1
|
Pérez Del Río E, Rey-Vinolas S, Santos F, Castellote-Borrell M, Merlina F, Veciana J, Ratera I, Mateos-Timoneda MA, Engel E, Guasch J. 3D Printing as a Strategy to Scale-Up Biohybrid Hydrogels for T Cell Manufacture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50139-50146. [PMID: 39285613 PMCID: PMC11440455 DOI: 10.1021/acsami.4c06183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The emergence of cellular immunotherapy treatments is introducing more efficient strategies to combat cancer as well as autoimmune and infectious diseases. However, the cellular manufacturing procedures associated with these therapies remain costly and time-consuming, thus limiting their applicability. Recently, lymph-node-inspired PEG-heparin hydrogels have been demonstrated to improve primary human T cell culture at the laboratory scale. To go one step further in their clinical applicability, we assessed their scalability, which was successfully achieved by 3D printing. Thus, we were able to improve primary human T cell infiltration in the biohybrid PEG-heparin hydrogels, as well as increase nutrient, waste, and gas transport, resulting in higher primary human T cell proliferation rates while maintaining the phenotype. Thus, we moved one step further toward meeting the requirements needed to improve the manufacture of the cellular products used in cellular immunotherapies.
Collapse
Affiliation(s)
- Eduardo Pérez Del Río
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Sergi Rey-Vinolas
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Fabião Santos
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Miquel Castellote-Borrell
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Dynamic Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| | - Francesca Merlina
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Dynamic Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Imma Ratera
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Miguel A Mateos-Timoneda
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès 08195, Spain
| | - Elisabeth Engel
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Judith Guasch
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- Dynamic Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| |
Collapse
|
2
|
Long J, Chen X, He M, Ou S, Zhao Y, Yan Q, Ma M, Chen J, Qin X, Zhou X, Chu J, Han Y. HLA-class II restricted TCR targeting human papillomavirus type 18 E7 induces solid tumor remission in mice. Nat Commun 2024; 15:2271. [PMID: 38480731 PMCID: PMC10937927 DOI: 10.1038/s41467-024-46558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
T cell receptor (TCR)-engineered T cell therapy is a promising potential treatment for solid tumors, with preliminary efficacy demonstrated in clinical trials. However, obtaining clinically effective TCR molecules remains a major challenge. We have developed a strategy for cloning tumor-specific TCRs from long-term surviving patients who have responded to immunotherapy. Here, we report the identification of a TCR (10F04), which is human leukocyte antigen (HLA)-DRA/DRB1*09:01 restricted and human papillomavirus type 18 (HPV18) E784-98 specific, from a multiple antigens stimulating cellular therapy (MASCT) benefited metastatic cervical cancer patient. Upon transduction into human T cells, the 10F04 TCR demonstrated robust antitumor activity in both in vitro and in vivo models. Notably, the TCR effectively redirected both CD4+ and CD8+ T cells to specifically recognize tumor cells and induced multiple cytokine secretion along with durable antitumor activity and outstanding safety profiles. As a result, this TCR is currently being investigated in a phase I clinical trial for treating HPV18-positive cancers. This study provides an approach for developing safe and effective TCR-T therapies, while underscoring the potential of HLA class II-restricted TCR-T therapy as a cancer treatment.
