1
|
Samareh Salavatipour M, Tavakoli S, Halimi A, Tavoosi S, Baghsheikhi AH, Talebi-Taheri A, Niloufari M, Salehi Z, Verdi J, Rahgozar S, Mosavi-Jarrahi A, Ahmadvand M. Ubiquitin-specific peptidases in lymphoma: a path to novel therapeutics. Front Pharmacol 2024; 15:1356634. [PMID: 39664521 PMCID: PMC11632177 DOI: 10.3389/fphar.2024.1356634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/14/2024] [Indexed: 12/13/2024] Open
Abstract
Background Ubiquitin-specific peptidases (USPs), also known as deubiquitinating enzymes (DUBs), play a crucial role in maintaining cellular homeostasis by selectively removing ubiquitin molecules from targeted proteins. This process affects protein stability, subcellular localization, and activity, thereby influencing processes such as DNA repair, cell cycle regulation, and apoptosis. Abnormal USP activities have been linked to various diseases, including cancer. Emerging evidence in lymphoma studies highlights the significance of USPs in controlling signaling pathways related to cancer initiation and progression and presents them as potential therapeutic targets. Aim This study aimed to elucidate the multifaceted roles of USPs in lymphoma. Methods This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Articles published in English up to May 2023 were retrieved from PubMed, Web of Science, and Scopus. The inclusion criteria focused on studies investigating the role of USPs in lymphoma cancer, involving human subjects or relevant lymphoma cell lines, exploring molecular mechanisms and signaling pathways, and assessing diagnostic or prognostic value. Results After the selection process, 23 studies were selected for analysis. USPs were found to affect various aspects of lymphoma development and progression. Specific USPs were identified with roles in cell-cycle regulation, apoptosis modulation, drug resistance, DNA repair, and influence of key oncogenic pathways, such as B cell receptor (BCR) signaling. Conclusion This systematic review underscores the emerging role of USPs in lymphoma and their potential as therapeutic targets. Inhibitors of USPs, such as USP14 inhibitors, show promise in overcoming drug resistance. The dynamic interplay between USPs and lymphoma biology presents an exciting opportunity for future research and the development of more effective treatments for patients with lymphoma. Understanding the intricate functions of USPs in lymphoma offers new insights into potential therapeutic strategies, emphasizing the significance of these enzymes in the context of cancer biology.
Collapse
Affiliation(s)
- Maryam Samareh Salavatipour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Tavakoli
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aram Halimi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Center for Social Determinants of Health, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Tavoosi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Abdolkarim Talebi-Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Niloufari
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Li J, Ab Rahman N, Mohamad S. Decoding Oral Carcinogenesis and Tumor Progression in Whole Cigarette Smoke Exposure: A Systematic Review. Cureus 2024; 16:e66966. [PMID: 39280415 PMCID: PMC11401675 DOI: 10.7759/cureus.66966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
This systematic review aims to highlight the molecular mechanisms by which whole cigarette smoke affects oral carcinogenesis and its progression in human oral cells, based on evidence from original research articles published in the literature. A literature search was conducted using three databases: Web of Science, Scopus, and PubMed from May to June 2024. The articles were screened, and the data were extracted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (2020). The included studies were subsequently evaluated using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool for bias factors. From the 14 included studies, two types of cell lines were frequently utilized: human oral mucosal epithelial cells or oral squamous cell carcinoma cells. In these cell lines, one of three forms of exposure was applied: cigarette smoke, its extract, or condensate. The mechanism of oral carcinogenesis and tumor progression includes aberrations in the heme metabolic pathway, modulation of miRNA-145, NOD1 and BiP expression, MMP-2, MMP-9, and cathepsin modulation, abnormal TSPO binding, RIP2-mediated NF-κB activation, MZF1-mediated VEGF binding, and activation of the RAGE signaling pathway. In conclusion, cigarette smoke significantly influences the development and progression of oral squamous cell carcinoma, based on the evidence highlighted in human oral cells. While previous studies have focused on specific carcinogens and pathways, this review added to our understanding of the overall impact of whole cigarette smoke on oral carcinogenesis at the molecular and cellular levels.
