinh Dao
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Division of Hematology/Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Li Zhang
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Matthew R Cooperberg
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Charles J Ryan
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Division of Hematology/Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Amy M Lin
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Division of Hematology/Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Terence W Friedlander
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Division of Hematology/Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Brian Rini
- Department of Hematology and Medical Oncology Cleveland, Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Christopher Kane
- Department of Urology, University of California, San Diego, La Jolla, California
| | - Jeffry P Simko
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Anatomic Pathology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Peter R Carroll
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Eric J Small
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Division of Hematology/Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Lawrence Fong
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California. .,Division of Hematology/Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| |
Collapse
|
41
|
Fine needle aspirate flow cytometric phenotyping characterizes immunosuppressive nature of the mesothelioma microenvironment. Sci Rep 2016; 6:31745. [PMID: 27539742 PMCID: PMC4990967 DOI: 10.1038/srep31745] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022] Open
Abstract
With the emergence of checkpoint blockade and other immunotherapeutic drugs, and the growing adoption of smaller, more flexible adaptive clinical trial designs, there is an unmet need to develop diagnostics that can rapidly immunophenotype patient tumors. The ability to longitudinally profile the tumor immune infiltrate in response to immunotherapy also presents a window of opportunity to illuminate mechanisms of resistance. We have developed a fine needle aspirate biopsy (FNA) platform to perform immune profiling on thoracic malignancies. Matching peripheral blood, bulk resected tumor, and FNA were analyzed from 13 mesothelioma patients. FNA samples yielded greater numbers of viable cells when compared to core needle biopsies. Cell numbers were adequate to perform flow cytometric analyses on T cell lineage, T cell activation and inhibitory receptor expression, and myeloid immunosuppressive checkpoint markers. FNA samples were representative of the tumor as a whole as assessed by head-to-head comparison to single cell suspensions of dissociated whole tumor. Parallel analysis of matched patient blood enabled us to establish quality assurance criteria to determine the accuracy of FNA procedures to sample tumor tissue. FNA biopsies provide a diagnostic to rapidly phenotype the tumor immune microenvironment that may be of great relevance to clinical trials.
Collapse
|
42
|
van Dodewaard-de Jong JM, Santegoets SJAM, van de Ven PM, Versluis J, Verheul HMW, de Gruijl TD, Gerritsen WR, van den Eertwegh AJM. Improved efficacy of mitoxantrone in patients with castration-resistant prostate cancer after vaccination with GM-CSF-transduced allogeneic prostate cancer cells. Oncoimmunology 2016; 5:e1105431. [PMID: 27141390 PMCID: PMC4839338 DOI: 10.1080/2162402x.2015.1105431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 12/22/2022] Open
Abstract
Previous vaccination studies in patients with castration-resistant prostate cancer (CRPC) showed improved survival without prolongation of progression-free survival (PFS). This might be explained by enhanced efficacy of subsequent therapies because of heightened immune status. We therefore evaluated the efficacy of chemotherapy in CRPC patients after immunotherapy. We retrospectively analyzed 28 patients who were treated with ipilimumab and GVAX, an allogeneic vaccine, and 21 patients who were randomized to GVAX or no vaccination. To study whether immune status was related to the efficacy of chemotherapy, frequencies of myeloid and lymphocyte subsets were determined. Of 28 patients treated with GVAX and ipilimumab, 23 patients received docetaxel and 13 patients mitoxantrone. Median PFS after docetaxel was 6.4 mo (range 0.8-11.2), while median PFS after mitoxantrone was markedly longer than expected (4.8 mo; range 1.4-13.7). High CD8+ICOS+ Tcell/Treg and pDC/mMDSC ratios were associated with relatively long PFS after mitoxantrone, suggesting a correlation between activated immune status and benefit of mitoxantrone. Analysis of 21 patients, randomized to GVAX or not, revealed a median PFS after docetaxel of 9.9 mo for vaccinated patients and 7.1 mo for unvaccinated patients. Interestingly, PFS after mitoxantrone (n = 14) was significantly longer in vaccinated patients as compared to controls (5.9 vs. 1.6 mo, p = 0.0048). In conclusion, mitoxantrone seems more effective in CRPC patients after immunotherapy, which may be related to the immune-stimulating effect of mitoxantrone in patients with heightened antitumor immunity. As this was a retrospective study with limited sample size, prospective studies are warranted to definitively show proof of principle.