Collapse
Affiliation(s)
- Jianting Long
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xihe Chen
- HRYZ Biotech Co., Guangzhou, PR China
| | - Mian He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Shudan Ou
- HRYZ Biotech Co., Guangzhou, PR China
| | - Yunhe Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | | | - Minjun Ma
- HRYZ Biotech Co., Guangzhou, PR China
| | - Jingyu Chen
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xuping Qin
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | |
Collapse
|
3
|
Maggadóttir SM, Kvalheim G, Wernhoff P, Sæbøe-Larssen S, Revheim ME, Josefsen D, Wälchli S, Helland Å, Inderberg EM. A phase I/II escalation trial design T-RAD: Treatment of metastatic lung cancer with mRNA-engineered T cells expressing a T cell receptor targeting human telomerase reverse transcriptase (hTERT). Front Oncol 2022; 12:1031232. [PMID: 36439452 PMCID: PMC9685610 DOI: 10.3389/fonc.2022.1031232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Background Adoptive cellular therapy (ACT) with genetically modified T cells aims to redirect T cells against resistant cancers through introduction of a T cell receptor (TCR). The Radium-4 TCR was isolated from a responding patient in a cancer vaccination study and recognizes the enzymatic component of human Telomerase Reverse Transcriptase (hTERT) presented on MHC class II (HLA-DP04). hTERT is a constitutively overexpressed tumor-associated antigen present in most human cancers, including non-small-cell lung cancer (NSCLC), which is the second most common type of cancer worldwide. Treatment alternatives for relapsing NSCLC are limited and survival is poor. To improve patient outcome we designed a TCR-based ACT study targeting hTERT. Methods T-RAD is a phase I/II study to evaluate the safety and efficacy of Radium-4 mRNA electroporated autologous T cells in the treatment of metastatic NSCLC with no other treatment option. Transient TCR expression is applied for safety considerations. Participants receive two intravenous injections with escalating doses of redirected T cells weekly for 6 consecutive weeks. Primary objectives are safety and tolerability. Secondary objectives include progression-free survival, time to progression, overall survival, patient reported outcomes and overall radiological response. Discussion Treatment for metastatic NSCLC is scarce and new personalized treatment options are in high demand. hTERT is a tumor target applicable to numerous cancer types. This proof-of-concept study will explore for the first time the safety and efficacy of TCR mRNA electroporated autologous T cells targeting hTERT. The T-RAD study will thus evaluate an attractive candidate for future immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Sólrún Melkorka Maggadóttir
- Translational Research Unit, Department of Oncology, Section for Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Translational Research Unit, Department of Oncology, Section for Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Patrik Wernhoff
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stein Sæbøe-Larssen
- Translational Research Unit, Department of Oncology, Section for Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | | | - Dag Josefsen
- Translational Research Unit, Department of Oncology, Section for Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Department of Oncology, Section for Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Åslaug Helland
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Department of Oncology, Section for Cellular Therapy, Oslo University Hospital, Oslo, Norway
- *Correspondence: Else Marit Inderberg,
| |
Collapse
|
4
|
CD5 Deficiency Alters Helper T Cell Metabolic Function and Shifts the Systemic Metabolome. Biomedicines 2022; 10:biomedicines10030704. [PMID: 35327505 PMCID: PMC8945004 DOI: 10.3390/biomedicines10030704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Metabolic function plays a key role in immune cell activation, destruction of foreign pathogens, and memory cell generation. As T cells are activated, their metabolic profile is significantly changed due to signaling cascades mediated by the T cell receptor (TCR) and co-receptors found on their surface. CD5 is a T cell co-receptor that regulates thymocyte selection and peripheral T cell activation. The removal of CD5 enhances T cell activation and proliferation, but how this is accomplished is not well understood. We examined how CD5 specifically affects CD4+ T cell metabolic function and systemic metabolome by analyzing serum and T cell metabolites from CD5WT and CD5KO mice. We found that CD5 removal depletes certain serum metabolites, and CD5KO T cells have higher levels of several metabolites. Transcriptomic analysis identified several upregulated metabolic genes in CD5KO T cells. Bioinformatic analysis identified glycolysis and the TCA cycle as metabolic pathways promoted by CD5 removal. Functional metabolic analysis demonstrated that CD5KO T cells have higher oxygen consumption rates (OCR) and higher extracellular acidification rates (ECAR). Together, these findings suggest that the loss of CD5 is linked to CD4+ T cell metabolism changes in metabolic gene expression and metabolite concentration.
