1
|
Wang T, Song W, Tang Y, Yi J, Pan H. Breaking the immune desert: Strategies for overcoming the immunological challenges of pancreatic cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189353. [PMID: 40412630 DOI: 10.1016/j.bbcan.2025.189353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 05/18/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Pancreatic cancer is characterised by its highly aggressive nature and extremely poor prognosis, with a uniquely complex tumour immune microenvironment that manifests as a prototypical "immune desert." This immune-desert phenotype primarily arises from the inherently low immunogenicity of the tumour, the formation of a dense fibrotic stroma, severe deficiency in immune cell infiltration, and profound immunosuppressive effects of the metabolic landscape. Specifically, dysregulated tryptophan metabolism, such as indoleamine 2,3-dioxygenase (IDO)-mediated catabolism, and excessive lactate accumulation contribute to impaired T-cell functionality. Collectively, these factors severely limit the efficacy of current immunotherapy strategies, particularly those based on immune checkpoint inhibitors, which have demonstrated significantly lower clinical response rates in pancreatic cancer than in other malignancies. In response to these therapeutic challenges, this review explores integrated treatment strategies that combine metabolic reprogramming, tumour microenvironment remodelling, and next-generation immune checkpoint blockades, such as LAG-3, TIM-3, and VISTA. These emerging approaches hold substantial promise for clinical application. For example, targeting key metabolic pathways, including glycolysis (Warburg effect) and glutamine metabolism, may help restore T-cell activity by alleviating metabolic stress within the tumour milieu. Additionally, localised administration of immune stimulators such as interleukin-12 (IL-12) and CD40 agonists may enhance immune cell infiltration and promote tumour-specific immune activation. Future research should prioritise large-scale, multicentre clinical trials to validate the therapeutic efficacy of these innovative strategies, aiming to achieve meaningful breakthroughs in pancreatic cancer immunotherapy and significantly improve long-term survival and clinical outcomes in affected patients.
Collapse
Affiliation(s)
- Tianming Wang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China; Zhengning County Community Health Service Center, Qingyang 745300, Gansu Province, China
| | - Wenjing Song
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Yuan Tang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Jianfeng Yi
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China.
| | - Haibang Pan
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
2
|
Gu Q, Sun H, Liu P, Hu X, Yang J, Chen Y, Xing Y. Multiscale deep learning radiomics for predicting recurrence-free survival in pancreatic cancer: A multicenter study. Radiother Oncol 2025; 205:110770. [PMID: 39894259 DOI: 10.1016/j.radonc.2025.110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE This multicenter study aimed to develop and validate a multiscale deep learning radiomics nomogram for predicting recurrence-free survival (RFS) in patients with pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS A total of 469 PDAC patients from four hospitals were divided into training and test sets. Handcrafted radiomics and deep learning (DL) features were extracted from optimal regions of interest, encompassing both intratumoral and peritumoral areas. Univariate Cox regression, LASSO regression, and multivariate Cox regression selected features for three image signatures (intratumoral, peritumoral radiomics, and DL). A multiscale nomogram was constructed and validated against the 8th AJCC staging system. RESULTS The 4 mm peritumoral VOI yielded the best radiomics prediction, while a 15 mm expansion was optimal for deep learning. The multiscale nomogram demonstrated a C-index of 0.82 (95 % CI: 0.78-0.85) in the training set and 0.70 (95 % CI: 0.64-0.76) in the external test 1 (high-volume hospital), with the external test 2 (low-volume hospital) showing a C-index of 0.78 (95 % CI: 0.65-0.91). These outperformed the AJCC system's C-index (0.54-0.57). The area under the curve (AUC) for recurrence prediction at 0.5, 1, and 2 years was 0.89, 0.94, and 0.89 in the training set, with AUC values ranging from 0.75 to 0.97 in the external validation sets, consistently surpassing the AJCC system across all sets. Kaplan-Meier analysis confirmed significant differences in prognosis between high- and low-risk groups (P < 0.01 across all cohorts). CONCLUSION The multiscale nomogram effectively stratifies recurrence risk in PDAC patients, enhancing presurgical clinical decision-making and potentially improving patient outcomes.
Collapse
Affiliation(s)
- Qianbiao Gu
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, 830011 Wulumuqi, China
| | - Huiling Sun
- Department of CT and MR, Traditional Chinese Medicine Hospital of Changji Hui Autonomous Prefecture, 831100 Changji Hui Autonomous Prefecture, China
| | - Peng Liu
- Department of Radiology, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, 410000 Changsha, China
| | - Xiaoli Hu
- Department of Radiology, First Affiliated Hospital of Hunan University of Chinese Medicine, 410000 Changsha, China
| | - Jiankang Yang
- Department of Radiology, Yueyang Central Hospital, 414000 Yueyang, China
| | - Yong Chen
- Department of Radiology, First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, 412000 Zhuzhou, China
| | - Yan Xing
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, 830011 Wulumuqi, China.
| |
Collapse
|
3
|
Liu S, Weng J, Cao M, Zhou Q, Xu M, Xu W, Hu Z, Xu M, Dong Q, Sheng X, Zhou C, Ren N. FGFR2 fusion/rearrangement is associated with favorable prognosis and immunoactivation in patients with intrahepatic cholangiocarcinoma. Oncologist 2024; 29:e1734-e1747. [PMID: 38986528 PMCID: PMC11630758 DOI: 10.1093/oncolo/oyae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Increasing evidence highlights that fibroblast growth factor receptor 2 (FGFR2) fusion/rearrangement shows important therapeutic value for patients with intrahepatic cholangiocarcinoma (ICC). This study aims to explore the association of FGFR2 status with the prognosis and immune cell infiltration profiles of patients with ICC. A total of 226 ICC tissue samples from patients who received surgery at the Department of Liver Surgery at Zhongshan Hospital, Fudan University, were collected retrospectively and assigned to a primary cohort (n = 152) and validation cohort (n = 74) group. Fluorescence in situ hybridization was performed to determine FGFR2 status. Multiplex immunofluorescence (mIF) staining and immunohistochemistry were performed to identify immune cells. Thirty-two (14.2%) ICC tissues presented with FGFR2 fusion/rearrangement. FGFR2 fusion/rearrangement was associated with low levels of carcinoembryonic antigen (CEA, P = .026) and gamma glutamyl transferase (γ-GGT, P = .003), low TNM (P = .012), CNLC (P = .008) staging as well as low tumor cell differentiation (P = .016). Multivariate COX regression analyses revealed that FGFR2 fusion/rearrangement was an independent protective factor for both overall survival (OS) and relapse-free survival in patients with ICC. Furthermore, correlation analysis revealed that an FGFR2 fusion/rearrangement was associated with low levels of Tregs and N2 neutrophils and high levels of N1 neutrophils infiltrating into tumors but not with CD8+ T-cell or macrophage tumor infiltration. FGFR2 fusion/rearrangement may exert a profound impact on the prognosis of ICC patients and reprogram the tumor microenvironment to be an immune-activated state. FGFR2 status may be used for ICC prognostic stratification and as an immunotherapeutic target in patients with ICC.
Collapse
Affiliation(s)
- Shaoqing Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People’s Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
| | - Jialei Weng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People’s Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
| | - Manqing Cao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People’s Republic of China
| | - Qiang Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People’s Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
| | - Min Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People’s Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
| | - Wenxin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People’s Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
| | - Zhiqiu Hu
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People’s Republic of China
| | - Minghao Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People’s Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People’s Republic of China
| | - Xia Sheng
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People’s Republic of China
- Department of Pathology, Minhang Hospital, Fudan University, Shanghai, 201199, People’s Republic of China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People’s Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People’s Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People’s Republic of China
| |
Collapse
|
4
|
Debesset A, Pilon C, Meunier S, Cuelenaere-Bonizec O, Richer W, Thiolat A, Houppe C, Ponzo M, Magnan J, Caron J, Caudana P, Tosello Boari J, Baulande S, To NH, Salomon BL, Piaggio E, Cascone I, Cohen JL. TNFR2 blockade promotes antitumoral immune response in PDAC by targeting activated Treg and reducing T cell exhaustion. J Immunother Cancer 2024; 12:e008898. [PMID: 39562007 PMCID: PMC11580249 DOI: 10.1136/jitc-2024-008898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, highly resistant to standard chemotherapy and immunotherapy. Regulatory T cells (Tregs) expressing tumor necrosis factor α receptor 2 (TNFR2) contribute to immunosuppression in PDAC. Treg infiltration correlates with poor survival and tumor progression in patients with PDAC. We hypothesized that TNFR2 inhibition using a blocking monoclonal antibody (mAb) could shift the Treg-effector T cell balance in PDAC, thus enhancing antitumoral responses. METHOD To support this hypothesis, we first described TNFR2 expression in a cohort of 24 patients with PDAC from publicly available single-cell analysis data. In orthotopic and immunocompetent mouse models of PDAC, we also described the immune environment of PDAC after immune cell sorting and single-cell analysis. The modifications of the immune environment before and after anti-TNFR2 mAb treatment were evaluated as well as the effect on tumor progression. RESULTS Patients with PDAC exhibited elevated TNFR2 expression in Treg, myeloid cells and endothelial cells and lower level in tumor cells. By flow cytometry and single-cell RNA-seq analysis, we identified two Treg populations in orthotopic mouse models: Resting and activated Tregs. The anti-TNFR2 mAb selectively targeted activated tumor-infiltrating Tregs, reducing T cell exhaustion markers in CD8+ T cells. However, anti-TNFR2 treatment alone had limited efficacy in activating CD8+ T cells and only slightly reduced the tumor growth. The combination of the anti-TNFR2 mAb with agonistic anti-CD40 mAb promoted stronger T cell activation, tumor growth inhibition, and improved survival and immunological memory in PDAC-bearing mice. CONCLUSION Our data suggest that combining a CD40 agonist with a TNFR2 antagonist represents a promising therapeutic strategy for patients with PDAC.
Collapse
Affiliation(s)
- Anais Debesset
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Caroline Pilon
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- CIC Biotherapy, Fédération hospitalo-Universitaire TRUE, AP-HP, GH Henri Mondor, Créteil, France
| | - Sylvain Meunier
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | | | - Wilfrid Richer
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Allan Thiolat
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Claire Houppe
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Matteo Ponzo
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Jeanne Magnan
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Jonathan Caron
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Pamela Caudana
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Jimena Tosello Boari
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Sylvain Baulande
- Institut Curie Research Center, ICGex Next-Generation Sequencing Platform, Single Cell Initiative, PSL Research University, Paris, France
| | - Nhu Han To
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- Department of Radiation Oncology, Henri Mondor Breast Center, AP-HP, GH Henri Mondor, Paris, France
| | - Benoit Laurent Salomon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Eliane Piaggio
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Ilaria Cascone
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - José Laurent Cohen
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- CIC Biotherapy, Fédération hospitalo-Universitaire TRUE, AP-HP, GH Henri Mondor, Créteil, France
| |
Collapse
|
5
|
Ala M. Noncoding Ribonucleic Acids (RNAs) May Improve Response to Immunotherapy in Pancreatic Cancer. ACS Pharmacol Transl Sci 2024; 7:2557-2572. [PMID: 39296265 PMCID: PMC11406708 DOI: 10.1021/acsptsci.3c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the seventh most common cause of cancer-related mortality. Despite different methods of treatment, nearly more than 90% of patients with PDAC die shortly after diagnosis. Contrary to promising results in other cancers, immune checkpoint inhibitors (ICIs) showed limited success in PDAC. Recent studies have shown that noncoding RNAs (ncRNAs) are extensively involved in PDAC cell-immune cell interaction and mediate immune evasion in this vicious cancer. PDAC cells recruit numerous ncRNAs to widely affect the phenotype and function of immune cells through various mechanisms. For instance, PDAC cells upregulate miR-301a and downregulate miR-340 to induce M2 polarization of macrophages or overexpress miR-203, miR-146a, and miR-212-3p to downregulate toll-like receptor 4 (TLR4), CD80, CD86, CD1a, major histocompatibility complex (MHC) II, and CD83, thereby evading recognition by dendritic cells. By downregulating miR-4299 and miR-153, PDAC cells can decrease the expression of NK group 2D (NKG2D) and MHC class I chain-related molecules A and B (MICA/B) to blunt the natural killer (NK) cell response. PDAC cells also highly express lncRNA AL137789.1, hsa_circ_0046523, lncRNA LINC00460, and miR-155-5p to upregulate immune checkpoint proteins and escape T cell cytotoxicity. On the other hand, ncRNAs derived from suppressive immune cells promote proliferation, invasion, and drug resistance in PDAC cells. ncRNAs can be applied to overcome resistance to ICIs, monitor the immune microenvironment of PDAC, and predict response to ICIs. This Review article comprehensively discusses recent findings regarding the roles of ncRNAs in the immune evasion of PDAC.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences (TUMS), Tehran 1416634793, Iran
| |
Collapse
|
6
|
Zou X, Shen J, Yong X, Diao Y, Zhang L. The causal effects of immune cells on pancreatic cancer: A 2‑sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37797. [PMID: 38640310 PMCID: PMC11029941 DOI: 10.1097/md.0000000000037797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/24/2024] [Accepted: 03/14/2024] [Indexed: 04/21/2024] Open
Abstract
Leveraging publicly available genetic datasets, we conducted a comprehensive 2-sample Mendelian randomization (MR) analysis to explore the causal links between 731 immunophenotypes and the risk of pancreatic cancer (PC). To ensure the robustness of our findings, extensive sensitivity analyses were performed, evaluating stability, heterogeneity, and potential horizontal pleiotropy. Our analysis pinpointed 24 immunophenotypes significantly associated with the risk of PC. Notably, phenotypes such as CD4+ CD8dim %leukocyte (OR = 0.852, 95% CI = 0.729-0.995, P = .0430) and HLA DR+ CD4+ AC (OR = 0.933, 95% CI = 0.883-0.986) in TBNK were inversely correlated with PC risk. Conversely, phenotypes like CD28 on CD45RA- CD4 non-Treg (OR = 1.155, 95% CI = 1.028-1.297, P = .016) and CD25 on activated Treg (OR = 1.180, 95% CI = 1.014-1.374, P = .032) in Treg cells, among others, exhibited a positive correlation. These insights offer a valuable genetic perspective that could guide future clinical research in this area.
