1
|
Finucane M, Brint E, Houston A. The complex roles of IL-36 and IL-38 in cancer: friends or foes? Oncogene 2025; 44:851-861. [PMID: 40057603 PMCID: PMC11932923 DOI: 10.1038/s41388-025-03293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 03/26/2025]
Abstract
The interleukin-36 (IL-36) family comprises of three pro-inflammatory receptor agonists (IL-36α, IL-36β and IL-36γ), two anti-inflammatory receptor antagonists (IL-36RA and IL-38) along with the IL-36 receptor (IL-36R). Part of the IL-1 cytokine superfamily, the IL-36 family was discovered in the early 2000s due to the homology of its member sequences to the IL-1 cytokines. As pro- and anti-inflammatory cytokines, respectively, IL-36α, IL-36β, IL-36γ and IL-38 aid in maintaining homoeostasis by reciprocally regulating the body's response to damage and disease through IL-36R-associated signalling. With the significant roles of IL-36α, IL-36β and IL-36γ in regulating the immune response realised, interest has grown in investigating their roles in cancer. While initial studies indicated solely tumour-suppressing roles, more recent work has identified tumour-promoting roles in cancer, suggesting a more complex dual functionality of the IL-36 cytokines. The activity of IL-38 in cancer is similarly complex, with the receptor antagonist displaying distinct tumour-suppressive roles, particularly in colorectal cancer (CRC), in addition to broad tumour-promoting roles in various other malignancies. This review provides a comprehensive overview of the IL-36 and IL-38 cytokines, their activation and IL-36R signalling, the physiological functions of these cytokines, and their activity in cancer.
Collapse
Affiliation(s)
- Méabh Finucane
- Department of Medicine, School of Medicine, University College Cork, Cork, Ireland
- Department of Pathology, School of Medicine, Cork University Hospital, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, School of Medicine, Cork University Hospital, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Aileen Houston
- Department of Medicine, School of Medicine, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Jeng LB, Shih FY, Chan WL, Teng CF. Cytokine biomarkers for independent prediction of hepatocellular carcinoma prognosis. Discov Oncol 2025; 16:421. [PMID: 40155531 PMCID: PMC11953510 DOI: 10.1007/s12672-025-02188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Although various therapeutic modalities have been established for HCC, the overall outcomes of patients after treatment remain unsatisfactory, highlighting the need for valuable independent prognostic biomarkers. Cytokines are a large group of multifunctional secretory proteins and play critical roles in regulating development and progression of many cancer types, including HCC. Moreover, the expression levels of many cytokines in tumor/peritumor tissues and serum/plasma samples have been validated as important biomarkers for independently predicting the prognosis of HCC patients. This review provides a comprehensive summary of literature evidence for the independent prognostic significance of cytokine biomarkers in HCC patients receiving different therapies.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung, 404, Taiwan
- Department of Surgery, China Medical University Hospital, Taichung, 404, Taiwan
- Cell Therapy Center, China Medical University Hospital, Taichung, 404, Taiwan
| | - Fu-Ying Shih
- Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, 404, Taiwan
| | - Wen-Ling Chan
- Department of Public Health, College of Public Health, China Medical University, Taichung, 404, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Chiao-Fang Teng
- Organ Transplantation Center, China Medical University Hospital, Taichung, 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, No.91, Hsueh-Shih Rd., Northern Dist., Taichung, 404, Taiwan.
- Master Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
3
|
Aydın U, Karataş A, Artaş G, Öz B, Aydoğdu MS, Artaş H, Akkoç RF, Akar ZA, Koca SS. Exploring the role of immune biomarkers in idiopathic granulomatous mastitis: A clinical and pathological perspective. Hum Immunol 2025; 86:111222. [PMID: 39740302 DOI: 10.1016/j.humimm.2024.111222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Idiopathic granulomatous mastitis (IGM) is a chronic inflammatory disorder characterised by the formation of non-caseating granulomas in breast tissue, primarily affecting young women of childbearing age. The aetiology of IGM remains unclear, with potential factors including trauma, hormonal influences, and autoimmune responses. Recent studies suggest that immune dysregulation may play a critical role in IGM, highlighting the need for exploration of biomarkers involved in inflammation and immune modulation, particularly LL-37, galectin-3, IL-36, and TLR3. METHODS This study included 36 patients diagnosed with IGM and 37 healthy controls. Blood samples were collected from all participants, and serum levels of LL-37, IL-36α, galectin-3, and TLR3 were analyzed using enzyme-linked immunosorbent assay (ELISA). Immunohistochemical evaluations were conducted on breast tissue samples from 16 IGM patients and 10 controls who underwent mammoplasty. Clinical data, including laboratory tests and imaging results, were also collected and analyzed. Statistical analyses were performed using the IBM-SPSS-22.0 software, with significance set at p < 0.05. RESULTS Serum levels of LL-37, IL-36α, galectin-3, and TLR3 were significantly lower in IGM patients compared to healthy controls (p < 0.001 for all). Immunohistochemical analysis revealed reduced expression of LL-37 in IGM tissue samples, while galectin-3 levels were comparable between the IGM and control groups (p = 0.32). Clinical evaluations indicated significant improvements in inflammatory markers (CRP and ESR) and mass size over the treatment period. CONCLUSIONS The findings of this study suggest that LL-37, IL-36α, galectin-3, and TLR3 are implicated in the pathogenesis of IGM, with their serum levels being significantly diminished in affected patients. The observed reduction in LL-37 may contribute to the decline in IL-36α and TLR3 levels, indicating a potential role of these biomarkers in the inflammatory processes associated with IGM. Further research is warranted to elucidate the mechanisms underlying these alterations and their implications for the diagnosis and treatment of IGM.