Collapse
|
5
|
Lipp JJ, Wang L, Yang H, Yao F, Harrer N, Müller S, Berezowska S, Dorn P, Marti TM, Schmid RA, Hegedüs B, Souabni A, Carotta S, Pearson MA, Sommergruber W, Kocher GJ, Hall SR. Functional and molecular characterization of PD1+ tumor-infiltrating lymphocytes from lung cancer patients. Oncoimmunology 2022; 11:2019466. [PMID: 35154905 PMCID: PMC8837234 DOI: 10.1080/2162402x.2021.2019466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antibody-mediated cancer immunotherapy targets inhibitory surface molecules, such as PD1, PD-L1, and CTLA-4, aiming to re-invigorate dysfunctional T cells. We purified and characterized tumor-infiltrating lymphocytes (TILs) and their patient-matched non-tumor counterparts from treatment-naïve NSCLC patient biopsies to evaluate the effect of PD1 expression on the functional and molecular profiles of tumor-resident T cells. We show that PD1+ CD8+ TILs have elevated expression of the transcriptional regulator ID3 and that the cytotoxic potential of CD8 T cells can be improved by knocking down ID3, defining it as a potential regulator of T cell effector function. PD1+ CD4+ memory TILs display transcriptional patterns consistent with both helper and regulator function, but can robustly facilitate B cell activation and expansion. Furthermore, we show that expanding ex vivo-prepared TILs in vitro broadly preserves their functionality with respect to tumor cell killing, B cell help, and TCR repertoire. Although purified PD1+ CD8+ TILs generally maintain an exhausted phenotype upon expansion in vitro, transcriptional analysis reveals a downregulation of markers of T-cell dysfunction, including the co-inhibitory molecules PD1 and CTLA-4 and transcription factors ID3, TOX and TOX2, while genes involved in cell cycle and DNA repair are upregulated. We find reduced expression of WNT signaling components to be a hallmark of PD1+ CD8+ exhausted T cells in vivo and in vitro and demonstrate that restoring WNT signaling, by pharmacological blockade of GSK3β, can improve effector function. These data unveil novel targets for tumor immunotherapy and have promising implications for the development of a personalized TIL-based cell therapy for lung cancer.
Collapse
Affiliation(s)
- Jesse J. Lipp
- Boehringer Ingelheim, Rcv GmbH & Co Kg, Vienna, Austria
| | - Limei Wang
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | | | - Stefan Müller
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Patrick Dorn
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
| | - Thomas M. Marti
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Ralph A. Schmid
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Belazs Hegedüs
- Department of Thoracic Surgery, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | | | | | | | - Wolfgang Sommergruber
- Boehringer Ingelheim, Rcv GmbH & Co Kg, Vienna, Austria
- Department of Biotechnology, University of Applied Sciences, Vienna, Austria
| | - Greg J. Kocher
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
| | - Sean R.R. Hall
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Greenbaum U, Dumbrava EI, Biter AB, Haymaker CL, Hong DS. Engineered T-cell Receptor T Cells for Cancer Immunotherapy. Cancer Immunol Res 2021; 9:1252-1261. [PMID: 34728535 DOI: 10.1158/2326-6066.cir-21-0269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/03/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Engineering immune cells to target cancer is a rapidly advancing technology. The first commercial products, chimeric-antigen receptor (CAR) T cells, are now approved for hematologic malignancies. However, solid tumors pose a greater challenge for cellular therapy, in part because suitable cancer-specific antigens are more difficult to identify and surrounding healthy tissues are harder to avoid. In addition, impaired trafficking of immune cells to solid tumors, the harsh immune-inhibitory microenvironment, and variable antigen density and presentation help tumors evade immune cells targeting cancer-specific antigens. To overcome these obstacles, T cells are being engineered to express defined T-cell receptors (TCR). Given that TCRs target intracellular peptides expressed on tumor MHC molecules, this provides an expanded pool of potential targetable tumor-specific antigens relative to the cell-surface antigens that are targeted by CAR T cells. The affinity of TCR T cells can be tuned to allow for better tumor recognition, even with varying levels of antigen presentation on the tumor and surrounding healthy tissue. Further enhancements to TCR T cells include improved platforms that enable more robust cell expansion and persistence; coadministration of small molecules that enhance tumor recognition and immune activation; and coexpression of cytokine-producing moieties, activating coreceptors, or mediators that relieve checkpoint blockade. Early-phase clinical trials pose logistical challenges involving production, large-scale manufacturing, and more. The challenges and obstacles to successful TCR T-cell therapy, and ways to overcome these and improve anticancer activity and efficacy, are discussed herein.