Collapse
Affiliation(s)
- Xinyun Zou
- Department of Oncology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Jinlan Shen
- Department of Medical Laboratory, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaomei Yong
- Department of Oncology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Yong Diao
- Department of Oncology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Ling Zhang
- Department of Oncology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
7
|
Rupp L, Dietsche I, Kießler M, Sommer U, Muckenhuber A, Steiger K, van Eijck CWF, Richter L, Istvanffy R, Jäger C, Friess H, van Eijck CHJ, Demir IE, Reyes CM, Schmitz M. Neoadjuvant chemotherapy is associated with suppression of the B cell-centered immune landscape in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1378190. [PMID: 38629072 PMCID: PMC11018975 DOI: 10.3389/fimmu.2024.1378190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at advanced stages and associated with early distant metastasis and poor survival. Besides clinical factors, the tumor microenvironment (TME) emerged as a crucial determinant of patient survival and therapy response in many tumors, including PDAC. Thus, the presence of tumor-infiltrating lymphocytes and the formation of tertiary lymphoid structures (TLS) is associated with longer survival in PDAC. Although neoadjuvant therapy (NeoTx) has improved the management of locally advanced tumors, detailed insight into its effect on various TME components is limited. While a remodeling towards a proinflammatory state was reported for PDAC-infiltrating T cells, the effect of NeoTx on B cell subsets, including plasma cells, and TLS formation is widely unclear. We thus investigated the frequency, composition, and spatial distribution of PDAC-infiltrating B cells in primary resected (PR) versus neoadjuvant-treated patients using a novel multiplex immunohistochemistry panel. The NeoTx group displayed significantly lower frequencies of pan B cells, GC B cells, plasmablasts, and plasma cells, accompanied by a reduced abundance of TLS. This finding was supported by bulk RNA-sequencing analysis of an independent fresh frozen tissue cohort, which revealed that major B cell pathways were downregulated in the NeoTx group. We further observed that plasma cells frequently formed aggregates that localized close to TLS and that TLS+ patients displayed significantly higher plasma cell frequencies compared to TLS- patients in the PR group. Additionally, high densities of CD20+ intratumoral B cells were significantly associated with longer overall survival in the PR group. While CD20+ B cells held no prognostic value for NeoTx patients, an increased frequency of proliferating CD20+Ki67+ B cells emerged as an independent prognostic factor for longer survival in the NeoTx group. These results indicate that NeoTx differentially affects PDAC-infiltrating immune cells and may have detrimental effects on the existing B cell landscape and the formation of TLS. Gaining further insight into the underlying molecular mechanisms is crucial to overcome the intrinsic immunotherapy resistance of PDAC and develop novel strategies to improve the long-term outcome of PDAC patients.
Collapse
Affiliation(s)
- Luise Rupp
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Ina Dietsche
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Maximilian Kießler
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC), International Research Consortium, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Ulrich Sommer
- Institute of Pathology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Alexander Muckenhuber
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Casper W. F. van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Leonard Richter
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rouzanna Istvanffy
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carsten Jäger
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Casper H. J. van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC), International Research Consortium, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of General Surgery, Hepato-Pancreato-Biliary (HPB) Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Else Kröner Clinician Scientist Professor for Translational Pancreatic Surgery, Technical University of Munich, Munich, Germany
| | - Carmen Mota Reyes
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC), International Research Consortium, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Peng X, Lu X, Yang D, Liu J, Wu H, Peng H, Zhang Y. A novel CD8+ T cell-related gene signature as a prognostic biomarker in hepatocellular carcinoma. Medicine (Baltimore) 2024; 103:e37496. [PMID: 38489709 PMCID: PMC10939595 DOI: 10.1097/md.0000000000037496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/16/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
CD8+ T cells have great roles in tumor suppression and elimination of various tumors including hepatocellular carcinoma (HCC). Nonetheless, potential prognostic roles of CD8+ T cell-related genes (CD8Gs) in HCC remains unknown. In our study, 416 CD8Gs were identified in HCC, which were enriched in inflammatory and immune signaling pathways. Using The Cancer Genome Atlas dataset, a 5-CD8Gs risk model (KLRB1, FYN, IL2RG, FCER1G, and DGKZ) was constructed, which was verified in International Cancer Genome Consortium and gene expression omnibus datasets. Furthermore, we found that overall survival was independently correlated with the CD8Gs signature, and it was associated with immune- and cancer-related signaling pathways and immune cells infiltration. Finally, drug sensitivity data indicated that 10 chemotherapeutic drugs held promise as therapeutics for HCC patients with high-risk. In conclusion, multi-databases analysis showed that 5-CD8Gs and their signature could be an indicator to predict candidate drugs for HCC therapy.
Collapse
Affiliation(s)
- Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Xingjun Lu
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Daqing Yang
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Jinyan Liu
- Hunan Normal University, Changsha, China
| | - Honglin Wu
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Hong Peng
- Medical School, Huanghe Science & Technology College, Zhengzhou, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Larson AC, Knoche SM, Brumfield GL, Doty KR, Gephart BD, Moore-Saufley PR, Solheim JC. Gemcitabine Modulates HLA-I Regulation to Improve Tumor Antigen Presentation by Pancreatic Cancer Cells. Int J Mol Sci 2024; 25:3211. [PMID: 38542184 PMCID: PMC10970070 DOI: 10.3390/ijms25063211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Pancreatic cancer is a lethal disease, harboring a five-year overall survival rate of only 13%. Current treatment approaches thus require modulation, with attention shifting towards liberating the stalled efficacy of immunotherapies. Select chemotherapy drugs which possess inherent immune-modifying behaviors could revitalize immune activity against pancreatic tumors and potentiate immunotherapeutic success. In this study, we characterized the influence of gemcitabine, a chemotherapy drug approved for the treatment of pancreatic cancer, on tumor antigen presentation by human leukocyte antigen class I (HLA-I). Gemcitabine increased pancreatic cancer cells' HLA-I mRNA transcripts, total protein, surface expression, and surface stability. Temperature-dependent assay results indicated that the increased HLA-I stability may be due to reduced binding of low affinity peptides. Mass spectrometry analysis confirmed changes in the HLA-I-presented peptide pool post-treatment, and computational predictions suggested improved affinity and immunogenicity of peptides displayed solely by gemcitabine-treated cells. Most of the gemcitabine-exclusive peptides were derived from unique source proteins, with a notable overrepresentation of translation-related proteins. Gemcitabine also increased expression of select immunoproteasome subunits, providing a plausible mechanism for its modulation of the HLA-I-bound peptidome. Our work supports continued investigation of immunotherapies, including peptide-based vaccines, to be used with gemcitabine as new combination treatment modalities for pancreatic cancer.
Collapse
Affiliation(s)
- Alaina C. Larson
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shelby M. Knoche
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gabrielle L. Brumfield
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kenadie R. Doty
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin D. Gephart
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Joyce C. Solheim
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Gao Z, Azar J, Zhu H, Williams-Perez S, Kang SW, Marginean C, Rubinstein MP, Makawita S, Lee HS, Camp ER. Translational and oncologic significance of tertiary lymphoid structures in pancreatic adenocarcinoma. Front Immunol 2024; 15:1324093. [PMID: 38361928 PMCID: PMC10867206 DOI: 10.3389/fimmu.2024.1324093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with poor survival and limited treatment options. PDAC resistance to immunotherapeutic strategies is multifactorial, but partially owed to an immunosuppressive tumor immune microenvironment (TiME). However, the PDAC TiME is heterogeneous and harbors favorable tumor-infiltrating lymphocyte (TIL) populations. Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop within non-lymphoid tissue under chronic inflammation in multiple contexts, including cancers. Our current understanding of their role within the PDAC TiME remains limited; TLS are complex structures with multiple anatomic features such as location, density, and maturity that may impact clinical outcomes such as survival and therapy response in PDAC. Similarly, our understanding of methods to manipulate TLS is an actively developing field of research. TLS may function as anti-tumoral immune niches that can be leveraged as a therapeutic strategy to potentiate both existing chemotherapeutic regimens and potentiate future immune-based therapeutic strategies to improve patient outcomes. This review seeks to cover anatomy, relevant features, immune effects, translational significance, and future directions of understanding TLS within the context of PDAC.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Huili Zhu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sophia Williams-Perez
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sung Wook Kang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Celia Marginean
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Mark P. Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Shalini Makawita
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - E. Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
11
|
Schoumacher C, Derangère V, Gaudillière-Le Dain G, Huppe T, Rageot D, Ilie A, Vienot A, Borg C, Monnien F, Bibeau F, Truntzer C, Ghiringhelli F, For the CGE-Pancreas investigators. CD3-CD8 immune score associated with a clinical score stratifies PDAC prognosis regardless of adjuvant or neoadjuvant chemotherapy. Oncoimmunology 2023; 13:2294563. [PMID: 38169969 PMCID: PMC10761164 DOI: 10.1080/2162402x.2023.2294563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Stratification of the prognosis of pancreatic cancer (PDAC) patients treated by surgery is based solely on clinical variables, such as tumor stage and node status. The development of biomarkers of relapse is needed, especially to drive administration of adjuvant therapy in this at-risk population. Our study evaluates the prognostic performance of a CD3- and CD8-based immune score. CD3, CD8 and Foxp3 expression were evaluated on whole slides in two retrospective PDAC cohorts totaling 334 patients. For this study, we developed an immune score to estimate CD3 and CD8 infiltration in both tumor core and invasive margin using computer-guided analysis with QuPath software. Variables were combined in a dichotomous immune score. The association between immune and clinical scores, and both PFS and OS was investigated. We observed that a dichotomous immune score predicts both PFS and OS of localized PDAC. By univariate and multivariate analysis, immune score, tumor grade, adjuvant therapy, lymph node status, and adjuvant chemotherapy administration were associated with PFS and OS. We subsequently associated the PDAC immune score and clinical variables in a combined score. This combined score predicted patient outcomes independently of adjuvant or neoadjuvant treatment, and improved patient prognostic prediction compared to clinical variables or immune score alone.
