1
|
Shoshan Y, Gomori MJ, Moss L, Bari SE, Edery N, Den RB, Arazi L, Popovtzer A, Feldman J, Moscovici S. Stereotactic implantation of diffusing alpha-emitters radiation therapy sources in the swine brain: a potential new focal therapy for brain tumors. J Neurooncol 2025; 172:387-396. [PMID: 39747715 PMCID: PMC11937107 DOI: 10.1007/s11060-024-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a new cancer treatment modality that employs radium-224-loaded metal sources implanted in solid tumors to disperse alpha-emitting atoms within a therapeutic "kill-zone" of a few millimeters around each source. Preclinical studies have demonstrated tumor growth delay in various cancer types, including glioblastoma multiforme, and the method is used in clinical trials for patients with skin and head and neck cancer. This study aims to assess the safety and feasibility of implementing Alpha DaRT for brain tumor treatment in a large animal model. METHODS Alpha-DaRT sources were delivered via image-guided stereotactic implantation into both hemispheres of eight swine. 1-3 layers of radial deployment of 7 sources were delivered through a single penetration point into each hemisphere. A 90-day follow-up period included clinical evaluation, brain MRI, head CT, blood, CSF, urine, and feces sampling, and an analysis of source location over time. Brain tissue pathology was performed on termination. RESULTS Alpha-DaRT sources were reproducibly and efficiently delivered to the brain cortex and subcortex. No unexpected abnormalities were detected in blood or CSF samples. MRI and CT scans revealed no evidence of major bleeding or infection. Measurements of 212Pb in blood and CSF exhibited the expected exponential decay from day 7 to day 14 post-source implantation. Minimal spatial and temporal movements of the sources were noted. Histopathological analysis demonstrated locally confined findings in brain parenchyma in a very close proximity to the sources. CONCLUSION Alpha-DaRT sources can be safely delivered into a large animal brain using image-guided stereotactic implantation. These findings support further exploration of Alpha DaRT as a potential treatment modality for brain tumors.
Collapse
Affiliation(s)
- Yigal Shoshan
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Moshe J Gomori
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lior Moss
- Department of Pathology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Saleem Eben Bari
- Department of Pathology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Nir Edery
- Department of Pathology, Kimron Veterinary Institute, Bet Dagan, Israel
| | | | - Lior Arazi
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Aron Popovtzer
- Sharett Institute of Oncology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Jon Feldman
- Sharett Institute of Oncology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Samuel Moscovici
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
2
|
Heger G, Dumančić M, Luz I, Vatarescu M, Weizman N, Miller BW, Cooks T, Arazi L. First measurements of radon-220 diffusion in mice tumors, towards treatment planning in diffusing alpha-emitters radiation therapy. Med Phys 2024; 51:5045-5058. [PMID: 38507254 DOI: 10.1002/mp.17020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Diffusing alpha-emitters radiation therapy ("Alpha-DaRT") is a new method for treating solid tumors with alpha particles, relying on the release of the short-lived alpha-emitting daughter atoms of radium-224 from interstitial sources inserted into the tumor. Alpha-DaRT tumor dosimetry is governed by the spread of radium's progeny around the source, as described by an approximate framework called the "diffusion-leakage model". The most important model parameters are the diffusion lengths of radon-220 and lead-212, and their estimation is therefore essential for treatment planning. PURPOSE Previous works have provided initial estimates for the dominant diffusion length, by measuring the activity spread inside mice-borne tumors several days after the insertion of an Alpha-DaRT source. The measurements, taken when lead-212 was in secular equilibrium with radium-224, were interpreted as representing the lead-212 diffusion length. The aim of this work is to provide first experimental estimates for the diffusion length of radon-220, using a new methodology. METHODS The diffusion length of radon-220 was estimated from autoradiography measurements of histological sections taken from 24 mice-borne subcutaneous tumors of five different types. Unlike previous studies, the source dwell time inside the tumor was limited to 30 min, to prevent the buildup of lead-212. To investigate the contribution of potential non-diffusive processes, experiments were done in two sets: fourteen in vivo tumors, where during the treatment the tumors were still carried by the mice with active blood supply, and 10 ex-vivo tumors, where the tumors were excised before source insertion and kept in a medium at37 ∘ C $37^\circ {\text{C}}$ with the source inside. RESULTS The measured diffusion lengths of radon-220, extracted by fitting the recorded activity pattern up to 1.5 mm from the source, lie in the range0.25 - 0.6 mm ${0.25-0.6}\nobreakspace {\text{mm}}$ , with no significant difference between the average values measured in in-vivo and ex-vivo tumors:L R n i n - v i v o = 0.40 ± 0.08 mm $L_{Rn}^{in-vivo}=0.40{\pm }0.08\nobreakspace {\text{mm}}$ versusL R n e x - v i v o = 0.39 ± 0.07 mm $L_{Rn}^{ex-vivo}=0.39{\pm }0.07\nobreakspace {\text{mm}}$ . However, in-vivo tumors display an enhanced spread of activity 2-3 mm away from the source. This effect is not explained by the current model and is much less pronounced in ex-vivo tumors. CONCLUSIONS The average measured radon-220 diffusion lengths in both in-vivo and ex-vivo tumors are consistent with published data on the diffusion length of radon in water and lie close to the upper limit of the previously estimated range of0.2 - 0.4 mm $0.2-0.4\nobreakspace {\text{mm}}$ . The observation that close to the source there is no apparent difference between in-vivo and ex-vivo tumors, and the good agreement with the theoretical model in this region suggest that the spread of radon-220 is predominantly diffusive in this region. The departure from the model prediction in in-vivo tumors at large radial distances may hint at potential vascular contribution, which will be the subject of future works.
Collapse
Affiliation(s)
- Guy Heger
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Mirta Dumančić
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Now at Gerald Bronfman Department of Oncology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ishai Luz
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Maayan Vatarescu
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Noam Weizman
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Oncology Department, Radiation Therapy Unit, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Brian W Miller
- College of Medicine, Department of Radiation Oncology, Department of Medical Imaging, The University of Arizona, Tucson, Arizona, USA
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Lior Arazi
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
3
|
Epstein L, Heger G, Roy A, Gannot I, Kelson I, Arazi L. The low-LET radiation contribution to the tumor dose in diffusing alpha-emitters radiation therapy. Med Phys 2024; 51:3020-3033. [PMID: 38096442 DOI: 10.1002/mp.16885] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a new technique that enables the use of alpha particles for the treatment of solid tumors. Alpha DaRT employs interstitial sources carrying a few μ $\mu$ Ci of224 $^{224}$ Ra below their surface, designed to release a chain of short-lived atoms (progeny of224 $^{224}$ Ra) which emit alpha particles, along with beta, Auger, and conversion electrons, x- and gamma rays. These atoms diffuse around the source and create-primarily through their alpha decays-a lethal high-dose region measuring a few millimeters in diameter. PURPOSE While previous studies focused on the dose from the alpha emissions alone, this work addresses the electron and photon dose contributed by the diffusing atoms and by the atoms remaining on the source surface, for both a single Alpha DaRT source and multi-source lattices. This allows to evaluate the low-LET contribution to the tumor dose and tumor cell survival, and demonstrate the sparing of surrounding healthy tissue. METHODS The low-LET dose is calculated using the EGSnrc and FLUKA Monte Carlo (MC) codes. We compare the results of a simple line-source approximation with no diffusion to those of a full simulation, which implements a realistic source geometry and the spread of diffusing atoms. We consider two opposite scenarios: one with low diffusion and high212 $^{212}$ Pb leakage, and the other with high diffusion and low leakage. The low-LET dose in source lattices is calculated by superposition of single-source contributions. Its effect on cell survival is estimated with the linear quadratic model in the limit of low dose rate. RESULTS For sources carrying 3 μ $\umu$ Ci/cm224 $^{224}$ Ra arranged in a hexagonal lattice with 4 mm spacing, the minimal low-LET dose between sources is∼ 18 - 30 $\sim 18-30$ Gy for the two test cases and is dominated by the beta contribution. The low-LET dose drops below 5 Gy∼ 3 $\sim 3$ mm away from the outermost source in the lattice with an effective maximal dose rate of< 0.04 $<0.04$ Gy/h. The accuracy of the line-source/no-diffusion approximation is∼ 15 % $\sim 15\%$ for the total low-LET dose over clinically relevant distances (2-4 mm). The low-LET dose reduces tumor cell survival by a factor of∼ 2 - 200 $\sim 2-200$ . CONCLUSIONS The low-LET dose in Alpha DaRT can be modeled by conventional MC techniques with appropriate leakage corrections to the source activity. For 3 μ $\umu$ Ci/cm224 $^{224}$ Ra sources, the contribution of the low-LET dose can reduce cell survival inside the tumor by up to two orders of magnitude. The low-LET dose to surrounding healthy tissue is negligible. Increasing source activities by a factor of 5 can bring the low-LET dose itself to therapeutic levels, in addition to the high-LET dose contributed by alpha particles, leading to a "self-boosted" Alpha DaRT configuration, and potentially allowing to increase the lattice spacing.