Collapse
Affiliation(s)
- Umut Aydın
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Karataş
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Gökhan Artaş
- Department of Pathology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | - Burak Öz
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Mesude Seda Aydoğdu
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | - Hakan Artaş
- Department of Radiology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | - Ramazan Fazıl Akkoç
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Zeynel Abidin Akar
- Department of Rheumatology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Süleyman Serdar Koca
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
4
|
Ahmad F, Alam MA, Ansari AW, Jochebeth A, Leo R, Al-Abdulla MN, Al-Khawaga S, AlHammadi A, Al-Malki A, Al Naama K, Ahmad A, Buddenkotte J, Steinhoff M. Emerging Role of the IL-36/IL-36R Axis in Multiple Inflammatory Skin Diseases. J Invest Dermatol 2024; 144:206-224. [PMID: 38189700 DOI: 10.1016/j.jid.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
IL-36 is a most recent member of the IL-1 cytokine family, primarily expressed at barrier sites of the body such as the skin, lungs, and intestine. It plays a vital role in inflammation and is implicated in the development of various cutaneous; intestinal; and pulmonary disorders, including psoriasis, inflammatory bowel disease, and chronic obstructive pulmonary disease. IL-36 comprises 4 isoforms: the proinflammatory IL-36α, IL-36β, and IL-36γ and the anti-inflammatory IL-36R antagonist. An imbalance between proinflammatory and anti-inflammatory IL-36 isoforms can contribute to the inflammatory fate of cells and tissues. IL-36 cytokines signal through an IL-36R heterodimer mediating their function through canonical signaling cacade, including the NF-B pathway. Prominent for its role in psoriasis, IL-36 has recently been associated with disease mechanisms in atopic dermatitis, hidradenitis suppurativa, neutrophilic dermatoses, autoimmune blistering disease, and Netherton syndrome. The major cutaneous source of IL-36 cytokines is keratinocytes, pointing to its role in the communication between the epidermis, innate (neutrophils, dendritic cells) immune system, and adaptive (T helper [Th]1 cells, Th17) immune system. Thus, cutaneous IL-36 signaling is crucial for the immunopathological outcome of various skin diseases. Consequently, the IL-36/IL-36R axis has recently been recognized as a promising drug target for the treatment of inflammatory disorders beyond psoriasis. This review summarizes the current update on IL-36 cytokines in inflammatory skin diseases.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Wahid Ansari
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Anh Jochebeth
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rari Leo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Khalifa Al Naama
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jörg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Medical School, Qatar University, Doha, Qatar; Weill Cornell Medicine, Weill Cornell University, New York, New York, USA; Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
5
|
Zhang R, Jiang M, Huang M, Yang J, Liu Q, Zhao Z, Bai Y, He T, Zhang D, Zhang M. Prognostic value of Interleukin-36s in cancers: A systematic review and meta-analysis. Cytokine 2023; 172:156397. [PMID: 37922622 DOI: 10.1016/j.cyto.2023.156397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Interleukin-36s (IL-36s) are a category of inflammatory cytokines and an increasing number of studies over the past decade have found that different kinds of IL-36s play different roles in cancers. This systematic review and meta-analysis aimed to evaluate the prognostic value of IL-36s in different cancer types. METHOD Two reviewers independently searched in PubMed, Cochrane Library and EMBASE up to December 13, 2022. We extracted the hazard ratio (HR) and the confidence intervals (CIs) of the related prognostic outcomes and analyzed the pooled HR. RESULTS We included 12 studies including 1925 patients. In all, six studies including IL-36α, five including IL-36γ and one including IL-36β. A high expression of IL-36α was associated with better overall survival (OS) (HR = 0.48, 95 %CI: 0.37-0.62, P < 0.001) of cancer patients. The expression of IL-36γ was not related with cancers. Further, subgroup analysis showed that the expression of IL-36γ had no correlation with the OS of colorectal cancer (CRC) and non‑small cell lung cancer (NSCLC) patients. Interestingly, a high expression of IL-36γ played contrasting prognostic roles in hepatocellular carcinoma (HCC) (HR = 0.43, 95 %CI: 0.27-0.69, P < 0.001) patients and gastric cancer (GC) (HR = 1.58, 95 %CI: 1.33-1.87, P < 0.001) patients. The only IL-36β related study showed the expression of IL-36β was not correlated with the prognosis of CRC patients (P > 0.05). CONCLUSION IL-36α, IL-36β and IL-36γ possibly play different roles in different cancers. High expression of IL-36α may be associated with good prognostic value in cancer patients, especially in CRC patients. The association between cancers prognosis and expression of IL-36β or IL-36γ needs further evaluation. These conclusions need more clinical prognostic data for confirmation.
Collapse
Affiliation(s)
- Rui Zhang
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China; Department of Pathology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu, China
| | - Mengyuan Jiang
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China; Department of Pathology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu, China
| | - Min Huang
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China; Department of Pathology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu, China
| | - Jing Yang
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China; Department of Pathology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu, China
| | - Qianqian Liu
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China; Department of Pathology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu, China
| | - Ziru Zhao
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China; Department of Pathology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu, China
| | - Yuping Bai
- The Department of Pathology, Hainan Provincial Hospital, Haikou 570100, Hainan, China
| | - Tingting He
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China; Department of Pathology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu, China
| | - Dengcai Zhang
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Maternity and Child Hospital, Lanzhou 730000, Gansu, China
| | - Min Zhang
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China.
| |
Collapse
|
6
|
Liu J, Li J, Luo F, Wu S, Li B, Liu K. The Predictive Value of CD3+/CD8+ Lymphocyte Infiltration and PD-L1 Expression in Colorectal Cancer. Curr Oncol 2023; 30:9647-9659. [PMID: 37999119 PMCID: PMC10670477 DOI: 10.3390/curroncol30110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
AIM The immune system plays an important role in tumor development and treatment. In this study, we aimed to determine the relationships among the expressions of PD-L1, CD3, CD8, MMR proteins, clinicopathological features, and prognosis of CRC. METHODS Immunohistochemistry was used to determine the expression of PD-L1, CD3, and CD8 in 771 patients with CRC. RESULTS The expression of PD-L1 in TC was related to the right colon, adenocarcinoma, and dMMR, and in IC, it was related to younger CRC patients and the TNM stage. The expression of CD3 and CD8 in tumor-infiltrating lymphocytes was related to lymph node metastasis and the TNM stage. The expression of PD-L1 in TC and IC was correlated with the infiltration of CD3+ and CD8+ lymphocytes. Univariate survival analysis showed that the expression of PD-L1 in TC, IC, and dMMR was related to a better prognosis. Multivariate survival analysis showed that age, TNM stage, and dMMR were independent prognostic factors for CRC. The OS of the chemotherapy was significantly higher than that of the non-chemotherapy in III-IV TNM stage patients; CRC patients with positive PD-L1 expression in TC or IC and dMMR did not benefit from chemotherapy. CONCLUSIONS PD-L1 expression in TC and IC was closely related to the density of CD3 and CD8 infiltration in tumor-infiltrating lymphocytes. The expression of CD3 and CD8 in tumor-infiltrating lymphocytes and the expression of PD-L1 in IC were linked to the TNM stage of CRC patients. PD-L1 expression in TC and IC and MMR status may act as an important biomarker for guiding the postoperative treatment of III-IV TNM stage CRC patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Kunping Liu
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China
| |
Collapse
|
7
|
Song Y, Chu H, Liu F, Guo W, Gao N, Chen C, Bao S. The Pro-Tumor Biological Function of IL-36α Plays an Important Role in the Tumor Microenvironment of HCC. Cancer Manag Res 2023; 15:895-904. [PMID: 37663894 PMCID: PMC10474893 DOI: 10.2147/cmar.s407123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose To investigate the role of IL-36 in the tumorigenesis of hepatocellular carcinoma (HCC). IL-36 composed of a natural antagonist (IL-36Ra) and three agonists (IL-36α, -β, -γ) that stimulate inflammation by binding to a common receptor consisting of IL-36R and IL-1RAcP. HCC is a common malignancy associated with high morbidity and mortality, often diagnosed at later stages. Although the exact role of IL-36α in HCC remains controversial, it is hypothesized that it may play a significant role in the development and progression of this cancer. Materials and Methods In the current study, we measured both circulating and intrahepatic levels of IL-36α from HCC patients and healthy controls, using ELISA. The association between IL-36 and the differentiation of HCC was determined. Furthermore, the role IL-36 in both HCC and non-HCC cell lines was evaluated in vitro. Results Circulating and intra-hepatic IL-36α was inversely correlated with differentiation of HCC, suggesting that IL-36α contribute to protection during the development of HCC. Based on bioinformatics, miR-27b-3p is closely related to downstream IL-36α. Thus, we determined miR-27b-3p expression in HCC tissues, showing upregulated miR-27b-3p was inversely correlated with IL-36α in HCC, perhaps via CXCL1 in HCC cells. It was confirmed that IL-36α inhibited HCC proliferation, viability and migration in vitro, consistent with reduced the expression of cytokines IL-1β, IL-18, implying that IL-36α inhibited the possible involvement of pyroptosis. Conclusion Our data suggests that IL-36α may be a potential therapeutic target and a prediction biomarker for the management of HCC.