Collapse
Affiliation(s)
- Coralie Schoumacher
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
| | - Valentin Derangère
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- INSERM LNC-UMR1231 Research Center, TIRECS Team, Dijon, France
| | | | - Titouan Huppe
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
| | - David Rageot
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- INSERM LNC-UMR1231 Research Center, TIRECS Team, Dijon, France
| | - Alis Ilie
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
| | | | - Christophe Borg
- Department of Medical Oncology, CHU Besançon, Besançon, France
| | | | | | - Caroline Truntzer
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- INSERM LNC-UMR1231 Research Center, TIRECS Team, Dijon, France
| | - François Ghiringhelli
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- INSERM LNC-UMR1231 Research Center, TIRECS Team, Dijon, France
- Genetic and Immunology Medical Institute, GIMI, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | | |
Collapse
|
12
|
Guo J, Wang S, Gao Q. An integrated overview of the immunosuppression features in the tumor microenvironment of pancreatic cancer. Front Immunol 2023; 14:1258538. [PMID: 37771596 PMCID: PMC10523014 DOI: 10.3389/fimmu.2023.1258538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. It is characterized by a complex and immunosuppressive tumor microenvironment (TME), which is primarily composed of tumor cells, stromal cells, immune cells, and acellular components. The cross-interactions and -regulations among various cell types in the TME have been recognized to profoundly shape the immunosuppression features that meaningfully affect PDAC biology and treatment outcomes. In this review, we first summarize five cellular composition modules by integrating the cellular (sub)types, phenotypes, and functions in PDAC TME. Then we discuss an integrated overview of the cross-module regulations as a determinant of the immunosuppressive TME in PDAC. We also briefly highlight TME-targeted strategies that potentially improve PDAC therapy.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| | - Siyue Wang
- Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Qi Gao
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Heiduk M, Klimova A, Reiche C, Digomann D, Beer C, Aust DE, Distler M, Weitz J, Seifert AM, Seifert L. TIGIT Expression Delineates T-cell Populations with Distinct Functional and Prognostic Impact in Pancreatic Cancer. Clin Cancer Res 2023; 29:2638-2650. [PMID: 37140899 PMCID: PMC10345964 DOI: 10.1158/1078-0432.ccr-23-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE Immunotherapy has led to a fundamental shift in the treatment of several cancers. However, its efficacy in pancreatic ductal adenocarcinoma (PDAC) is limited. Understanding the expression of inhibitory immune checkpoint receptors (ICR) by intratumoral T cells may help to unravel their involvement in insufficient T-cell-mediated antitumor immunity. EXPERIMENTAL DESIGN Using multicolor flow cytometry, we analyzed circulating and intratumoral T cells from blood (n = 144) and matched tumor samples (n = 107) of patients with PDAC. We determined the expression of programmed cell death protein 1 (PD-1) and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibition motif (ITIM) domains (TIGIT) by CD8+ T-cells, conventional CD4+ T-cells (Tconv) and regulatory T cells (Treg) and their association with T-cell differentiation, tumor reactivity, and cytokine expression. A comprehensive follow-up was used to determine their prognostic value. RESULTS Intratumoral T cells were characterized by increased PD-1 and TIGIT expression. Both markers delineated distinct T-cell subpopulations. PD-1+TIGIT- T cells highly expressed proinflammatory cytokines and markers of tumor reactivity (CD39, CD103), whereas TIGIT expression was linked to antiinflammatory and exhausted phenotypes. In addition, the enhanced presence of intratumoral PD-1+TIGIT- Tconv was associated with improved clinical outcomes, while high ICR expression on blood T cells was a significant hazard for overall survival (OS). CONCLUSIONS Our results uncover the association between ICR expression and T-cell functionality. PD-1 and TIGIT characterized intratumoral T cells with highly divergent phenotypes linked to clinical outcomes, further underscoring the relevance of TIGIT for immunotherapeutic approaches in PDAC. The prognostic value of ICR expression in patient blood may be a valuable tool for patient stratification.
Collapse
Affiliation(s)
- Max Heiduk
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Anna Klimova
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Charlotte Reiche
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - David Digomann
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Carolin Beer
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniela E. Aust
- Institute of Pathology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Biobank Dresden, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adrian M. Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Else Kröner Clinician Scientist Professor for Translational Tumor Immunological Research, Dresden, Germany
| |
Collapse
|
14
|
Sun G, Yang Z, Fang K, Xiong Y, Tu S, Yi S, Xiao W. Distribution characteristics and clinical significance of infiltrating T cells in the tumor microenvironment of pancreatic cancer. Oncol Lett 2023; 25:261. [PMID: 37205920 PMCID: PMC10189847 DOI: 10.3892/ol.2023.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/24/2023] [Indexed: 05/21/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are important components of the tumor microenvironment (TME). However, the distribution characteristics of TILs and their significance in pancreatic cancer (PC) remain largely unexplored. The levels of TILs, including the total number of T cells, cluster of differentiation (CD)4+ T cells, CD8+ cytotoxic T lymphocytes (CTLs), regulatory T-cells (Tregs), programmed cell death protein 1+ T cells and programmed cell death ligand 1 (PD-L1)+ T cells, in the TME of patients with PC were detected using multiple fluorescence immunohistochemistry. The associations between the number of TILs and the clinicopathological characteristics were investigated using χ2 tests. In addition, Kaplan-Meier survival and Cox regression analyses were used to assess the prognostic value of these TIL types. Compared with paracancerous tissues, in PC tissues, the proportions of total T cells, CD4+ T cells and CD8+ CTLs were markedly decreased, while those of Tregs and PD-L1+ T cells were significantly increased. The levels of CD4+ T cell and CD8+ CTL infiltrates were inversely associated with tumor differentiation. Higher infiltrates of Tregs and PD-L1+ T cells were closely associated with advanced N and TNM stages. It is important to note that the infiltrates of total T cells, CD4+ T cells, Tregs and PD-L1+ T cells in the TME were independent risk factors for the prognosis of PC. PC was characterized by an immunosuppressive TME with a decrease in the number of CD4+ T cells and CD8+ CTLs, and an increase in the number of Tregs and PD-L1+ T cells. Overall, the number of total T cells, CD4+ T cells, Tregs and PD-L1+ T cells in the TME was a potential predictive marker for the prognosis of PC.
Collapse
Affiliation(s)
- Gen Sun
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhengjiang Yang
- Department of General Surgery, The Affiliated Hospital of Jiujiang College, Jiujiang, Jiangxi 332001, P.R. China
| | - Kang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shuju Tu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Siqing Yi
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Weidong Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
15
|
Gao Z, Zhang Q, Zhang X, Song Y. Advance of T regulatory cells in tumor microenvironment remodeling and immunotherapy in pancreatic cancer. EUR J INFLAMM 2022; 20. [DOI: 10.1177/1721727x221092900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive, deadly, and is rarely diagnosed early. Regulatory T cells (Treg) are a multifunctional class of immunosuppressive T cells that help maintain immunologic homeostasis and participate in autoimmune diseases, transplants, and tumors. This cell type mediates immune homeostasis, tolerance, and surveillance and is associated with poor outcomes in PDAC. Tregs remodel the tumor immune microenvironment, mediate tumor immune escape, and promote tumor invasion and metastasis. A promising area of research involves regulating Tregs to reduce their infiltration into tumor tissues. However, the complexity of the immune microenvironment has limited the efficacy of immunotherapy in PDAC. Treg modulation combined with other treatments is emerging. This review summarizes the mechanisms of Tregs activity in tumor immune microenvironments in PDAC and the latest developments in immunotherapy and clinical trials.
Collapse
Affiliation(s)
- Zetian Gao
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Qiubo Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xie Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yufei Song
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Metabolic Pathways as a Novel Landscape in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14153799. [PMID: 35954462 PMCID: PMC9367608 DOI: 10.3390/cancers14153799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolism plays a fundamental role in both human physiology and pathology, including pancreatic ductal adenocarcinoma (PDAC) and other tumors. Anabolic and catabolic processes do not only have energetic implications but are tightly associated with other cellular activities, such as DNA duplication, redox reactions, and cell homeostasis. PDAC displays a marked metabolic phenotype and the observed reduction in tumor growth induced by calorie restriction with in vivo models supports the crucial role of metabolism in this cancer type. The aggressiveness of PDAC might, therefore, be reduced by interventions on bioenergetic circuits. In this review, we describe the main metabolic mechanisms involved in PDAC growth and the biological features that may favor its onset and progression within an immunometabolic context. We also discuss the need to bridge the gap between basic research and clinical practice in order to offer alternative therapeutic approaches for PDAC patients in the more immediate future.
Collapse
|
17
|
Tang HD, Wang Y, Xie P, Tan SY, Li HF, Shen H, Zhang Z, Lei ZQ, Zhou JH. The Crosstalk Between Immune Infiltration, Circulating Tumor Cells, and Metastasis in Pancreatic Cancer: Identification of HMGB3 From a Multiple Omics Analysis. Front Genet 2022; 13:892177. [PMID: 35754798 PMCID: PMC9213737 DOI: 10.3389/fgene.2022.892177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022] Open
Abstract
Metastasis is the major cause of death in patients with pancreatic ductal adenocarcinoma (PDAC), and circulating tumor cells (CTCs) play an important role in the development of metastasis. However, few studies have uncovered the metastasis mechanism of PDAC based on CTCs. In this study, the existing bulk RNA-sequencing (bulk RNA-seq) and single-cell sequencing (scRNA-seq) data for CTCs in pancreatic cancer were obtained from the Gene Expression Omnibus (GEO) database. Analysis of tumor-infiltrating immune cells (TIICs) by CIBERSORT showed that the CTCs enriched from the peripheral blood of metastatic PDAC were found to contain a high proportion of T cell regulators (Tregs) and macrophages, while the proportion of dendritic cells (DCs) was lower than that enriched from localized PDAC. Through weighted gene co-expression network analysis (WGCNA) and the result of scRNA-seq, we identified the hub module (265 genes) and 87 marker genes, respectively, which were highly associated with metastasis. The results of functional enrichment analysis indicated that the two gene sets mentioned above are mainly involved in cell adhesion and cytoskeleton and epithelial–mesenchymal transition (EMT). Finally, we found that HMGB3 was the hub gene according to the Venn diagram. The expression of HMGB3 in PDAC was significantly higher than that in normal tissues (protein and mRNA levels). HMGB3 expression was significantly positively correlated with both EMT-related molecules and CTC cluster–related markers. Furthermore, it was also found that HMGB3 mutations were favorably related to tumor-associated immune cells through the TIMER2.0 online tool. We further demonstrated that PDAC patients with higher HMGB3 expression had significantly worse overall survival (OS) in multiple datasets. In summary, our study suggests that HMGB3 is a hub gene associated with EMT in CTCs, the formation of CTC clusters, and infiltration patterns of immune cells favorable for tumor progression and metastasis to distant organs.
Collapse
Affiliation(s)
- Hao-Dong Tang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
| | - Yang Wang
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, China
| | - Peng Xie
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
| | - Si-Yuan Tan
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
| | - Hai-Feng Li
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
| | - Hao Shen
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
| | - Zheng Zhang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
| | - Zheng-Qing Lei
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, China
| | - Jia-Hua Zhou
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China.,Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, China
| |
Collapse
|
18
|
Yin C, Alqahtani A, Noel MS. The Next Frontier in Pancreatic Cancer: Targeting the Tumor Immune Milieu and Molecular Pathways. Cancers (Basel) 2022; 14:2619. [PMID: 35681599 PMCID: PMC9179513 DOI: 10.3390/cancers14112619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with abysmal prognosis. It is currently the third most common cause of cancer-related mortality, despite being the 11th most common cancer. Chemotherapy is standard of care in all stages of pancreatic cancer, yet survival, particularly in the advanced stages, often remains under one year. We are turning to immunotherapies and targeted therapies in PDAC in order to directly attack the core features that make PDAC notoriously resistant to chemotherapy. While the initial studies of these agents in PDAC have generally been disappointing, we find optimism in recent preclinical and early clinical research. We find that despite the immunosuppressive effects of the PDAC tumor microenvironment, new strategies, such as combining immune checkpoint inhibitors with vaccine therapy or chemokine receptor antagonists, help elicit strong immune responses. We also expand on principles of DNA homologous recombination repair and highlight opportunities to use agents, such as PARP inhibitors, that exploit deficiencies in DNA repair pathways. Lastly, we describe advances in direct targeting of driver mutations and metabolic pathways and highlight some technological achievements such as novel KRAS inhibitors.
