1
|
Quintarelli C, Del Bufalo F, De Ioris MA, Guercio M, Algeri M, Pagliara D, Silvestris DA, Di Nardo M, Sinibaldi M, Di Cecca S, Iaffaldano L, Manni S, Fustaino V, Garganese MC, Colafati GS, Bertaina V, Becilli M, Mastronuzzi A, Fabozzi F, Gunetti M, Iacovelli S, Bugianesi R, Macchia S, Li Pira G, Cefalo MG, Leone G, Del Baldo G, De Angelis B, Locatelli F. Donor-derived GD2-specific CAR T cells in relapsed or refractory neuroblastoma. Nat Med 2025; 31:849-860. [PMID: 39815015 DOI: 10.1038/s41591-024-03449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025]
Abstract
Allogeneic chimeric antigen receptor (CAR) T cells targeting disialoganglioside-GD2 (ALLO_GD2-CART01) could be a therapeutic option for patients with relapsed or refractory, high-risk neuroblastoma (r/r HR-NB) whose tumors did not respond to autologous GD2-CART01 or who have profound lymphopenia. We present a case series of five children with HR-NB refractory to more than three different lines of therapy who received ALLO_GD2-CART01 in a hospital exemption setting. Four of them had previously received allogeneic hematopoietic stem cell transplantation. All patients experienced grade 2 or 3 cytokine release syndrome and one grade 2 neurotoxicity. Moderate acute graft-versus-host-disease occurred in four patients. ALLO_GD2-CART01 persisted for >6 weeks. Post-treatment, two complete responses were achieved and one maintained; in addition, one partial response and one stable disease were observed. Comparing the transcriptomic profiles obtained by RNA sequencing analyses of drug products with patient-matched, peripheral blood ALLO_GD2-CART01 collected at expansion, we found upregulation of genes associated with T cell activation and migration. In addition, after infusion, transcriptomic signaling analysis showed enrichment of genes involved in response to decreased oxygen levels, humoral immune response, cell polarization and immune-synapse formation. In comparison to autologous CAR T cells, ALLO_GD2-CAR T cells were characterized by pathways associated with T cell proliferation, immune-synapse formation and cell chemotaxis. The safety and efficacy of ALLO_GD2-CART01 in children with r/r HR-NB deserve further investigation in a prospective trial.
Collapse
Affiliation(s)
- Concetta Quintarelli
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesca Del Bufalo
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Antonietta De Ioris
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Marika Guercio
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Mattia Algeri
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daria Pagliara
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Domenico Alessandro Silvestris
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Matteo Di Nardo
- Pediatric Intensive Care Unit, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Matilde Sinibaldi
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefano Di Cecca
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Laura Iaffaldano
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Simona Manni
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Valentina Fustaino
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Carmen Garganese
- Nuclear Medicine Unit/Imaging Department, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Valentina Bertaina
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Marco Becilli
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Monica Gunetti
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefano Iacovelli
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Rossana Bugianesi
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefania Macchia
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Giuseppina Li Pira
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Giuseppina Cefalo
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Giovanna Leone
- Transfusion Unit, Department of Laboratories, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Biagio De Angelis
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy.
- Catholic University of the Sacred Heart, Department of Life Sciences and Public Health, Rome, Italy.