Collapse
Affiliation(s)
- Jiao Li
- Pathology, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
- Pathology, Changzhi Medical College, Shanxi, CHN
| | - Nurhayu Ab Rahman
- Oral Medicine and Oral Pathology Unit, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
| | - Suharni Mohamad
- Oral and Maxillofacial Diseases Research Cluster, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
| |
Collapse
|
3
|
Park J, Wu Y, Suk Kim J, Byun J, Lee J, Oh YK. Cytoskeleton-modulating nanomaterials and their therapeutic potentials. Adv Drug Deliv Rev 2024; 211:115362. [PMID: 38906478 DOI: 10.1016/j.addr.2024.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
The cytoskeleton, an intricate network of protein fibers within cells, plays a pivotal role in maintaining cell shape, enabling movement, and facilitating intracellular transport. Its involvement in various pathological states, ranging from cancer proliferation and metastasis to the progression of neurodegenerative disorders, underscores its potential as a target for therapeutic intervention. The exploration of nanotechnology in this realm, particularly the use of nanomaterials for cytoskeletal modulation, represents a cutting-edge approach with the promise of novel treatments. Inorganic nanomaterials, including those derived from gold, metal oxides, carbon, and black phosphorus, alongside organic variants such as peptides and proteins, are at the forefront of this research. These materials offer diverse mechanisms of action, either by directly interacting with cytoskeletal components or by influencing cellular signaling pathways that, in turn, modulate the cytoskeleton. Recent advancements have introduced magnetic field-responsive and light-responsive nanomaterials, which allow for targeted and controlled manipulation of the cytoskeleton. Such precision is crucial in minimizing off-target effects and enhancing therapeutic efficacy. This review explores the importance of research into cytoskeleton-targeting nanomaterials for developing therapeutic interventions for a range of diseases. It also addresses the progress made in this field, the challenges encountered, and future directions for using nanomaterials to modulate the cytoskeleton. The continued exploration of nanomaterials for cytoskeleton modulation holds great promise for advancing therapeutic strategies against a broad spectrum of diseases, marking a significant step forward in the intersection of nanotechnology and medicine.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Vashisth C, Kaushik T, Vashisth N, Raghav N. Cinnamaldehyde hydrazone derivatives as potential cathepsin B inhibitors: parallel in-vitro investigation in liver and cerebrospinal fluid. Int J Biol Macromol 2024; 272:132684. [PMID: 38810845 DOI: 10.1016/j.ijbiomac.2024.132684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
The emergence of cathepsins as a potential target for anticancer drugs has led to extensive research in the development of their inhibitors. In the present study, we designed, synthesized, and characterized several cinnamaldehyde schiff bases employing diverse hydrazines, as potential cathepsin B inhibitors. The parallel studies on cathepsin B isolated from liver and cerebrospinal fluid unveiled the significance of the synthesized compounds as cathepsin B inhibitors at nanomolar concentrations. The compound, 7 exhibited the highest inhibition of 83.48 % and 82.96 % with an IC50 value of 0.06 nM and 0.09 nM for liver and cerebrospinal fluid respectively. The inhibitory potential of synthesized compounds has been extremely effective in comparison to previous reports. With the help of molecular docking studies using iGEMDOCK software, we found that the active site -CH2SH group is involved in the case of α-N-benzoyl-D, l-arginine-b-naphthylamide (BANA), curcumin 2, 3, 6, and 7. For toxicity prediction, ADMET studies were conducted and the synthesized compounds emerged to be non-toxic. The results obtained from the in vitro studies were supported with in silico studies. The synthesized cinnamaldehyde schiff bases can be considered promising drug candidates in conditions with elevated cathepsin B levels.