Collapse
Affiliation(s)
- Uri Greenbaum
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ecaterina I Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amadeo B Biter
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cara L Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
7
|
Chen L, Dong L, Ma Y, Wang J, Qiao D, Tian G, Wang M. An efficient method to identify virus-specific TCRs for TCR-T cell immunotherapy against virus-associated malignancies. BMC Immunol 2021; 22:65. [PMID: 34583647 PMCID: PMC8480097 DOI: 10.1186/s12865-021-00455-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Adoptive transfer of T cells genetically engineered with a T cell receptor (TCR) is a promising cancer treatment modality that requires the identification of TCRs with good characteristics. Most T cell cloning methods involve a stringent singularization process, which necessitates either tedious hands-on operations or high cost. We present an efficient and nonstringent cloning approach based on existing techniques. We hypothesize that after elimination of most nonspecific T cells, a clonotype with high quality could outcompete other clonotypes and finally form a predominant population. This TCR identification method can be used to clone virus-specific TCRs efficiently from cancer patients and is easily adoptable by any laboratory.
Collapse
Affiliation(s)
- Lei Chen
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China
| | - Lianhua Dong
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China
| | - Yipeng Ma
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China
| | - Juntao Wang
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China
| | - Dongjuan Qiao
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China
| | - Geng Tian
- Department of Oncology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Mingjun Wang
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China.
| |
Collapse
|
8
|
Bräunlein E, Lupoli G, Füchsl F, Abualrous ET, de Andrade Krätzig N, Gosmann D, Wietbrock L, Lange S, Engleitner T, Lan H, Audehm S, Effenberger M, Boxberg M, Steiger K, Chang Y, Yu K, Atay C, Bassermann F, Weichert W, Busch DH, Rad R, Freund C, Antes I, Krackhardt AM. Functional analysis of peripheral and intratumoral neoantigen-specific TCRs identified in a patient with melanoma. J Immunother Cancer 2021; 9:jitc-2021-002754. [PMID: 34518289 PMCID: PMC8438848 DOI: 10.1136/jitc-2021-002754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Neoantigens derived from somatic mutations correlate with therapeutic responses mediated by treatment with immune checkpoint inhibitors. Neoantigens are therefore highly attractive targets for the development of therapeutic approaches in personalized medicine, although many aspects of their quality and associated immune responses are not yet well understood. In a case study of metastatic malignant melanoma, we aimed to perform an in-depth characterization of neoantigens and respective T-cell responses in the context of immune checkpoint modulation. Methods Three neoantigens, which we identified either by immunopeptidomics or in silico prediction, were investigated using binding affinity analyses and structural simulations. We isolated seven T-cell receptors (TCRs) from the patient’s immune repertoire recognizing these antigens. TCRs were compared in vitro by multiparametric analyses including functional avidity, multicytokine secretion, and cross-reactivity screenings. A xenograft mouse model served to study in vivo functionality of selected TCRs. We investigated the patient’s TCR repertoire in blood and different tumor-related tissues over 3 years using TCR beta deep sequencing. Results Selected mutated peptide ligands with proven immunogenicity showed similar binding affinities to the human leukocyte antigen complex and comparable disparity to their wild-type counterparts in molecular dynamic simulations. Nevertheless, isolated TCRs recognizing these antigens demonstrated distinct patterns in functionality and frequency. TCRs with lower functional avidity showed at least equal antitumor immune responses in vivo. Moreover, they occurred at high frequencies and particularly demonstrated long-term persistence within tumor tissues, lymph nodes and various blood samples associated with a reduced activation pattern on primary in vitro stimulation. Conclusions We performed a so far unique fine characterization of neoantigen-specific T-cell responses revealing defined reactivity patterns of neoantigen-specific TCRs. Our data highlight qualitative differences of these TCRs associated with function and longevity of respective T cells. Such features need to be considered for further optimization of neoantigen targeting including adoptive T-cell therapies using TCR-transgenic T cells.
