1
|
Gasanz Garicochea M, Martínez-Romera I, Osuna-Marco MP, López-Ibor Aliño B. Clinical experience with immunotherapy in patients with diffuse intrinsic pontine glioma. Eur J Hosp Pharm 2025; 32:190-192. [PMID: 37940368 DOI: 10.1136/ejhpharm-2022-003511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
The objective of the article is to report the case of three patients with diffuse intrinsic pontine glioma (DIPG) treated with immunotherapy. In particular we report the data related to the treatments' efficacy and tolerance.To achieve this, we review the medical records in the Paediatric Oncology and Haematology Unit of HM Hospitales/Centro Integral Oncológico Clara Campal (CIOCC). We focused on patients diagnosed with DIPG who were administered oncolytic viruses followed by immune checkpoint inhibitors (ICI) (pembrolizumab, anti PD-1) plus a concomitant antiangiogenic agent (bevacizumab).The results we obtained showed the three paediatric DIPG patients studied presented good tolerance, with disease stabilisation for approximately 5 months after immunotherapy. However, subsequent clinical worsening required clinicians to change the patients' treatment.In conclusion, immunotherapy combined with other conventional antineoplastic treatments (chemotherapy, radiotherapy) is postulated as a very promising future therapeutic option. However, further research is warranted in the paediatric population to demonstrate safety and effectiveness.
Collapse
Affiliation(s)
| | - Isabel Martínez-Romera
- Pediatric Oncology and Hematology Unit, Hospital Universitario La Paz, Madrid, Madrid, Spain
| | - Marta Pilar Osuna-Marco
- Pediatric Oncology and Hematology Unit, Hospital Universitario HM Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Blanca López-Ibor Aliño
- Pediatric Oncology and Hematology Unit, Hospital Universitario HM Montepríncipe, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
2
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Menon SV, Sharma P, Tomar BS, Sharma A, Sameer HN, Hamad AK, Athab ZH, Adil M. From Gut to Brain: The Impact of Short-Chain Fatty Acids on Brain Cancer. Neuromolecular Med 2025; 27:10. [PMID: 39821841 DOI: 10.1007/s12017-025-08830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma. They play a critical role in regulating cellular processes, including apoptosis, cell differentiation, and inflammation. Moreover, studies have linked SCFAs to maintaining the integrity of the blood-brain barrier (BBB), suggesting a protective role in preventing tumor infiltration and enhancing anti-tumor immunity. As our understanding of the gut-brain axis deepens, it becomes increasingly important to investigate SCFAs' therapeutic potential in brain cancer management. Looking into how SCFAs affect brain tumor cells and the environment around them could lead to new ways to prevent and treat these diseases, which could lead to better outcomes for people who are dealing with these challenging cancers.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Balvir S Tomar
- Institute of Pediatric Gastroenterology and Hepatology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Aanchal Sharma
- Department of Medical Lab Sciences, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
3
|
Amanzadeh Jajin E, Oraee Yazdani S, Zali A, Esmaeili A. Efficacy and Safety of Vaccines After Conventional Treatments for Survival of Gliomas: A Systematic Review and Meta-Analysis. Oncol Rev 2024; 18:1374513. [PMID: 38707486 PMCID: PMC11066223 DOI: 10.3389/or.2024.1374513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024] Open
Abstract
Background Malignant gliomas are known with poor prognosis and low rate of survival among brain tumors. Resection surgery is followed by chemotherapy and radiotherapy in treatment of gliomas which is known as the conventional treatment. However, this treatment method results in low survival rate. Vaccination has been suggested as a type of immunotherapy to increase survival rate of glioma patients. Different types of vaccines have been developed that are mainly classified in two groups including peptide vaccines and cell-based vaccines. However, there are still conflicts about which type of vaccines is more efficient for malignant glioma treatment. Methods Phase Ⅰ/Ⅱ clinical trials which compared the efficacy and safety of various vaccines with conventional treatments were searched in databases through November 2022. Overall survival (OS) rate, progression free survival (PFS), and OS duration were used for calculation of pooled risk ratio (RR). In addition, fatigue, headache, nausea, diarrhea, and flu-like syndrome were used for evaluating the safety of vaccines therapy in glioma patients. Results A total of twelve articles were included in the present meta-analysis. Comparison of OS rate between vaccinated groups and control groups who underwent only conventional treatments showed a significant increase in OS rate in vaccinated patients (I2 = 0%, RR = 11.17, 95% CI: 2.460-50.225). PFS rate was better in vaccinated glioma patients (I2 = 83%, RR = 2.87, 95% CI: 1.63-5.03). Assessment of safety demonstrated that skin reaction (I2 = 0.0%, RR = 3.654; 95% CI: 1.711-7.801, p-value = 0.0058) and flu-like syndrome were significantly more frequent adverse effects win vaccinated groups compared to the control group. Subgroup analysis also showed that vaccination leads to better OS duration in recurrent gliomas than primary gliomas, and in LGG than HGG (p-value = 0). On the other hand, personalized vaccines showed better OS duration than non-personalized vaccines (p-value = 0). Conclusion Vaccination is a type of immunotherapy which shows promising efficacy in treatment of malignant glioma patients in terms of OS, PFS and duration of survival. In addition, AFTV, peptide, and dendritic cell-based vaccines are among the most efficient vaccines for gliomas. Personalized vaccines also showed considerable efficacy for glioma treatments.