| |
Collapse
|
2
|
Prete A, Lanino E, Saglio F, Biffi A, Calore E, Faraci M, Rondelli R, Favre C, Zecca M, Casazza G, Porta F, Luksch R, Cesaro S, Rabusin M, Parasole R, Mura RM, Lo Nigro L, Leardini D, Pagliara D, Locatelli F, Fagioli F. Phase II Study of Allogeneic Hematopoietic Stem Cell Transplantation for Children with High-Risk Neuroblastoma Using a Reduced-Intensity Conditioning Regimen: Results from the AIEOP Trial. Transplant Cell Ther 2024; 30:530.e1-530.e8. [PMID: 38460729 DOI: 10.1016/j.jtct.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Despite aggressive multimodal treatment, the outcomes of pediatric patients with high-risk (HR) neuroblastoma (NB) remain poor. The rationale for allogeneic hematopoietic stem cell transplantation (allo-HCT) to treat NB was based on the possible graft-versus-tumor effect; however, toxicity limits its efficacy. We sought to prospectively assess the feasibility and efficacy of allo-HCT using a reduced-intensity conditioning regimen in pediatric patients with HR NB in a multicenter phase II trial. Primary endpoints were the rate of neutrophil and platelet engraftment, 5-year transplantation-related mortality (TRM), and disease-free survival (DFS). Secondary endpoint measures included the incidence of acute graft-versus-host disease (aGVHD) and chronic GVHD. Fifty-one patients were enrolled in the study. The 5-year cumulative incidence (CuI) of TRM was 29.4 ± 6.4%, and that of DFS was 11.8 ± 4.5%. Patients undergoing allo-HCT within 1 year of diagnosis or with bone marrow as their stem cell source had a higher DFS probability. The CuI of neutrophil engraftment, platelet engraftment, and grade II-IV aGVHD was 97.9 ± 2.1%, 93.8 ± 3.5%, and 47.1 ± 7.0%, respectively. The development of new therapeutic strategies could further improve disease control.
Collapse
Affiliation(s)
- Arcangelo Prete
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Edoardo Lanino
- Hematopoietic Stem Cell Transplantation Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesco Saglio
- Pediatric Oncohematology, Stem Cell Transplantation and Cell Therapy Division, AOU Città della Salute e della Scienza-Regina Margherita Children's Hospital, Turin, Italy
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, University-Hospital of Padua, Padua, Italy
| | - Elisabetta Calore
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, University-Hospital of Padua, Padua, Italy
| | - Maura Faraci
- Hematopoietic Stem Cell Transplantation Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Roberto Rondelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Claudio Favre
- Department of Pediatric Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Meyer Children's University Hospital, Florence, Italy
| | - Marco Zecca
- Department of Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gabriella Casazza
- Pediatric Oncohematology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Fulvio Porta
- Pediatric Oncohematology and Bone Marrow Transplant Unit, Children's Hospital, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Roberto Luksch
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Simone Cesaro
- Pediatric Hematology Oncology Unit, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Marco Rabusin
- Department of Pediatrics, Institute of Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Rosanna Parasole
- Department of Pediatric Hemato-Oncology and Cellular Therapy, Azienda Sanitaria di Rilievo Nazionale Santobono-Pausilipon, Napoli, Italy
| | - Rosa Maria Mura
- Pediatric Oncology Unit, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Luca Lo Nigro
- Regional Reference Center for Pediatric Hematology and Oncology, Azienda Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Daria Pagliara
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Franca Fagioli
- Pediatric Oncohematology, Stem Cell Transplantation and Cell Therapy Division, AOU Città della Salute e della Scienza-Regina Margherita Children's Hospital, Turin, Italy; University of Turin, Turin, Italy
| |
Collapse
|
3
|
Ash S, Askenasy N. Immunotherapy for neuroblastoma by hematopoietic cell transplantation and post-transplant immunomodulation. Crit Rev Oncol Hematol 2023; 185:103956. [PMID: 36893946 DOI: 10.1016/j.critrevonc.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2022] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Neuroblastoma represents a relatively common childhood tumor that imposes therapeutic difficulties. High risk neuroblastoma patients have poor prognosis, display limited response to radiochemotherapy and may be treated by hematopoietic cell transplantation. Allogeneic and haploidentical transplants have the distinct advantage of reinstitution of immune surveillance, reinforced by antigenic barriers. The key factors favorable to ignition of potent anti-tumor reactions are transition to adaptive immunity, recovery from lymphopenia and removal of inhibitory signals that inactivate immune cells at the local and systemic levels. Post-transplant immunomodulation may further foster anti-tumor reactivity, with positive but transient impact of infusions of lymphocytes and natural killer cells both from the donor, the recipient or third party. The most promising approaches include introduction of antigen-presenting cells in early post-transplant stages and neutralization of inhibitory signals. Further studies will likely shed light on the nature and actions of suppressor factors within tumor stroma and at the systemic level.