Collapse
Affiliation(s)
- Eva Bräunlein
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Gaia Lupoli
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Franziska Füchsl
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Esam T Abualrous
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Dario Gosmann
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Lukas Wietbrock
- TUM School of Life Sciences and Center for Integrated Protein Science Munich, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Sebastian Lange
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Department of Medicine II, Klinikum rechts der Isar, TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Huan Lan
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Stefan Audehm
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Manuel Effenberger
- Institute for Medical Microbiology Immunology and Hygiene, Technische Universität München, München, Germany
| | - Melanie Boxberg
- Institute of Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,MRI-TUM-Biobank at the Institute of Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Core Facility Experimental Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,German Cancer Consortium (DKTK), partner-site Munich, and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Yinshui Chang
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Kai Yu
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Cigdem Atay
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,German Cancer Consortium (DKTK), partner-site Munich, and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Florian Bassermann
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,German Cancer Consortium (DKTK), partner-site Munich, and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,MRI-TUM-Biobank at the Institute of Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Core Facility Experimental Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,German Cancer Consortium (DKTK), partner-site Munich, and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology Immunology and Hygiene, Technische Universität München, München, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Department of Medicine II, Klinikum rechts der Isar, TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,German Cancer Consortium (DKTK), partner-site Munich, and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Iris Antes
- TUM School of Life Sciences and Center for Integrated Protein Science Munich, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Angela M Krackhardt
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany .,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,German Cancer Consortium (DKTK), partner-site Munich, and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Dillard P, Casey N, Pollmann S, Vernhoff P, Gaudernack G, Kvalheim G, Wälchli S, Inderberg EM. Targeting KRAS mutations with HLA class II-restricted TCRs for the treatment of solid tumors. Oncoimmunology 2021; 10:1936757. [PMID: 34235003 PMCID: PMC8216182 DOI: 10.1080/2162402x.2021.1936757] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
T-cell receptor (TCR) redirected T cells are considered as the next generation of care for the treatment of numerous solid tumors. KRAS mutations are driver neoantigens that are expressed in over 25% of all cancers and are thus regarded as ideal targets for Adoptive Cell Therapy (ACT). We have isolated four KRAS-specific TCRs from a long-term surviving pancreatic cancer patient vaccinated with a mix of mutated KRAS peptides. The sequence of these TCRs could be identified and expressed in primary cells. We demonstrated stable expression of all TCRs as well as target-specific functionality when expressing T cells were co-incubated with target cells presenting KRAS peptides. In addition, these TCRs were all partially co-receptor independent since they were functional in both CD4 and CD8 T cells, thus indicating high affinity. Interestingly, we observed that certain TCRs were able to recognize several KRAS mutations in complex with their cognate Human leukocyte antigen (HLA), suggesting that, here, the point mutations were less important for the HLA binding and TCR recognition, whereas others were single-mutation restricted. Finally, we demonstrated that these peptides were indeed processed and presented, since HLA-matched antigen presenting cells exogenously loaded with KRAS proteins were recognized by TCR-transduced T cells. Taken together, our data demonstrate that KRAS mutations are immunogenic for CD4 T cells and are interesting targets for TCR-based cancer immunotherapy.
Collapse
Affiliation(s)
- Pierre Dillard
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Nicholas Casey
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Sylvie Pollmann
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Patrik Vernhoff
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Gustav Gaudernack
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Kono M, Kumai T, Hayashi R, Yamaki H, Komatsuda H, Wakisaka R, Nagato T, Ohkuri T, Kosaka A, Ohara K, Kishibe K, Takahara M, Katada A, Hayashi T, Celis E, Kobayashi H, Harabuchi Y. Interruption of MDM2 signaling augments MDM2-targeted T cell-based antitumor immunotherapy through antigen-presenting machinery. Cancer Immunol Immunother 2021; 70:3421-3434. [PMID: 33866408 DOI: 10.1007/s00262-021-02940-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Identification of immunogenic tumor antigens, their corresponding T cell epitopes and the selection of effective adjuvants are prerequisites for developing effective cancer immunotherapies such as therapeutic vaccines. Murine double minute 2 (MDM2) is an E3 ubiquitin-protein ligase that negatively regulates tumor suppressor p53. Because MDM2 overexpression serves as a poor prognosis factor in various types of tumors, it would be beneficial to develop MDM2-targeted cancer vaccines. In this report, we identified an MDM2-derived peptide epitope (MDM232-46) that elicited antigen-specific and tumor-reactive CD4+ T cell responses. These CD4+ T cells directly killed tumor cells via granzyme B. MDM2 is expressed in head and neck cancer patients with poor prognosis, and the T cells that recognize this MDM2 peptide were present in these patients. Notably, Nutlin-3 (MDM2-p53 blocker), inhibited tumor cell proliferation, was shown to augment antitumor T cell responses by increasing MDM2 expression, HLA-class I and HLA-DR through class II transactivator (CIITA). These results suggest that the use of this MDM2 peptide as a therapeutic vaccine combined with MDM2 inhibitors could represent an effective immunologic strategy to treat cancer.