Collapse
Affiliation(s)
- Yanmei Song
- Department of Clinical Laboratory Diagnostics, School of Public Health Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Huiyuan Chu
- Department of Clinical Laboratory Diagnostics, School of Public Health Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Fang Liu
- Department of Clinical Laboratory Diagnostics, School of Public Health Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Wenjie Guo
- Department of Clinical Laboratory Diagnostics, School of Public Health Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Na Gao
- Department of Clinical Laboratory Diagnostics, School of Public Health Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Che Chen
- Department of Clinical Laboratory Diagnostics, School of Public Health Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Shisan Bao
- Department of Clinical Laboratory Diagnostics, School of Public Health Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
8
|
Li M, Jiang W, Wang Z, Lu Y, Zhang J. New insights on IL‑36 in intestinal inflammation and colorectal cancer (Review). Exp Ther Med 2023; 25:275. [PMID: 37206554 PMCID: PMC10189745 DOI: 10.3892/etm.2023.11974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/21/2023] [Indexed: 05/21/2023] Open
Abstract
Interleukin (IL)-36 is a member of the IL-1 superfamily, which includes three receptor agonists and one antagonist and exhibits a familial feature of inflammatory regulation. Distributed among various tissues, such as the skin, lung, gut and joints, the mechanism of IL-36 has been most completely investigated in the skin and has been used in clinical treatment of generalized pustular psoriasis. Meanwhile, the role of IL-36 in the intestine has also been under scrutiny and has been shown to be involved in the regulation of various intestinal diseases. Inflammatory bowel disease and colorectal cancer are the most predominant inflammatory and neoplastic diseases of the intestine, and multiple studies have identified a complex role for IL-36 in both of them. Indeed, inhibiting IL-36 signaling is currently regarded as a promising therapeutic approach. Therefore, the present review briefly describes the composition and expression of IL-36 and focuses on the role of IL-36 in intestinal inflammation and colorectal cancer. The targeted therapies that are currently being developed for the IL-36 receptor are also discussed.
Collapse
Affiliation(s)
- Minghui Li
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wei Jiang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zehui Wang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yihan Lu
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jun Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
- Correspondence to: Dr Jun Zhang, Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 8th Floor, 8th Building, 68 Changle Road, Qinhuai, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
9
|
Baker KJ, Brint E, Houston A. Transcriptomic and functional analyses reveal a tumour-promoting role for the IL-36 receptor in colon cancer and crosstalk between IL-36 signalling and the IL-17/ IL-23 axis. Br J Cancer 2023; 128:735-747. [PMID: 36482185 PMCID: PMC9977920 DOI: 10.1038/s41416-022-02083-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The interleukin (IL)-36 cytokines are a sub-family of the IL-1 family which are becoming increasingly implicated in the pathogenesis of inflammatory diseases and malignancies. Initial studies of IL-36 signalling in tumorigenesis identified an immune-mediated anti-tumorigenic function for these cytokines. However, more recent studies have shown IL-36 cytokines also contribute to the pathogenesis of lung and colorectal cancer (CRC). METHODS The aim of this study was to investigate IL-36 expression in CRC using transcriptomic datasets and software such as several R packages, Cytoscape, GEO2R and AnalyzeR. Validation of results was completed by qRT-PCR on both cell lines and a patient cohort. Cellular proliferation was assessed by flow cytometry and resazurin reduction. RESULTS We demonstrate that IL-36 gene expression increases with CRC development. Decreased tumoral IL-36 receptor expression was shown to be associated with improved patient outcome. Our differential gene expression analysis revealed a novel role for the IL-36/IL-17/IL-23 axis, with these findings validated using patient-derived samples and cell lines. IL-36γ, together with either IL-17a or IL-22, was able to synergistically induce different genes involved in the IL-17/IL-23 axis in CRC cells and additively induce colon cancer cell proliferation. CONCLUSIONS Collectively, this data support a pro-tumorigenic role for IL-36 signalling in colon cancer, with the IL-17/IL-23 axis influential in IL-36-mediated colon tumorigenesis.
Collapse
Affiliation(s)
- Kevin James Baker
- Department of Pathology, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, University College Cork, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Huang S, Wu H, Luo F, Zhang B, Li T, Yang Z, Ren B, Yin W, Wu D, Tai S. Exploring the role of mast cells in the progression of liver disease. Front Physiol 2022; 13:964887. [PMID: 36176778 PMCID: PMC9513450 DOI: 10.3389/fphys.2022.964887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
In addition to being associated with allergic diseases, parasites, bacteria, and venoms, a growing body of research indicates that mast cells and their mediators can regulate liver disease progression. When mast cells are activated, they degranulate and release many mediators, such as histamine, tryptase, chymase, transforming growth factor-β1 (TGF-β1), tumor necrosis factor–α(TNF-α), interleukins cytokines, and other substances that mediate the progression of liver disease. This article reviews the role of mast cells and their secretory mediators in developing hepatitis, cirrhosis and hepatocellular carcinoma (HCC) and their essential role in immunotherapy. Targeting MC infiltration may be a novel therapeutic option for improving liver disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dehai Wu
- *Correspondence: Sheng Tai, ; Dehai Wu,
| | - Sheng Tai
- *Correspondence: Sheng Tai, ; Dehai Wu,
| |
Collapse
|
11
|
Wang X, Liang Y, Wang H, Zhang B, Soong L, Cai J, Yi P, Fan X, Sun J. The Protective Role of IL-36/IL-36R Signal in Con A-Induced Acute Hepatitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:861-869. [PMID: 35046104 PMCID: PMC8830780 DOI: 10.4049/jimmunol.2100481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022]
Abstract
The IL-36 family, including IL-36α, IL-36β, IL-36γ, and IL-36R antagonist, belong to the IL-1 superfamily. It was reported that IL-36 plays a role in immune diseases. However, it remains unclear how IL-36 regulates inflammation. To determine the role of IL-36/IL-36R signaling pathways, we established an acute hepatitis mouse model (C57BL/6) by i.v. injection of the plant lectin Con A. We found that the levels of IL-36 were increased in the liver after Con A injection. Our results demonstrated the infiltrated neutrophils, but not the hepatocytes, were the main source of IL-36 in the liver. Using the IL-36R-/- mouse model (H-2b), we surprisingly found that the absence of IL-36 signals led to aggravated liver injury, as evidenced by increased mortality, elevated serum alanine aminotransferase and aspartate aminotransferase levels, and severe liver pathological changes. Further investigations demonstrated that a lack of IL-36 signaling induced intrahepatic activation of CD4+ and CD8+ T lymphocytes and increased the production of inflammatory cytokines. In addition, IL-36R-/- mice had reduced T regulatory cell numbers and chemokines in the liver. Together, our results from the mouse model suggested a vital role of IL-36 in regulating T cell function and homeostasis during liver inflammation.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX
| | - Hui Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Biao Zhang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong, China; and
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Jiyang Cai
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX
| | - Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan, China;
| | - Xuegong Fan
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan, China;
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX;
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
12
|
Pham L, Kennedy L, Baiocchi L, Meadows V, Ekser B, Kundu D, Zhou T, Sato K, Glaser S, Ceci L, Alpini G, Francis H. Mast cells in liver disease progression: An update on current studies and implications. Hepatology 2022; 75:213-218. [PMID: 34435373 PMCID: PMC9276201 DOI: 10.1002/hep.32121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Science and Mathematics, Texas A&M University–Central Texas, Killeen, Texas, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | | | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Peñaloza HF, van der Geest R, Ybe JA, Standiford TJ, Lee JS. Interleukin-36 Cytokines in Infectious and Non-Infectious Lung Diseases. Front Immunol 2021; 12:754702. [PMID: 34887860 PMCID: PMC8651476 DOI: 10.3389/fimmu.2021.754702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
The IL-36 family of cytokines were identified in the early 2000’s as a new subfamily of the IL-1 cytokine family, and since then, the role of IL-36 cytokines during various inflammatory processes has been characterized. While most of the research has focused on the role of these cytokines in autoimmune skin diseases such as psoriasis and dermatitis, recent studies have also shown the importance of IL-36 cytokines in the lung inflammatory response during infectious and non-infectious diseases. In this review, we discuss the biology of IL-36 cytokines in terms of how they are produced and activated, as well as their effects on myeloid and lymphoid cells during inflammation. We also discuss the role of these cytokines during lung infectious diseases caused by bacteria and influenza virus, as well as other inflammatory conditions in the lungs such as allergic asthma, lung fibrosis, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Finally, we discuss the current therapeutic advances that target the IL-36 pathway and the possibility to extend these tools to treat lung inflammatory diseases.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rick van der Geest
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel A Ybe
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Janet S Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Wei X, Yao Y, Wang X, Sun J, Zhao W, Qiu L, Zhai W, Qi Y, Gao Y, Wu Y. Interleukin-36α inhibits colorectal cancer metastasis by enhancing the infiltration and activity of CD8 + T lymphocytes. Int Immunopharmacol 2021; 100:108152. [PMID: 34555640 DOI: 10.1016/j.intimp.2021.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is one of the deadliest cancers, and the discovery of new diagnostic biomarkers and therapeutic targets is vital. Interleukin-36α (IL-36α) is a proinflammatory factor that can initiate the inflammatory response and promote the systemic T helper-1 (Th1) immune response. In this study, we investigated the immunological role of IL-36α in CRC. We found that IL-36α was downregulated in human CRC tissues. Patients with high IL-36α levels showed better survival and low IL-36α expression was significantly associated with greater tumor distal metastasis and TNM stage. We constructed two cell lines overexpressing IL-36α (CT26-IL-36α and HT29-IL-36α cells). In vitro assays revealed that IL-36α overexpression reduced the proliferation, migration, and invasion of CT26-IL-36α, and HT29-IL-36α cells. Using CT26-vector and CT26-IL-36α tumor mouse model and lung metastasis models, we found that IL-36α overexpression elicited a significant antitumor effect and inhibited lung metastasis in vivo. These inhibitory effects were associated with an increase in the number of CD3+CD8+ T lymphocytes within the tumor tissue as well as increased cytokine production in CD8+ T lymphocytes present in the tumor, spleen, and draining lymph nodes. Furthermore, we revealed that CT26-IL-36α cells enhanced the secretion of CXCL10 and CXCL11 from chemotactic CD8+ T lymphocytes, as compared with CT26-vector cells. Taken together, these results suggest that IL-36α is a promising therapeutic agent for targeting CRC by promoting the activation, proliferation, and tumor infiltration of T lymphocytes.