Collapse
Affiliation(s)
- Lior Epstein
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Soreq Nuclear Research Center, Yavne, Israel
| | - Guy Heger
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Arindam Roy
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Israel Gannot
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Itzhak Kelson
- School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lior Arazi
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
4
|
Skalina KA, Małachowska B, Sindhu KK, Thompson M, Nehlsen AD, Salgado LR, Dovey Z, Hasan S, Guha C, Tang J. Combining theranostic/particle therapy with immunotherapy for the treatment of GU malignancies. BJUI COMPASS 2024; 5:334-344. [PMID: 38481668 PMCID: PMC10927934 DOI: 10.1002/bco2.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/10/2023] [Indexed: 11/01/2024] Open
Abstract
Particle therapy and radiopharmaceuticals are emerging fields in the treatment of genitourinary cancers. With these novel techniques and the ever-growing immunotherapy options, the combinations of these therapies have the potential to improve current cancer cure rates. However, the most effective sequence and combination of these therapies is unknown and is a question that is actively being explored in multiple ongoing clinical trials. Here, we review the immunological effects of particle therapy and the available radiopharmaceuticals and discuss how best to combine these therapies.
Collapse
Affiliation(s)
- Karin A. Skalina
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNew YorkUSA
| | - Beata Małachowska
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNew YorkUSA
| | - Kunal K. Sindhu
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Marcher Thompson
- Department of Radiation OncologyAIS Cancer Center/Adventist HealthBakersfieldCaliforniaUSA
| | - Anthony D. Nehlsen
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lucas Resende Salgado
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Zachary Dovey
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Chandan Guha
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNew YorkUSA
| | - Justin Tang
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
5
|
Heger G, Roy A, Dumančić M, Arazi L. Alpha dose modeling in diffusing alpha-emitters radiation therapy-Part I: single-seed calculations in one and two dimensions. Med Phys 2023; 50:1793-1811. [PMID: 36464914 DOI: 10.1002/mp.16145] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/01/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diffusing alpha-emitters Radiation Therapy ("DaRT") is a new method, presently in clinical trials, which allows treating solid tumors by alpha particles. DaRT relies on interstitial seeds carrying μCi-level 224 Ra activity below their surface, which release a chain of short-lived alpha emitters that spread throughout the tumor volume primarily by diffusion. Alpha dose calculations in DaRT are based on describing the transport of alpha emitting atoms, requiring new modeling techniques. PURPOSE A previous study introduced a simplified framework, the "Diffusion-Leakage (DL) model", for DaRT alpha dose calculations, and employed it to a point source, as a basic building block of arbitrary configurations of line sources. The aim of this work, which is divided into two parts, is to extend the model to realistic seed geometries (in Part I), and to employ single-seed calculations to study the properties of DaRT seed lattices (Part II). Such calculations can serve as a pragmatic guide for treatment planning in future clinical trials. METHODS We derive a closed-form asymptotic solution for an infinitely long cylindrical source, and extend it to an approximate time-dependent expression that assumes a uniform temporal profile at all radial distances from the source. We then develop a finite-element one-dimensional numerical scheme for a complete time-dependent solution of this geometry and validate it against the closed-form expressions. Finally, we discuss a two-dimensional axisymmetric scheme for a complete time-dependent solution for a seed of finite diameter and length. Different solutions are compared over the relevant parameter space, providing guidelines on their usability and limitations. RESULTS We show that approximating the seed as a finite line source comprised of point-like segments significantly underestimates the correct alpha dose, as predicted by the full two-dimensional calculation. The time-dependent one-dimensional solution is shown to coincide to sub-percent-level with the two-dimensional calculation in the seed midplane, and maintains an accuracy of a few percent up to ∼2 mm from the seed edge. CONCLUSIONS For actual treatment plans, the full two-dimensional solution should be used to generate dose lookup tables, similarly to the TG-43 format employed in conventional brachytherapy. Given the accuracy of the one-dimensional solution up to ∼2 mm from the seed edge it can be used for efficient parametric studies of DaRT seed lattices.
Collapse
Affiliation(s)
- Guy Heger
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Arindam Roy
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Mirta Dumančić
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Lior Arazi
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
6
|
Confino H, Dirbas FM, Goldshtein M, Yarkoni S, Kalaora R, Hatan M, Puyesky S, Levi Y, Malka L, Johnson M, Chaisson S, Monson JM, Avniel A, Lisi S, Greenberg D, Wolf I. Gaseous nitric oxide tumor ablation induces an anti-tumor abscopal effect. Cancer Cell Int 2022; 22:405. [PMID: 36514083 PMCID: PMC9745717 DOI: 10.1186/s12935-022-02828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In-situ tumor ablation provides the immune system with the appropriate antigens to induce anti-tumor immunity. Here, we present an innovative technique for generating anti-tumor immunity by delivering exogenous ultra-high concentration (> 10,000 ppm) gaseous nitric oxide (UHCgNO) intratumorally. METHODS The capability of UHCgNO to induce apoptosis was tested in vitro in mouse colon (CT26), breast (4T1) and Lewis lung carcinoma (LLC-1) cancer cell lines. In vivo, UHCgNO was studied by treating CT26 tumor-bearing mice in-situ and assessing the immune response using a Challenge assay. RESULTS Exposing CT26, 4T1 and LLC-1 cell lines to UHCgNO for 10 s-2.5 min induced cellular apoptosis 24 h after exposure. Treating CT26 tumors in-situ with UHCgNO followed by surgical resection 14 days later resulted in a significant secondary anti-tumor effect in vivo. 100% of tumor-bearing mice treated with 50,000 ppm UHCgNO and 64% of mice treated with 20,000 ppm UHCgNO rejected a second tumor inoculation, compared to 0% in the naive control for 70 days. Additionally, more dendrocytes infiltrated the tumor 14 days post UHCgNO treatment versus the nitrogen control. Moreover, T-cell penetration into the primary tumor was observed in a dose-dependent manner. Systemic increases in T- and B-cells were seen in UHCgNO-treated mice compared to nitrogen control. Furthermore, polymorphonuclear-myeloid-derived suppressor cells were downregulated in the spleen in the UHCgNO-treated groups. CONCLUSIONS Taken together, our data demonstrate that UHCgNO followed by the surgical removal of the primary tumor 14 days later induces a strong and potent anti-tumor response.