Collapse
Affiliation(s)
| | - Saskia JAM Santegoets
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter M. van de Ven
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
| | - Jurjen Versluis
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Henk M. W. Verheul
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Tanja D. de Gruijl
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Winald R. Gerritsen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | |
Collapse
|
43
|
Lepone LM, Donahue RN, Grenga I, Metenou S, Richards J, Heery CR, Madan RA, Gulley JL, Schlom J. Analyses of 123 Peripheral Human Immune Cell Subsets: Defining Differences with Age and between Healthy Donors and Cancer Patients Not Detected in Analysis of Standard Immune Cell Types. J Circ Biomark 2016; 5:5. [PMID: 28936253 PMCID: PMC5548330 DOI: 10.5772/62322] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/29/2016] [Indexed: 01/10/2023] Open
Abstract
Recent advances in human immunology have led to the identification of novel immune cell subsets and the biological function of many of these subsets has now been identified. The recent US Food and Drug Administration approval of several immunotherapeutics for the treatment of a variety of cancer types and the results of ongoing immunotherapy clinical studies requires a more thorough interrogation of the immune system. We report here the use of flow cytometry-based analyses to identify 123 immune cell subsets of peripheral blood mononuclear cells. The use of these panels defines multiple differences in younger (< 40 years) vs. older (≥ 40 years) individuals and between aged-matched apparently healthy individuals and metastatic cancer patients, aspects not seen in the analysis of the following standard immune cell types: CD8, CD4, natural killer, natural killer-T, regulatory T, myeloid derived suppressor cells, conventional dendritic cells (DCs), plasmacytoid DCs and B cells. The use of these panels identifying 123 immune cell subsets may aid in the identification of patients who may benefit from immunotherapy, either prior to therapy or early in the immunotherapeutic regimen, for the treatment of cancer or other chronic or infectious diseases.
Collapse
Affiliation(s)
- Lauren M Lepone
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Italia Grenga
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simon Metenou
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob Richards
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Abstract
The immune system is capable of recognizing tumors and eliminates many early malignant cells. However, tumors evolve to evade immune attack, and the tumor microenvironment is immunosuppressive. Immune responses are regulated by a number of immunological checkpoints that promote protective immunity and maintain tolerance. T cell coinhibitory pathways restrict the strength and duration of immune responses, thereby limiting immune-mediated tissue damage, controlling resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors exploit these coinhibitory pathways to evade immune eradication. Blockade of the PD-1 and CTLA-4 checkpoints is proving to be an effective and durable cancer immunotherapy in a subset of patients with a variety of tumor types, and additional combinations are further improving response rates. In this review we discuss the immunoregulatory functions of coinhibitory pathways and their translation to effective immunotherapies for cancer.
Collapse
Affiliation(s)
- Susanne H Baumeister
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, Massachusetts 02115.,Harvard Medical School, Boston, Massachusetts 02115
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Harvard Medical School, Boston, Massachusetts 02115
| | - Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Novartis Institutes for BioMedical Research, Exploratory Immuno-oncology, Cambridge, Massachusetts 02139
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
45
|
Curry WT, Gorrepati R, Piesche M, Sasada T, Agarwalla P, Jones PS, Gerstner ER, Golby AJ, Batchelor TT, Wen PY, Mihm MC, Dranoff G. Vaccination with Irradiated Autologous Tumor Cells Mixed with Irradiated GM-K562 Cells Stimulates Antitumor Immunity and T Lymphocyte Activation in Patients with Recurrent Malignant Glioma. Clin Cancer Res 2016; 22:2885-96. [PMID: 26873960 DOI: 10.1158/1078-0432.ccr-15-2163] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/04/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Recurrent malignant glioma carries a dismal prognosis, and novel therapies are needed. We examined the feasibility and safety of vaccination with irradiated autologous glioma cells mixed with irradiated GM-K562 cells in patients undergoing craniotomy for recurrent malignant glioma. EXPERIMENTAL DESIGN We initiated a phase I study examining the safety of 2 doses of GM-K562 cells mixed with autologous cells. Primary endpoints were feasibility and safety. Feasibility was defined as the ability for 60% of enrolled subjects to initiate vaccination. Dose-limiting toxicity was assessed via a 3+3 dose-escalation format, examining irradiated tumor cells mixed with 5 × 10(6) GM-K562 cells or 1 × 10(7) GM-K562 cells. Eligibility required a priori indication for resection of a recurrent high-grade glioma. We measured biological activity by measuring delayed type hypersensitivity (DTH) responses, humoral immunity against tumor-associated antigens, and T-lymphocyte activation. RESULTS Eleven patients were enrolled. Sufficient numbers of autologous tumor cells were harvested in 10 patients, all of whom went on to receive vaccine. There were no dose-limiting toxicities. Vaccination strengthened DTH responses to irradiated autologous tumor cells in most patients, and vigorous humoral responses to tumor-associated angiogenic cytokines were seen as well. T-lymphocyte activation was seen with significantly increased expression of CTLA-4, PD-1, 4-1BB, and OX40 by CD4(+) cells and PD-1 and 4-1BB by CD8(+) cells. Activation was coupled with vaccine-associated increase in the frequency of regulatory CD4(+) T lymphocytes. CONCLUSIONS Vaccination with irradiated autologous tumor cells mixed with GM-K562 cells is feasible, well tolerated, and active in patients with recurrent malignant glioma. Clin Cancer Res; 22(12); 2885-96. ©2016 AACR.