Collapse
Affiliation(s)
| | - Saeed Oraee Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolghasem Esmaeili
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
4
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Naumenko VA, Chekhonin VP. The need for paradigm shift: prognostic significance and implications of standard therapy-related systemic immunosuppression in glioblastoma for immunotherapy and oncolytic virotherapy. Front Immunol 2024; 15:1326757. [PMID: 38390330 PMCID: PMC10881776 DOI: 10.3389/fimmu.2024.1326757] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Despite significant advances in our knowledge regarding the genetics and molecular biology of gliomas over the past two decades and hundreds of clinical trials, no effective therapeutic approach has been identified for adult patients with newly diagnosed glioblastoma, and overall survival remains dismal. Great hopes are now placed on combination immunotherapy. In clinical trials, immunotherapeutics are generally tested after standard therapy (radiation, temozolomide, and steroid dexamethasone) or concurrently with temozolomide and/or steroids. Only a minor subset of patients with progressive/recurrent glioblastoma have benefited from immunotherapies. In this review, we comprehensively discuss standard therapy-related systemic immunosuppression and lymphopenia, their prognostic significance, and the implications for immunotherapy/oncolytic virotherapy. The effectiveness of immunotherapy and oncolytic virotherapy (viro-immunotherapy) critically depends on the activity of the host immune cells. The absolute counts, ratios, and functional states of different circulating and tumor-infiltrating immune cell subsets determine the net immune fitness of patients with cancer and may have various effects on tumor progression, therapeutic response, and survival outcomes. Although different immunosuppressive mechanisms operate in patients with glioblastoma/gliomas at presentation, the immunological competence of patients may be significantly compromised by standard therapy, exacerbating tumor-related systemic immunosuppression. Standard therapy affects diverse immune cell subsets, including dendritic, CD4+, CD8+, natural killer (NK), NKT, macrophage, neutrophil, and myeloid-derived suppressor cell (MDSC). Systemic immunosuppression and lymphopenia limit the immune system's ability to target glioblastoma. Changes in the standard therapy are required to increase the success of immunotherapies. Steroid use, high neutrophil-to-lymphocyte ratio (NLR), and low post-treatment total lymphocyte count (TLC) are significant prognostic factors for shorter survival in patients with glioblastoma in retrospective studies; however, these clinically relevant variables are rarely reported and correlated with response and survival in immunotherapy studies (e.g., immune checkpoint inhibitors, vaccines, and oncolytic viruses). Our analysis should help in the development of a more rational clinical trial design and decision-making regarding the treatment to potentially improve the efficacy of immunotherapy or oncolytic virotherapy.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Victor A. Naumenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Gardam B, Gargett T, Brown MP, Ebert LM. Targeting the dendritic cell-T cell axis to develop effective immunotherapies for glioblastoma. Front Immunol 2023; 14:1261257. [PMID: 37928547 PMCID: PMC10623138 DOI: 10.3389/fimmu.2023.1261257] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Glioblastoma is an aggressive primary brain tumor that has seen few advances in treatments for over 20 years. In response to this desperate clinical need, multiple immunotherapy strategies are under development, including CAR-T cells, immune checkpoint inhibitors, oncolytic viruses and dendritic cell vaccines, although these approaches are yet to yield significant clinical benefit. Potential reasons for the lack of success so far include the immunosuppressive tumor microenvironment, the blood-brain barrier, and systemic changes to the immune system driven by both the tumor and its treatment. Furthermore, while T cells are essential effector cells for tumor control, dendritic cells play an equally important role in T cell activation, and emerging evidence suggests the dendritic cell compartment may be deeply compromised in glioblastoma patients. In this review, we describe the immunotherapy approaches currently under development for glioblastoma and the challenges faced, with a particular emphasis on the critical role of the dendritic cell-T cell axis. We suggest a number of strategies that could be used to boost dendritic cell number and function and propose that the use of these in combination with T cell-targeting strategies could lead to successful tumor control.