Collapse
Affiliation(s)
| | - Frederick M. Dirbas
- grid.168010.e0000000419368956Department of General Surgery, Stanford University, Stanford, CA USA
| | | | | | | | | | | | - Yakir Levi
- Beyond Cancer Ltd., 7608801 Rehovot, Israel
| | | | | | | | - Jedidiah M. Monson
- Beyond Cancer Ltd., Atlanta, GA USA ,grid.476982.6California Cancer Associates for Research and Excellence, Fresno, CA USA
| | - Amir Avniel
- Beyond Air Ltd., 7608801 Rehovot, Israel ,Beyond Air Inc, Garden City, NY 11530 USA
| | - Steve Lisi
- Beyond Air Inc, Garden City, NY 11530 USA
| | - David Greenberg
- Beyond Air Ltd., 7608801 Rehovot, Israel ,Beyond Air Inc, Garden City, NY 11530 USA
| | - Ido Wolf
- grid.413449.f0000 0001 0518 6922Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Kleinendorst SC, Oosterwijk E, Bussink J, Westdorp H, Konijnenberg MW, Heskamp S. Combining Targeted Radionuclide Therapy and Immune Checkpoint Inhibition for Cancer Treatment. Clin Cancer Res 2022; 28:3652-3657. [PMID: 35471557 PMCID: PMC9433955 DOI: 10.1158/1078-0432.ccr-21-4332] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/03/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
Abstract
The development of immunotherapy, in particular immune checkpoint inhibitors (ICI), has revolutionized cancer treatment in the past decades. However, its efficacy is still limited to subgroups of patients with cancer. Therefore, effective treatment combination strategies are needed. Here, radiotherapy is highly promising, as it can induce immunogenic cell death, triggering the release of pro-inflammatory cytokines, thereby creating an immunogenic phenotype and sensitizing tumors to ICI. Recently, targeted radionuclide therapy (TRT) has attained significant interest for cancer treatment. In this approach, a tumor-targeting radiopharmaceutical is used to specifically deliver a therapeutic radiation dose to all tumor cells, including distant metastatic lesions, while limiting radiation exposure to healthy tissue. However, fundamental differences between TRT and conventional radiotherapy make it impossible to directly extrapolate the biological effects from conventional radiotherapy to TRT. In this review, we present a comprehensive overview of studies investigating the immunomodulatory effects of TRT and the efficacy of combined TRT-ICI treatment. Preclinical studies have evaluated a variety of murine cancer models in which α- or β-emitting radionuclides were directed to a diverse set of targets. In addition, clinical trials are ongoing to assess safety and efficacy of combined TRT-ICI in patients with cancer. Taken together, research indicates that combining TRT and ICI might improve therapeutic response in patients with cancer. Future research has to disclose what the optimal conditions are in terms of dose and treatment schedule to maximize the efficacy of this combined approach.
Collapse
Affiliation(s)
- Simone C. Kleinendorst
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Harm Westdorp
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.,Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark W. Konijnenberg
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.,Corresponding Author: Sandra Heskamp, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands. Phone: 243-614-511; E-mail:
| |
Collapse
|
8
|
Rouanet J, Quintana M, Auzeloux P, Cachin F, Degoul F. Benzamide derivative radiotracers targeting melanin for melanoma imaging and therapy: Preclinical/clinical development and combination with other treatments. Pharmacol Ther 2021; 224:107829. [PMID: 33662452 DOI: 10.1016/j.pharmthera.2021.107829] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
Cutaneous melanoma arises from proliferating melanocytes, cells specialized in the production of melanin. This property means melanin can be considered as a target for monitoring melanoma patients using nuclear imaging or targeted radionuclide therapy (TRT). Since the 1970s, many researchers have shown that specific molecules can interfere with melanin. This paper reviews some such molecules: benzamide structures improved to increase their pharmacokinetics for imaging or TRT. We first describe the characteristics and biosynthesis of melanin, and the main features of melanin tracers. The second part summarizes the preclinical and corresponding clinical studies on imaging. The last section presents TRT results from ongoing protocols and discusses combinations with other therapies as an opportunity for melanoma non-responders or patients resistant to treatments.
Collapse
Affiliation(s)
- Jacques Rouanet
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France; Department of Dermatology and Oncodermatology, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63000 Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand F-63011, France.
| | - Mercedes Quintana
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| | - Philippe Auzeloux
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| | - Florent Cachin
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France; Centre Jean Perrin, Clermont-Ferrand F-63011, France.
| | - Françoise Degoul
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| |
Collapse
|
9
|
The Potentiation of Anti-Tumor Immunity by Tumor Abolition with Alpha Particles, Protons, or Carbon Ion Radiation and Its Enforcement by Combination with Immunoadjuvants or Inhibitors of Immune Suppressor Cells and Checkpoint Molecules. Cells 2021; 10:cells10020228. [PMID: 33503958 PMCID: PMC7912488 DOI: 10.3390/cells10020228] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
The delivery of radiation therapy (RT) for cancer with intent to cure has been optimized and standardized over the last 80 years. Both preclinical and clinical work emphasized the observation that radiation destroys the tumor and exposes its components to the immune response in a mode that facilitates the induction of anti-tumor immunity or reinforces such a response. External beam photon radiation is the most prevalent in situ abolition treatment, and its use exposed the “abscopal effect”. Particle radiotherapy (PRT), which has been in various stages of research and development for 70 years, is today available for the treatment of patients in the form of alpha particles, proton, or carbon ion radiotherapy. Charged particle radiotherapy is based on the acceleration of charged species, such as protons or carbon-12, which deposit their energy in the treated tumor and have a higher relative biological effectiveness compared with photon radiation. In this review, we will bring evidence that alpha particles, proton, or carbon ion radiation can destroy tumors and activate specific anti-tumor immune responses. Radiation may also directly affect the distribution and function of immune cells such as T cells, regulatory T cells, and mononuclear phagocytes. Tumor abolition by radiation can trigger an immune response against the tumor. However, abolition alone rarely induces effective anti-tumor immunity resulting in systemic tumor rejection. Immunotherapy can complement abolition to reinforce the anti-tumor immunity to better eradicate residual local and metastatic tumor cells. Various methods and agents such as immunoadjuvants, suppressor cell inhibitors, or checkpoint inhibitors were used to manipulate the immune response in combination with radiation. This review deals with the manifestations of particle-mediated radiotherapy and its correlation with immunotherapy of cancer.
Collapse
|
10
|
Effect of radiotherapy on survival in advanced hepatocellular carcinoma patients treated with sorafenib: a nationwide cancer-registry-based study. Sci Rep 2021; 11:1614. [PMID: 33452421 PMCID: PMC7810734 DOI: 10.1038/s41598-021-81176-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/01/2021] [Indexed: 12/18/2022] Open
Abstract
Sorafenib is the standard treatment for advanced hepatocellular carcinoma (HCC) patients. This study aims to determine whether combining radiotherapy with sorafenib administration increases its efficacy. The study cohort included 4763 patients with diagnosed advanced HCC who received sorafenib between January 2012 and December 2015, as reported in medical records in the Taiwan Cancer Registry database. The effect of sorafenib with or without radiotherapy on survival was calculated using the Kaplan–Meier method and compared using the log-rank test. A Cox proportional hazards model was used for multivariate analysis. Patients receiving sorafenib plus radiotherapy had greater 1-year survival than did those receiving sorafenib alone (P < 0.001). Uni- and multivariate analyses also showed that radiotherapy increased survival after adjusting for confounders (adjusted HR 0.57; 95% CI 0.51–0.63). Further stratified analysis according to the timing of radiotherapy relative to sorafenib treatment revealed that patients who underwent radiotherapy after sorafenib had greater 1-year survival than did those undergoing radiotherapy within sorafenib use or sorafenib alone (adjusted HR 0.39; 95% CI 0.27–0.54). Combined treatment with sorafenib and radiotherapy results in greater HCC patient survival and should be considered an option for treating this challenging disease.
Collapse
|
11
|
Ochoa de Olza M, Navarro Rodrigo B, Zimmermann S, Coukos G. Turning up the heat on non-immunoreactive tumours: opportunities for clinical development. Lancet Oncol 2020; 21:e419-e430. [PMID: 32888471 DOI: 10.1016/s1470-2045(20)30234-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
Abstract
Notable advances have been achieved in the treatment of cancer since the advent of immunotherapy, and immune checkpoint inhibitors have shown clinical benefit across a wide variety of tumour types. Nevertheless, most patients still progress on these treatments, highlighting the importance of unravelling the underlying mechanisms of primary resistance to immunotherapy. A well described biomarker of non-responsiveness to immune checkpoint inhibitors is the absence or low presence of lymphocytes in the tumour microenvironment, so-called cold tumours. There are five mechanisms of action that have the potential to turn cold tumours into so-called hot and inflamed tumours, hence increasing the tumour's responsiveness to immunotherapy-increasing local inflammation, neutralising immunosuppression at the tumour site, modifying the tumour vasculature, targeting the tumour cells themselves, or increasing the frequency of tumour-specific T cells. In this Review, we discuss preclinical data that serves as the basis for ongoing immunotherapy clinical trials for the treatment of non-immunoreactive tumours, as well as reviewing clinical and translational data where available. We explain how improving our understanding of the underlying mechanisms of primary resistance to immunotherapy will help elucidate an increasingly granular view of the tumour microenvironment cellular composition, functional status, and cellular localisation, with the goal of further therapy refinement.