Collapse
Affiliation(s)
- William T Curry
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts. Cancer Center, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts.
| | - Ramana Gorrepati
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Matthias Piesche
- Department of Medicine, Dana Farber Cancer Institute, Boston, Massachusetts. Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Tetsuro Sasada
- Cancer Vaccine Center, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Pankaj Agarwalla
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Pamela S Jones
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth R Gerstner
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Alexandra J Golby
- Harvard Medical School, Boston, Massachusetts. Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tracy T Batchelor
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Patrick Y Wen
- Harvard Medical School, Boston, Massachusetts. Division of Neuro-oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Martin C Mihm
- Harvard Medical School, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Glenn Dranoff
- Harvard Medical School, Boston, Massachusetts. Department of Medicine, Dana Farber Cancer Institute, Boston, Massachusetts. Cancer Vaccine Center, Dana Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
46
|
Yuan J, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO, Kvistborg P, Maccalli C, Maecker HT, Page DB, Robins H, Song W, Stack EC, Wang E, Whiteside TL, Zhao Y, Zwierzina H, Butterfield LH, Fox BA. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer 2016. [PMID: 26788324 DOI: 10.1186/s40425-016-0107-3.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The culmination of over a century's work to understand the role of the immune system in tumor control has led to the recent advances in cancer immunotherapies that have resulted in durable clinical responses in patients with a variety of malignancies. Cancer immunotherapies are rapidly changing traditional treatment paradigms and expanding the therapeutic landscape for cancer patients. However, despite the current success of these therapies, not all patients respond to immunotherapy and even those that do often experience toxicities. Thus, there is a growing need to identify predictive and prognostic biomarkers that enhance our understanding of the mechanisms underlying the complex interactions between the immune system and cancer. Therefore, the Society for Immunotherapy of Cancer (SITC) reconvened an Immune Biomarkers Task Force to review state of the art technologies, identify current hurdlers, and make recommendations for the field. As a product of this task force, Working Group 2 (WG2), consisting of international experts from academia and industry, assembled to identify and discuss promising technologies for biomarker discovery and validation. Thus, this WG2 consensus paper will focus on the current status of emerging biomarkers for immune checkpoint blockade therapy and discuss novel technologies as well as high dimensional data analysis platforms that will be pivotal for future biomarker research. In addition, this paper will include a brief overview of the current challenges with recommendations for future biomarker discovery.