Collapse
Affiliation(s)
- Xiuyu Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yongjie Yao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Jiaxin Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China
| | - Lu Qiu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China.
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Boersma B, Jiskoot W, Lowe P, Bourquin C. The interleukin-1 cytokine family members: Role in cancer pathogenesis and potential therapeutic applications in cancer immunotherapy. Cytokine Growth Factor Rev 2021; 62:1-14. [PMID: 34620560 DOI: 10.1016/j.cytogfr.2021.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
The interleukin-1 (IL-1) family is one of the first described cytokine families and consists of eight cytokines (IL-1β, IL-1α, IL-18, IL-33, IL-36α, IL-36β, IL-36γ and IL-37) and three receptor antagonists (IL-1Ra, IL-36Ra and IL-38). The family members are known to play an essential role in inflammation. The importance of inflammation in cancer has been well established in the past decades. This review sets out to give an overview of the role of each IL-1 family member in cancer pathogenesis and show their potential as potential anticancer drug candidates. First, the molecular structure is described. Next, both the pro- and anti-tumoral properties are highlighted. Additionally, a critical interpretation of current literature is given. To conclude, the IL-1 family is a toolbox with a collection of powerful tools that can be considered as potential drugs or drug targets.
Collapse
Affiliation(s)
- Bart Boersma
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland.
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | - Peter Lowe
- Department of Biomolecule Generation and Optimization, Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre, Saint-Julien-en-Genevois, France.
| | - Carole Bourquin
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Department of Anesthesiology, Pharmacology and Intensive Care, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
16
|
Byrne J, Baker K, Houston A, Brint E. IL-36 cytokines in inflammatory and malignant diseases: not the new kid on the block anymore. Cell Mol Life Sci 2021; 78:6215-6227. [PMID: 34365521 PMCID: PMC8429149 DOI: 10.1007/s00018-021-03909-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/02/2022]
Abstract
The IL-36 family of cytokines were first identified in 2000 based on their sequence homology to IL-1 cytokines. Over subsequent years, the ability of these cytokines to either agonise or antagonise an IL-1R homologue, now known as the IL-36 Receptor (IL-36R), was identified and these cytokines went through several cycles of renaming with the current nomenclature being proposed in 2010. Despite being identified over 20 years ago, it is only during the last decade that the function of these cytokines in health and disease has really begun to be appreciated, with both homeostatic functions in wound healing and response to infection, as well as pathological functions now ascribed. In the disease context, over activation of IL-36 has now been associated with many inflammatory diseases including Psoriasis and inflammatory bowel diseases, with roles in cancer also now being investigated. This review summarises the current knowledge of IL-36 biology, its role in inflammatory diseases and focuses on an emerging role for IL-36 in cancer.
Collapse
Affiliation(s)
- James Byrne
- Department of Pathology, Cork University Hospital, University College Cork, Clinical Sciences Building, Cork, Ireland
| | - Kevin Baker
- Department of Pathology, Cork University Hospital, University College Cork, Clinical Sciences Building, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, Cork University Hospital, University College Cork, Clinical Sciences Building, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
17
|
Wang X, Yi P, Liang Y. The Role of IL-36 in Infectious Diseases: Potential Target for COVID-19? Front Immunol 2021; 12:662266. [PMID: 34054828 PMCID: PMC8155493 DOI: 10.3389/fimmu.2021.662266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
IL-36 is a member of the interleukin 1 cytokine family, which is currently experiencing a renaissance due to the growing understanding of its context-dependent roles and advances in our understanding of the inflammatory response. The immunological role of IL-36 has revealed its profound and indispensable functional roles in psoriasis, as well as in several inflammatory diseases, including inflammatory bowel disease (IBD), systemic lupus erythematosus, rheumatoid arthritis (RA) and cancer. More recently, an increasing body of evidence suggests that IL-36 plays a crucial role in viral, bacterial and fungal infections. There is a growing interest as to whether IL-36 contributes to host protective immune responses against infection as well as the potential implications of IL-36 for the development of new therapeutic strategies. In this review, we summarize the recent progress in understanding cellular expression, regulatory mechanisms and biological roles of IL-36 in infectious diseases, which suggest more specific strategies to maneuver IL-36 as a diagnostic or therapeutic target, especially in COVID-19.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
18
|
Xie X, Hu H, He J, Liu Y, Guo F, Luo F, Jiang M, Wang L. Interleukin-36α suppresses growth of non-small cell lung cancer in vitro by reducing angiogenesis. FEBS Open Bio 2021; 11:1353-1363. [PMID: 33713575 PMCID: PMC8091581 DOI: 10.1002/2211-5463.13141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 02/05/2023] Open
Abstract
Interleukin (IL)-36α, a newly recognized IL-1 family member, has been previously reported to play a pivotal role in autoimmunity diseases and acute inflammatory reactions. Recently, several studies have indicated that IL-36α has potential anticancer effects against certain types of cancer. However, the expression pattern and functional role of IL-36α in non-small cell lung cancer (NSCLC) have not been elucidated. Here, we report that the mRNA and protein levels of IL-36α are significantly reduced in NSCLC tissues. Low levels of intratumoral IL-36α are correlated with higher tumor status, advanced TNM stage, increased vascular invasion and shorter overall survival (OS). Intratumoral IL-36α expression is an independent prognostic factor for OS (hazard ratio = 3.081; P = 0.012) in patients with NSCLC. Overexpression of IL-36α in lung cancer cells did not disturb cell proliferation, apoptosis or cell-cycle distribution in vitro, but markedly inhibited tumor growth in vivo. Mechanistically, IL-36α reduced the expression and secretion of vascular endothelial growth factor A through inhibiting hypoxia-inducible factor 1α expression. Finally, decreased IL-36α expression was associated with high microvessel density and vascular endothelial growth factor A in patients with NSCLC. Together, our findings suggest that IL-36α expression is a valuable marker indicating poor prognosis in patients with NSCLC.