Collapse
Affiliation(s)
- Michihisa Kono
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan. .,Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan.
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Risa Wakisaka
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan.,Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, GA, USA
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| |
Collapse
|
11
|
Campillo-Davo D, De Laere M, Roex G, Versteven M, Flumens D, Berneman ZN, Van Tendeloo VFI, Anguille S, Lion E. The Ins and Outs of Messenger RNA Electroporation for Physical Gene Delivery in Immune Cell-Based Therapy. Pharmaceutics 2021; 13:396. [PMID: 33809779 PMCID: PMC8002253 DOI: 10.3390/pharmaceutics13030396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 01/02/2023] Open
Abstract
Messenger RNA (mRNA) electroporation is a powerful tool for transient genetic modification of cells. This non-viral method of genetic engineering has been widely used in immunotherapy. Electroporation allows fine-tuning of transfection protocols for each cell type as well as introduction of multiple protein-coding mRNAs at once. As a pioneering group in mRNA electroporation, in this review, we provide an expert overview of the ins and outs of mRNA electroporation, discussing the different parameters involved in mRNA electroporation as well as the production of research-grade and production and application of clinical-grade mRNA for gene transfer in the context of cell-based immunotherapies.
Collapse
Affiliation(s)
- Diana Campillo-Davo
- Tumor Immunology Group, Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Wilrijk, Belgium; (G.R.); (M.V.); (D.F.); (Z.N.B.); (V.F.I.V.T.); (S.A.)
| | - Maxime De Laere
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Gils Roex
- Tumor Immunology Group, Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Wilrijk, Belgium; (G.R.); (M.V.); (D.F.); (Z.N.B.); (V.F.I.V.T.); (S.A.)
| | - Maarten Versteven
- Tumor Immunology Group, Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Wilrijk, Belgium; (G.R.); (M.V.); (D.F.); (Z.N.B.); (V.F.I.V.T.); (S.A.)
| | - Donovan Flumens
- Tumor Immunology Group, Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Wilrijk, Belgium; (G.R.); (M.V.); (D.F.); (Z.N.B.); (V.F.I.V.T.); (S.A.)
| | - Zwi N. Berneman
- Tumor Immunology Group, Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Wilrijk, Belgium; (G.R.); (M.V.); (D.F.); (Z.N.B.); (V.F.I.V.T.); (S.A.)
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium;
- Division of Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Viggo F. I. Van Tendeloo
- Tumor Immunology Group, Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Wilrijk, Belgium; (G.R.); (M.V.); (D.F.); (Z.N.B.); (V.F.I.V.T.); (S.A.)
| | - Sébastien Anguille
- Tumor Immunology Group, Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Wilrijk, Belgium; (G.R.); (M.V.); (D.F.); (Z.N.B.); (V.F.I.V.T.); (S.A.)
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium;
- Division of Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Eva Lion
- Tumor Immunology Group, Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Wilrijk, Belgium; (G.R.); (M.V.); (D.F.); (Z.N.B.); (V.F.I.V.T.); (S.A.)