Collapse
Affiliation(s)
- Shifra Ash
- Department of Pediatric Hematology-Oncology, Rambam Medical Center, Haifa, Israel; Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| | - Nadir Askenasy
- Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
4
|
Bates PD, Rakhmilevich AL, Cho MM, Bouchlaka MN, Rao SL, Hales JM, Orentas RJ, Fry TJ, Gilles SD, Sondel PM, Capitini CM. Combining Immunocytokine and Ex Vivo Activated NK Cells as a Platform for Enhancing Graft-Versus-Tumor Effects Against GD2 + Murine Neuroblastoma. Front Immunol 2021; 12:668307. [PMID: 34489927 PMCID: PMC8417312 DOI: 10.3389/fimmu.2021.668307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Management for high-risk neuroblastoma (NBL) has included autologous hematopoietic stem cell transplant (HSCT) and anti-GD2 immunotherapy, but survival remains around 50%. The aim of this study was to determine if allogeneic HSCT could serve as a platform for inducing a graft-versus-tumor (GVT) effect against NBL with combination immunocytokine and NK cells in a murine model. Lethally irradiated C57BL/6 (B6) x A/J recipients were transplanted with B6 bone marrow on Day +0. On day +10, allogeneic HSCT recipients were challenged with NXS2, a GD2+ NBL. On days +14-16, mice were treated with the anti-GD2 immunocytokine hu14.18-IL2. In select groups, hu14.18-IL2 was combined with infusions of B6 NK cells activated with IL-15/IL-15Rα and CD137L ex vivo. Allogeneic HSCT alone was insufficient to control NXS2 tumor growth, but the addition of hu14.18-IL2 controlled tumor growth and improved survival. Adoptive transfer of ex vivo CD137L/IL-15/IL-15Rα activated NK cells with or without hu14.18-IL2 exacerbated lethality. CD137L/IL-15/IL-15Rα activated NK cells showed enhanced cytotoxicity and produced high levels of TNF-α in vitro, but induced cytokine release syndrome (CRS) in vivo. Infusing Perforin-/- CD137L/IL-15/IL-15Rα activated NK cells had no impact on GVT, whereas TNF-α-/- CD137L/IL-15/IL-15Rα activated NK cells improved GVT by decreasing peripheral effector cell subsets while preserving tumor-infiltrating lymphocytes. Depletion of Ly49H+ NK cells also improved GVT. Using allogeneic HSCT for NBL is a viable platform for immunocytokines and ex vivo activated NK cell infusions, but must be balanced with induction of CRS. Regulation of TNFα or activating NK subsets may be needed to improve GVT effects.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Cell Line, Tumor
- Combined Modality Therapy
- Cytokines/pharmacology
- Female
- Gangliosides/antagonists & inhibitors
- Gangliosides/immunology
- Gangliosides/metabolism
- Graft vs Tumor Effect
- Hematopoietic Stem Cell Transplantation
- Immunotherapy, Adoptive
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Lymphocyte Activation/drug effects
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neuroblastoma/immunology
- Neuroblastoma/metabolism
- Neuroblastoma/pathology
- Neuroblastoma/therapy
- Mice
Collapse
Affiliation(s)
- Paul D. Bates
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Alexander L. Rakhmilevich
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Monica M. Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Myriam N. Bouchlaka
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Seema L. Rao
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Joanna M. Hales
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rimas J. Orentas
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Terry J. Fry
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | | | - Paul M. Sondel
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
5
|
Şahin U, Demirer T. Graft-versus-cancereffect and innovative approaches in thetreatment of refractory solid tumors. Turk J Med Sci 2020; 50:1697-1706. [PMID: 32178508 PMCID: PMC7672351 DOI: 10.3906/sag-1911-112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/14/2020] [Indexed: 12/23/2022] Open
Abstract
Background/aim Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been used for the treatment of various refractory solid tumors during the last two decades. After the demonstration of graft-versus-leukemia (GvL) effect in a leukemic murine model following allo-HSCT from other strains of mice, graft-versus-tumor (GvT) effect in a solid tumor after allo-HSCT has also been reported in a murine model in 1984. Several trials have reported the presence of a GvT effect in patients with various refractory solid tumors, including renal, ovarian and colon cancers, as well as soft tissue sarcomas [1]. The growing data on haploidentical transplants also indicate GvT effect in some pediatric refractory solid tumors. Novel immunotherapy-based treatment modalities aim at inducing an allo-reactivity against the metastatic solid tumor via a GvT effect. Recipient derived immune effector cells (RDICs) in the antitumor reactivity following allo-HSCT have also been considered as an emerging therapy for advanced refractory solid tumors. Conclusion This review summarizes the background, rationale, and clinical results of immune-based strategies using GvT effect for the treatment of various metastatic and refractory solid tumors, as well as innovative approaches such as haploidentical HSCT, CAR-T cell therapies and tumor infiltrating lymphocytes (TIL).