Collapse
Affiliation(s)
- Xiaoxiao Xie
- Lung Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.,Department of Chemotherapy, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Haoyue Hu
- Lung Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Jun He
- Lung Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.,Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Yanyang Liu
- Lung Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Fengzhu Guo
- Lung Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Feng Luo
- Lung Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ming Jiang
- Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Li Wang
- Lung Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Malik A, Thanekar U, Amarachintha S, Mourya R, Nalluri S, Bondoc A, Shivakumar P. "Complimenting the Complement": Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma. Front Oncol 2021; 10:627701. [PMID: 33718121 PMCID: PMC7943925 DOI: 10.3389/fonc.2020.627701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander Bondoc
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
20
|
Han Y, Huard A, Mora J, da Silva P, Brüne B, Weigert A. IL-36 family cytokines in protective versus destructive inflammation. Cell Signal 2020; 75:109773. [PMID: 32898612 DOI: 10.1016/j.cellsig.2020.109773] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
The IL-1 family of cytokines and receptors are critical regulators of inflammation. Within the IL-1 family and in contrast to its IL-1 and IL-18 subfamilies, the IL-36 subfamily is still poorly characterized. Three pro-inflammatory agonists IL-36α, IL-36β, IL-36γ, one IL-36 receptor (IL-1R6) antagonist, IL-36RA, and one putative IL-1R6 antagonist, IL-38, have been grouped into the IL-36 cytokine subfamily. IL-36 agonists signal through a common receptor complex to serve as early triggers of inflammatory responses by activating and cross-regulating a number of inflammatory pathways including NF-κB, MAPK and IFN signaling. IL-36RA binds to IL-1R6 to limit inflammatory signaling, while IL-38 may be an antagonist of more than one IL-1 family receptor. Expression patterns of IL-36 family cytokines, being most prominently expressed in epithelial barrier tissues such as the skin and intestines as well as in immune cells, suggest a role in protecting these barriers from infection. Dysregulation of IL-36 family cytokine signaling at physiological barriers, most prominently the skin, induces autoimmune inflammation. However, transferring the potential of IL-36 to induce tissue damage to tumors might benefit cancer patients. Here we summarize signaling pathways regulated by IL-36 family cytokines, including IL-38, and the consequences for physiological protective and pathophysiological destructive inflammation. Moreover, we discuss the limits of current knowledge on IL-36 family function to open potential avenues for research in the future.
Collapse
Affiliation(s)
- Yingying Han
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Special Key Laboratory of Oral Diseases Research, Higher Education Institutions of Guizhou Province, Zunyi Medical University, Zunyi 563006, Guizhou, China; School of Stomatology, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Arnaud Huard
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany
| | - Javier Mora
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Faculty of Microbiology, University of Costa Rica, San José 2060, Costa Rica
| | - Priscila da Silva
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt 60590, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt 60590, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt 60596, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt 60596, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany.
| |
Collapse
|
21
|
Xu D, Wang Y, Zhou K, Wu J, Zhang Z, Zhang J, Yu Z, Liu L, Liu X, Li B, Zheng J. Development and Validation of a Novel 8 Immune Gene Prognostic Signature Based on the Immune Expression Profile for Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:8125-8140. [PMID: 32884295 PMCID: PMC7439501 DOI: 10.2147/ott.s263047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background The immune microenvironment plays a vital role in the development of hepatocellular carcinoma (HCC). This study explored novel immune-related biomarkers to predict the prognosis of patients with HCC. Methods RNA-Seq data were downloaded from The Cancer Genome Atlas (TCGA). Univariate Cox regression was used to identify prognosis-related genes; the Lasso method was used to construct the prognosis risk model. Validation was performed on the International Cancer Genome Consortium (ICGC) cohort, and the C-index was calculated to evaluate its overall predictive performance. Western blots were conducted to evaluate the expression of genes. Results There were 320 immune-related genes, 40 of which were significantly related to prognosis. Eight immune gene signatures (CKLF, IL12A, CCL20, PRELID1, GLMN, ACVR2A, CD7, and FYN) were established by Lasso Cox regression analysis. This immune signature performed well in different cohorts and can be an independent risk factor for prognosis. In addition, the overall predictive performance of this model was higher than the other models reported previously. Conclusion The predictive immune model will enable patients with HCC to be more accurately managed in immunotherapy.
Collapse
Affiliation(s)
- Dafeng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, People's Republic of China
| | - Yu Wang
- Geriatrics Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, People's Republic of China
| | - Kailun Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, People's Republic of China
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, People's Republic of China
| | - Zhensheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, People's Republic of China
| | - Jiachao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, People's Republic of China
| | - Zhiwei Yu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, People's Republic of China
| | - Luzheng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, People's Republic of China
| | - Xiangmei Liu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, People's Republic of China
| | - Bidan Li
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, People's Republic of China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, People's Republic of China
| |
Collapse
|
22
|
Bao S, Hu R, Hambly BD. IL-34, IL-36 and IL-38 in colorectal cancer-key immunoregulators of carcinogenesis. Biophys Rev 2020; 12:925-930. [PMID: 32638330 DOI: 10.1007/s12551-020-00726-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is still a big killer nowadays, but the precise underlying mechanism remains to be explored. It is believed that imbalance of host immunity in the local microenvironment plays a critical role in the tumorigenesis of CRC. IL-34 is inversely correlated with overall survival in CRC patients, perhaps via regulating terminal differentiation of a subset of macrophages (M2). It is believed that the recruitment/differentiation of M2 macrophages within the cancer simply represents an increase in number, but the function of these M2 macrophages may be compromised. IL-36s (IL-36α, β and γ) are constitutively expressed in non-cancer colon tissue, but colonic IL-36α, IL-36β and IL-36γ are substantially reduced in the CRC tissues (~ 80%). IL-36α is an independent factor affecting the survival of CRC patients. The level of IL-36α and/or IL-36γ in CRC tissue could potentially be used as biomarkers for predicting the prognosis of CRC at both the later or early stages of CRC. IL-38 is also an anti-inflammatory cytokine. Colonic IL-38 is ~ 95% lower in CRC compared to non-CRC colonic tissue, consistent with the positive correlation between differentiation of CRC, and colonic tumour expression of IL-38. IL-38 is a reliable/sensitive biomarker for distinguishing between CRC and non-cancer colonic tissue. There is a positive correlation between colonic IL-38 in CRC and prognosis and/or overall survival, particularly in advanced CRC, supporting IL-38 probably being a reliable and consistent independent factor in predicting the prognosis of CRC. The findings above may be useful in exploring therapeutic targeting for precision medicine.
Collapse
Affiliation(s)
- Shisan Bao
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Rong Hu
- Discipline of Anesthesiology, School of Medicine, Hunan University of Medicine, Changsha, China
| | - Brett D Hambly
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
23
|
Qu Q, Zhai Z, Xu J, Li S, Chen C, Lu B. IL36 Cooperates With Anti-CTLA-4 mAbs to Facilitate Antitumor Immune Responses. Front Immunol 2020; 11:634. [PMID: 32351508 PMCID: PMC7174717 DOI: 10.3389/fimmu.2020.00634] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/19/2020] [Indexed: 12/23/2022] Open
Abstract
Despite the great impact on long-term survival of some cancer patients, the immune checkpoint blockade (ICB) therapy is limited by its low response rates for most cancers. There is a pressing need for novel combination immunotherapies that overcome the resistance to current ICB therapies. Cytokines play a pivotal role in tumor immunotherapy by helping initiating and driving antitumor immune responses. Here, we demonstrated that, besides conventional CD4+ and CD8+ T cells, IL36 surprisingly increased the number of tumor-infiltrating regulatory T (Treg) cells in vivo and enhanced proliferation of Tregs in vitro. Administration of CTLA-4 monoclonal antibodies (mAbs) strongly enhanced IL36-stimulated antitumor activities through depletion of Tregs. In addition, a cancer gene therapy using the IL36-loaded nanoparticles in combination with CTLA-4 mAbs additively reduced lung metastasis of breast tumor cells. We further showed that the combined therapy of CTLA-4 mAbs and IL36 led to an increase in proliferation and IFN-γ production by CD4+ and CD8+ T cells when compared to single therapy with CTLA-4 mAbs or IL36. Collectively, our findings demonstrated a new combination therapy that could improve the clinical response to ICB immunotherapy for cancer.