Collapse
Affiliation(s)
| | | | - Marcus S. Noel
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (A.A.)
| |
Collapse
|
19
|
Gartrell RD, Enzler T, Kim PS, Fullerton BT, Fazlollahi L, Chen AX, Minns HE, Perni S, Weisberg SP, Rizk EM, Wang S, Oh EJ, Guo XV, Chiuzan C, Manji GA, Bates SE, Chabot J, Schrope B, Kluger M, Emond J, Rabadán R, Farber D, Remotti HE, Horowitz DP, Saenger YM. Neoadjuvant chemoradiation alters the immune microenvironment in pancreatic ductal adenocarcinoma. Oncoimmunology 2022; 11:2066767. [PMID: 35558160 PMCID: PMC9090285 DOI: 10.1080/2162402x.2022.2066767] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/21/2023] Open
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) have a grim prognosis despite complete surgical resection and intense systemic therapies. While immunotherapies have been beneficial with many different types of solid tumors, they have almost uniformly failed in the treatment of PDAC. Understanding how therapies affect the tumor immune microenvironment (TIME) can provide insights for the development of strategies to treat PDAC. We used quantitative multiplexed immunofluorescence (qmIF) quantitative spatial analysis (qSA), and immunogenomic (IG) analysis to analyze formalin-fixed paraffin embedded (FFPE) primary tumor specimens from 44 patients with PDAC including 18 treated with neoadjuvant chemoradiation (CRT) and 26 patients receiving no treatment (NT) and compared them with tissues from 40 treatment-naïve melanoma patients. We find that relative to NT tumors, CD3+ T cell infiltration was increased in CRT treated tumors (p = .0006), including increases in CD3+CD8+ cytotoxic T cells (CTLs, p = .0079), CD3+CD4+FOXP3- T helper cells (Th, p = .0010), and CD3+CD4+FOXP3+ regulatory T cells (Tregs, p = .0089) with no difference in CD68+ macrophages. IG analysis from micro-dissected tissues indicated overexpression of genes involved in antigen presentation, T cell activation, and inflammation in CRT treated tumors. Among treated patients, a higher ratio of Tregs to total T cells was associated with shorter survival time (p = .0121). Despite comparable levels of infiltrating T cells in CRT PDACs to melanoma, PDACs displayed distinct spatial profiles with less T cell clustering as defined by nearest neighbor analysis (p < .001). These findings demonstrate that, while CRT can achieve high T cell densities in PDAC compared to melanoma, phenotype and spatial organization of T cells may limit benefit of T cell infiltration in this immunotherapy-resistant tumor.
Collapse
Affiliation(s)
- Robyn D. Gartrell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas Enzler
- Rogel Cancer Center, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Pan S. Kim
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Benjamin T. Fullerton
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ladan Fazlollahi
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew X. Chen
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hanna E. Minns
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Subha Perni
- Harvard Radiation Oncology Program, Massachusetts General Hospital and Brigham and Women’s Hospital/Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stuart P. Weisberg
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Emanuelle M. Rizk
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Samuel Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Eun Jeong Oh
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xinzheng V. Guo
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Codruta Chiuzan
- Department of Biostatistics, Columbia University Irving Medical Center, New York, NY, USA
| | - Gulam A. Manji
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Susan E. Bates
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - John Chabot
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Beth Schrope
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Kluger
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Jean Emond
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Raul Rabadán
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna Farber
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Helen E. Remotti
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - David P. Horowitz
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
20
|
Muller M, Haghnejad V, Schaefer M, Gauchotte G, Caron B, Peyrin-Biroulet L, Bronowicki JP, Neuzillet C, Lopez A. The Immune Landscape of Human Pancreatic Ductal Carcinoma: Key Players, Clinical Implications, and Challenges. Cancers (Basel) 2022; 14:cancers14040995. [PMID: 35205742 PMCID: PMC8870260 DOI: 10.3390/cancers14040995] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadliest cancer worldwide with an overall survival rate, all stages combined, of still <10% at 5 years. The poor prognosis is attributed to challenges in early detection, a low opportunity for radical resection, limited response to chemotherapy, radiotherapy, and resistance to immune therapy. Moreover, pancreatic tumoral cells are surrounded by an abundant desmoplastic stroma, which is responsible for creating a mechanical barrier, preventing appropriate vascularization and leading to poor immune cell infiltration. Accumulated evidence suggests that PDAC is impaired with multiple “immune defects”, including a lack of high-quality effector cells (CD4, CD8 T cells, dendritic cells), barriers to effector cell infiltration due to that desmoplastic reaction, and a dominance of immune cells such as regulatory T cells, myeloid-derived suppressor cells, and M2 macrophages, resulting in an immunosuppressive tumor microenvironment (TME). Although recent studies have brought new insights into PDAC immune TME, its understanding remains not fully elucidated. Further studies are required for a better understanding of human PDAC immune TME, which might help to develop potent new therapeutic strategies by correcting these immune defects with the hope to unlock the resistance to (immune) therapy. In this review, we describe the main effector immune cells and immunosuppressive actors involved in human PDAC TME, as well as their implications as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marie Muller
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- Correspondence:
| | - Vincent Haghnejad
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Marion Schaefer
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Guillaume Gauchotte
- Department of Pathology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France;
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, 92064 Saint-Cloud, France;
| | - Anthony Lopez
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| |
Collapse
|
21
|
Yu J, Li Q, Zhang H, Meng Y, Liu YF, Jiang H, Ma C, Liu F, Fang X, Li J, Feng X, Shao C, Bian Y, Lu J. Contrast-enhanced computed tomography radiomics and multilayer perceptron network classifier: an approach for predicting CD20 + B cells in patients with pancreatic ductal adenocarcinoma. Abdom Radiol (NY) 2022; 47:242-253. [PMID: 34708252 DOI: 10.1007/s00261-021-03285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE To develop and validate a machine-learning classifier based on contrast-enhanced computed tomography (CT) for the preoperative prediction of CD20+ B lymphocyte expression in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Overall, 189 patients with PDAC (n = 132 and n = 57 in the training and validation sets, respectively) underwent immunohistochemistry and radiomics feature extraction. The X-tile software was used to stratify them into groups with 'high' and 'low' CD20+ B lymphocyte expression levels. For each patient, 1409 radiomic features were extracted from volumes of interest and reduced using variance analysis and Spearman correlation analysis. A multilayer perceptron (MLP) network classifier was developed using the training and validation set. Model performance was determined by its discriminative ability, calibration, and clinical utility. RESULTS A log-rank test showed that the patients with high CD20+ B expression had significantly longer survival than those with low CD20+ B expression. The prediction model showed good discrimination in both the training and validation sets. For the training set, the area under the curve (AUC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 0.82 (95% CI 0.74-0.89), 92.42%, 57.58%, 0.75, 0.69, and 0.88, respectively; whereas these values for the validation set were 0.84 (95% CI 0.72-0.93), 86.21%, 78.57%, 0.83, 0.81, and 0.85, respectively. CONCLUSION The MLP network classifier based on contrast-enhanced CT can accurately predict CD20+ B expression in patients with PDAC.
Collapse
Affiliation(s)
- Jieyu Yu
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Qi Li
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Hao Zhang
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Yinghao Meng
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Yan Fang Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Fang Liu
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Xu Fang
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Jing Li
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Xiaochen Feng
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China.
| | - Jianping Lu
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China.
| |
Collapse
|
22
|
Prognostic Implications of Intratumoral and Peritumoral Infiltrating Lymphocytes in Pancreatic Ductal Adenocarcinoma. Curr Oncol 2021; 28:4367-4376. [PMID: 34898543 PMCID: PMC8628731 DOI: 10.3390/curroncol28060371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to elucidate the prognostic implications of intratumoral and peritumoral infiltrating T-lymphocytes in pancreatic ductal adenocarcinoma (PDAC) through a meta-analysis. A total of 18 eligible studies and 2453 PDAC patients were included in the present study. Intratumoral and peritumoral infiltrating lymphocytes were evaluated using various markers, such as CD3, CD4, CD8, FOXP3, and immune cell score. The correlations between these parameters and overall and disease-free survival were investigated and used in the meta-analysis. High intratumoral infiltration of CD3-, CD4-, and CD8-expressing lymphocytes was significantly correlated with better overall survival (hazard ratio (HR) 0.747, 95% confidence interval (CI) 0.620-0.900, HR 0.755, 95% CI 0.632-0.902, and HR 0.754, 95% CI 0.611-0.930, respectively). However, there was no significant correlation between PDAC prognosis and intratumoral FOXP3 or immune cell score (HR 1.358, 95% CI 1.115-1.655 and HR 0.776, 95% CI 0.566-1.065, respectively). Moreover, there was no significant correlation between the prognosis and peritumoral infiltrating T-lymphocytes. In evaluations of disease-free survival, only high intratumoral CD4 infiltration was correlated with a better prognosis (HR 0.525, 95% CI 0.341-0.810). Our results showed that high intratumoral infiltrating lymphocytes were significantly correlated with a better PDAC prognosis. However, among the tumor-infiltrating lymphocytes, CD3, CD4, and CD8 had prognostic implications, but not FOXP3 and immune cell score.
Collapse
|
23
|
Hu L, Zhu M, Shen Y, Zhong Z, Wu B. The prognostic value of intratumoral and peritumoral tumor-infiltrating FoxP3+Treg cells in of pancreatic adenocarcinoma: a meta-analysis. World J Surg Oncol 2021; 19:300. [PMID: 34654443 PMCID: PMC8520308 DOI: 10.1186/s12957-021-02420-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Tumor-infiltrating lymphocytes (TILs) are major participants in the tumor microenvironment. The prognostic value of TILs in patients with pancreatic cancer is still controversial. Methods The aim of our meta-analysis was to determine the impact of FoxP3+Treg cells on the survival of pancreatic cancer patients. We searched for related studies in PubMed, EMBASE, Ovid, and Cochrane Library from the time the databases were established to Mar 30, 2017. We identified studies reporting the prognostic value of FoxP3+Treg cells in patients with pancreatic cancer. Overall survival (OS) and disease-free survival (DFS)/progression-free survival (PFS)/relapse-free survival (RFS) were investigated by pooling the data. The pooled hazard ratios (HRs) with 95% confidence intervals (95% CI) were used to evaluate the association between FoxP3+Treg cells and survival outcomes of pancreatic cancer patients. A total of 972 pancreatic cancer patients from 8 studies were included in our meta-analysis. Results High levels of infiltration with FoxP3+Treg cells were significantly associated with poor OS (HR=2.13; 95% CI 1.64–2.77; P<0.05) and poor DFS/PFS/RFS (HR=1.70; 95% CI 1.04 ~ 2.78; P< 0.05). Similar results were also observed in the peritumoral tissue; high levels of FoxP3+Treg cells were associated with poor OS (HR =2.1795% CI, CI 1.50–3.13). Conclusion This meta-analysis indicated that high levels of intratumoral or peritumoral FoxP3+Treg cell infiltration could be recognized as a negative factor in the prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Lingyu Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China
| | - Mingyuan Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China
| | - Zhengxiang Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China.
| | - Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China.
| |
Collapse
|
24
|
Song W, He X, Gong P, Yang Y, Huang S, Zeng Y, Wei L, Zhang J. Glycolysis-Related Gene Expression Profiling Screen for Prognostic Risk Signature of Pancreatic Ductal Adenocarcinoma. Front Genet 2021; 12:639246. [PMID: 34249078 PMCID: PMC8261051 DOI: 10.3389/fgene.2021.639246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
Objective: Pancreatic ductal adenocarcinoma (PDAC) is highly lethal. Although progress has been made in the treatment of PDAC, its prognosis remains unsatisfactory. This study aimed to develop novel prognostic genes related to glycolysis in PDAC and to apply these genes to new risk stratification. Methods: In this study, based on the Cancer Genome Atlas (TCGA) PAAD cohort, the expression level of glycolysis-related gene at mRNA level in PAAD and its relationship with prognosis were analyzed. Non-negative matrix decomposition (NMF) clustering was used to cluster PDAC patients according to glycolytic genes. Prognostic glycolytic genes, screened by univariate Cox analysis and LASSO regression analysis were established to calculate risk scores. The differentially expressed genes (DEGs) in the high-risk group and the low-risk group were analyzed, and the signal pathway was further enriched to analyze the correlation between glycolysis genes. In addition, based on RNA-seq data, CIBERSORT was used to evaluate the infiltration degree of immune cells in PDAC samples, and ESTIMATE was used to calculate the immune score of the samples. Results: A total of 319 glycolysis-related genes were retrieved, and all PDAC samples were divided into two clusters by NMF cluster analysis. Survival analysis showed that PDAC patients in cluster 1 had shorter survival time and worse prognosis compared with cluster 2 samples (P < 0.001). A risk prediction model based on 11 glycolysis genes was constructed, according to which patients were divided into two groups, with significantly poorer prognosis in high-risk group than in low-risk group (P < 0.001). Both internal validation and external dataset validation demonstrate good predictive ability of the model (AUC = 0.805, P < 0.001; AUC = 0.763, P < 0.001). Gene aggregation analysis showed that DEGs highly expressed in high-risk group were mainly concentrated in the glycolysis level, immune status, and tumor cell proliferation, etc. In addition, the samples in high-risk group showed immunosuppressed status and infiltrated by relatively more macrophages and less CD8+T cell. Conclusions: These findings suggested that the gene signature based on glycolysis-related genes had potential diagnostic, therapeutic, and prognostic value for PDAC.