Collapse
Affiliation(s)
- Uğur Şahin
- Hematology Unit, Yenimahalle Education and Research Hospital, Yıldırım Beyazıt University, Ankara, Turkey
| | - Taner Demirer
- Department of Hematology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
Dierckx de Casterlé I, Billiau AD, Sprangers B. Recipient and donor cells in the graft-versus-solid tumor effect: It takes two to tango. Blood Rev 2018; 32:449-456. [PMID: 29678553 DOI: 10.1016/j.blre.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/05/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHSCT) produces -similar to the long-established graft-versus-leukemia effect- graft-versus-solid-tumor effects. Clinical trials reported response rates of up to 53%, occurring mostly but not invariably in association with full donor chimerism and/or graft-versus-host disease. Although donor-derived T cells are considered the principal effectors of anti-tumor immunity after alloHSCT or donor leukocyte infusion (DLI), growing evidence indicate that recipient-derived immune cells may also contribute. Whereas the role of recipient-derived antigen-presenting cells in eliciting graft-versus-host reactions and priming donor T cells following DLI is well known, resulting inflammatory responses may also break tolerance of recipient effector cells towards the tumor. Additionally, mouse studies indicated that post-transplant recipient leukocyte infusion produces anti-leukemia and anti-solid-tumor effects that were exclusively mediated by recipient-type effector cells, without graft-versus-host disease. Here, we review current preclinical and clinical evidence on graft-versus-solid-tumor effects and growing evidence on the effector role of recipient-derived immune cells in the anti-tumor effect of alloHSCT.
Collapse
Affiliation(s)
- Isabelle Dierckx de Casterlé
- Department of Microbiology and Immunology, Laboratory of Experimental Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - An D Billiau
- Department of Microbiology and Immunology, Laboratory of Experimental Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Ben Sprangers
- Department of Microbiology and Immunology, Laboratory of Experimental Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Nephrology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Dierckx de Casterlé I, Fevery S, Rutgeerts O, Poosti F, Struyf S, Lenaerts C, Waer M, Billiau AD, Sprangers B. Reduction of myeloid-derived suppressor cells reinforces the anti-solid tumor effect of recipient leukocyte infusion in murine neuroblastoma-bearing allogeneic bone marrow chimeras. Cancer Immunol Immunother 2018; 67:589-603. [PMID: 29299660 PMCID: PMC11028213 DOI: 10.1007/s00262-017-2114-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/28/2017] [Indexed: 12/23/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation is an emerging treatment option for solid tumors because of its capacity to elicit immune graft-versus-tumor effects. However, these are often limited and associated with GvHD. Adoptive recipient leukocyte infusion (RLI) was shown to enhance anti-tumor responses of allogeneic bone marrow transplantation in murine neuroblastoma (Neuro2A)-bearing chimeras. In contrast to the clinically used donor leukocyte infusion, the RLI anti-tumor effect-elicited by host-versus-graft lymphohematopoietic reactivity-does not cause GvHD; however, the tumor growth-inhibitory effect is incomplete, because overall survival is not prolonged. Here, we studied the anti-solid tumor mechanisms of RLI with the objective to improve its efficacy. Host-versus-graft reactivity following RLI was associated with a systemic cytokine storm, lymph node DC activation, and systemic expansion of host-derived IFN-γ-expressing CD4+ T cells and IFN-γ-and granzyme B-expressing CD8+ T cells, which acquired killing activity against Neuro2A and third-party tumor cells. The tumor showed up-regulation of MHC class I and a transient accumulation of IFN-γ-and granzyme B-expressing CD8+ T cells: the intra-tumor decline in cytotoxic CD8+ T cells coincided with a systemic-and to a lesser extent intra-tumoral-expansion of MDSC. In vivo MDSC depletion with 5-FU significantly improved the local tumor growth-inhibitory effect of RLI as well as overall survival. In conclusion, the RLI-induced alloreactivity gives rise to a host-derived cytotoxic T-cell anti-neuroblastoma response, but also drives an expansion of host-type MDSC that counteracts the anti-tumor effect. This finding identifies MDSC as a novel target to increase the effectiveness of RLI, and possibly other cancer immunotherapies.