Collapse
Affiliation(s)
- Qiuxia Qu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Zhiwei Zhai
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jieni Xu
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cheng Chen
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
24
|
Yang H, Xuefeng Y, Jianhua X. Systematic review of the roles of interleukins in hepatocellular carcinoma. Clin Chim Acta 2020; 506:33-43. [PMID: 32142718 DOI: 10.1016/j.cca.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with high morbidity and mortality that is often accompanied by immune system disorders and local lymphocyte infiltration. Tumor-infiltrating lymphocytes, cancer cells, stromal cells, and the numerous cytokines they produce, such as chemokines, interferons, tumor necrosis factors, and interleukins, collectively constitute the tumor microenvironment. As a main type of immune effector, interleukin plays opposing roles in regulating tumor cell progression, adhesion, and migration according to its different subtypes. Many reports have concentrated on the roles that interleukins play in HCC, but understanding them systematically remains challenging. This study reviewed the current data to comprehensively summarize the relationships between HCC progression and human interleukin gene families.
Collapse
Affiliation(s)
- Hu Yang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China; Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, China
| | - Yang Xuefeng
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, China
| | - Xiao Jianhua
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
25
|
Chen F, Qu M, Zhang F, Tan Z, Xia Q, Hambly BD, Bao S, Tao K. IL-36 s in the colorectal cancer: is interleukin 36 good or bad for the development of colorectal cancer? BMC Cancer 2020; 20:92. [PMID: 32013927 PMCID: PMC6998229 DOI: 10.1186/s12885-020-6587-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 01/29/2020] [Indexed: 01/16/2023] Open
Abstract
Background and aims Colorectal cancer (CRC) is a major killer. Host immunity is important in tumorigenesis. Direct comparison among IL-36α, IL-36β and IL-36γ in the prognosis of CRC is unclear. Methods CRC tissue arrays were generated from colorectostomy samples with TNM stage, invasion depth and the demography of these patients (n = 185). Using immunohistochemistry/histopathology, IL-36α, IL-36β and IL-36γ were determined, in comparison to non-cancer tissues. Results A significant association was observed between colonic IL-36α, IL-36β or IL-36γ and the presence of cancer (with all P < 0.0001). Using ROC curve analysis, specificity and sensitivity of IL-36α, IL-36β or IL-36γ were confirmed, with area under the curve (AUC) values of 0.68, 0.73 and 0.65, respectively. Significant differences in survival were observed between IL-36αhigh and IL-36αlow (P = 0.003) or IL-36γhigh and IL-36γlow (P = 0.03). Survival curves varied significantly when further stratification into sub-groups, on the basis of combined levels of expression of two isotypes of IL-36 was undertaken. A significant difference was observed when levels of IL-36α and IL-36β were combined (P = 0.01), or a combination of IL-36α plus IL-36γ (P = 0.002). The sub-groups with a combination of IL-36αhigh plus IL-36βhigh, or IL-36αhigh plus IL-36γlow exhibited the longest survival time among CRC patients. In contrast, the sub-groups of IL-36αlow plus IL-36βhigh or IL-36αlow plus IL-36γhigh had the shortest overall survival. Using the log-rank test, IL-36αhigh expression significantly improved survival in patients with an invasion depth of T4 (P < 0.0001), lymph node metastasis (P = 0.04), TNM III-IV (P = 0.03) or with a right-sided colon tumour (P = 0.02). Similarly, IL-36γlow expression was significantly associated with improved survival in patients with no lymph node metastasis (P = 0.008), TNM I-II (P = 0.03) or with a left-sided colon tumour (P = 0.05). Multivariate analysis demonstrated that among IL-36α, IL-36β and IL-36γ, only IL-36α (HR, 0.37; 95% CI, 0.16–0.87; P = 0.02) was an independent factor in survival, using Cox proportional hazards regression analysis. Conclusion IL-36α or IL-36γ are reliable biomarkers in predicting the prognosis of CRC during the later or early stages of the disease, respectively. Combining IL-36α plus IL-36γ appears to more accurately predict the postoperative prognosis of CRC patients. Our data may be useful in the management of CRC.
Collapse
Affiliation(s)
- Feier Chen
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Discipline of Pathology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Meng Qu
- Beihua University School of Medicine, Jilin, China
| | - Feng Zhang
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenyu Tan
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qinghua Xia
- Centre for Disease Control and Prevention of Changning District, Shanghai, China
| | - Brett D Hambly
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Discipline of Pathology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Shisan Bao
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Discipline of Pathology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, The University of Sydney, Sydney, Australia.
| | - Kun Tao
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Shiraha H, Iwamuro M, Okada H. Hepatic Stellate Cells in Liver Tumor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1234:43-56. [PMID: 32040854 DOI: 10.1007/978-3-030-37184-5_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma and intrahepatic cholangiocarcinoma are the most common types of primary liver cancers. Moreover, the liver is the second most frequently involved organ in cancer metastasis after lymph nodes. The tumor microenvironment is crucial for the development of both primary and secondary liver cancers. The hepatic microenvironment consists of multiple cell types, including liver sinusoidal endothelial cells, Kupffer cells, natural killer cells, liver-associated lymphocytes, and hepatic stellate cells (HSCs). The microenvironment of a normal liver changes to a tumor microenvironment when tumor cells exist or tumor cells migrate to and multiply in the liver. Interactions between tumor cells and non-transformed cells generate a tumor microenvironment that contributes significantly to tumor progression. HSCs play a central role in the tumor microenvironment crosstalk. As this crosstalk is crucial for liver carcinogenesis and liver-tumor development, elucidating the mechanism underlying the interaction of HSCs with the tumor microenvironment could provide potential therapeutic targets for liver cancer.
Collapse
Affiliation(s)
- Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Faculty of Medicine, Okayama, Japan.
| | - Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Faculty of Medicine, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Faculty of Medicine, Okayama, Japan
| |
Collapse
|
27
|
Queen D, Ediriweera C, Liu L. Function and Regulation of IL-36 Signaling in Inflammatory Diseases and Cancer Development. Front Cell Dev Biol 2019; 7:317. [PMID: 31867327 PMCID: PMC6904269 DOI: 10.3389/fcell.2019.00317] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022] Open
Abstract
The IL-36 subfamily of cytokines belongs to the IL-1 superfamily and consists of three pro-inflammatory agonists IL-36α, IL-36β, IL-36γ, and an IL-36 receptor (IL-36R) antagonist, IL-36Ra. These IL-36 cytokines function through a common receptor to modulate innate and adaptive immune responses. IL-36 cytokines are expressed as inactive precursors and require proteolytic processing to become fully active. Upon binding to IL-36R, IL-36 agonists augment the expression and production of inflammatory cytokines via activating signaling pathways. IL-36 is mainly expressed in epidermal, bronchial, and intestinal epithelial cells that form the barrier structures of the body and regulates the balance between pro-inflammatory and anti-inflammatory cytokine production at these tissue sites. Dysregulation of IL-36 signaling is a major etiological factor in the development of autoimmune and inflammatory diseases. Besides its critical role in inflammatory skin diseases such as psoriasis, emerging evidence suggests that aberrant IL-36 activities also promote inflammatory diseases in the lung, kidneys, and intestines, underscoring the potential of IL-36 as a therapeutic target for common inflammatory diseases. The role of IL-36 signaling in cancer development is also under investigation, with limited studies suggesting a potential anti-tumor effect. In this comprehensive review, we summarize current knowledge regarding the expression, activation, regulatory mechanisms, and biological functions of IL-36 signaling in immunity, inflammatory diseases, and cancer development.