Collapse
Affiliation(s)
- Wenjing Song
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xin He
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Pengju Gong
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yan Yang
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Sirui Huang
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yifan Zeng
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lei Wei
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingwei Zhang
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
McGuigan AJ, Coleman HG, McCain RS, Kelly PJ, Johnston DI, Taylor MA, Turkington RC. Immune cell infiltrates as prognostic biomarkers in pancreatic ductal adenocarcinoma: a systematic review and meta-analysis. J Pathol Clin Res 2021; 7:99-112. [PMID: 33481339 PMCID: PMC7869931 DOI: 10.1002/cjp2.192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022]
Abstract
Immune cell infiltration has been identified as a prognostic biomarker in several cancers. However, no immune based biomarker has yet been validated for use in pancreatic ductal adenocarcinoma (PDAC). We undertook a systematic review and meta-analysis of immune cell infiltration, measured by immunohistochemistry (IHC), as a prognostic biomarker in PDAC. All other IHC prognostic biomarkers in PDAC were also summarised. MEDLINE, EMBASE and Web of Science were searched between 1998 and 2018. Studies investigating IHC biomarkers and prognosis in PDAC were included. REMARK score and Newcastle-Ottawa scale were used for qualitative analysis. Random-effects meta-analyses were used to pool results, where possible. Twenty-six articles studied immune cell infiltration IHC biomarkers and PDAC prognosis. Meta-analysis found high infiltration with CD4 (hazard ratio [HR] = 0.65, 95% confidence interval [CI] = 0.51-0.83.) and CD8 (HR = 0.68, 95% CI = 0.55-0.84.) T-lymphocytes associated with better disease-free survival. Reduced overall survival was associated with high CD163 (HR = 1.62, 95% CI = 1.03-2.56). Infiltration of CD3, CD20, FoxP3 and CD68 cells, and PD-L1 expression was not prognostic. In total, 708 prognostic biomarkers were identified in 1101 studies. In summary, high CD4 and CD8 infiltration are associated with better disease-free survival in PDAC. Increased CD163 is adversely prognostic. Despite the publication of 708 IHC prognostic biomarkers in PDAC, none has been validated for clinical use. Further research should focus on reproducibility of prognostic biomarkers in PDAC in order to achieve this.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Biomarkers/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/pathology
- Disease-Free Survival
- Humans
- Immunohistochemistry
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/pathology
- Prognosis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Reproducibility of Results
- CD163 Antigen
Collapse
Affiliation(s)
- Andrew J McGuigan
- The Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastBelfastUK
| | - Helen G Coleman
- The Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastBelfastUK
- Centre for Public HealthQueen's University BelfastBelfastUK
| | - R Stephen McCain
- Centre for Public HealthQueen's University BelfastBelfastUK
- Department of Hepatobiliary SurgeryMater Hospital, Belfast Health and Social Care TrustBelfastUK
| | - Paul J Kelly
- Department of Tissue PathologyRoyal Victoria Hospital, Belfast Health and Social Care TrustBelfastUK
| | - David I Johnston
- Northern Ireland Cancer CentreBelfast Health and Social Care TrustBelfastUK
| | - Mark A Taylor
- Department of Hepatobiliary SurgeryMater Hospital, Belfast Health and Social Care TrustBelfastUK
| | - Richard C Turkington
- The Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastBelfastUK
| |
Collapse
|
26
|
Tan HNC, Catedral LIG, San Juan MD. Prognostic Significance of Tumor-infiltrating Lymphocytes on Survival Outcomes of Patients With Resected Pancreatic Ductal Adenocarcinoma: A Systematic Review and Meta-Analysis. J Immunother 2021; 44:29-40. [PMID: 32909965 DOI: 10.1097/cji.0000000000000331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor-infiltrating lymphocytes (TILs) play an important role in mediating treatment response in pancreatic cancer. This meta-analysis investigated the prognostic significance of TIL subsets on overall survival (OS) and disease-free survival (DFS) of patients with pancreatic cancer. Studies were gathered via search of PubMed, Google Scholar, and Cochrane Library databases up to August 1, 2019. Using Review Manager version 5.3.5, pooled hazard ratios and 95% confidence intervals (CIs) were calculated using random or fixed-effects models, depending on the heterogeneity of studies. A total of 11 studies comprising 1760 patients were included in the meta-analysis. Pooled analysis revealed that high CD8 TILs were associated with improved OS [hazard ratio (HR)=0.59, 95% CI=0.51-0.69, P<0.00001] and DFS (HR=0.60, 95% CI=0.50-0.73, P<0.00001). Similarly, high CD3 TILs correlated with better OS (HR=0.64, 95% CI=0.54-0.75, P<0.00001) and DFS (HR=0.53, 95% CI=0.31-0.92, P<0.0001). In contrast, high FoxP3 TILs were associated with worse OS (HR=1.39, 95% CI=1.03-1.88, P=0.03). Finally, high CD4 TILs showed significant improvement in OS (HR=0.74, 95% CI=0.63-0.86, P=0.0001). TILs are a promising prognostic biomarker in pancreatic cancer. Prospective studies evaluating TILs are recommended as well as the establishment of standards in the assessment of TILs.
Collapse
Affiliation(s)
- Harold N C Tan
- Division of Medical Oncology, Department of Medicine, University of the Philippines-Philippine General Hospital, Manila, Philippines
| | | | | |
Collapse
|
27
|
Elebo N, Fru P, Omoshoro-Jones J, Candy GP, Nweke EE. Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review). Mol Med Rep 2020; 22:4981-4991. [PMID: 33174057 PMCID: PMC7646946 DOI: 10.3892/mmr.2020.11622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer, making it a leading cause of cancer‑related deaths. It is characteristically resistant to treatment, which results in low survival rates. In pancreatic cancer, immune cells undergo transitions that can inhibit or promote their functions, enabling treatment resistance and tumor progression. These transitions can be fostered by metabolic pathways that are dysregulated during tumorigenesis. The present review aimed to summarize the different immune cells and their roles in pancreatic cancer. The review also highlighted the individual metabolic pathways in pancreatic cancer and how they enable transitions in immune cells. Finally, the potential of targeting metabolic pathways for effective therapeutic strategies was considered.
Collapse
Affiliation(s)
- Nnenna Elebo
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Pascaline Fru
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Jones Omoshoro-Jones
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Geoffrey Patrick Candy
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| |
Collapse
|
28
|
Ye LL, Peng WB, Niu YR, Xiang X, Wei XS, Wang ZH, Wang X, Zhang SY, Chen X, Zhou Q. Accumulation of TNFR2-expressing regulatory T cells in malignant pleural effusion of lung cancer patients is associated with poor prognosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1647. [PMID: 33490159 PMCID: PMC7812164 DOI: 10.21037/atm-20-7181] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Regulatory T cells (Tregs) may represent a major cellular mechanism in immune suppression by dampening the anti-tumor response in malignant pleural effusion (MPE). Tumor necrosis factor receptor type II (TNFR2) has emerged as a novel identification for the maximally suppressive subset of Tregs in the tumor environment. At present, the significance of TNFR2 expression on Tregs in MPE remains unclear. Methods The distribution of TNFR2+cells in Tregs and effector T cells (Teffs) in MPE, peripheral blood (PB), and tuberculosis pleural effusion (TPE) were determined. The associations between TNFR2+Tregs frequencies present in MPE and the clinical and laboratorial characteristics of patients with lung cancer were investigated. The immunosuppressive phenotype of TNFR2+Tregs in MPE was analyzed. The effects of the TNF-TNFR2 interaction on the immunosuppressive function of Tregs was explored. The efficacy of targeting TNFR2 for MPE therapy was examined. The source of TNF in MPE was identified. Results We observed that markedly higher levels of TNFR2 were expressed in MPE Tregs compared with the levels expressed in MPE Teffs, PB Tregs, or in TPE Tregs. The frequencies of TNFR2+Tregs were positively correlated with the number of tumor cells in MPE, as well as the volume of MPE. High frequencies of TNFR2+Tregs in MPE indicated short survival time and poor performance status for MPE patients. Compared to TNFR2-Tregs, TNFR2+Tregs expressed higher levels of immunosuppressive molecules cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death-ligand 1 (PD-L1), and replicating marker Ki-67. Consequently, the proportions of interferon gamma (IFN-γ)-producing cytotoxic T lymphocytes (CTLs) were significantly increased after TNFR2 blockade. Furthermore, tumor necrosis factor (TNF), through interaction with TNFR2, enhanced the suppressive capacity of Tregs by up-regulating CTLA-4 and PD-L1 expression. Interestingly, T helper 1 (Th1) and T helper 17 (Th17) cells are the major source of TNF in MPE, suggesting that MPE Teffs may paradoxically promote tumor growth by boosting MPE Treg activity via the TNF-TNFR2 pathway. Conclusions Our data expanded the immunosuppressive mechanism present in MPE induced by Tregs, and provides novel insight for the diagnosis, disease evaluation, and treatment of MPE patients.
Collapse
Affiliation(s)
- Lin-Lin Ye
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Bei Peng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Ran Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Shan Wei
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Hao Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Yu Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Wu B, Wang J, Wang X, Zhu M, Chen F, Shen Y, Zhong Z. CXCL5 expression in tumor tissues is associated with poor prognosis in patients with pancreatic cancer. Oncol Lett 2020; 20:257. [PMID: 32994820 PMCID: PMC7509746 DOI: 10.3892/ol.2020.12120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/25/2020] [Indexed: 02/02/2023] Open
Abstract
Immunotherapy based on the tumor microenvironment is a feasible method for treating cancer; therefore, it is necessary to investigate the immune microenvironment of pancreatic cancer and the influencing factors of the immune microenvironment. Chemokines are an important factor affecting the tumor immune microenvironment. In the present study, chemokines or chemokine receptors were screened to identify those differentially expressed in pancreatic cancer compared with normal controls and associated with patient prognosis. Chemokines or chemokine receptors that are differentially expressed in pancreatic cancer tumor tissues were initially screened using the Gene Expression Omnibus database. Next, survival analysis was performed using GEPIA, a website based on The Cancer Genome Atlas (TCGA) database. Immunohistochemical staining of CXCL5 was performed in tissue microarrays (TMAs) containing 119 cases of pancreatic cancer. Histochemistry score (H-SCORE) was used to evaluate the expression of CXCL5. Next, association analysis of the H-SCORE of CXCL5 and the clinical characteristics of patients was performed, as well as Kaplan-Meier survival and Cox multivariate regression analyses. The results of the bioinformatics analysis demonstrated that CXCL5 was highly expressed in pancreatic cancer tissues. High expression of CXCL5 in pancreatic cancer tissues was associated with a poor prognosis in patients in TCGA cohort. The expression level of CXCL5 in tumor tissues was significantly higher compared with that in adjacent peritumoral normal tissues in the immunohistochemical analysis. There was no significant association between CXCL5 expression in pancreatic cancer tumor tissues and clinicopathological factors. Patients with pancreatic cancer with high CXCL5 expression had a poor prognosis, as determined by Kaplan-Meier survival analysis based on the TMA dataset. The results of Cox multivariate regression analysis showed that CXCL5 was an independent factor for a poor prognosis in patients with pancreatic cancer. In conclusion, the results of the present study revealed that the chemokine CXCL5 was highly expressed in pancreatic cancer tissues; high CXCL5 expression was associated with a poor prognosis in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Jing Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaoguang Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Mingyuan Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Fei Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhengxiang Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
30
|
Gao S, Pu N, Yin H, Li J, Chen Q, Yang M, Lou W, Chen Y, Zhou G, Li C, Li G, Yan Z, Liu L, Yu J, Wang X. Radiofrequency ablation in combination with an mTOR inhibitor restrains pancreatic cancer growth induced by intrinsic HSP70. Ther Adv Med Oncol 2020; 12:1758835920953728. [PMID: 32973929 PMCID: PMC7491221 DOI: 10.1177/1758835920953728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Radiofrequency ablation (RFA) is widely used in palliative therapy of malignant cancers. Several studies have shown its applicability and safety for locally advanced pancreatic cancer (LAPC). The objective of this study was to modify the current regimen to improve its therapeutic effect. Methods Immune cell subtypes and related cytokines were quantified to uncover the immune pattern changes post-RFA treatment. Then, high-throughput proteome analysis was performed to identify differentially expressed proteins associated with RFA, which were further validated in in vitro and in vivo experiments. Finally, a combined therapy was tested in a murine model to observe its therapeutic effect. Results In preclinical murine models of RFA treatment, no significant therapeutic benefit was observed following RFA treatment. However, the proportion of tumor-infiltrating CD8+ T cells was significantly increased, whereas that of regulatory T cells (Tregs) was decreased post-RFA treatment, which indicated a beneficial anti-tumor environment. To identify the mechanism, high-throughput mass spectrum was obtained that identified heat shock protein 70 (HSP70) as the top differentially expressed protein. HSP70 expression in residual cancer cells was significantly increased post-RFA treatment, which notably promoted pancreatic cancer growth. Elevated HSP70 promoted cell proliferation by activating AKT-mTOR signaling. Finally, RFA treatment combined with an mTOR inhibitor exerted a synergetic repressive effect on tumor growth in the preclinical murine cancer model. Conclusions RFA treatment in combination with mTOR signaling blockade can not only promote tumor immune response, but also restrain residual cancer cell proliferation. Such a combination may be a promising and effective therapeutic strategy for LAPC patients.