Collapse
Affiliation(s)
- Chanchal Vashisth
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Tushar Kaushik
- Lala Lajpat Rai Memorial Medical College (LLRM), Meerut, Uttar Pradesh 250004, India
| | - Naman Vashisth
- Mahatma Gandhi Memorial Medical College, Indore, Madhya Pradesh 452001, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| |
Collapse
|
5
|
Liu S, Perez P, Sun X, Chen K, Fatirkhorani R, Mammadova J, Wang Z. MLKL polymerization-induced lysosomal membrane permeabilization promotes necroptosis. Cell Death Differ 2024; 31:40-52. [PMID: 37996483 PMCID: PMC10782024 DOI: 10.1038/s41418-023-01237-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Mixed lineage kinase-like protein (MLKL) forms amyloid-like polymers to promote necroptosis; however, the mechanism through which these polymers trigger cell death is not clear. We have determined that activated MLKL translocates to the lysosomal membrane during necroptosis induction. The subsequent polymerization of MLKL induces lysosome clustering and fusion and eventual lysosomal membrane permeabilization (LMP). This LMP leads to the rapid release of lysosomal contents into the cytosol, resulting in a massive surge in cathepsin levels, with Cathepsin B (CTSB) as a significant contributor to the ensuing cell death as it cleaves many proteins essential for cell survival. Importantly, chemical inhibition or knockdown of CTSB protects cells from necroptosis. Furthermore, induced polymerization of the MLKL N-terminal domain (NTD) also triggers LMP, leading to CTSB release and subsequent cell death. These findings clearly establish the critical role of MLKL polymerization induced lysosomal membrane permeabilization (MPI-LMP) in the process of necroptosis.
Collapse
Affiliation(s)
- Shuzhen Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Preston Perez
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, MDD714, Tampa, FL, 33602, USA
| | - Xue Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 21500, China
| | - Ken Chen
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, MDD714, Tampa, FL, 33602, USA
| | - Rojin Fatirkhorani
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, MDD714, Tampa, FL, 33602, USA
| | - Jamila Mammadova
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, MDD714, Tampa, FL, 33602, USA
| | - Zhigao Wang
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, MDD714, Tampa, FL, 33602, USA.
| |
Collapse
|
6
|
Stoka V, Vasiljeva O, Nakanishi H, Turk V. The Role of Cysteine Protease Cathepsins B, H, C, and X/Z in Neurodegenerative Diseases and Cancer. Int J Mol Sci 2023; 24:15613. [PMID: 37958596 PMCID: PMC10650516 DOI: 10.3390/ijms242115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Papain-like cysteine proteases are composed of 11 human cysteine cathepsins, originally located in the lysosomes. They exhibit broad specificity and act as endopeptidases and/or exopeptidases. Among them, only cathepsins B, H, C, and X/Z exhibit exopeptidase activity. Recently, cysteine cathepsins have been found to be present outside the lysosomes and often participate in various pathological processes. Hence, they have been considered key signalling molecules. Their potentially hazardous proteolytic activities are tightly regulated. This review aims to discuss recent advances in understanding the structural aspects of these four cathepsins, mechanisms of their zymogen activation, regulation of their activities, and functional aspects of these enzymes in neurodegeneration and cancer. Neurodegenerative effects have been evaluated, particularly in Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and neuropsychiatric disorders. Cysteine cathepsins also participate in tumour progression and metastasis through the overexpression and secretion of proteases, which trigger extracellular matrix degradation. To our knowledge, this is the first review to provide an in-depth analysis regarding the roles of cysteine cathepsins B, H, C, and X in neurodegenerative diseases and cancer. Further advances in understanding the functions of cysteine cathepsins in these conditions will result in the development of novel, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- CytomX Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Liu H, Peng J, Huang L, Ruan D, Li Y, Yuan F, Tu Z, Huang K, Zhu X. The role of lysosomal peptidases in glioma immune escape: underlying mechanisms and therapeutic strategies. Front Immunol 2023; 14:1154146. [PMID: 37398678 PMCID: PMC10311646 DOI: 10.3389/fimmu.2023.1154146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Glioblastoma is the most common primary malignant tumor of the central nervous system, which has the characteristics of strong invasion, frequent recurrence, and rapid progression. These characteristics are inseparable from the evasion of glioma cells from immune killing, which makes immune escape a great obstacle to the treatment of glioma, and studies have confirmed that glioma patients with immune escape tend to have poor prognosis. The lysosomal peptidase lysosome family plays an important role in the immune escape process of glioma, which mainly includes aspartic acid cathepsin, serine cathepsin, asparagine endopeptidases, and cysteine cathepsins. Among them, the cysteine cathepsin family plays a prominent role in the immune escape of glioma. Numerous studies have confirmed that glioma immune escape mediated by lysosomal peptidases has something to do with autophagy, cell signaling pathways, immune cells, cytokines, and other mechanisms, especially lysosome organization. The relationship between protease and autophagy is more complicated, and the current research is neither complete nor in-depth. Therefore, this article reviews how lysosomal peptidases mediate the immune escape of glioma through the above mechanisms and explores the possibility of lysosomal peptidases as a target of glioma immunotherapy.