Collapse
Affiliation(s)
- Dawn Queen
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | | | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| |
Collapse
|
28
|
Zhao X, Chen X, Shen X, Tang P, Chen C, Zhu Q, Li M, Xia R, Yang X, Feng C, Zhu X, Zhu Y, Sun Z, Zhang X, Lu B, Wang X. IL-36β Promotes CD8 + T Cell Activation and Antitumor Immune Responses by Activating mTORC1. Front Immunol 2019; 10:1803. [PMID: 31447838 PMCID: PMC6692458 DOI: 10.3389/fimmu.2019.01803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/17/2019] [Indexed: 01/22/2023] Open
Abstract
Cytokine-amplified functional CD8+ T cells ensure effective eradication of tumors. Interleukin 36α (IL-36α), IL-36β, and IL-36γ share the same receptor complex, composed of the IL-36 receptor (IL-36R), and IL-1RAcP. Recently, we revealed that IL-36γ greatly promoted CD8+ T cell activation, contributing to antitumor immune responses. However, the underlying mechanism of IL-36-mediated CD8+ T cell activation remains understood. In the current study, we proved that IL-36β had the same effect on CD8+ T cell as IL-36γ, and uncovered that IL-36β significantly activated mammalian target of rapamycin complex 1 (mTORC1) of CD8+ T cells. When mTORC1 was inhibited by rapamycin, IL-36β-stimulated CD8+ T cell activation and expansion was drastically downregulated. Further, we elucidated that IL-36β-mediated mTORC1 activation was dependent on the pathway of phosphatidylinositol 3 kinase (PI3K)/Akt, IκB kinase (IKK) and myeloid differentiation factor 88 (MyD88). Inhibition of PI3K or IKK by inhibitor, or deficiency of MyD88, respectively, suppressed mTORC1 signal, causing arrest of CD8+ T cell activation. Additionally, it was validated that IL-36β significantly promoted mTORC1 activation and antitumor function of CD8+ tumor-infiltrating lymphocytes (TILs) in vivo, resulting in inhibition of tumor growth and prolongation of survival of tumor-bearing mice. Taken together, we substantiated that IL-36β could promote CD8+ T cell activation through activating mTORC1 dependent on PI3K/Akt, IKK and MyD88 pathways, leading to enhancement of antitumor immune responses, which laid the foundations for applying IL-36β into tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Zhao
- Department of General Surgery, The First Affiliated Hospital, Soochow University, Suzhou, China.,Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojuan Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinghua Shen
- Department of Pulmonary Tuberculosis, The Affiliated Hospital for Infectious Diseases of Soochow University, Suzhou, China
| | - Peijun Tang
- Department of Pulmonary Tuberculosis, The Affiliated Hospital for Infectious Diseases of Soochow University, Suzhou, China
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qitai Zhu
- Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Muyao Li
- Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Rui Xia
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xi Yang
- School of Medicine, Tsinghua University, Peking, China
| | - Chao Feng
- Institute of Translational Medicine, Soochow University, Suzhou, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yibei Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Zhongwen Sun
- Institute of Medical Biotechnology, Suzhou Vocational Health College, Vocational Health College, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xuefeng Wang
- Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
29
|
Baker KJ, Houston A, Brint E. IL-1 Family Members in Cancer; Two Sides to Every Story. Front Immunol 2019; 10:1197. [PMID: 31231372 PMCID: PMC6567883 DOI: 10.3389/fimmu.2019.01197] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022] Open
Abstract
The IL-1 family of cytokines currently comprises of seven ligands with pro-inflammatory activity (IL-1α and IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ) as well as two ligands with anti-inflammatory activity (IL-37, IL-38). These cytokines are known to play a key role in modulating both the innate and adaptive immunes response, with dysregulation linked to a variety of autoimmune and inflammatory diseases. Given the increasing appreciation of the link between inflammation and cancer, the role of several members of this family in the pathogenesis of cancer has been extensively investigated. In this review, we highlight both the pro- and anti-tumorigenic effects identified for almost all members of this family, and explore potential underlying mechanisms accounting for these divergent effects. Such dual functions need to be carefully assessed when developing therapeutic intervention strategies targeting these cytokines in cancer.
Collapse
Affiliation(s)
- Kevin J Baker
- Department of Pathology, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland.,CancerResearch@UCC, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, University College Cork, Cork, Ireland.,CancerResearch@UCC, University College Cork, Cork, Ireland
| |
Collapse
|
30
|
IL-36 Cytokines: Regulators of Inflammatory Responses and Their Emerging Role in Immunology of Reproduction. Int J Mol Sci 2019; 20:ijms20071649. [PMID: 30987081 PMCID: PMC6479377 DOI: 10.3390/ijms20071649] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023] Open
Abstract
The IL-36 subfamily of cytokines has been recently described as part of the IL-1 superfamily. It comprises three pro-inflammatory agonists (IL-36α, IL-36β, and IL-36γ), their receptor (IL-36R), and one antagonist (IL-36Ra). Although expressed in a variety of cells, the biological relevance of IL-36 cytokines is most evident in the communication between epithelial cells, dendritic cells, and neutrophils, which constitute the common triad responsible for the initiation, maintenance, and expansion of inflammation. The immunological role of IL-36 cytokines was initially described in studies of psoriasis, but novel evidence demonstrates their involvement in further immune and inflammatory processes in physiological and pathological situations. Preliminary studies have reported a dynamic expression of IL-36 cytokines in the female reproductive tract throughout the menstrual cycle, as well as their association with the production of immune mediators and cellular recruitment in the vaginal microenvironment contributing to host defense. In pregnancy, alteration of the placental IL-36 axis has been reported upon infection and pre-eclampsia suggesting its pivotal role in the regulation of maternal immune responses. In this review, we summarize current knowledge regarding the regulatory mechanisms and biological actions of IL-36 cytokines, their participation in different inflammatory conditions, and the emerging data on their potential role in normal and complicated pregnancies.
Collapse
|
31
|
Xu X, Tan Y, Qian Y, Xue W, Wang Y, Du J, Jin L, Ding W. Clinicopathologic and prognostic significance of tumor-infiltrating CD8+ T cells in patients with hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore) 2019; 98:e13923. [PMID: 30633166 PMCID: PMC6336640 DOI: 10.1097/md.0000000000013923] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/21/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In patients with hepatocellular carcinoma (HCC), the clinicopathologic and prognostic roles of tumor-infiltrating CD8+ T cells for survival are still controversial. A meta-analysis was performed to resolve this issue. METHODS We identified studies from PubMed, Embase, and the Cochrane Library to evaluate the clinicopathologic and prognostic value of tumor-infiltrating CD8+ T cells in patients with HCC. A meta-analysis was conducted to estimate clinicopathologic characteristics, overall survival (OS), and disease-free survival. The hazard ratio (HR) and 95% confidence interval (CI) were calculated employing fixed-effect or random-effect models depending on the heterogeneity of the included trials. RESULTS A total of 3509 patients from 21 observational studies were enrolled. The meta-analysis revealed that high levels of intratumoral CD8+ tumor-infiltrating lymphocytes (TILs) were associated with better OS (OS; HR = 0.676, P = .001) and disease-free survival (disease-free survival [DFS]; HR = 0.712, P = .002). The pooled analysis also demonstrated high density of infiltration of CD8+ TILs in margin of tumor (MT) was statistically significant associated with better OS (HR = 0.577; P <.001). Moreover, the patients with low CD8+ TILs infiltration had negative HBSAg (OR = 1.67, P = .02), large tumor size (OR = 1.74, P <.01), and later TNM stage (OR = 1.70, P <.01). CONCLUSIONS Our findings suggested that low levels of CD8+ TILs predict large tumor size, later TNM stage and might be a promising prognostic factor of HCC especially for Asian patients. High-quality randomized controlled trials are needed to determine if CD8+ TILs could serve as targets for immunotherapy in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xuezhong Xu
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province
| | - Yulin Tan
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province
| | - Yan Qian
- Department of Respiration, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Wenbo Xue
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province
| | - Yibo Wang
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province
| | - Jianguo Du
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province
| | - Lei Jin
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province
| | - Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province
| |
Collapse
|
32
|
Ding W, Xu X, Qian Y, Xue W, Wang Y, Du J, Jin L, Tan Y. Prognostic value of tumor-infiltrating lymphocytes in hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore) 2018; 97:e13301. [PMID: 30557978 PMCID: PMC6320107 DOI: 10.1097/md.0000000000013301] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/25/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In patients with hepatocellular carcinoma (HCC), the prognostic role of tumor-infiltrating lymphocytes (TILs) for survival is still controversial. A meta-analysis was performed to investigate the prognostic effect of TILs in HCC. METHODS We identify studies from PubMed, Embase, and the Cochrane Library to evaluate the prognostic value of TILs in patients with HCC. A meta-analysis was conducted to estimate overall survival and disease-free survival. The hazard ratio (HR) and 95% confidence interval (CI) were calculated employing fixed-effect or random-effect models depending on the heterogeneity of the included trials. RESULTS A total of 7905 patients from 46 observational studies were enrolled. For TILs subsets, the density of CD8+, FOXP3+, CD3+, and Granzyme B+ lymphocytes was significantly associated with improved survival (P < .05). The density of FOXP3+ TILs in intratumor (IT) was the most significant prognostic marker (pooled HR = 1.894; 95% CI = 1.659-2.164; P < .001). Patients with high infiltration of CD8+ TILs in IT (pooled HR = 0.676; 95% CI = 0.540-0.845; P = .001) or in margin of tumor (MT) (pooled HR = 0.577; 95% CI = 0.437-0.760; P < .001) had better OS. The pooled analysis revealed that high density of Granzyme B+ T-lymphocytes in IT was statistically significant associated with better OS (pooled HR = 0.621; 95% CI = 0.516-0.748; P < .001) and DFS (pooled HR = 0.678; 95% CI = 0.563-0.815; P < .001). It was interesting that high density of CD3+ in IT foreboded worse OS (pooled HR = 1.008; 95% CI = 1.000-1.015; P = .037), but better DFS (pooled HR = 0.596; 95% CI = 0.374-0.948; P = .029). CONCLUSION Our findings suggested that some TIL subsets could serve as prognostic biomarkers in HCC. High-quality randomized controlled trials are needed to determine if these TILs could serve as targets for immunotherapy in HCC.