Collapse
Affiliation(s)
- María Ochoa de Olza
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Service of Immuno-Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Blanca Navarro Rodrigo
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Service of Immuno-Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Stefan Zimmermann
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Service of Immuno-Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Service of Immuno-Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
12
|
Domankevich V, Efrati M, Schmidt M, Glikson E, Mansour F, Shai A, Cohen A, Zilberstein Y, Flaisher E, Galalae R, Kelson I, Keisari Y. RIG-1-Like Receptor Activation Synergizes With Intratumoral Alpha Radiation to Induce Pancreatic Tumor Rejection, Triple-Negative Breast Metastases Clearance, and Antitumor Immune Memory in Mice. Front Oncol 2020; 10:990. [PMID: 32766128 PMCID: PMC7379859 DOI: 10.3389/fonc.2020.00990] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Diffusing alpha-emitting radiation therapy (DaRT) employs intratumoral Ra-224-coated seeds that efficiently destroy solid tumors by slowly releasing alpha-emitting atoms inside the tumor. In immunogenic tumor models, DaRT was shown to activate systemic antitumor immunity. Agonists of the membrane-bound toll-like receptors (TLRs) enhanced these effects and led to tumor rejection. Here, we examined the combination of DaRT with agents that activate a different type of pattern recognition receptors, the cytoplasmatic RIG1-like receptors (RLRs). In response to cytoplasmatic viral dsRNA, RLRs activate an antiviral immune response that includes the elevation of antigen presentation. Thus, it was postulated that in low-immunogenic tumor models, RLR activation in tumor cells prior to the induction of their death by DaRT will be superior compared to TLR activation. Intratumoral cytoplasmatic delivery of the dsRNA mimic polyIC by polyethylenimine (PEI), was used to activate RLR, while polyIC without PEI was used to activate TLR. PolyIC(PEI) prior to DaRT synergistically retarded 4T1 triple-negative breast tumors and metastasis development more efficiently than polyIC and rejected panc02 pancreatic tumors in some of the treated mice. Splenocytes from treated mice, adoptively transferred to naive mice in combination with 4T1 tumor cells, delayed tumor development compared to naïve splenocytes. Low-dose cyclophosphamide, known to reduce T regulatory cell number, enhanced the effect of DaRT and polyIC(PEI) and led to high long-term survival rates under neoadjuvant settings, which confirmed metastasis clearance. The epigenetic drug decitabine, known to activate RLR in low doses, was given intraperitoneally prior to DaRT and caused tumor growth retardation, similar to local polyIC(PEI). The systemic and/or local administration of RLR activators was also tested in the squamous cell carcinoma (SCC) tumor model SQ2, in which a delay in tumor re-challenge development was demonstrated. We conclude that RIG-I-like activation prior to intratumoral alpha radiation may serve as a potent combination technique to reduce both tumor growth and the spread of distant metastases in low-immunogenic and metastatic tumor models.
Collapse
Affiliation(s)
- Vered Domankevich
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.,Alpha Tau Medical, Tel Aviv-Yafo, Israel
| | - Margalit Efrati
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.,Alpha Tau Medical, Tel Aviv-Yafo, Israel
| | - Michael Schmidt
- Alpha Tau Medical, Tel Aviv-Yafo, Israel.,Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Eran Glikson
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.,Department of Otolaryngology, Head and Neck Surgery, Sheba Medical Center, Tel HaShomer, Israel
| | - Fairuz Mansour
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Amit Shai
- Alpha Tau Medical, Tel Aviv-Yafo, Israel
| | - Adi Cohen
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Yael Zilberstein
- Sackler Cellular and Molecular Imaging Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | | - Razvan Galalae
- MedAustron, Wiener Neustadt, Austria.,Medical Faculty, Christian-Albrechts University, Kiel, Germany
| | - Itzhak Kelson
- Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Yona Keisari
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
13
|
Rouanet J, Benboubker V, Akil H, Hennino A, Auzeloux P, Besse S, Pereira B, Delorme S, Mansard S, D'Incan M, Degoul F, Rouzaire PO. Immune checkpoint inhibitors reverse tolerogenic mechanisms induced by melanoma targeted radionuclide therapy. Cancer Immunol Immunother 2020; 69:2075-2088. [PMID: 32447411 DOI: 10.1007/s00262-020-02606-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
In line with the ongoing phase I trial (NCT03784625) dedicated to melanoma targeted radionuclide therapy (TRT), we explore the interplay between immune system and the melanin ligand [131I]ICF01012 alone or combined with immunotherapy (immune checkpoint inhibitors, ICI) in preclinical models. Here we demonstrate that [131I]ICF01012 induces immunogenic cell death, characterized by a significant increase in cell surface-exposed annexin A1 and calreticulin. Additionally, [131I]ICF01012 increases survival in immunocompetent mice, compared to immunocompromised (29 vs. 24 days, p = 0.0374). Flow cytometry and RT-qPCR analyses highlight that [131I]ICF01012 induces adaptive and innate immune cell recruitment in the tumor microenvironment. [131I]ICF01012 combination with ICIs (anti-CTLA-4, anti-PD-1, anti-PD-L1) has shown that tolerance is a main immune escape mechanism, whereas exhaustion is not present after TRT. Furthermore, [131I]ICF01012 and ICI combination has systematically resulted in a prolonged survival (p < 0.0001) compared to TRT alone. Specifically, [131I]ICF01012 + anti-CTLA-4 combination significantly increases survival compared to anti-CTLA-4 alone (41 vs. 26 days; p = 0.0011), without toxicity. This work represents the first global characterization of TRT-induced modifications of the antitumor immune response, demonstrating that tolerance is a main immune escape mechanism and that combining TRT and ICI is promising.
Collapse
Affiliation(s)
- Jacques Rouanet
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France. .,Department of Dermatology and Oncodermatology, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63000, Clermont-Ferrand, France. .,Centre Jean Perrin, 58, rue Montalembert, 63011, Clermont-Ferrand, France.
| | - Valentin Benboubker
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France.,Department of Histocompatibility and Immunogenetics, CHU Gabriel Montpied, 58 rue Montalembert, 63000, Clermont-Ferrand, France
| | - Hussein Akil
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France
| | - Ana Hennino
- UMR INSERM 1052 CNRS 5286 CRCL, 28 rue Laennec, 69008, Lyon, France
| | - Philippe Auzeloux
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France
| | - Sophie Besse
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit, DRCI, CHU Gabriel Montpied, 58 rue Montalembert, 63000, Clermont-Ferrand, France
| | - Solène Delorme
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France
| | - Sandrine Mansard
- Department of Dermatology and Oncodermatology, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63000, Clermont-Ferrand, France
| | - Michel D'Incan
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France.,Department of Dermatology and Oncodermatology, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63000, Clermont-Ferrand, France
| | - Françoise Degoul
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France
| | - Paul-Olivier Rouzaire
- UMR1240 INSERM, Université Clermont Auvergne, 58, rue Montalembert, BP 184, 63005, Clermont-Ferrand, France.,Department of Histocompatibility and Immunogenetics, CHU Gabriel Montpied, 58 rue Montalembert, 63000, Clermont-Ferrand, France
| |
Collapse
|
14
|
Atomic Nanogenerators in Targeted Alpha Therapies: Curie's Legacy in Modern Cancer Management. Pharmaceuticals (Basel) 2020; 13:ph13040076. [PMID: 32340103 PMCID: PMC7243103 DOI: 10.3390/ph13040076] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Atomic in vivo nanogenerators such as actinium-225, thorium-227, and radium-223 are of increasing interest and importance in the treatment of patients with metastatic cancer diseases. This is due to their peculiar physical, chemical, and biological characteristics, leading to astonishing responses in otherwise resistant patients. Nevertheless, there are still a few obstacles and hurdles to be overcome that hamper the broader utilization in the clinical setting. Next to the limited supply and relatively high costs, the in vivo complex stability and the fate of the recoiling daughter radionuclides are substantial problems that need to be solved. In radiobiology, the mechanisms underlying treatment efficiency, possible resistance mechanisms, and late side effect occurrence are still far from being understood and need to be unraveled. In this review, the current knowledge on the scientific and clinical background of targeted alpha therapies is summarized. Furthermore, open issues and novel approaches with a focus on the future perspective are discussed. Once these are unraveled, targeted alpha therapies with atomic in vivo nanogenerators can be tailored to suit the needs of each patient when applying careful risk stratification and combination therapies. They have the potential to become one of the major treatment pillars in modern cancer management.