Collapse
Affiliation(s)
- Bryan Gardam
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
| | - Tessa Gargett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Michael P. Brown
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Lisa M. Ebert
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
6
|
Perwein T, Giese B, Nussbaumer G, von Bueren AO, van Buiren M, Benesch M, Kramm CM. How I treat recurrent pediatric high-grade glioma (pHGG): a Europe-wide survey study. J Neurooncol 2023; 161:525-538. [PMID: 36720762 PMCID: PMC9992031 DOI: 10.1007/s11060-023-04241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023]
Abstract
PURPOSE As there is no standard of care treatment for recurrent/progressing pediatric high-grade gliomas (pHGG), we aimed to gain an overview of different treatment strategies. METHODS In a web-based questionnaire, members of the SIOPE-BTG and the GPOH were surveyed on therapeutic options in four case scenarios (children/adolescents with recurrent/progressing HGG). RESULTS 139 clinicians with experience in pediatric neuro-oncology from 22 European countries participated in the survey. Most respondents preferred further oncological treatment in three out of four cases and chose palliative care in one case with marked symptoms. Depending on the case, 8-92% would initiate a re-resection (preferably hemispheric pHGG), combined with molecular diagnostics. Throughout all case scenarios, 55-77% recommended (re-)irradiation, preferably local radiotherapy > 20 Gy. Most respondents would participate in clinical trials and use targeted therapy (79-99%), depending on molecular genetic findings (BRAF alterations: BRAF/MEK inhibitor, 64-88%; EGFR overexpression: anti-EGFR treatment, 46%; CDKN2A deletion: CDK inhibitor, 18%; SMARCB1 deletion: EZH2 inhibitor, 12%). 31-72% would administer chemotherapy (CCNU, 17%; PCV, 8%; temozolomide, 19%; oral etoposide/trofosfamide, 8%), and 20-69% proposed immunotherapy (checkpoint inhibitors, 30%; tumor vaccines, 16%). Depending on the individual case, respondents would also include bevacizumab (6-18%), HDAC inhibitors (4-15%), tumor-treating fields (1-26%), and intraventricular chemotherapy (4-24%). CONCLUSION In each case, experts would combine conventional multimodal treatment concepts, including re-irradiation, with targeted therapy based on molecular genetic findings. International cooperative trials combining a (chemo-)therapy backbone with targeted therapy approaches for defined subgroups may help to gain valid clinical data and improve treatment in pediatric patients with recurrent/progressing HGG.
Collapse
Affiliation(s)
- Thomas Perwein
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria.
| | - Barbara Giese
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - Gunther Nussbaumer
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - André O von Bueren
- Department of Pediatrics, Obstetrics and Gynecology, Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Miriam van Buiren
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Benesch
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - Christof Maria Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Glioblastoma Microenvironment and Cellular Interactions. Cancers (Basel) 2022; 14:cancers14041092. [PMID: 35205842 PMCID: PMC8870579 DOI: 10.3390/cancers14041092] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This paper summarizes the crosstalk between tumor/non-tumor cells and other elements of the glioblastoma (GB) microenvironment. In tumor pathology, glial cells result in the highest number of cancers, and GB is considered the most lethal tumor of the central nervous system (CNS). The tumor microenvironment (TME) is a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be a key factor for the ineffective treatment since the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. A deeper understanding of cell–cell interactions in the TME and with the tumor cells could be the basis for a more efficient therapy. Abstract The central nervous system (CNS) represents a complex network of different cells, such as neurons, glial cells, and blood vessels. In tumor pathology, glial cells result in the highest number of cancers, and glioblastoma (GB) is considered the most lethal tumor in this region. The development of GB leads to the infiltration of healthy tissue through the interaction between all the elements of the brain network. This results in a GB microenvironment, a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be the principal factor for the ineffective treatment due to the fact that the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. Crosstalk between glioma cells and the brain microenvironment finally inhibits the beneficial action of molecular pathways, favoring the development and invasion of the tumor and its increasing resistance to treatment. A deeper understanding of cell–cell interactions in the tumor microenvironment (TME) and with the tumor cells could be the basis for a more efficient therapy.