Collapse
Affiliation(s)
- Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province
| | - Xuezhong Xu
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province
| | - Yan Qian
- Department of respiration, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Wenbo Xue
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province
| | - Yibo Wang
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province
| | - Jianguo Du
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province
| | - Lei Jin
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province
| | - Yulin Tan
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province
| |
Collapse
|
33
|
Mora J, Weigert A. IL-1 family cytokines in cancer immunity – a matter of life and death. Biol Chem 2016; 397:1125-1134. [DOI: 10.1515/hsz-2016-0215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/06/2016] [Indexed: 12/29/2022]
Abstract
Abstract
IL-1 cytokines constitute a family of biologically active proteins with pleiotropic function especially in immunity. Both protective as well as deleterious properties of individual IL-1 family cytokines in tumor biology have been described. The function of IL-1-family cytokines depends on the producing source, the present (inflammatory) microenvironment and N-terminal proteolytical processing. Each of these determinants is shaped by different modes of cell death. Here we summarize the properties of IL-1 family cytokines in tumor biology, and how they are modulated by cell death.
Collapse
|
34
|
Zhang NB, Zhang JX. Advances in research of tumor microenvironment in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2014; 22:4774-4784. [DOI: 10.11569/wcjd.v22.i31.4774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is not just composed of liver cancer cells; it contains several cell types and extracellular matrix that interact with each other, creating a complex interaction network within a permissive microenvironment. The tumor microenvironment in HCC can not only support liver cancer cell growth but also promote tumor invasion through the stimulation of cancer cell proliferation, migration, and invasion and activation of angiogenesis, which together determine the phenotype of HCC. In this review, we provide an overview of current knowledge on the role of the tumor microenvironment in HCC and its application in prognosis prediction and treatment.
Collapse
|
35
|
Chao J, Zhang XF, Pan QZ, Zhao JJ, Jiang SS, Wang Y, Zhang JH, Xia JC. Decreased expression of TRIM3 is associated with poor prognosis in patients with primary hepatocellular carcinoma. Med Oncol 2014; 31:102. [PMID: 24994609 DOI: 10.1007/s12032-014-0102-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023]
Abstract
Tripartite motif-containing 3 (TRIM3) is a member of the tripartite motif (TRIM) protein family and is reported to be involved in the pathogenesis of various cancers. The role of TRIM3 in hepatocellular carcinoma (HCC) is unknown; thus, the goal of this study was to explore the expression level and prognostic value of TRIM3 in HCC. The expression level of TRIM3 in HCC surgically resected tumors and corresponding nontumorous samples was detected by real-time quantitative RT-PCR, Western blotting, and immunohistochemistry. The correlation between TRIM3 expression level and the clinicopathological features and prognosis of HCC patients was also analyzed. We observed that TRIM3 expression was remarkably decreased in tumor tissue samples from HCC patients, relative to matched nontumorous tissue samples, at the mRNA (p = 0.018) and protein level (p = 0.02). Similarly, immunohistochemical analysis showed that 53.4 % of samples had low TRIM3 protein expression. Clinicopathological analysis revealed that low TRIM3 expression was significantly correlated with tumor size (p = 0.034), histological grade (p < 0.001), serum AFP (p = 0.025), and TNM stage (p = 0.021). Furthermore, Kaplan-Meier survival analysis revealed that low TRIM3 expression was associated with poor survival in HCC patients. Finally, our multivariate Cox regression analysis showed that TRIM3 expression was an independent prognostic factor for overall survival of HCC patients. In conclusion, this study suggests that TRIM3 may play a significant role in HCC progression and acts as a valuable prognostic marker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Jie Chao
- Department of Epidemiology and Health Statistics, Guangdong Key Laboratory of Molecular Epidemiology, Guangdong Pharmaceutical University, 280 Waihuan Road East, Guangzhou, 510010, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Li C, Bi X, Huang Y, Zhao J, Li Z, Zhou J, Zhang M, Huang Z, Zhao H, Cai J. Variants identified by hepatocellular carcinoma and chronic hepatitis B virus infection susceptibility GWAS associated with survival in HBV-related hepatocellular carcinoma. PLoS One 2014; 9:e101586. [PMID: 24987808 PMCID: PMC4079718 DOI: 10.1371/journal.pone.0101586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/08/2014] [Indexed: 02/07/2023] Open
Abstract
Recent genome-wide association studies (GWAS) have identified several common susceptibility loci associated with the risk of hepatocellular carcinoma (HCC) or chronic hepatitis B infection (CHB). However, the relationship between these genetic variants and survival of patients with hepatitis B virus (HBV)-related HCC is still unknown. In this study, 22 single nucleotide polymorphisms (SNPs) were genotyped among 330 HBV-related HCC patients using the MassARRAY system from Sequenom. Cox proportional hazards regression was used to examine the effects of genotype on survival time under an additive model with age, sex, smoking status and clinical stage as covariates. We identified four SNPs on 6p21 (rs1419881 T>C, rs7453920 G>A,rs3997872 G>A and rs7768538 T>C), and two SNPs on 8p12 (rs2275959 C>T and rs7821974 C>T) significantly associated with survival time of HBV-related HCC patients. Our results suggest that HCC or CHB susceptibility loci might also affect the prognosis of patients with HBV-related HCC.
Collapse
Affiliation(s)
- Cong Li
- Department of Abdominal Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Department of Abdominal Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Huang
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jianjun Zhao
- Department of Abdominal Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyu Li
- Department of Abdominal Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianguo Zhou
- Department of Abdominal Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Zhang
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhen Huang
- Department of Abdominal Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Department of Abdominal Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (HZ); (JC)
| | - Jianqiang Cai
- Department of Abdominal Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (HZ); (JC)
| |
Collapse
|