Collapse
Affiliation(s)
- Jianda Yuan
- Memorial Sloan-Kettering Cancer Center, 1275 New York Ave Box 386, New York, NY 10065 USA
| | - Priti S Hegde
- Genentech, Inc., 1 DNA Way South, San Francisco, CA 94080 USA
| | - Raphael Clynes
- Bristol-Myers Squibb, 3551 Lawrenceville Road, Princeton, NJ 08648 USA
| | - Periklis G Foukas
- Center of Experimental Therapeutics and Ludwig Institute of Cancer Research, University Hospital of Lausanne, Rue du Bugnon 21, 1011 Lausanne, Switzerland ; Department of Pathology, University of Athens Medical School, "Attikon" University Hospital, 1st Rimini St, 12462 Haidari, Greece
| | - Alexandre Harari
- Center of Experimental Therapeutics and Ludwig Institute of Cancer Research, University Hospital of Lausanne, Rue du Bugnon 21, 1011 Lausanne, Switzerland
| | - Thomas O Kleen
- Epiontis GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - Pia Kvistborg
- Netherlands Cancer Institute, Postbus 90203, 1006 BE Amsterdam, Netherlands
| | - Cristina Maccalli
- Italian Network for Biotherapy of Tumors (NIBIT)-Laboratory, c/o Medical Oncology and Immunotherapy, University Hospital of Siena, V.le Bracci,16, Siena, 53100 Italy
| | - Holden T Maecker
- Stanford University Medical Center, 299 Campus Drive, Stanford, CA 94303 USA
| | - David B Page
- Earle A. Chiles Research Institute, Providence Cancer Center, 4805 NE Glisan Street, Portland, OR 97213 USA
| | - Harlan Robins
- Adaptive Technologies, Inc., 1551 Eastlake Avenue East Suite 200, Seattle, WA 98102 USA
| | - Wenru Song
- AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878 USA
| | | | - Ena Wang
- Sidra Medical and Research Center, PO Box 26999, Doha, Qatar
| | - Theresa L Whiteside
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Suite 1.27, Pittsburgh, PA 15213 USA
| | - Yingdong Zhao
- National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850 USA
| | - Heinz Zwierzina
- Innsbruck Medical University, Medizinische Klinik, Anichstrasse 35, Innsbruck, A-6020 Austria
| | - Lisa H Butterfield
- Department of Medicine, Surgery and Immunology, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Providence Cancer Center, 4805 NE Glisan Street, Portland, OR 97213 USA
| |
Collapse
|
47
|
Yuan J, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO, Kvistborg P, Maccalli C, Maecker HT, Page DB, Robins H, Song W, Stack EC, Wang E, Whiteside TL, Zhao Y, Zwierzina H, Butterfield LH, Fox BA. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer 2016; 4:3. [PMID: 26788324 PMCID: PMC4717548 DOI: 10.1186/s40425-016-0107-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
The culmination of over a century’s work to understand the role of the immune system in tumor control has led to the recent advances in cancer immunotherapies that have resulted in durable clinical responses in patients with a variety of malignancies. Cancer immunotherapies are rapidly changing traditional treatment paradigms and expanding the therapeutic landscape for cancer patients. However, despite the current success of these therapies, not all patients respond to immunotherapy and even those that do often experience toxicities. Thus, there is a growing need to identify predictive and prognostic biomarkers that enhance our understanding of the mechanisms underlying the complex interactions between the immune system and cancer. Therefore, the Society for Immunotherapy of Cancer (SITC) reconvened an Immune Biomarkers Task Force to review state of the art technologies, identify current hurdlers, and make recommendations for the field. As a product of this task force, Working Group 2 (WG2), consisting of international experts from academia and industry, assembled to identify and discuss promising technologies for biomarker discovery and validation. Thus, this WG2 consensus paper will focus on the current status of emerging biomarkers for immune checkpoint blockade therapy and discuss novel technologies as well as high dimensional data analysis platforms that will be pivotal for future biomarker research. In addition, this paper will include a brief overview of the current challenges with recommendations for future biomarker discovery.
Collapse
Affiliation(s)
- Jianda Yuan
- Memorial Sloan-Kettering Cancer Center, 1275 New York Ave Box 386, New York, NY 10065 USA
| | - Priti S Hegde
- Genentech, Inc., 1 DNA Way South, San Francisco, CA 94080 USA
| | - Raphael Clynes
- Bristol-Myers Squibb, 3551 Lawrenceville Road, Princeton, NJ 08648 USA
| | - Periklis G Foukas
- Center of Experimental Therapeutics and Ludwig Institute of Cancer Research, University Hospital of Lausanne, Rue du Bugnon 21, 1011 Lausanne, Switzerland ; Department of Pathology, University of Athens Medical School, "Attikon" University Hospital, 1st Rimini St, 12462 Haidari, Greece
| | - Alexandre Harari
- Center of Experimental Therapeutics and Ludwig Institute of Cancer Research, University Hospital of Lausanne, Rue du Bugnon 21, 1011 Lausanne, Switzerland