Collapse
Affiliation(s)
- Hao Liu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jie Peng
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Linzhen Huang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Dong Ruan
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yuguang Li
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Fan Yuan
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zewei Tu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| |
Collapse
|
8
|
Ma K, Chen X, Liu W, Chen S, Yang C, Yang J. CTSB is a negative prognostic biomarker and therapeutic target associated with immune cells infiltration and immunosuppression in gliomas. Sci Rep 2022; 12:4295. [PMID: 35277559 PMCID: PMC8917123 DOI: 10.1038/s41598-022-08346-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
Previous researches have demonstrated the meaning of CTSB for the progress of several tumors, whereas few clues about its immunological characteristic in gliomas. Here we systematically explored its biologic features and clinical significance for gliomas. 699 glioma cases of TCGA and 325 glioma cases of CGGA were respectively included as training and validating cohorts. R software was used for data analysis and mapping. We found that CTSB was remarkably highly-expressed for HGG, IDH wild type, 1p19q non-codeletion type, MGMT promoter unmethylation type and mesenchymal gliomas. CTSB could specifically and sensitively indicate mesenchymal glioma. Upregulated CTSB was an independent hazard correlated with poor survival. CTSB-related biological processes in gliomas chiefly concentrated on immunoreaction and inflammation response. Then we proved that CTSB positively related to most inflammatory metagenes except IgG, including HCK, LCK, MHC II, STAT1 and IFN. More importantly, the levels of glioma-infiltrating immune cells were positively associated with the expression of CTSB, especially for TAMs, MDSCs and Tregs. In conclusion, CTSB is closely related to the malignant pathological subtypes, worse prognosis, immune cells infiltration and immunosuppression of gliomas, which make it a promising biomarker and potential target in the diagnosis, treatment and prognostic assessment of gliomas.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China. .,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
9
|
Kos J, Mitrović A, Perišić Nanut M, Pišlar A. Lysosomal peptidases – Intriguing roles in cancer progression and neurodegeneration. FEBS Open Bio 2022; 12:708-738. [PMID: 35067006 PMCID: PMC8972049 DOI: 10.1002/2211-5463.13372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lysosomal peptidases are hydrolytic enzymes capable of digesting waste proteins that are targeted to lysosomes via endocytosis and autophagy. Besides intracellular protein catabolism, they play more specific roles in several other cellular processes and pathologies, either within lysosomes, upon secretion into the cell cytoplasm or extracellular space, or bound to the plasma membrane. In cancer, lysosomal peptidases are generally associated with disease progression, as they participate in crucial processes leading to changes in cell morphology, signaling, migration, and invasion, and finally metastasis. However, they can also enhance the mechanisms resulting in cancer regression, such as apoptosis of tumor cells or antitumor immune responses. Lysosomal peptidases have also been identified as hallmarks of aging and neurodegeneration, playing roles in oxidative stress, mitochondrial dysfunction, abnormal intercellular communication, dysregulated trafficking, and the deposition of protein aggregates in neuronal cells. Furthermore, deficiencies in lysosomal peptidases may result in other pathological states, such as lysosomal storage disease. The aim of this review was to highlight the role of lysosomal peptidases in particular pathological processes of cancer and neurodegeneration and to address the potential of lysosomal peptidases in diagnosing and treating patients.