Collapse
|
8
|
Ali H, Harting R, de Vries R, Ali M, Wurdinger T, Best MG. Blood-Based Biomarkers for Glioma in the Context of Gliomagenesis: A Systematic Review. Front Oncol 2021; 11:665235. [PMID: 34150629 PMCID: PMC8211985 DOI: 10.3389/fonc.2021.665235] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gliomas are the most common and aggressive tumors of the central nervous system. A robust and widely used blood-based biomarker for glioma has not yet been identified. In recent years, a plethora of new research on blood-based biomarkers for glial tumors has been published. In this review, we question which molecules, including proteins, nucleic acids, circulating cells, and metabolomics, are most promising blood-based biomarkers for glioma diagnosis, prognosis, monitoring and other purposes, and align them to the seminal processes of cancer. METHODS The Pubmed and Embase databases were systematically searched. Biomarkers were categorized in the identified biomolecules and biosources. Biomarker characteristics were assessed using the area under the curve (AUC), accuracy, sensitivity and/or specificity values and the degree of statistical significance among the assessed clinical groups was reported. RESULTS 7,919 references were identified: 3,596 in PubMed and 4,323 in Embase. Following screening of titles, abstracts and availability of full-text, 262 articles were included in the final systematic review. Panels of multiple biomarkers together consistently reached AUCs >0.8 and accuracies >80% for various purposes but especially for diagnostics. The accuracy of single biomarkers, consisting of only one measurement, was far more variable, but single microRNAs and proteins are generally more promising as compared to other biomarker types. CONCLUSION Panels of microRNAs and proteins are most promising biomarkers, while single biomarkers such as GFAP, IL-10 and individual miRNAs also hold promise. It is possible that panels are more accurate once these are involved in different, complementary cancer-related molecular pathways, because not all pathways may be dysregulated in cancer patients. As biomarkers seem to be increasingly dysregulated in patients with short survival, higher tumor grades and more pathological tumor types, it can be hypothesized that more pathways are dysregulated as the degree of malignancy of the glial tumor increases. Despite, none of the biomarkers found in the literature search seem to be currently ready for clinical implementation, and most of the studies report only preliminary application of the identified biomarkers. Hence, large-scale validation of currently identified and potential novel biomarkers to show clinical utility is warranted.
Collapse
Affiliation(s)
- Hamza Ali
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Romée Harting
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Ralph de Vries
- Medical Library, Vrije Universiteit, Amsterdam, Netherlands
| | - Meedie Ali
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Myron G. Best
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
9
|
Wielgat P, Wawrusiewicz-Kurylonek N, Czarnomysy R, Rogowski K, Bielawski K, Car H. The Paired Siglecs in Brain Tumours Therapy: The Immunomodulatory Effect of Dexamethasone and Temozolomide in Human Glioma In Vitro Model. Int J Mol Sci 2021; 22:ijms22041791. [PMID: 33670244 PMCID: PMC7916943 DOI: 10.3390/ijms22041791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The paired sialic acid-binding immunoglobulin like lectins (Siglecs) are characterized by similar cellular distribution and ligand recognition but opposing signalling functions attributed to different intracellular sequences. Since sialic acid—Siglec axis are known to control immune homeostasis, the imbalance between activatory and inhibitory mechanisms of glycan-dependent immune control is considered to promote pathology. The role of sialylation in cancer is described, however, its importance in immune regulation in gliomas is not fully understood. The experimental and clinical observation suggest that dexamethasone (Dex) and temozolomide (TMZ), used in the glioma management, alter the immunity within the tumour microenvironment. Using glioma-microglia/monocytes transwell co-cultures, we investigated modulatory action of Dex/TMZ on paired Siglecs. Based on real-time PCR and flow cytometry, we found changes in SIGLEC genes and their products. These effects were accompanied by altered cytokine profile and immune cells phenotype switching measured by arginases expression. Additionally, the exposure to Dex or TMZ increased the binding of inhibitory Siglec-5 and Siglec-11 fusion proteins to glioma cells. Our study suggests that the therapy-induced modulation of the interplay between sialoglycans and paired Siglecs, dependently on patient’s phenotype, is of particular signification in the immune surveillance in the glioma management and may be useful in glioma patient’s therapy plan verification.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-7450-647
| | | | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilińskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilińskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| |
Collapse
|
10
|
Carenza C, Franzese S, Calcaterra F, Mavilio D, Della Bella S. Comprehensive Phenotyping of Dendritic Cells in Cancer Patients by Flow Cytometry. Cytometry A 2020; 99:218-230. [PMID: 33098618 DOI: 10.1002/cyto.a.24245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) play a crucial role in the complex interplay between tumor cells and the immune system. During the elimination phase of cancer immunoediting, immunostimulatory DCs are critical for the control of tumor growth. During the escape phase, regulatory DCs sustain tumor tolerance and contribute to the development of the immunosuppressive tumor microenvironment that characterizes this phase. Moreover, increasing evidence indicates that DCs are also critical for the success of cancer immunotherapy. Hence, there is increasing need to fully characterize DC subsets and their activatory/inhibitory profile in cancer patients. In this review, we describe the role played by different DC subsets in the different phases of cancer immunoediting, the function exerted by different activatory and inhibitory molecules expressed on DC surface, and the cytokines produced by distinct DC subsets, in order to provide an overview on the DC features that may be useful to be assessed when dealing with the flow cytometric characterization of DCs in cancer patients. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Claudia Carenza
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Francesca Calcaterra
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
11
|
Gierlich P, Lex V, Technau A, Keupp A, Morper L, Glunz A, Sennholz H, Rachor J, Sauer S, Marcu A, Grigoleit GU, Wölfl M, Schlegel PG, Eyrich M. Prostaglandin E 2 in a TLR3- and 7/8-agonist-based DC maturation cocktail generates mature, cytokine-producing, migratory DCs but impairs antigen cross-presentation to CD8 + T cells. Cancer Immunol Immunother 2020; 69:1029-1042. [PMID: 32100075 PMCID: PMC7223547 DOI: 10.1007/s00262-019-02470-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
Mature dendritic cells (DCs) represent cellular adjuvants for optimal antigen presentation in cancer vaccines. Recently, a combination of prostaglandin E2 (PGE2) with Toll-like receptor agonists (TLR-P) was proposed as a new standard to generate superior cytokine-producing DCs with high migratory capacity. Here, we compare TLR-P DCs with conventional DCs matured only with the proinflammatory cytokines TNFα and IL-1ß (CDCs), focussing on the interaction of resulting DCs with CD8+ T-cells. TLR-P matured DCs showed elevated expression of activation markers such as CD80 and CD83 compared to CDCs, together with a significantly higher migration capacity. Secretion of IL-6, IL-8, IL-10, and IL-12 was highest after 16 h in TLR-P DCs, and only TLR-P DCs secreted active IL-12p70. TLR-P DCs as well as CDCs successfully primed multifunctional CD8+ T-cells from naïve precursors specific for the peptide antigens Melan-A, NLGN4X, and PTP with comparable priming efficacy and T-cell receptor avidity. CD8+ T-cells primed by TLR-P DCs showed significantly elevated expression of the integrin VLA-4 and a trend for higher T-cell numbers after expansion. In contrast, TLR-P DCs displayed a substantially reduced capability to cross-present CMVpp65 protein antigen to pp65-specific T cells, an effect that was dose-dependent on PGE2 during DC maturation and reproducible with several responder T-cell lines. In conclusion, TLR-P matured DCs might be optimal presenters of antigens not requiring processing such as short peptides. However, PGE2 seems less favorable for maturation of DCs intended to process and cross-present more complex vaccine antigens such as lysates, proteins or long peptides.