| | - Thomas O Kleen
- Epiontis GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - Pia Kvistborg
- Netherlands Cancer Institute, Postbus 90203, 1006 BE Amsterdam, Netherlands
| | - Cristina Maccalli
- Italian Network for Biotherapy of Tumors (NIBIT)-Laboratory, c/o Medical Oncology and Immunotherapy, University Hospital of Siena, V.le Bracci,16, Siena, 53100 Italy
| | - Holden T Maecker
- Stanford University Medical Center, 299 Campus Drive, Stanford, CA 94303 USA
| | - David B Page
- Earle A. Chiles Research Institute, Providence Cancer Center, 4805 NE Glisan Street, Portland, OR 97213 USA
| | - Harlan Robins
- Adaptive Technologies, Inc., 1551 Eastlake Avenue East Suite 200, Seattle, WA 98102 USA
| | - Wenru Song
- AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878 USA
| | | | - Ena Wang
- Sidra Medical and Research Center, PO Box 26999, Doha, Qatar
| | - Theresa L Whiteside
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Suite 1.27, Pittsburgh, PA 15213 USA
| | - Yingdong Zhao
- National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850 USA
| | - Heinz Zwierzina
- Innsbruck Medical University, Medizinische Klinik, Anichstrasse 35, Innsbruck, A-6020 Austria
| | - Lisa H Butterfield
- Department of Medicine, Surgery and Immunology, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Providence Cancer Center, 4805 NE Glisan Street, Portland, OR 97213 USA
| |
Collapse
|
48
|
Noguchi M, Koga N, Moriya F, Itoh K. Immunotherapy in prostate cancer: challenges and opportunities. Immunotherapy 2016; 8:69-77. [DOI: 10.2217/imt.15.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Although treatment options for castration-resistant prostate cancer (CRPC) have increased over the last decade, there remains a need for strategies that can provide durable disease control and long-term benefit. Recently, immunotherapy has emerged as a viable and attractive strategy for the treatment of CRPC. To date, there are multiple strategies to target the immune system, and several approaches including therapeutic cancer vaccines and immune checkpoint inhibitors have been most successful in clinical trials. With regard to this, we report the results of the most recent clinical trials investigating immunotherapy in CRPC and discuss the future development of immunotherapy for CRPC, as well as the potential importance of biomarkers in the future progress of this field.
Collapse
Affiliation(s)
- Masanori Noguchi
- Division of Clinical Research, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
- Cancer Vaccine Center, Kurume University School of Medicine, Kurume, Japan
| | - Noriko Koga
- Division of Clinical Research, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Fukuko Moriya
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Kyogo Itoh
- Cancer Vaccine Center, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
49
|
Morse MA, Lyerly HK. Checkpoint blockade in combination with cancer vaccines. Vaccine 2015; 33:7377-7385. [DOI: 10.1016/j.vaccine.2015.10.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/18/2015] [Accepted: 10/06/2015] [Indexed: 01/05/2023]
|
50
|
O'Sullivan Coyne G, Gulley JL. Adding fuel to the fire: immunogenic intensification. Hum Vaccin Immunother 2015; 10:3306-12. [PMID: 25483630 DOI: 10.4161/21645515.2014.973318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The durable long term clinical benefits seen for certain patients treated with immunotherapy agents has suggested there is significant therapeutic potential to be derived from these agents, as shown by the increasing prominence of this treatment strategy in upcoming clinical trials. There has been a renewed interest and focus on the drivers of tumoral antigen recognition, and the pathways by which various cells of the immune system can stimulate, propagate and execute an effective anti-tumor response. Various challenges lie ahead in the further development of these treatments, including induction of an endogenous anti-tumor response, tumor microenvironment modulation, and T-cell response amplification. Novel treatment combinations may prove of significant added benefit by immunogenic intensification.
Collapse
Key Words
- APC, antigen-presenting cells
- CARs, chimeric antigen receptors
- HER2, epidermal growth factor receptor 2
- MDSCs, myeloid-derived suppressor cells
- MHC I, major histocompatibility class I molecules
- PD-1, programmed death-1
- PD-L1
- PD-L1, programmed death-ligand-1
- TAA, tumor-associated antigen
- TAP, transporter of antigen processing
- TILs, tumor infiltrating lymphocytes
- Tregs, regulatory T cells
- activated T cell
- cancer
- checkpoint inhibitor
- immunogenic intensification
- mAB, monoclonal antibodies
- mCRPC, metastatic castration-resistant prostate cancer
- vaccine
Collapse
Affiliation(s)
- Geraldine O'Sullivan Coyne
- a Genitourinary Malignancies Branch; Medical Oncology Service; National Cancer Institute; National Institutes of Health ; Bethesda , MD USA
| | | |
Collapse
|