Collapse
Affiliation(s)
- Isabelle Dierckx de Casterlé
- Laboratory of Experimental Transplantation, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Herestraat 49, Box 811, 3000, Leuven, Belgium
| | - Sabine Fevery
- Laboratory of Experimental Transplantation, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Herestraat 49, Box 811, 3000, Leuven, Belgium
| | - Omer Rutgeerts
- Laboratory of Experimental Transplantation, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Herestraat 49, Box 811, 3000, Leuven, Belgium
| | - Fariba Poosti
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Caroline Lenaerts
- Laboratory of Experimental Transplantation, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Herestraat 49, Box 811, 3000, Leuven, Belgium
| | - Mark Waer
- Laboratory of Experimental Transplantation, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Herestraat 49, Box 811, 3000, Leuven, Belgium
| | - An D Billiau
- Laboratory of Experimental Transplantation, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Herestraat 49, Box 811, 3000, Leuven, Belgium
| | - Ben Sprangers
- Laboratory of Experimental Transplantation, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Herestraat 49, Box 811, 3000, Leuven, Belgium.
- Department of Nephrology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Neutrophils induced licensing of natural killer cells. Mediators Inflamm 2015; 2015:747680. [PMID: 25977601 PMCID: PMC4419236 DOI: 10.1155/2015/747680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells acquire effector function through a licensing process and exert anti-leukemia/tumor effect. However, there is no means to promote a licensing effect of allogeneic NK cells other than cytomegalovirus reactivation-induced licensing in allogeneic hematopoietic stem cell transplantation in human. In mice, a licensing process is mediated by Ly49 receptors which recognize self-major histocompatibility complex class I. The distribution of four Ly49 receptors showed similar pattern in congenic mice, B10, B10.BR, and B10.D2, which have B10 background. Forty Gy-irradiated 2 × 106 B10.D2 cells including splenocytes, peripheral blood mononuclear cells in untreated mice, or granulocyte colony-stimulating factor treated mice were injected intraperitoneally into B10 mice. We found that murine NK cells were effectively licensed by intraperitoneal injection of donor neutrophils with its corresponding NK receptor ligand in B10 mice as a recipient and B10.D2 as a donor. Mechanistic studies revealed that NK cells showed the upregulation of intracellular interferon-γ and CD107a expression as markers of NK cell activation. Moreover, enriched neutrophils enhanced licensing effect of NK cells; meanwhile, licensing effect was diminished by depletion of neutrophils. Collectively, injection of neutrophils induced NK cell licensing (activation) via NK receptor ligand interaction.
Collapse
|
9
|
Willems L, Waer M, Billiau AD. The graft-versus-neuroblastoma effect of allogeneic hematopoietic stem cell transplantation, a review of clinical and experimental evidence and a perspective on mechanisms. Pediatr Blood Cancer 2014; 61:2151-7. [PMID: 25156335 DOI: 10.1002/pbc.25169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/11/2014] [Indexed: 01/17/2023]
Abstract
Despite aggressive treatment, patients with high-risk neuroblastoma face high relapse rates and bleak prognoses. Increasing evidence that neuroblastoma cells are or can become immunogenic has stimulated research into novel therapies based on triggering or enhancing tumor immunity. Here we review clinical and experimental studies on this subject, the underlying immune mechanisms and perspectives for clinical application. Allogeneic hematopoietic stem cell transplantation has proven to be of substantial benefit in the treatment of certain leukemias through the generation of a graft-versus-leukemia-effect and has become of interest as a possible treatment for patients with solid tumors, including neuroblastoma.
Collapse
Affiliation(s)
- Leen Willems
- Laboratory of Experimental Transplantation, KULeuven, Leuven, Belgium
| | | | | |
Collapse
|