Collapse
Affiliation(s)
- Philipp Gierlich
- Laboratory for Stem Cell Processing and Cellular TherapyUniversity Medical Center, Children's Hospital, Würzburg, Germany
| | - Veronika Lex
- Laboratory for Stem Cell Processing and Cellular TherapyUniversity Medical Center, Children's Hospital, Würzburg, Germany
| | - Antje Technau
- Laboratory for Stem Cell Processing and Cellular TherapyUniversity Medical Center, Children's Hospital, Würzburg, Germany
| | - Anne Keupp
- Laboratory for Stem Cell Processing and Cellular TherapyUniversity Medical Center, Children's Hospital, Würzburg, Germany
| | - Lorenz Morper
- Laboratory for Stem Cell Processing and Cellular TherapyUniversity Medical Center, Children's Hospital, Würzburg, Germany
| | - Amelie Glunz
- Laboratory for Stem Cell Processing and Cellular TherapyUniversity Medical Center, Children's Hospital, Würzburg, Germany
| | - Hanno Sennholz
- Laboratory for Stem Cell Processing and Cellular TherapyUniversity Medical Center, Children's Hospital, Würzburg, Germany
| | - Johannes Rachor
- Laboratory for Stem Cell Processing and Cellular TherapyUniversity Medical Center, Children's Hospital, Würzburg, Germany
| | - Sascha Sauer
- CU Systems Medicine, University of Würzburg, Würzburg, Germany.,Max Delbrück Center for Molecular Medicine (BIMSB/BIH), Berlin, Germany
| | - Ana Marcu
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | | | - Matthias Wölfl
- Laboratory for Stem Cell Processing and Cellular TherapyUniversity Medical Center, Children's Hospital, Würzburg, Germany
| | - Paul G Schlegel
- Laboratory for Stem Cell Processing and Cellular TherapyUniversity Medical Center, Children's Hospital, Würzburg, Germany
| | - Matthias Eyrich
- Laboratory for Stem Cell Processing and Cellular TherapyUniversity Medical Center, Children's Hospital, Würzburg, Germany. .,University Children's Hospital Würzburg, Josef-Schneider-Straße 3, Building D30, 97080, Würzburg, Germany.
| |
Collapse
|
12
|
Role of myeloid cells in the immunosuppressive microenvironment in gliomas. Immunobiology 2020; 225:151853. [PMID: 31703822 DOI: 10.1016/j.imbio.2019.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/03/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
|
13
|
|
14
|
Marcu A, Eyrich M. Therapeutic vaccine strategies to induce tumor-specific T-cell responses. Bone Marrow Transplant 2019; 54:806-809. [PMID: 31431710 DOI: 10.1038/s41409-019-0619-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Haploidentical stem cell transplantation is increasingly used worldwide as an alternative donor transplantation method. Although novel preparative regimens and T-cell deletion techniques have improved engraftment rates and viral safety, relapses of the underlying leukemia/lymphoma are still frequent, thus representing a significant and unsolved problem. Recent technological advances now enable us to individually decipher the MHC-associated immunopeptidome of cancer cells in reasonable time. These tumor-specific peptides can then be used to skew the early immune reconstitution toward anti-leukemia T-cell responses. In this meeting contribution, we summarize recent innovations in the field and present preliminary data on using this technique for cancer epitope discovery in a paradigmatic pediatric brain tumor with very low mutational burden.
Collapse
Affiliation(s)
- Ana Marcu
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
15
|
Krakow S, Crescimone ML, Bartels C, Wiegering V, Eyrich M, Schlegel PG, Wölfl M. Re-expression of CD14 in Response to a Combined IL-10/TLR Stimulus Defines Monocyte-Derived Cells With an Immunoregulatory Phenotype. Front Immunol 2019; 10:1484. [PMID: 31316520 PMCID: PMC6611188 DOI: 10.3389/fimmu.2019.01484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/13/2019] [Indexed: 01/10/2023] Open
Abstract
Interleukin 10 is a central regulator of the antigen-presenting function of myeloid cells. It exerts immunomodulatory effects in vivo and induces a regulatory phenotype in monocyte-derived cells in vitro. We analyzed phenotype and function of monocytic cells in vitro in relation to the cytokine milieu and the timing of TLR-based activation. In GM-CSF/IL-4 cultured human monocytic cells, we identified two, mutually exclusive cell populations arising from undifferentiated cells: CD83+ fully activated dendritic cells and CD14+ macrophage like cells. Re-expression of CD14 occurs primarily after a sequential trigger with a TLR signal following IL-10 preincubation. This cell population with re-expressed CD14 greatly differs in phenotype and function from the CD83+ cells. Detailed analysis of individual subpopulations reveals that exogenous IL-10 is critical for inducing the shift toward the CD14+ population, but does not affect individual changes in marker expression or cell function in most cases. Thus, plasticity of CD14 expression, defining a subset of immunoregulatory cells, is highly relevant for the composition of cellular products (such as DC vaccines) as it affects the function of the total product.
Collapse
Affiliation(s)
- Sören Krakow
- Department of Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Marie L Crescimone
- Department of Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Charlotte Bartels
- Department of Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Verena Wiegering
- Department of Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Matthias Eyrich
- Department of Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Paul G Schlegel
- Department of Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Matthias Wölfl
- Department of Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University of Würzburg, Würzburg, Germany
| |
Collapse
|