Collapse
Affiliation(s)
- Janko Kos
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Ana Mitrović
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Milica Perišić Nanut
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Anja Pišlar
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
| |
Collapse
|
10
|
Abstract
The intimate involvement of pathogens with the heightened risk for developing certain cancers is an area of research that has captured a great deal of attention over the last 10 years. One firmly established paradigm that highlights this aspect of disease progression is in the instance of Helicobacter pylori infection and the contribution it makes in elevating the risk for developing gastric cancer. Whilst the molecular mechanisms that pinpoint the contribution that this microorganism inflicts towards host cells during gastric cancer initiation have come into greater focus, another picture that has also emerged is one that implicates the host's immune system, and the chronic inflammation that can arise therefrom, as being a central contributory factor in disease progression. Consequently, when taken with the underlying role that the extracellular matrix plays in the development of most cancers, and how this dynamic can be modulated by proteases expressed from the tumor or inflammatory cells, a complex and detailed relationship shared between the individual cellular components and their surroundings is coming into focus. In this review article, we draw attention to the emerging role played by the cathepsin proteases in modulating the stage-specific progression of Helicobacter pylori-initiated gastric cancer and the underlying immune response, while highlighting the therapeutic significance of this dynamic and how it may be amenable for novel intervention strategies within a basic research or clinical setting.
Collapse
|
11
|
Qu J, Wang L, Jiang M, Wei Z, Fu G, Zhang X. Survival-associated N 6-adenosine methyltransferase signatures in lung squamous cell carcinoma and clinical verification. BMC Cancer 2021; 21:1265. [PMID: 34814861 PMCID: PMC8611943 DOI: 10.1186/s12885-021-08939-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/25/2021] [Indexed: 01/22/2023] Open
Abstract
Background N6-methyladenine (m6A) is the most common modification of mRNA and IncRNA in higher organisms. m6A has been confirmed to be related to the formation and progression of tumors and m6A-related genes can be used as prognostic biomarkers in a variety of tumors. However, there have been no similar studies on lung squamous cell carcinoma. The main purpose of this study was aimed to explore the differential expression of m6A-related genes in lung squamous cell carcinoma tissues and its relationship with patient clinical prognosis. Methods We integrated three m6A writers that catalyze the methylation of adenine on mRNA molecules. The training set including 501 patients with LUSC was collected from The Cancer Genome Atlas (TCGA) database and the test set including 181 patients with LUSC was collected from the Gene Expression Omnibus (GEO) database. Based on the expression level of the m6A methylase gene, we established a tumor subgroup and risk-prognosis model to quantify the risk index and long-term patient prognosis, which were confirmed by principal component analysis (PCA) and receiver operating characteristic (ROC) curve analysis. After lung squamous cell carcinoma tissue specimens were obtained during surgery, immunohistochemistry (IHC) was used to verify the results in vitro. Results The results of the study showed that the expression of the three m6A methylases in tumor tissues and normal tissues was significantly different (P < 0.05). The survival-prognostic model based on METTL3 gene expression showed better predictive performance (AUC: 0.706). Patients in the high-risk and low-risk groups exhibited significant differences in terms of survival time and 5-year and 10-year survival rates. Immunohistochemistry revealed that patients with high METTL3 expression exhibited a longer survival time than those with low METTL3 expression. Conclusions Our study showed that the molecular phenotype based on the expression of METTL3 may be an independent risk factor affecting the prognosis of lung squamous cell carcinoma. These findings not only prove the important role of m6A methylase in lung squamous cell carcinoma, but are also expected to provide more accurate prognostic assessment and individualized treatment for patients with lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Jialin Qu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, 250117, China
| | - Li Wang
- Department of Oncology, Jiujiang University Affiliated Hospital, Jiujiang, 332000, China
| | - Man Jiang
- Cancer Precision Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
| | - Zhimin Wei
- Pathology Department, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
| | - Guangming Fu
- Pathology Department, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
| | - Xiaochun Zhang
- Cancer Precision Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
12
|
Jin J, Zhang H, Weyand CM, Goronzy JJ. Lysosomes in T Cell Immunity and Aging. FRONTIERS IN AGING 2021; 2:809539. [PMID: 35822050 PMCID: PMC9261317 DOI: 10.3389/fragi.2021.809539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 05/01/2023]
Abstract
Lysosomes were initially recognized as degradation centers that regulate digestion and recycling of cellular waste. More recent studies document that the lysosome is an important signaling hub that regulates cell metabolism. Our knowledge of the role of lysosomes in immunity is mostly derived from innate immune cells, especially lysosomal degradation-specialized cells such as macrophages and dendritic cells. Their function in adaptive immunity is less understood. However, with the recent emphasis on metabolic regulation of T cell differentiation, lysosomes are entering center stage in T cell immunology. In this review, we will focus on the role of lysosomes in adaptive immunity and discuss recent findings on lysosomal regulation of T cell immune responses and lysosomal dysfunction in T cell aging.