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium;
| |
Collapse
|
12
|
Johnson DK, Magoffin W, Myers SJ, Finnell JG, Hancock JC, Orton TS, Persaud SP, Christensen KA, Weber KS. CD4 Inhibits Helper T Cell Activation at Lower Affinity Threshold for Full-Length T Cell Receptors Than Single Chain Signaling Constructs. Front Immunol 2021; 11:561889. [PMID: 33542711 PMCID: PMC7851051 DOI: 10.3389/fimmu.2020.561889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
CD4+ T cells are crucial for effective repression and elimination of cancer cells. Despite a paucity of CD4+ T cell receptor (TCR) clinical studies, CD4+ T cells are primed to become important therapeutics as they help circumvent tumor antigen escape and guide multifactorial immune responses. However, because CD8+ T cells directly kill tumor cells, most research has focused on the attributes of CD8+ TCRs. Less is known about how TCR affinity and CD4 expression affect CD4+ T cell activation in full length TCR (flTCR) and TCR single chain signaling (TCR-SCS) formats. Here, we generated an affinity panel of TCRs from CD4+ T cells and expressed them in flTCR and three TCR-SCS formats modeled after chimeric antigen receptors (CARs) to understand the contributions of TCR-pMHCII affinity, TCR format, and coreceptor CD4 interactions on CD4+ T cell activation. Strikingly, the coreceptor CD4 inhibited intermediate and high affinity TCR-construct activation by Lck-dependent and -independent mechanisms. These inhibition mechanisms had unique affinity thresholds dependent on the TCR format. Intracellular construct formats affected the tetramer staining for each TCR as well as IL-2 production. IL-2 production was promoted by increased TCR-pMHCII affinity and the flTCR format. Thus, CD4+ T cell therapy development should consider TCR affinity, CD4 expression, and construct format.
Collapse
Affiliation(s)
- Deborah K Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Wyatt Magoffin
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Sheldon J Myers
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Jordan G Finnell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - John C Hancock
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Taylor S Orton
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Stephen P Persaud
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, United States
| | - Kenneth A Christensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
13
|
Hayashi R, Nagato T, Kumai T, Ohara K, Ohara M, Ohkuri T, Hirata-Nozaki Y, Harabuchi S, Kosaka A, Nagata M, Yajima Y, Yasuda S, Oikawa K, Kono M, Kishibe K, Takahara M, Katada A, Hayashi T, Celis E, Harabuchi Y, Kobayashi H. Expression of placenta-specific 1 and its potential for eliciting anti-tumor helper T-cell responses in head and neck squamous cell carcinoma. Oncoimmunology 2020; 10:1856545. [PMID: 33457076 PMCID: PMC7781841 DOI: 10.1080/2162402x.2020.1856545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Placenta-specific 1 (PLAC1) is expressed primarily in placental trophoblasts but not in normal tissues and is a targetable candidate for cancer immunotherapy because it is a cancer testis antigen known to be up-regulated in various tumors. Although peptide epitopes capable of stimulating CD8 T cells have been previously described, there have been no reports of PLAC1 CD4 helper T lymphocyte (HTL) epitopes and the expression of this antigen in head and neck squamous cell carcinoma (HNSCC). Here, we show that PLAC1 is highly expressed in 74.5% of oropharyngeal and 51.9% of oral cavity tumors from HNSCC patients and in several HNSCC established cell lines. We also identified an HTL peptide epitope (PLAC131-50) capable of eliciting effective antigen-specific and tumor-reactive T cell responses. Notably, this peptide behaves as a promiscuous epitope capable of stimulating T cells in the context of more than one human leukocyte antigen (HLA)-DR allele and induces PLAC1-specific CD4 T cells that kill PLAC1-positive HNSCC cell lines in an HLA-DR-restricted manner. Furthermore, T-cells reactive to PLAC131-50 peptide were detected in the peripheral blood of HNSCC patients. These findings suggest that PLAC1 represents a potential target antigen for HTL based immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Ryusuke Hayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Research for Diagnosis and Treatment of Head and Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Mizuho Ohara
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yui Hirata-Nozaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Shohei Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yuki Yajima
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Syunsuke Yasuda
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Research for Diagnosis and Treatment of Head and Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, GA, USA
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
14
|
Dillard P, Köksal H, Maggadottir SM, Winge-Main A, Pollmann S, Menard M, Myhre MR, Mælandsmo GM, Flørenes VA, Gaudernack G, Kvalheim G, Wälchli S, Inderberg EM. Targeting Telomerase with an HLA Class II-Restricted TCR for Cancer Immunotherapy. Mol Ther 2020; 29:1199-1213. [PMID: 33212301 PMCID: PMC7934585 DOI: 10.1016/j.ymthe.2020.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