Collapse
|
15
|
Real-time prediction of patient immune cell modulation during irreversible electroporation therapy. Sci Rep 2019; 9:17739. [PMID: 31780711 PMCID: PMC6882846 DOI: 10.1038/s41598-019-53974-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022] Open
Abstract
Immunotherapies have demonstrated limited efficacy in pancreatic ductal adenocarcinoma (PDAC) patients despite their success in treating other tumor types. This limitation is largely due to the relatively immunosuppressive environment surrounding the tumor. A focal ablative technique called irreversible electroporation (IRE) has been shown to modulate this environment, enhancing the efficacy of immunotherapy. One enhancing factor related to improved prognosis is a decrease in regulatory T cells (Treg). This decrease has been previously unpredictable for clinicians using IRE, who currently have limited real-time metrics for determining the activation of the patient’s immune response. Here, we report that larger overall changes in output current are correlated with larger decreases in T cell populations 24 hours post-treatment. This result suggests that clinicians can make real-time decisions regarding optimal follow-up therapy based on the range of output current delivered during treatment. This capability could maximize the immunomodulating effect of IRE in synergy with follow-up immunotherapy. Additionally, these results suggest that feedback from a preliminary IRE treatment of the local tumor may help inform clinicians regarding the timing and choice of subsequent therapies, such as resection, immunotherapy, chemotherapy, or follow-up thermal or non-thermal ablation.
Collapse
|
16
|
Hess KL, Medintz IL, Jewell CM. Designing inorganic nanomaterials for vaccines and immunotherapies. NANO TODAY 2019; 27:73-98. [PMID: 32292488 PMCID: PMC7156029 DOI: 10.1016/j.nantod.2019.04.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vaccines and immunotherapies have changed the face of health care. Biomaterials offer the ability to improve upon these medical technologies through increased control of the types and concentrations of immune signals delivered. Further, these carriers enable targeting, stability, and delivery of poorly soluble cargos. Inorganic nanomaterials possess unique optical, electric, and magnetic properties, as well as defined chemistry, high surface-to-volume- ratio, and high avidity display that make this class of materials particularly advantageous for vaccine design, cancer immunotherapy, and autoimmune treatments. In this review we focus on this understudied area by highlighting recent work with inorganic materials - including gold nanoparticles, carbon nanotubes, and quantum dots. We discuss the intrinsic features of these materials that impact the interactions with immune cells and tissue, as well as recent reports using inorganic materials across a range of emerging immunological applications.
Collapse
Affiliation(s)
- Krystina L. Hess
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene St, Baltimore, MD, 21201 USA
- U.S. Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene St, Baltimore, MD, 21201, USA
| |
Collapse
|
17
|
Abstract
With the development of radiotherapeutic oncology, computer technology and medical imaging technology, radiation therapy has made great progress. Research on the impact and the specific mechanism of radiation on tumors has become a central topic in cancer therapy. According to the traditional view, radiation can directly affect the structure of the DNA double helix, which in turn activates DNA damage sensors to induce apoptosis, necrosis, and aging or affects normal mitosis events and ultimately rewires various biological characteristics of neoplasm cells. In addition, irradiation damages subcellular structures, such as the cytoplasmic membrane, endoplasmic reticulum, ribosome, mitochondria, and lysosome of cancer cells to regulate various biological activities of tumor cells. Recent studies have shown that radiation can also change the tumor cell phenotype, immunogenicity and microenvironment, thereby globally altering the biological behavior of cancer cells. In this review, we focus on the effects of therapeutic radiation on the biological features of tumor cells to provide a theoretical basis for combinational therapy and inaugurate a new era in oncology.
Collapse
Affiliation(s)
- Jin-Song Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, RM6102, New Research Building, 17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Hai-Juan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, RM6102, New Research Building, 17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China.
| | - Hai-Li Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, RM6102, New Research Building, 17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China.
| |
Collapse
|
18
|
Mertens B, Cristina de Araujo Nogueira T, Topalis D, Stranska R, Snoeck R, Andrei G. Investigation of tumor-tumor interactions in a double human cervical carcinoma xenograft model in nude mice. Oncotarget 2018; 9:21978-22000. [PMID: 29774117 PMCID: PMC5955163 DOI: 10.18632/oncotarget.25140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/27/2018] [Indexed: 12/15/2022] Open
Abstract
Tumor-tumor distant interactions within one organism are of major clinical relevance determining clinical outcome. To investigate this poorly understood phenomenon, a double human cervical xenograft model in nude mice was developed. A first tumor was induced subcutaneously by injection of human papillomavirus positive cervical carcinoma cells into the mouse lower right flank and 3 weeks later, animals were challenged with the same tumor cell line injected subcutaneously into the upper left flank. These tumors had no direct physical contact and we found no systemic changes induced by the primary tumor affecting the growth of a secondary tumor. However, ablation of the primary tumor by local treatment with cidofovir, a nucleotide analogue with known antiviral and antiproliferative properties, resulted not only in a local antitumor effect but also in a temporary far-reaching effect leading to retarded growth of the challenged tumor. Cidofovir far-reaching effects were linked to a reduced tumor-driven inflammation, to increased anti-tumor immune responses, and could not be enhanced by co-administration with immune stimulating adjuvants. Our findings point to the potential use of cidofovir in novel therapeutic strategies aiming to kill tumor cells as well as to influence the immune system to fight cancer.
Collapse
Affiliation(s)
- Barbara Mertens
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | | | - Ruzena Stranska
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Kumar J, Reccia I, Sodergren MH, Kusano T, Zanellato A, Pai M, Spalding D, Zacharoulis D, Habib N. Radiofrequency assisted pancreaticoduodenectomy for palliative surgical resection of locally advanced pancreatic adenocarcinoma. Oncotarget 2018; 9:15732-15739. [PMID: 29644005 PMCID: PMC5884660 DOI: 10.18632/oncotarget.24596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite careful patient selection and preoperative investigations curative resection rate (R0) in pancreaticoduodenectomy ranges from 15% to 87%. Here we describe a new palliative approach for pancreaticoduodenectomy using a radiofrequency energy device to ablate tumor in situ in patients undergoing R1/R2 resections for locally advanced pancreatic ductal adenocarcinoma where vascular reconstruction was not feasible. RESULTS There was neither postoperative mortality nor significant morbidity. Each time the ablation lasted less than 15 minutes. Following radiofrequency ablation it was observed that the tumor remnant attached to the vessel had shrunk significantly. In four patients this allowed easier separation and dissection of the ablated tumor from the adherent vessel leading to R1 resection. In the other two patients, the ablated tumor did not separate from vessel due to true tumor invasion and patients had an R2 resection. The ablated remnant part of the tumor was left in situ. CONCLUSION Whenever pancreaticoduodenectomy with R0 resection cannot be achieved, this new palliative procedure could be considered in order to facilitate resection and enable maximum destruction in remnant tumors. METHOD Six patients with suspected tumor infiltration and where vascular reconstruction was not warranted underwent radiofrequency-assisted pancreaticoduodenectomy for locally advanced pancreatic ductal adenocarcinoma. Radiofrequency was applied across the tumor vertically 5-10 mm from the edge of the mesenteric and portal veins. Following ablation, the duodenum and the head of pancreas were removed after knife excision along the ablated line. The remaining ablated tissue was left in situ attached to the vessel.