Collapse
Affiliation(s)
- Jun Jin
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine/Rheumatology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Huimin Zhang
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine/Rheumatology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Cornelia M. Weyand
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine/Rheumatology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Jorg J. Goronzy
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine/Rheumatology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Jorg J. Goronzy,
| |
Collapse
|
13
|
Pišlar A, Mitrović A, Sabotič J, Pečar Fonović U, Perišić Nanut M, Jakoš T, Senjor E, Kos J. The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLoS Pathog 2020; 16:e1009013. [PMID: 33137165 PMCID: PMC7605623 DOI: 10.1371/journal.ppat.1009013] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the last 2 decades, several coronaviruses (CoVs) have crossed the species barrier into humans, causing highly prevalent and severe respiratory diseases, often with fatal outcomes. CoVs are a large group of enveloped, single-stranded, positive-sense RNA viruses, which encode large replicase polyproteins that are processed by viral peptidases to generate the nonstructural proteins (Nsps) that mediate viral RNA synthesis. Papain-like peptidases (PLPs) and chymotrypsin-like cysteine 3C-like peptidase are essential for coronaviral replication and represent attractive antiviral drug targets. Furthermore, CoVs utilize the activation of their envelope spike glycoproteins by host cell peptidases to gain entry into cells. CoVs have evolved multiple strategies for spike protein activation, including the utilization of lysosomal cysteine cathepsins. In this review, viral and host peptidases involved in CoV cell entry and replication are discussed in depth, with an emphasis on papain-like cysteine cathepsins. Furthermore, important findings on cysteine peptidase inhibitors with regard to virus attenuation are highlighted as well as the potential of such inhibitors for future treatment strategies for CoV-related diseases.
Collapse
Affiliation(s)
- Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Urša Pečar Fonović
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Tanja Jakoš
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Senjor
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
14
|
Korolenko TA, Johnston TP, Vetvicka V. Lysosomotropic Features and Autophagy Modulators among Medical Drugs: Evaluation of Their Role in Pathologies. Molecules 2020; 25:molecules25215052. [PMID: 33143272 PMCID: PMC7662698 DOI: 10.3390/molecules25215052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022] Open
Abstract
The concept of lysosomotropic agents significantly changed numerous aspects of cellular biochemistry, biochemical pharmacology, and clinical medicine. In the present review, we focused on numerous low-molecular and high-molecular lipophilic basic compounds and on the role of lipophagy and autophagy in experimental and clinical medicine. Attention was primarily focused on the most promising agents acting as autophagy inducers, which offer a new window for treatment and/or prophylaxis of various diseases, including type 2 diabetes mellitus, Parkinson's disease, and atherosclerosis. The present review summarizes current knowledge on the lysosomotropic features of medical drugs, as well as autophagy inducers, and their role in pathological processes.
Collapse
Affiliation(s)
- Tatiana A. Korolenko
- Federal State Budgetary Scientific Institution Scientific Research Institute of Physiology and Basic Medicine, Timakova Str. 4, 630117 Novosibirsk, Russia;
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA;
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|