Collapse
Affiliation(s)
- Shanshan Gao
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanlin Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junhao Li
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiangda Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minjie Yang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Chen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guofeng Zhou
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Changyu Li
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoping Li
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingxiao Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jun Yu
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Xiaolin Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
31
|
Hu G, Cheng P, Pan J, Wang S, Ding Q, Jiang Z, Cheng L, Shao X, Huang L, Huang J. An IL6-Adenosine Positive Feedback Loop between CD73 + γδTregs and CAFs Promotes Tumor Progression in Human Breast Cancer. Cancer Immunol Res 2020; 8:1273-1286. [PMID: 32847938 DOI: 10.1158/2326-6066.cir-19-0923] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/30/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment induces immunosuppression via recruiting and expanding suppressive immune cells such as regulatory T cells (Treg) to promote cancer progression. In this study, we documented that tumor-infiltrating CD73+ γδTregs were the predominant Tregs in human breast cancer and exerted more potent immunosuppressive activity than CD4+ or CD8+ Tregs. We further demonstrated that cancer-associated fibroblast (CAF)-derived IL6, rather than TGFβ1, induced CD73+ γδTreg differentiation from paired normal breast tissues via the IL6/STAT3 pathway to produce more adenosine and become potent immunosuppressive T cells. CD73+ γδTregs could in turn promote IL6 secretion by CAFs through adenosine/A2BR/p38MAPK signaling, thereby forming an IL6-adenosine positive feedback loop. CD73+ γδTreg infiltration also impaired the tumoricidal functions of CD8+ T cells and significantly correlated with worse prognosis of patients. The data indicate that the IL6-adenosine loop between CD73+ γδTregs and CAFs is important to promote immunosuppression and tumor progression in human breast cancer, which may be critical for tumor immunotherapy.
Collapse
Affiliation(s)
- Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China.
| | - Pu Cheng
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University, Hangzhou, China.,Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Pan
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University, Hangzhou, China
| | - Shimin Wang
- Department of Nephrology, Shaoxing People's Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Qiannan Ding
- Medical Research Center, Shaoxing People's Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Zhou Jiang
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University, Hangzhou, China
| | - Lu Cheng
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuan Shao
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Liming Huang
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China.
| | - Jian Huang
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University, Hangzhou, China. .,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Zhejiang, China
| |
Collapse
|
32
|
Case K, Tran L, Yang M, Zheng H, Kuhtreiber WM, Faustman DL. TNFR2 blockade alone or in combination with PD-1 blockade shows therapeutic efficacy in murine cancer models. J Leukoc Biol 2020; 107:981-991. [PMID: 32449229 DOI: 10.1002/jlb.5ma0420-375rrrrr] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint inhibitors are profoundly transforming cancer therapy, but response rates vary widely. The efficacy of checkpoint inhibitors, such as anti-programmed death receptor-1 (anti-PD-1), might be increased by combination therapies. TNFR2 has emerged as a new target due to its massive expression on highly immunosuppressive regulatory T cells (Tregs) in the microenvironment and on certain tumor cells. In murine colon cancer models CT26 and MC38, we evaluated the efficacy of a new anti-TNFR2 antibody alone or in combination with anti-PD-1 therapy. Tumor-bearing mice were treated with placebo, anti-PD-1 alone, anti-TNFR2 alone, or combination anti-PD-1 and anti-TNFR2. We found that combination therapy had the greatest efficacy by complete tumor regression and elimination (cure) in 65-70% of animals. The next most effective therapy was anti-TNFR2 alone (20-50% cured), whereas the least effective was anti-PD-1 alone (10-25% cured). The mode of action, according to in vivo and in vitro methods including FACS analysis, was by killing immunosuppressive Tregs in the tumor microenvironment and increasing the ratio of CD8+ T effectors (Teffs) to Tregs. We also found that sequence of antibody delivery altered outcome. The two most effective sequences were simultaneous delivery (70% cured) followed by anti-TNFR2 preceding anti-PD-1 (40% cured), and the least effective was by anti-PD-1 preceding anti-TNFR2 (10% cured). We conclude that anti-PD-1 is best enhanced by simultaneous administration with anti-TNFR2, and anti-TNFR2 alone may be potentially useful strategy for those do not respond to, or cannot tolerate, anti-PD-1 or other checkpoint inhibitors.
Collapse
Affiliation(s)
- Katherine Case
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa Tran
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Yang
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Willem M Kuhtreiber
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Denise L Faustman
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Orhan A, Vogelsang RP, Andersen MB, Madsen MT, Hölmich ER, Raskov H, Gögenur I. The prognostic value of tumour-infiltrating lymphocytes in pancreatic cancer: a systematic review and meta-analysis. Eur J Cancer 2020; 132:71-84. [PMID: 32334338 DOI: 10.1016/j.ejca.2020.03.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
IMPORTANCE Tumour-infiltrating lymphocytes (TILs) have previously been found to influence patient prognosis in other gastrointestinal cancers, for instance in colorectal cancer. An immunosuppressive phenotype often characterizes pancreatic cancer with a low degree of immune cell infiltration. Cytotoxic CD8+ T cell infiltration in tumours is found to be the best predictive variable for response to immune checkpoint inhibitor therapy, emphasizing the importance of investigating TILs in pancreatic cancer, especially focussing on CD8+ T cells. OBJECTIVE Here, we systematically review the literature and perform meta-analyses to examine the prognostic value of TILs in human pancreatic ductal adenocarcinomas (PDAC). Secondarily, we review the literature regarding the histological localization of TILs and the impact on survival in PDAC. EVIDENCE REVIEW A literature search was conducted on PubMed, Embase, The Cochrane Library and Web of Science. Studies examining patients with PDAC and the impact of high vs. low infiltration of immune cells on long-term oncological survival measures were included. Time-to-event meta-analysis and frequency analysis were conducted using a random effects model. The risk of bias was assessed using the Newcastle-Ottowa Scale. Quality of the cumulative evidence was evaluated using the GRADE approach for prognostic studies. FINDINGS In total, 1971 articles were screened, of which 43 studies were included in the systematic review and 39 in the meta-analysis. High infiltration of CD8+ lymphocytes was significantly associated with improved overall survival (OS) [hazard ratio (HR) = 0.58, 95% confidence intervals (CIs): 0.50-0.68], disease-free survival (DFS) [HR = 0.64, 95% CI: 0.52-0.78], progression-free survival [HR = 0.66, 95% CI: 0.51-0.86] and cancer-specific survival [HR = 0.56, 95% CI: 0.32-0.99]. A high infiltration of CD3+ T cells was correlated with increased OS [HR = 0.58, 95% CI: 0.50-0.68] and DFS [HR = 0.74, 95% CI: 0.38-1.43]. Infiltration of CD4+ lymphocytes was associated with improved 12-months OS [risk ratio = 0.59, 95% CI: 0.35-0.99] and DFS [risk ratio = 0.68, 95% CI: 0.53-0.88]. High expression of FoxP3+ lymphocytes was associated with poor OS [HR = 1.48, 95% CI: 1.20-1.83]. The greatest impact on survival was observed in the CD8+ T cell and OS group, when infiltration was located to the tumour centre [HR = 0.53, 95% CI: 0.45-0.63]. However, subgroup analysis on the impact of the histological location of infiltration revealed no significant differences between the subgroups (tumour centre, invasive margin, stroma and all locations) in any of the examined cell types and outcomes. CONCLUSIONS AND RELEVANCE Subsets of TILs, especially CD3+, CD8+ and FoxP3+ T cells are strongly associated with long-term oncological outcomes in patients with PDAC. To our knowledge, this is the first systematic review and meta-analysis on the prognostic value of TILs in pancreatic cancer.
Collapse
Affiliation(s)
- Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus P Vogelsang
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Malene B Andersen
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Michael T Madsen
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Emma R Hölmich
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Comparative bioinformatical analysis of pancreatic head cancer and pancreatic body/tail cancer. Med Oncol 2020; 37:46. [PMID: 32277286 DOI: 10.1007/s12032-020-01370-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/01/2020] [Indexed: 12/28/2022]
Abstract
This study is to analyze differentially expressed genes (DEGs) and mutation signatures of pancreatic head cancer and pancreatic body/tail cancer. Pancreatic Adenocarcinoma (PAAD) RNA-seq data, mutation data and clinical data were downloaded and collected from The Cancer Genome Atlas (TCGA), FireHose and CBioPortal. According to the anatomic location, the patients were divided into 146 cases of pancreatic head cancer and 28 cases of pancreatic body/tail cancer. Then survival analysis was performed by Kaplan-Meier and log-rank test. Furthermore, DEGs were screened by R package Deseq2. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) were then carried out by DAVID and String. Online tool TIMER was used to analyze the immune cells infiltration. R package maftools and GenVisR were applied to analyze frequently mutated genes and mutant-allele tumor heterogeneity (MATH) of PAAD. Survival of patients with pancreatic body/tail cancer was better than those with pancreatic head cancer (median survival, 24.05 vs 19.45 months, p = 0.048). And 496 significant DEGs (|log2 FoldChange| > 1.5,false discovery rate (FDR) < 0.05) were identified, including 253 downregulated genes and 243 upregulated genes. And there were 13 Go terms (4 biological processes, 6 cellular components and 3 molecular functions) and 3 KEGG pathways (Pancreatic secretion, Fat digestion and absorption, Protein digestion and absorption) (FDR < 0.05). B cells and CD4 + T cells infiltration were more significant in pancreatic head cancer. MATH scores of pancreatic body/tail cancer were higher than pancreatic head cancer, while χ2 test of top 10 frequently mutated genes showed little difference between them. There were prognostic and genetic differences between pancreatic head cancer and pancreatic body/tail cancer. PAAD originated from different location may have different biology natures and should not be treated with same strategy.
Collapse
|
35
|
Qin X, Cui X. Methyl-indole inhibits pancreatic cancer cell viability by down-regulating ZFX expression. 3 Biotech 2020; 10:187. [PMID: 32257743 DOI: 10.1007/s13205-020-02179-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/21/2020] [Indexed: 02/04/2023] Open
Abstract
This study explored the effect of methyl-indole on pancreatic cancer cell viability and investigated the mechanism involved. The viability of pancreatic cells showed a significant suppression on treatment with methyl-indole in dose-based manner. Treatment with 5 µM methyl-indole suppressed Capan-1 cell viability to 23%. The viability of Aspc-1 cells was reduced to 20% and those of MIApaCa-2 cells to 18% by 5 µM methyl-indole. The apoptotic proportion of Capan-1 cells was 67%, while as those of Aspc-1 and MIApaCa-2 cells increased to 72 and 77%, respectively, on treatment with 5 µM methyl-indole. The level of P13K, p-Tyr, p-Crkl and p-Akt was inhibited in the cells by methyl-indole. Moreover, methyl-indole also suppressed zinc-finger protein, X-linked mRNA and protein expression in tested cells. In summary, methyl-indole exhibits anti-proliferative effect on pancreatic cancer cells and induces apoptosis. It targeted ZFX expression and down-regulated P13K/AKT pathway in pancreatic cancer cells. Therefore, methyl-indole acts as therapeutic agent for pancreatic cancer and may be studied further.