Collapse
Affiliation(s)
- Jayant Kumar
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| | - Isabella Reccia
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| | - Mikael H. Sodergren
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| | - Tomokazu Kusano
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| | - Artur Zanellato
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| | - Madhava Pai
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| | - Duncan Spalding
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| | | | - Nagy Habib
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| |
Collapse
|
20
|
Korbelik M. Role of cell stress signaling networks in cancer cell death and antitumor immune response following proteotoxic injury inflicted by photodynamic therapy. Lasers Surg Med 2018; 50:491-498. [DOI: 10.1002/lsm.22810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Mladen Korbelik
- Department of Integrative OncologyBritish Columbia Cancer Agency VancouverBritish ColumbiaCanada
| |
Collapse
|
21
|
Amorphous liquid metal electrodes enabled conformable electrochemical therapy of tumors. Biomaterials 2017; 146:156-167. [PMID: 28918265 DOI: 10.1016/j.biomaterials.2017.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/02/2017] [Indexed: 12/21/2022]
Abstract
Electrochemical treatment of tumors (EChT) has recently been identified as a very effective way for local tumor therapy. However, hindered by the limited effective area of a single rigid electrode, multiple electrodes are often recruited when tackling large tumors, where too many electrodes not only complicate the clinical procedures but also aggravate patients' pain. Here we present a new conceptual electric stimulation tumor therapy through introducing the injectable liquid metal electrodes, which can adapt to complex tumor shapes so as to achieve desired therapeutic performance. This approach can offer evident merits for dealing with the complex physiological situations, especially for those irregular body cavities like stomach, colon, rectum or even blood vessel etc., which are hard to tackle otherwise. As it was disclosed from the conceptual experiments that, Unlike traditional rigid and uncomfortable electrodes, liquid metal possesses high flexibility to attach to any crooked biological position to deliver and adjust targeted electric field to fulfill anticipated tumor destruction. And such amorphous electrodes exhibit rather enhanced treatment effect of tumors. Further, we also demonstrate that EChT with liquid metal electrodes produced more electrochemical products during electrolysis. Transformations with the shapes of liquid metal provided an easily regulatable strategy to improve EChT efficiency, which can conveniently aid to achieve better output compared to multiple electrodes. In vivo EChT of tumors further clarified the effect of liquid metal electrodes in retarding tumor growth and increasing life spans.
Collapse
|
22
|
Takahashi Y, Matsutani N, Nakayama T, Dejima H, Uehara H, Kawamura M. Immunological effect of local ablation combined with immunotherapy on solid malignancies. CHINESE JOURNAL OF CANCER 2017; 36:49. [PMID: 28592286 PMCID: PMC5463413 DOI: 10.1186/s40880-017-0216-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Recent comprehensive investigations clarified that immune microenvironment surrounding tumor cells are deeply involved in tumor progression, metastasis, and response to treatment. Furthermore, several immunotherapeutic trials have achieved successful results, and the immunotherapeutic agents are available in clinical practice. To enhance their demonstrated efficacy, combination of immunotherapy and ablation has begun to emerge. Local ablations have considerable advantages as an alternative therapeutic option, especially its minimal invasiveness. In addition, local ablations have shown immune-regulatory effect in preclinical and clinical studies. Although the corresponding mechanisms are still unclear, the local ablations combined with immunotherapy have been suggested in the treatment of several solid malignancies. This article aims to review the published data on the immune-regulatory effects of local ablations including stereotactic body radiotherapy, cryoablation, radiofrequency ablation, and high-intensity-focused ultrasound. We also discuss the value of local ablations combined with immunotherapy. Local ablations have the potential to improve future patient outcomes; however, the effectiveness and safety of local ablations combined with immunotherapy should be further investigated.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan.
| | - Noriyuki Matsutani
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Takashi Nakayama
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hitoshi Dejima
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hirofumi Uehara
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Masafumi Kawamura
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| |
Collapse
|
23
|
Park WKC, Maxwell AWP, Frank VE, Primmer MP, Paul JB, Collins SA, Lombardo KA, Lu S, Borjeson TM, Baird GL, Dupuy DE. The in vivo performance of a novel thermal accelerant agent used for augmentation of microwave energy delivery within biologic tissues during image-guided thermal ablation: a porcine study. Int J Hyperthermia 2017; 34:11-18. [DOI: 10.1080/02656736.2017.1317367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
| | | | | | | | - Jarod Brian Paul
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, USA
| | | | | | - Shaolei Lu
- Department of Pathology, Rhode Island Hospital, Providence, RI, USA
| | | | | | - Damian Edward Dupuy
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
24
|
Park WKC, Maxwell AWP, Frank VE, Primmer MP, Collins SA, Baird GL, Dupuy DE. Evaluation of a Novel Thermal Accelerant for Augmentation of Microwave Energy during Image-guided Tumor Ablation. Am J Cancer Res 2017; 7:1026-1035. [PMID: 28382173 PMCID: PMC5381263 DOI: 10.7150/thno.18191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/08/2016] [Indexed: 01/08/2023] Open
Abstract
The primary challenge in thermal ablation of liver tumors (e.g. hepatocellular carcinoma and hepatic colorectal cancer) is the relatively high recurrence rate (~30%) for which incomplete ablation at the periphery of the tumor is the most common reason. In an attempt to overcome this, we have developed a novel thermal accelerant (TA) agent capable of augmenting microwave energy from a distance normally unattainable by a single microwave ablation antenna. This cesium-based block co-polymer compound transforms from a liquid to a gel at body temperature and is intrinsically visible by computed tomography. Using an agarose phantom model, herein we demonstrate that both the rate and magnitude of temperature increase during microwave ablation were significantly greater in the presence of TA when compared with controls. These results suggest robust augmentation of microwave energy, and may translate into larger ablation zone volumes within biologic tissues. Further work using in vivo techniques is necessary to confirm these findings.
Collapse
|
25
|
van Meir H, Nout RA, Welters MJP, Loof NM, de Kam ML, van Ham JJ, Samuels S, Kenter GG, Cohen AF, Melief CJM, Burggraaf J, van Poelgeest MIE, van der Burg SH. Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology 2016; 6:e1267095. [PMID: 28344877 PMCID: PMC5353924 DOI: 10.1080/2162402x.2016.1267095] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 11/13/2022] Open
Abstract
New treatments based on combinations of standard therapeutic modalities and immunotherapy are of potential use, but require a profound understanding of immune modulatory properties of standard therapies. Here, the impact of standard (chemo)radiotherapy on the immune system of cervical cancer patients was evaluated. Thirty patients with cervical cancer were treated with external beam radiation therapy (EBRT), using conventional three-dimensional or intensity modulated radiation therapy without constraints for bone marrow sparing. Serial blood sampling for immunomonitoring was performed before, midway and at 3, 6 and 9 weeks after EBRT to analyze the composition of lymphocyte and myeloid-cell populations, the expression of co-stimulatory molecules, T-cell reactivity and antigen presenting cell (APC) function. Therapy significantly decreased the absolute numbers of circulating leukocytes and lymphocytes. Furthermore, the capacity of the remaining T cells to respond to antigenic or mitogenic stimulation was impaired. During treatment the frequency of both CD4+ and CD8+ T cells dropped and CD4+ T cells displayed an increased expression of programmed cell death-1 (PD-1). In vitro blocking of PD-1 successfully increased T-cell reactivity in all five samples isolated before radiotherapy but was less successful in restoring reactivity in samples isolated at later time points. Moreover, (chemo)radiotherapy was associated with an increase in both circulating monocytes and myeloid-derived suppressor cells (MDSCs) and an impaired capacity of APCs to stimulate allogeneic T cells. T-cell reactivity was slowly restored at 6–9 weeks after cessation of therapy. We conclude that conventional (chemo)radiotherapy profoundly suppresses the immune system in cervical cancer patients, and may restrict its combination with immunotherapy.
Collapse
Affiliation(s)
- H van Meir
- Department of Gynecology, Leiden University Medical Center, Leiden, the Netherlands; Centre for Human Drug Research, Leiden, the Netherlands
| | - R A Nout
- Department of Radiation Oncology, Leiden University Medical Center , Leiden, the Netherlands
| | - M J P Welters
- Department of Medical Oncology, Leiden University Medical Center , Leiden, the Netherlands
| | - N M Loof
- Department of Medical Oncology, Leiden University Medical Center , Leiden, the Netherlands
| | - M L de Kam
- Centre for Human Drug Research , Leiden, the Netherlands
| | - J J van Ham
- Department of Medical Oncology, Leiden University Medical Center , Leiden, the Netherlands
| | - S Samuels
- Center Gynecological Oncology Amsterdam , NKI-AvL , Amsterdam, the Netherlands
| | - G G Kenter
- Center Gynecological Oncology Amsterdam , NKI-AvL , Amsterdam, the Netherlands
| | - A F Cohen
- Centre for Human Drug Research , Leiden, the Netherlands
| | | | - J Burggraaf
- Centre for Human Drug Research , Leiden, the Netherlands
| | - M I E van Poelgeest
- Department of Gynecology, Leiden University Medical Center , Leiden, the Netherlands
| | - S H van der Burg
- Department of Medical Oncology, Leiden University Medical Center , Leiden, the Netherlands
| |
Collapse
|
26
|
Confino H, Schmidt M, Efrati M, Hochman I, Umansky V, Kelson I, Keisari Y. Inhibition of mouse breast adenocarcinoma growth by ablation with intratumoral alpha-irradiation combined with inhibitors of immunosuppression and CpG. Cancer Immunol Immunother 2016; 65:1149-58. [PMID: 27495172 PMCID: PMC11028980 DOI: 10.1007/s00262-016-1878-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 07/27/2016] [Indexed: 02/07/2023]
Abstract
It has been demonstrated that aggressive in situ tumor destruction (ablation) could lead to the release of tumor antigens, which can stimulate anti-tumor immune responses. We developed an innovative method of tumor ablation based on intratumoral alpha-irradiation, diffusing alpha-emitters radiation therapy (DaRT), which efficiently ablates local tumors and enhances anti-tumor immunity. In this study, we investigated the anti-tumor potency of a treatment strategy, which combines DaRT tumor ablation with two approaches for the enhancement of anti-tumor reactivity: (1) neutralization of immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and (2) boost the immune response by the immunoadjuvant CpG. Mice bearing DA3 mammary adenocarcinoma with metastases were treated with DaRT wires in combination with a MDSC inhibitor (sildenafil), Treg inhibitor (cyclophosphamide at low dose), and the immunostimulant, CpG. Combination of all four therapies led to a complete rejection of primary tumors (in 3 out of 20 tumor-bearing mice) and to the elimination of lung metastases. The treatment with DaRT and Treg or MDSC inhibitors (without CpG) also resulted in a significant reduction in tumor size, reduced the lung metastatic burden, and extended survival compared to the corresponding controls. We suggest that the therapy with DaRT combined with the inhibition of immunosuppressive cells and CpG reinforced both local and systemic anti-tumor immune responses and displayed a significant anti-tumor effect in tumor-bearing mice.