T cell receptor (TCR)-engineered T cell therapy is a promising cancer treatment approach. Human telomerase reverse transcriptase (hTERT) is overexpressed in the majority of tumors and a potential target for adoptive cell therapy. We isolated a novel hTERT-specific TCR sequence, named Radium-4, from a clinically responding pancreatic cancer patient vaccinated with a long hTERT peptide. Radium-4 TCR-redirected primary CD4+ and CD8+ T cells demonstrated in vitro efficacy, producing inflammatory cytokines and killing hTERT+ melanoma cells in both 2D and 3D settings, as well as malignant, patient-derived ascites cells. Importantly, T cells expressing Radium-4 TCR displayed no toxicity against bone marrow stem cells or mature hematopoietic cells. Notably, Radium-4 TCR+ T cells also significantly reduced tumor growth and improved survival in a xenograft mouse model. Since hTERT is a universal cancer antigen, and the very frequently expressed HLA class II molecules presenting the hTERT peptide to this TCR provide a very high (>75%) population coverage, this TCR represents an attractive candidate for immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Pierre Dillard
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Hakan Köksal
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | | | - Anna Winge-Main
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Sylvie Pollmann
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Mathilde Menard
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Marit Renée Myhre
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Vivi Ann Flørenes
- Department of Pathology, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Gustav Gaudernack
- Department of Cancer Immunology, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Gunnar Kvalheim
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Sébastien Wälchli
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway.
| | - Else Marit Inderberg
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway.
| |
Collapse
|
15
|
Winge-Main AK, Wälchli S, Inderberg EM. T cell receptor therapy against melanoma-Immunotherapy for the future? Scand J Immunol 2020; 92:e12927. [PMID: 32640053 DOI: 10.1111/sji.12927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022]
Abstract
Malignant melanoma has seen monumental changes in treatment options the last decade from the very poor results of dacarbazine treatment to the modern-day use of targeted therapies and immune checkpoint inhibitors. Melanoma has a high mutational burden making it more capable of evoking immune responses than many other tumours. Even when considering double immune checkpoint blockade with anti-CTLA-4 and anti-PD-1, we still have far to go in melanoma treatment as 50% of patients with metastatic disease do not respond to current treatment. Alternative immunotherapy should therefore be considered. Since melanoma has a high mutational burden, it is considered more immunogenic than many other tumours. T cell receptor (TCR) therapy could be a possible way forward, either alone or in combination, to improve the response rates of this deadly disease. Melanoma is one of the cancers where TCR therapy has been frequently applied. However, the number of antigens targeted remains fairly limited, although advanced personalized therapies aim at also targeting private mutations. In this review, we look at possible aspects of targeting TCR therapy towards melanoma and provide an implication of its use in the future.
Collapse
Affiliation(s)
- Anna K Winge-Main
- Department of Cellular Therapy, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Department of Cellular Therapy, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Department of Cellular Therapy, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
16
|
The Quest for the Best: How TCR Affinity, Avidity, and Functional Avidity Affect TCR-Engineered T-Cell Antitumor Responses. Cells 2020; 9:cells9071720. [PMID: 32708366 PMCID: PMC7408146 DOI: 10.3390/cells9071720] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past decades, adoptive transfer of T cells has revolutionized cancer immunotherapy. In particular, T-cell receptor (TCR) engineering of T cells has marked important milestones in developing more precise and personalized cancer immunotherapies. However, to get the most benefit out of this approach, understanding the role that TCR affinity, avidity, and functional avidity play on how TCRs and T cells function in the context of tumor-associated antigen (TAA) recognition is vital to keep generating improved adoptive T-cell therapies. Aside from TCR-related parameters, other critical factors that govern T-cell activation are the effect of TCR co-receptors on TCR–peptide-major histocompatibility complex (pMHC) stabilization and TCR signaling, tumor epitope density, and TCR expression levels in TCR-engineered T cells. In this review, we describe the key aspects governing TCR specificity, T-cell activation, and how these concepts can be applied to cancer-specific TCR redirection of T cells.
Collapse
|