Collapse
|
36
|
Gondhowiardjo SA, Handoko, Adham M, Rachmadi L, Kodrat H, Tobing DL, Haryoga IM, Dwiyono AG, Kristian YA, Mayang Permata TB. Tumor microenvironment predicts local tumor extensiveness in PD-L1 positive nasopharyngeal cancer. PLoS One 2020; 15:e0230449. [PMID: 32191754 PMCID: PMC7082005 DOI: 10.1371/journal.pone.0230449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/01/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor microenvironment have been implicated in many kind of cancers to hold an important role in determining treatment success especially with immunotherapy. In nasopharyngeal cancer, the prognostic role of this immune cells within tumor microenvironment is still doubtful. We conducted a study that included 25 nasopharyngeal cancer biopsy specimens to seek a more direct relationship between tumor infiltrating immune cells and tumor progression. Apart from that, we also checked the PD-L1 protein through immunohistochemistry. The PD-L1 was positively expressed in all our 25 samples with nasopharyngeal cancer WHO type 3 histology. Majority samples have >50% PD-L1 expression in tumor cells. We also found that denser local tumor infiltrating immune cells population have relatively much smaller local tumor volume. The inverse applied, with the mean local tumor volumes were 181.92 cm3 ± 81.45 cm3, 117.13 cm3 ± 88.72 cm3, and 55.13 cm3 ± 25.06 cm3 for mild, moderate, and heavy immune cells infiltration respectively (p = 0.013). Therefore, we concluded that tumor infiltrating immune cells play an important role in tumor progression, hence evaluating this simple and predictive factor may provide us with some valuable prognostic information.
Collapse
Affiliation(s)
- Soehartati A. Gondhowiardjo
- Department of Radiotherapy, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Handoko
- Department of Radiotherapy, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Marlinda Adham
- Department of Ear, Nose and Throat–Head and Neck Surgery, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Lisnawati Rachmadi
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Henry Kodrat
- Department of Radiotherapy, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Demak Lumban Tobing
- Department of Clinical Pathology, Dharmais National Cancer Hospital, Jakarta, Indonesia
| | - I. Made Haryoga
- Department of Radiotherapy, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Agustinus Gatot Dwiyono
- Department of Radiotherapy, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Yoseph Adi Kristian
- Department of Radiotherapy, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Tiara Bunga Mayang Permata
- Department of Radiotherapy, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| |
Collapse
|
37
|
Li KY, Yuan JL, Trafton D, Wang JX, Niu N, Yuan CH, Liu XB, Zheng L. Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Chronic Dis Transl Med 2020; 6:6-17. [PMID: 32226930 PMCID: PMC7096327 DOI: 10.1016/j.cdtm.2020.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 02/08/2023] Open
Abstract
The tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) is non-immunogenic, which consists of the stellate cells, fibroblasts, immune cells, extracellular matrix, and some other immune suppressive molecules. This low tumor perfusion microenvironment with physical dense fibrotic stroma shields PDAC from traditional antitumor therapies like chemotherapy and various strategies that have been proven successful in other types of cancer. Immunotherapy has the potential to treat minimal and residual diseases and prevent recurrence with minimal toxicity, and studies in patients with metastatic and nonresectable disease have shown some efficacy. In this review, we highlighted the main components of the pancreatic tumor microenvironment, and meanwhile, summarized the advances of some promising immunotherapies for PDAC, including checkpoint inhibitors, chimeric antigen receptors T cells, and cancer vaccines. Based on our previous researches, we specifically discussed how granulocyte-macrophage colony stimulating factor based pancreatic cancer vaccine prime the pancreatic tumor microenvironment, and introduced some novel immunoadjuvants, like the stimulator of interferon genes.
Collapse
Affiliation(s)
- Ke-Yu Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Jia-Long Yuan
- School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Diego Trafton
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Jian-Xin Wang
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Hepatic-biliary-pancreatic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Nan Niu
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, China
| | - Chun-Hui Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Xu-Bao Liu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| |
Collapse
|
38
|
Gao HF, Cheng CS, Tang J, Li Y, Chen H, Meng ZQ, Chen Z, Chen LY. CXCL9 chemokine promotes the progression of human pancreatic adenocarcinoma through STAT3-dependent cytotoxic T lymphocyte suppression. Aging (Albany NY) 2020; 12:502-517. [PMID: 31913856 PMCID: PMC6977695 DOI: 10.18632/aging.102638] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
Chemokines play essential roles in the progression of various human cancers; however, the expression and role of CXC chemokines in pancreatic adenocarcinoma (PAAD) have not yet been identified. The aim of this study is to identify the expression patterns, clinical significance and mechanisms of CXC chemokines in regulating tumour microenvironment of PAAD. Three CXC chemokines, including CXCL5, CXCL9, and CXCL10, were significantly overexpressed in PAAD tissues, which were correlated with the poor survival of the patients. CXCL9/10 was associated with change of immune cell pattern in the tumour microenvironment, and supplementation of CXCL9 in the orthotopic murine PAAD model promoted tumour progression. In particular, CXCL9 reduced the CD8+ cytotoxic T lymphocytes in the tumour microenvironment of PAAD, which could be attributed to the reduced CD8+ T cell proliferation, activation, and secretion of anti-tumour cytokines. In vitro treatment of CXCL9 directly led to the suppression of the proliferation, activation, and secretion of anti-tumour cytokines of isolated CD8+ T cells. Inhibition of STAT3 recovered the CXCL9-inhibited proliferation, activation, and secretion of anti-tumour cytokines of CD8+ T cells. Our study indicates CXCL9 as a potential target of immunotherapy in PAAD treatment by regulating the CD8+ T lymphocytes in the tumour microenvironment.
Collapse
Affiliation(s)
- Hui-Feng Gao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chien-Shan Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jian Tang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Ye Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Hao Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhi-Qiang Meng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhen Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Lian-Yu Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
39
|
Computational STAT3 activity inference reveals its roles in the pancreatic tumor microenvironment. Sci Rep 2019; 9:18257. [PMID: 31796877 PMCID: PMC6890662 DOI: 10.1038/s41598-019-54791-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022] Open
Abstract
Transcription factor (TF) STAT3 contributes to pancreatic cancer progression through its regulatory roles in both tumor cells and the tumor microenvironment (TME). In this study, we performed a systematic analysis of all TFs in patient-derived gene expression datasets and confirmed STAT3 as a critical regulator in the pancreatic TME. Importantly, we developed a novel framework that is based on TF target gene expression to distinguish between environmental- and tumor-specific STAT3 activities in gene expression studies. Using this framework, our results novelly showed that compartment-specific STAT3 activities, but not STAT3 mRNA, have prognostications towards clinical values within pancreatic cancer datasets. In addition, high TME-derived STAT3 activity correlates with an immunosuppressive TME in pancreatic cancer, characterized by CD4 T cell and monocyte infiltration and high copy number variation burden. Where environmental-STAT3 seemed to play a dominant role at primary pancreatic sites, tumor-specific STAT3 seemed dominant at metastatic sites where its high activity persisted. In conclusion, by combining compartment-specific inference with other tumor characteristics, including copy number variation and immune-related gene expression, we demonstrate our method’s utility as a tool to generate novel hypotheses about TFs in tumor biology.
Collapse
|
40
|
Huff WX, Kwon JH, Henriquez M, Fetcko K, Dey M. The Evolving Role of CD8 +CD28 - Immunosenescent T Cells in Cancer Immunology. Int J Mol Sci 2019; 20:ijms20112810. [PMID: 31181772 PMCID: PMC6600236 DOI: 10.3390/ijms20112810] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Functional, tumor-specific CD8+ cytotoxic T lymphocytes drive the adaptive immune response to cancer. Thus, induction of their activity is the ultimate aim of all immunotherapies. Success of anti-tumor immunotherapy is precluded by marked immunosuppression in the tumor microenvironment (TME) leading to CD8+ effector T cell dysfunction. Among the many facets of CD8+ T cell dysfunction that have been recognized—tolerance, anergy, exhaustion, and senescence—CD8+ T cell senescence is incompletely understood. Naïve CD8+ T cells require three essential signals for activation, differentiation, and survival through T-cell receptor, costimulatory receptors, and cytokine receptors. Downregulation of costimulatory molecule CD28 is a hallmark of senescent T cells and increased CD8+CD28− senescent populations with heterogeneous roles have been observed in multiple solid and hematogenous tumors. T cell senescence can be induced by several factors including aging, telomere damage, tumor-associated stress, and regulatory T (Treg) cells. Tumor-induced T cell senescence is yet another mechanism that enables tumor cell resistance to immunotherapy. In this paper, we provide a comprehensive overview of CD8+CD28− senescent T cell population, their origin, their function in immunology and pathologic conditions, including TME and their implication for immunotherapy. Further characterization and investigation into this subset of CD8+ T cells could improve the efficacy of future anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wei X Huff
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Jae Hyun Kwon
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mario Henriquez
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kaleigh Fetcko
- Department of Neurology, University of Illinois at Chicago School of Medicine, Chicago, IL 60612, USA.
| | - Mahua Dey
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
41
|
Tomasello G, Ghidini M, Costanzo A, Ghidini A, Russo A, Barni S, Passalacqua R, Petrelli F. Outcome of head compared to body and tail pancreatic cancer: a systematic review and meta-analysis of 93 studies. J Gastrointest Oncol 2019; 10:259-269. [PMID: 31032093 DOI: 10.21037/jgo.2018.12.08] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Even when resectable pancreatic cancer (PC) is associated with a dismal prognosis. Initial presentation varies according with primary tumor location. Aim of this systematic review and meta-analysis was to evaluate the prognosis associated with site (head versus body/tail) in patients with PC. Methods We searched PubMed, Cochrane Library, SCOPUS, Web of Science, EMBASE, Google Scholar, LILACS, and CINAHL databases from inception to March 2018. Studies reporting information on the independent prognostic role of site in PC and comparing overall survival (OS) in head versus body/tail tumors were selected. Data were aggregated using hazard ratios (HRs) for OS of head versus body/tail PC according to fixed- or random-effect model. Results A total of 93 studies including 254,429 patients were identified. Long-term prognosis of head was better than body/tail cancers (HR =0.96, 95% CI: 0.92-0.99; P=0.02). A pooled HR of 0.95 (95% CI: 0.92-0.99, P=0.02) from multivariate analysis only (n=77 publications) showed that head site was an independent prognostic factor for survival. Conclusions Primary tumor location in the head of the pancreas at the time of diagnosis is a predictor of better survival. Such indicator should be acknowledged when designing future studies, in particular in the operable and neoadjuvant setting.
Collapse
Affiliation(s)
| | - Michele Ghidini
- Oncology Department, ASST Ospedale di Cremona, Cremona, Italy
| | - Antonio Costanzo
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | | | - Alessandro Russo
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Sandro Barni
- Oncology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | | | - Fausto Petrelli
- Oncology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| |
Collapse
|
42
|
Jiang J, Zhou H, Ni C, Hu X, Mou Y, Huang D, Yang L. Immunotherapy in pancreatic cancer: New hope or mission impossible? Cancer Lett 2019; 445:57-64. [DOI: 10.1016/j.canlet.2018.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/29/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022]
|
43
|
Pu N, Zhao G, Yin H, Li JA, Nuerxiati A, Wang D, Xu X, Kuang T, Jin D, Lou W, Wu W. CD25 and TGF-β blockade based on predictive integrated immune ratio inhibits tumor growth in pancreatic cancer. J Transl Med 2018; 16:294. [PMID: 30359281 PMCID: PMC6203282 DOI: 10.1186/s12967-018-1673-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The prognosis of pancreatic ductal adenocarcinoma (PDAC) remains poor due to the difficulty of disease diagnosis and therapy. Immunotherapy has had robust performance against several malignancies, including PDAC. In this study, we aim to analyze the expression of CD8 and FoxP3 on T lymphocytes and TGF-β expression in tumor tissues, and then analyze the possible clinical significance of these finding in order to find a novel effective immunotherapy target in PDAC using a murine model. METHODS A tissue microarray using patient PDAC samples was stained and analyzed for associations with clinicopathological characteristics. A preclinical murine model administrated with various immunotherapies were analyzed by growth inhibitor, flow cytometry, enzyme-linked immuno sorbent assay and immunohistochemistry. RESULTS The infiltrating FoxP3+ regulatory T cells (Tregs) in tumor tissues were associated with survival, while CD8+ tumor infiltrating lymphocytes (TILs) were not. Considering the drawbacks of these measure alone, the number of CD8+ and FoxP3+ T cells were combined to create a new estimated value-integrated immune ratio (IIR), which showed excellent validity in survival risk stratification. IIR was further verified as an independent prognostic factor according to multivariate analysis as well as TGF-β expression. Association between TGF-β expression and infiltrating Tregs was also verified. Then, in our preclinical murine model, CD25 and TGF-β combination blockade had a higher tumor growth inhibitor value. This combination therapy significantly depleted periphery and intra-tumor FoxP3+ Tregs while increasing intra-tumor CD8+ TILs levels compared to controls or anti-TGF-β monotherapy (p < 0.05). Anti-CD25 monotherapy alone also had the ability to deplete periphery and intra-tumor Tregs (p < 0.05). The excretion of intra-tumor IL-10, TGF-β was notably lower but higher IFN-γ excretion in this combination immunotherapy. Such combination immunotherapy was further confirmed to synergize with anti-PD-1 monotherapy to improve tumor growth inhibition and cure rates. CONCLUSIONS The combination of CD25, TGF-β and PD-1 blockade plays a potentially effective role in inhibiting tumor formation and progression. Our results also provide a strong rational strategy for use of IIR in future immunotherapy clinical trials.