Collapse
Affiliation(s)
- Hila Confino
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, P.O.Box 39040, 6997801, Tel Aviv, Israel
| | - Michael Schmidt
- School of Physics and Astronomy, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Margalit Efrati
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, P.O.Box 39040, 6997801, Tel Aviv, Israel
| | - Ilan Hochman
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, P.O.Box 39040, 6997801, Tel Aviv, Israel
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Itzhak Kelson
- School of Physics and Astronomy, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yona Keisari
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, P.O.Box 39040, 6997801, Tel Aviv, Israel.
| |
Collapse
|
27
|
Ménager J, Gorin JB, Fichou N, Gouard S, Morgenstern A, Bruchertseifer F, Davodeau F, Kraeber-Bodéré F, Chérel M, Gaschet J, Guilloux Y. [Alpha-Radioimmunotherapy: principle and relevance in anti-tumor immunity]. Med Sci (Paris) 2016; 32:362-9. [PMID: 27137693 DOI: 10.1051/medsci/20163204014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alpha-radioimmunotherapy (α-RIT) is a targeted anti-tumor therapy using usually a monoclonal antibody specific for a tumor antigen that is coupled to an α-particle emitter. α-emitters represent an ideal tool to eradicate disseminated tumors or metastases. Recent data demonstrate that ionizing radiation in addition to its direct cytotoxic ability can also induce an efficient anti-tumor immunity. This suggests that biologic effects on irradiated tissues could be used to potentiate immunotherapy efficacy and opens the way for development of new therapies combining α-RIT and different types of immunotherapy.
Collapse
Affiliation(s)
- Jérémie Ménager
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Jean-Baptiste Gorin
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Nolwenn Fichou
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Sébastien Gouard
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Alfred Morgenstern
- European Commission, Joint research centre, Institute for transuranium elements, Karlsruhe, Allemagne
| | - Frank Bruchertseifer
- European Commission, Joint research centre, Institute for transuranium elements, Karlsruhe, Allemagne
| | - François Davodeau
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Françoise Kraeber-Bodéré
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France - Institut de Cancérologie de l'Ouest, Saint-Herblain, France - CHU Nantes, département de médecine nucléaire, Nantes, France
| | - Michel Chérel
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France - Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Joëlle Gaschet
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Yannick Guilloux
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| |
Collapse
|
28
|
Kumar C, Shetake N, Desai S, Kumar A, Samuel G, Pandey BN. Relevance of radiobiological concepts in radionuclide therapy of cancer. Int J Radiat Biol 2016; 92:173-86. [PMID: 26917443 DOI: 10.3109/09553002.2016.1144944] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Radionuclide therapy (RNT) is a rapidly growing area of clinical nuclear medicine, wherein radionuclides are employed to deliver cytotoxic dose of radiation to the diseased cells/tissues. During RNT, radionuclides are either directly administered or delivered through biomolecules targeting the diseased site. RNT has been clinically used for diverse range of diseases including cancer, which is the focus of the review. CONCLUSIONS The major emphasis in RNT has so far been given towards developing peptides/antibodies and other molecules to conjugate a variety of therapeutic radioisotopes for improved targeting/delivery of radiation dose to the tumor cells. Despite that, many of the RNT approaches have not achieved their desired therapeutic success probably due to poor knowledge about complex and dynamic (i) fate of radiolabeled molecules; (ii) radiation dose delivered; (iii) cellular heterogeneity in tumor mass; and (iv) cellular radiobiological response. Based on understanding gathered during recent years, it may be stated that besides the absorbed dose, the net radiobiological response of tumor/normal cells also determines the clinical response of radiotherapeutic modalities including RNT. The radiosensitivity of tumor/normal cells is governed by radiobiological phenomenon such as radiation-induced bystander effect, genomic instability, adaptive response and low dose hyper-radiosensitivity. These concepts have been well investigated in the context of external beam radiotherapy, but their clinical implications during RNT have received meagre attention. In this direction, a few studies performed using in vitro and in vivo models envisage the possibilities of exploiting the radiobiological knowledge for improved therapeutic outcome of RNT.
Collapse
Affiliation(s)
- Chandan Kumar
- a Radiopharmaceutical Chemistry Section , Bhabha Atomic Research Centre , Mumbai
| | - Neena Shetake
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai
| | - Sejal Desai
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| | - Amit Kumar
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| | - Grace Samuel
- c Isotope Production and Applications Division , Bhabha Atomic Research Centre , Mumbai
| | - Badri N Pandey
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| |
Collapse
|
29
|
Breen LD, Pučić-Baković M, Vučković F, Reiding K, Trbojević-Akmačić I, Šrajer Gajdošik M, Cook MI, Lopez MJ, Wuhrer M, Camara LM, Andjelković U, Dupuy DE, Josić D. IgG and IgM glycosylation patterns in patients undergoing image-guided tumor ablation. Biochim Biophys Acta Gen Subj 2016; 1860:1786-94. [PMID: 26827872 DOI: 10.1016/j.bbagen.2016.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/01/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Image-guided tumor ablation is a technique whereby needle-like applicators are placed directly into solid tumors under guidance typically with computed tomography or ultrasound. Changes in IgG and IgM antibody glycosylation were studied during ablation-induced immune response to cancer, and the use of glycosylation as a biomarker for diagnosis, prognosis and disease treatment was examined. METHODS Plasma from 27 tumor patients was collected immediately before, after and for 6 months following ablation. IgG and IgM antibodies were isolated by use high-throughput chromatography, and analyzed by hydrophilic liquid chromatography. Thorough identification of glycan structures in each chromatography peak was performed by nano-liquid chromatography electrospray ionization mass spectrometry. RESULTS Although antibody glycosylation was found to vary with cancer type, discernable patterns of change based on the successful treatment of tumors by ablation were not identified. One patient with renal clear cell carcinoma and poor disease outcome had unexpectedly high amount of oligomannose IgG glycans during the whole period of monitoring. In contrast, IgM antibodies did not follow the same pattern. CONCLUSIONS These findings suggest that glycosylation patterns are indicative of an immune system that is unable to prevent different types of cancer, rather than products of the immunostimulatory response to the ablation of tumor itself. Analyses of the outcome effect suggested that IgG glycosylation and IgM glycosylation are not associated with tumor ablation. GENERAL SIGNIFICANCE Present work opens a new way for parallel determination of glycosylation changes of both IgG and IgM antibodies by use of high-throughput methods, and their future use as biomarkers for disease diagnosis and prognosis. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Lucas D Breen
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI, USA
| | | | - Frano Vučković
- Genos Ltd., Glycobiology Research Laboratory, Zagreb, Croatia
| | - Karli Reiding
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | | | | | - Madeleine I Cook
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Michael J Lopez
- Center for Statistical Sciences, Brown University, Providence, RI, USA
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands; VU University Amsterdam, Division of BioAnalytical Chemistry, Amsterdam, The Netherlands
| | - L M Camara
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | | - Damian E Dupuy
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, RI, USA.