Collapse
Affiliation(s)
- Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Guochao Zhao
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Hanlin Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jian-Ang Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Abulimiti Nuerxiati
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dansong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xuefeng Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dayong Jin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
44
|
Cohen JE, Eleyan F, Zick A, Peretz T, Katz D. Intratumoral immune-biomarkers and mismatch repair status in leiyomyosarcoma -potential predictive markers for adjuvant treatment: a pilot study. Oncotarget 2018; 9:30847-30854. [PMID: 30112112 PMCID: PMC6089390 DOI: 10.18632/oncotarget.25747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 06/23/2018] [Indexed: 12/21/2022] Open
Abstract
Leiomyosarcoma is the second most frequent soft-tissue sarcoma. Tumor lymphocytic infiltration (TIL) and programed cell death ligand-1 (PD-L1) have been associated with prognosis in different malignancies while DNA mismatch-repair deficiency (MMR-D) has been associated with response to check-point inhibitors. In this pilot study, we sought to examine TIL, PD-L1 and mismatch-repair (MMR) protein expression in 11 leiomyosarcoma and its association with outcome as potential biomarkers for adjuvant treatment. Eleven primary leiomyosarcoma archived-tissues were analyzed for expression of MMR proteins (MSH2, MLH1, MSH6 and PSM2), PD-L1 expression and PD-1, CD3 or CD8. MMR-D was detected in tumor tissue from 2/11 leiomyosarcoma patients. CD3 T-cells were present in all samples, whereas CD8 staining was positive in all but one. PDL-1 was positive in 4/11 and PD-L1 in 6/11. Interestingly, the three patients with the poorest outcome had strongly positive staining for PD-L1 and CD8 while in the two patients who are alive and recurrence-free, both PD-L1 and CD8 infiltration were lacking. We found an association between tumor infiltrating CD8 cytotoxic lymphocytes, strong PD-L1 staining and survival; suggesting a role as biomarkers for treatment decisions regarding peri-operative chemotherapy. We also identified MMR-D in two patients with leiomyosarcoma comprising 18% of our sample.
Collapse
Affiliation(s)
- Jonathan E Cohen
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Feras Eleyan
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Aviad Zick
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Katz
- Institute of Oncology, Assaf Harofeh Medical Center Zrifin, Beer Yaacov, Israel
| |
Collapse
|
45
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is composed of a minority of malignant cells within a microenvironment of extracellular matrix, fibroblasts, endothelial cells, and immune cells. Therapeutic failures of chemotherapy, targeted therapy, and immunotherapy have all been attributed to the PDAC microenvironment. In this review, we dissect the components of the microenvironment and explain how each cell type contributes to form a highly immunosuppressive, hypoxic, and desmoplastic cancer. New efforts in single-cell profiling will enable a better understanding of the composition of the microenvironment in primary and metastatic PDAC, as well as an understanding of how the microenvironment may respond to novel therapeutic approaches.
Collapse
|
46
|
Neutralizing TGF-β promotes anti-tumor immunity of dendritic cells against pancreatic cancer by regulating T lymphocytes. Cent Eur J Immunol 2018; 43:123-131. [PMID: 30135623 PMCID: PMC6102619 DOI: 10.5114/ceji.2018.77381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022] Open
Abstract
Previous fundamental or clinical trials of dendritic cell (DC) vaccine against pancreatic ductal adenocarcinoma (PDAC) revealed the burgeoning neoadjuvant immunotherapy. Microarray studies indicated that multiple ingredients of the transfer growth factor beta (TGF-β) pathway were overexpressed in PDAC, which inhibited the intratumoral immune response. To explore whether the DC volume in tumor microenvironment contributes to the differentiation of T cell cohort and test the hypothesis that combining DC vaccine with TGF-β inhibitors will elevate the anti-tumor immune response, we managed to co-culture T cells in vitro with pancreatic cancer cells and DCs in different concentrations, and combine TGF-β blockage with DC vaccine therapy in a murine model of pancreatic cancer. In in vitro studies, we discovered that CD8+ T cytotoxic cell (Tc) presented a significant advantage and lower volume of CD4+ T helper cell (Th) existed with a certain elevated DC concentration (p < 0.05), associated with declined interleukin (IL)-10 and increased interferon (IFN)-γ, which suggested with the DC volume increasing, the enhancing immune effect may represent a great advantage in such a system (p < 0.05). When interfered with anti-TGF-β antibody or TGF-β cytokine, respectively, in the co-culture system, we found IFN-γ producing was extremely higher and T cell apoptosis relatively descent with TGF-β blockage (p < 0.05). The murine PDAC model demonstrated a survival advantage treated with anti-TGF-β antibody combined with DC vaccine when compared with monotherapy controls (p < 0.05). Therefore, these findings indicated that, through neutralizing TGF-β associated with DC vaccine, the anti-tumor immunity is highly elevated and this combinational therapy will provide an efficacious prospect.
Collapse
|
47
|
Johnson BA, Yarchoan M, Lee V, Laheru DA, Jaffee EM. Strategies for Increasing Pancreatic Tumor Immunogenicity. Clin Cancer Res 2018; 23:1656-1669. [PMID: 28373364 DOI: 10.1158/1078-0432.ccr-16-2318] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 12/15/2022]
Abstract
Immunotherapy has changed the standard of care for multiple deadly cancers, including lung, head and neck, gastric, and some colorectal cancers. However, single-agent immunotherapy has had little effect in pancreatic ductal adenocarcinoma (PDAC). Increasing evidence suggests that the PDAC microenvironment is comprised of an intricate network of signals between immune cells, PDAC cells, and stroma, resulting in an immunosuppressive environment resistant to single-agent immunotherapies. In this review, we discuss differences between immunotherapy-sensitive cancers and PDAC, the complex interactions between PDAC stroma and suppressive tumor-infiltrating cells that facilitate PDAC development and progression, the immunologic targets within these complex networks that are druggable, and data supporting combination drug approaches that modulate multiple PDAC signals, which should lead to improved clinical outcomes. Clin Cancer Res; 23(7); 1656-69. ©2017 AACRSee all articles in this CCR Focus section, "Pancreatic Cancer: Challenge and Inspiration."
Collapse
Affiliation(s)
- Burles A Johnson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Valerie Lee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Daniel A Laheru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland. .,Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
48
|
Sakai K, Maeda S, Yamada Y, Chambers JK, Uchida K, Nakayama H, Yonezawa T, Matsuki N. Association of tumour-infiltrating regulatory T cells with adverse outcomes in dogs with malignant tumours. Vet Comp Oncol 2018; 16:330-336. [DOI: 10.1111/vco.12383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/02/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
Affiliation(s)
- K. Sakai
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - S. Maeda
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Y. Yamada
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - J. K. Chambers
- Department of Veterinary Pathology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - K. Uchida
- Department of Veterinary Pathology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - H. Nakayama
- Department of Veterinary Pathology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - T. Yonezawa
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - N. Matsuki
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| |
Collapse
|
49
|
Nie Y, He J, Shirota H, Trivett AL, Yang D, Klinman DM, Oppenheim JJ, Chen X. Blockade of TNFR2 signaling enhances the immunotherapeutic effect of CpG ODN in a mouse model of colon cancer. Sci Signal 2018; 11:11/511/eaan0790. [PMID: 29295954 DOI: 10.1126/scisignal.aan0790] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Through the tumor necrosis factor (TNF) receptor type II (TNFR2), TNF preferentially activates, expands, and promotes the phenotypic stability of CD4+Foxp3+ regulatory T (Treg) cells. Those Treg cells that have a high abundance of TNFR2 have the maximal immunosuppressive capacity. We investigated whether targeting TNFR2 could effectively suppress the activity of Treg cells and consequently enhance the efficacy of cancer immunotherapy. We found that, relative to a suboptimal dose of the immunostimulatory Toll-like receptor 9 ligand CpG oligodeoxynucleotide (ODN), the combination of the suboptimal dose of CpG ODN with the TNFR2-blocking antibody M861 more markedly inhibited the growth of subcutaneously grafted mouse CT26 colon tumor cells. This resulted in markedly fewer TNFR2+ Treg cells and more interferon-γ-positive (IFN-γ+) CD8+ cytotoxic T lymphocytes infiltrating the tumor and improved long-term tumor-free survival in the mouse cohort. Tumor-free mice were resistant to rechallenge by the same but not unrelated (4T1 breast cancer) cells. Treatment with the combination of TNFR2-blocking antibody and a CD25-targeted antibody also resulted in enhanced inhibition of tumor growth in a syngeneic 4T1 mouse model of breast cancer. Thus, the combination of a TNFR2 inhibitor and an immunotherapeutic stimulant may represent a more effective treatment strategy for various cancers.
Collapse
Affiliation(s)
- Yingjie Nie
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.,Department of Research, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Jiang He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hidekazu Shirota
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Anna L Trivett
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - De Yang
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Dennis M Klinman
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Joost J Oppenheim
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China. .,Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
50
|
Pu N, Gao S, Xu Y, Zhao G, Lv Y, Nuerxiati A, Li JA, Wang D, Xu X, Kuang T, Wang X, Lou W, Liu L, Wu W. Alkaline Phosphatase-To-Albumin Ratio as a Prognostic Indicator in Pancreatic Ductal Adenocarcinoma after Curative Resection. J Cancer 2017; 8:3362-3370. [PMID: 29158809 PMCID: PMC5665053 DOI: 10.7150/jca.20917] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/31/2017] [Indexed: 12/26/2022] Open
Abstract
Background: The prognosis of pancreatic ductal adenocarcinoma (PDAC) remains poor and the models for survival prediction in PDAC patients after curative resection are still limited. Preoperative alkaline phosphatase-to-albumin ratio (APAR), an original inflammation-based score, has been established to analyze the prognostic significance in PDAC. Therefore, in this study, we aim to formulate a valuable prognostic nomogram for PDAC following curative resection. Methods: A total of 354 patients with PDAC undergoing curative resection were retrospectively enrolled in this study. The prognostic value of APAR was analyzed in primary cohort containing 220 randomly selected PDAC patients with curative resection and prognostic nomogram incorporating APAR into the American Joint Commission on Cancer (AJCC) 8th edition was established to obtain superior discriminatory abilities. The predictive performance of APAR was further validated in another independent cohort of 134 PDAC patients. Results: Patients with higher serum APAR level were probable to sustain poorer overall survival (OS). Significant positive correlations were found between APAR and tumor site, and several serum biochemical indexes, such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), etc. The results of multivariate analysis showed, APAR was also identified as an independent prognostic indicator for OS in both primary and validation cohorts (P=0.004, P=0.038, respectively). Compared with the AJCC 8th edition, the nomogram consisting of APAR, pathological differentiation and the TNM staging system of AJCC 8th edition showed superior predictive accuracy for OS. All these results were further verified in the validation cohort. Conclusions: APAR can be considered as a novel independent prognostic biomarker for PDAC following curative resection. One more accurate and advanced predictive model will be achieved via the incorporation of APAR into nomogram.
Collapse
Affiliation(s)
- Ning Pu
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shanshan Gao
- Department of Interventional Radiology, Zhongshan Hospital and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Yadong Xu
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Guochao Zhao
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yang Lv
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Abulimiti Nuerxiati
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian-Ang Li
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dansong Wang
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xuefeng Xu
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiaolin Wang
- Department of Interventional Radiology, Zhongshan Hospital and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lingxiao Liu
- Department of Interventional Radiology, Zhongshan Hospital and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|