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Croatia; Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
30
|
Gorin JB, Gouard S, Ménager J, Morgenstern A, Bruchertseifer F, Faivre-Chauvet A, Guilloux Y, Chérel M, Davodeau F, Gaschet J. Alpha Particles Induce Autophagy in Multiple Myeloma Cells. Front Med (Lausanne) 2015; 2:74. [PMID: 26539436 PMCID: PMC4610207 DOI: 10.3389/fmed.2015.00074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/02/2015] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Radiation emitted by the radionuclides in radioimmunotherapy (RIT) approaches induce direct killing of the targeted cells as well as indirect killing through the bystander effect. Our research group is dedicated to the development of α-RIT, i.e., RIT using α-particles especially for the treatment of multiple myeloma (MM). γ-irradiation and β-irradiation have been shown to trigger apoptosis in tumor cells. Cell death mode induced by (213)Bi α-irradiation appears more controversial. We therefore decided to investigate the effects of (213)Bi on MM cell radiobiology, notably cell death mechanisms as well as tumor cell immunogenicity after irradiation. METHODS Murine 5T33 and human LP-1 MM cell lines were used to study the effects of such α-particles. We first examined the effects of (213)Bi on proliferation rate, double-strand DNA breaks, cell cycle, and cell death. Then, we investigated autophagy after (213)Bi irradiation. Finally, a coculture of dendritic cells (DCs) with irradiated tumor cells or their culture media was performed to test whether it would induce DC activation. RESULTS We showed that (213)Bi induces DNA double-strand breaks, cell cycle arrest, and autophagy in both cell lines, but we detected only slight levels of early apoptosis within the 120 h following irradiation in 5T33 and LP-1. Inhibition of autophagy prevented (213)Bi-induced inhibition of proliferation in LP-1 suggesting that this mechanism is involved in cell death after irradiation. We then assessed the immunogenicity of irradiated cells and found that irradiated LP-1 can activate DC through the secretion of soluble factor(s); however, no increase in membrane or extracellular expression of danger-associated molecular patterns was observed after irradiation. CONCLUSION This study demonstrates that (213)Bi induces mainly necrosis in MM cells, low levels of apoptosis, and autophagy that might be involved in tumor cell death.
Collapse
Affiliation(s)
- Jean-Baptiste Gorin
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France
| | - Sébastien Gouard
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France
| | - Jérémie Ménager
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France
| | | | | | - Alain Faivre-Chauvet
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France ; Nuclear Medicine Department, CHU Nantes , Nantes , France
| | - Yannick Guilloux
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France
| | - Michel Chérel
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France ; Institut de Cancérologie de l'Ouest , Saint-Herblain , France
| | - François Davodeau
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France
| | - Joëlle Gaschet
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France
| |
Collapse
|
31
|
Treating metastatic sarcomas locally: A paradoxe, a rationale, an evidence? Crit Rev Oncol Hematol 2015; 95:62-77. [DOI: 10.1016/j.critrevonc.2015.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/28/2014] [Accepted: 01/06/2015] [Indexed: 01/04/2023] Open
|
32
|
Ménager J, Gorin JB, Maurel C, Drujont L, Gouard S, Louvet C, Chérel M, Faivre-Chauvet A, Morgenstern A, Bruchertseifer F, Davodeau F, Gaschet J, Guilloux Y. Combining α-Radioimmunotherapy and Adoptive T Cell Therapy to Potentiate Tumor Destruction. PLoS One 2015; 10:e0130249. [PMID: 26098691 PMCID: PMC4476754 DOI: 10.1371/journal.pone.0130249] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/19/2015] [Indexed: 11/18/2022] Open
Abstract
Ionizing radiation induces direct and indirect killing of cancer cells and for long has been considered as immunosuppressive. However, this concept has evolved over the past few years with the demonstration that irradiation can increase tumor immunogenicity and can actually favor the implementation of an immune response against tumor cells. Adoptive T-cell transfer (ACT) is also used to treat cancer and several studies have shown that the efficacy of this immunotherapy was enhanced when combined with radiation therapy. α-Radioimmunotherapy (α-RIT) is a type of internal radiotherapy which is currently under development to treat disseminated tumors. α-particles are indeed highly efficient to destroy small cluster of cancer cells with minimal impact on surrounding healthy tissues. We thus hypothesized that, in the setting of α-RIT, an immunotherapy like ACT, could benefit from the immune context induced by irradiation. Hence, we decided to further investigate the possibilities to promote an efficient and long-lasting anti-tumor response by combining α-RIT and ACT. To perform such study we set up a multiple myeloma murine model which express the tumor antigen CD138 and ovalbumine (OVA). Then we evaluated the therapeutic efficacy in the mice treated with α-RIT, using an anti-CD138 antibody coupled to bismuth-213, followed by an adoptive transfer of OVA-specific CD8+ T cells (OT-I CD8+ T cells). We observed a significant tumor growth control and an improved survival in the animals treated with the combined treatment. These results demonstrate the efficacy of combining α-RIT and ACT in the MM model we established.
Collapse
Affiliation(s)
- Jérémie Ménager
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France
| | - Jean-Baptiste Gorin
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France
| | - Catherine Maurel
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France
| | | | - Sébastien Gouard
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France
| | | | - Michel Chérel
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France; Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Alain Faivre-Chauvet
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France; CHU Nantes, Nuclear Medicine Department, Nantes, France
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany
| | - François Davodeau
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France
| | - Joëlle Gaschet
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France
| | - Yannick Guilloux
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France
| |
Collapse
|
33
|
Gaipl US, Multhoff G, Scheithauer H, Lauber K, Hehlgans S, Frey B, Rödel F. Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy 2015; 6:597-610. [PMID: 24896628 DOI: 10.2217/imt.14.38] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Besides the direct, targeted effects of ionizing irradiation (x-ray) on cancer cells, namely DNA damage and cell death induction, indirect, nontargeted ones exist, which are mediated in large part by the immune system. Immunogenic forms of tumor cell death induced by x-ray, including immune modulating danger signals like the heat shock protein 70, adenosine triphosphate, and high-mobility group box 1 protein are presented. Further, antitumor effects exerted by cells of the innate (natural killer cells) as well as adaptive immune system (T cells activated by dendritic cells) are outlined. Tumor cell death inhibiting molecules such as survivin are introduced as suitable target for molecularly tailored therapies in combination with x-ray. Finally, reasonable combinations of immune therapies with radiotherapy are discussed.
Collapse
Affiliation(s)
- Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Gorin JB, Guilloux Y, Morgenstern A, Chérel M, Davodeau F, Gaschet J. Using α radiation to boost cancer immunity? Oncoimmunology 2014; 3:e954925. [PMID: 25941605 PMCID: PMC4292714 DOI: 10.4161/21624011.2014.954925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022] Open
Abstract
Radioimmunotherapy aims to deliver radiation directly to cancer cells by means of a tumor specific vector coupled to a radionuclide. Alpha radionuclides are very potent agents to treat disseminated cancer and metastasis. We have demonstrated that α radiation can also induce immunogenic cell death, reinforcing interest in their clinical development.
Collapse
Affiliation(s)
- Jean-Baptiste Gorin
- INSERM UMR 892 - CRCNA ; Nantes, France ; University of Nantes ; Nantes, France ; CNRS UMR 6299 ; Nantes, France
| | - Yannick Guilloux
- INSERM UMR 892 - CRCNA ; Nantes, France ; University of Nantes ; Nantes, France ; CNRS UMR 6299 ; Nantes, France
| | | | - Michel Chérel
- INSERM UMR 892 - CRCNA ; Nantes, France ; University of Nantes ; Nantes, France ; CNRS UMR 6299 ; Nantes, France ; Institut de Cancérologie de l'Ouest ; Saint-Herblain, France
| | - François Davodeau
- INSERM UMR 892 - CRCNA ; Nantes, France ; University of Nantes ; Nantes, France ; CNRS UMR 6299 ; Nantes, France
| | - Joëlle Gaschet
- INSERM UMR 892 - CRCNA ; Nantes, France ; University of Nantes ; Nantes, France ; CNRS UMR 6299 ; Nantes, France
| |
Collapse
|