1
|
Liu P, Sun Z. Chemokines and their receptors in the esophageal carcinoma tumor microenvironment: key factors for metastasis and progression. Front Oncol 2025; 15:1523751. [PMID: 40134607 PMCID: PMC11933060 DOI: 10.3389/fonc.2025.1523751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Esophageal carcinoma (ESCA) is a highly malignant tumor with the highest incidence in Eastern Asia. Although treatment modalities for ESCA have advanced in recent years, the overall prognosis remains poor, as most patients are diagnosed at an advanced stage of the disease. There is an urgent need to promote early screening for ESCA to increase survival rates and improve patient outcomes. The development of ESCA is closely linked to the complex tumor microenvironment (TME), where chemokines and their receptors play pivotal roles. Chemokines are a class of small-molecule, secreted proteins and constitute the largest family of cytokines. They not only directly regulate tumor growth and proliferation but also influence cell migration and localization through specific receptor interactions. Consequently, chemokines and their receptors affect tumor invasion and metastatic spread. Furthermore, chemokines regulate immune cells, including macrophages and regulatory T cells, within the TME. The recruitment of these immune cells further leads to immunosuppression, creating favorable conditions for tumor growth and metastasis. This review examines the impact of ESCA-associated chemokines and their receptors on ESCA, emphasizing their critical involvement in the ESCA TME.
Collapse
Affiliation(s)
| | - Zhiqiang Sun
- Department of Radiation Oncology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
2
|
Wang W, Ye L, Li H, Mao W, Xu X. Targeting esophageal carcinoma: molecular mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e782. [PMID: 39415846 PMCID: PMC11480525 DOI: 10.1002/mco2.782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Esophageal cancer (EC) is identified as a predominant health threat worldwide, with its highest incidence and mortality rates reported in China. The complex molecular mechanisms underlying EC, coupled with the differential incidence of esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) across various regions, highlight the necessity for in-depth research targeting molecular pathogenesis and innovative treatment strategies. Despite recent progress in targeted therapy and immunotherapy, challenges such as drug resistance and the lack of effective biomarkers for patient selection persist, impeding the optimization of therapeutic outcomes. Our review delves into the molecular pathology of EC, emphasizing genetic and epigenetic alterations, aberrant signaling pathways, tumor microenvironment factors, and the mechanisms of metastasis and immune evasion. We further scrutinize the current landscape of targeted therapies, including the roles of EGFR, HER2, and VEGFR, alongside the transformative impact of ICIs. The discussion extends to evaluating combination therapies, spotlighting the synergy between targeted and immune-mediated treatments, and introduces the burgeoning domain of antibody-drug conjugates, bispecific antibodies, and multitarget-directed ligands. This review lies in its holistic synthesis of EC's molecular underpinnings and therapeutic interventions, fused with an outlook on future directions including overcoming resistance mechanisms, biomarker discovery, and the potential of novel drug formulations.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Lisha Ye
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Huihui Li
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weimin Mao
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiangChina
| | - Xiaoling Xu
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Radiation OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Lyu SI, Simon AG, Jung JO, Fretter C, SchrÖder W, Bruns CJ, Schmidt T, Quaas A, Knipper K. Hexokinase 2 as an independent risk factor for worse patient survival in esophageal adenocarcinoma and as a potential therapeutic target protein: A retrospective, single‑center cohort study. Oncol Lett 2024; 28:495. [PMID: 39211305 PMCID: PMC11358717 DOI: 10.3892/ol.2024.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer cells exhibit a distinct metabolic profile that features an upregulation of less efficient glycolysis accompanied by lactate production for energy generation, in contract to the characteristic metabolism of normal cells. Consequently, cancer research has focused on the enzymes that participate in these cancer metabolic pathways. Among them, hexokinase 2 (HK2) has an important position as the initial enzyme in the glycolytic pathway. Increased expression levels of HK2 have been correlated with an increased risk of poor patient outcomes and advanced tumor stages in a number of malignant tumors, such as gastric carcinoma. The present study aimed to investigate the specific role of HK2 in patients diagnosed with esophageal adenocarcinoma. A total of 643 patients with esophageal adenocarcinoma were included. Immunohistochemical staining and HK2 mRNA in situ probes were used to investigate the association of HK2 expression levels with clinical and molecular tumor characteristics. Patients who exhibited high HK2 expression levels demonstrated significantly reduced overall survival (OS) times compared with patients who exhibited low HK2 expression levels (29.6 vs. 39.9 months, respectively; P=0.027). Furthermore, high HK2 expression levels were demonstrated to be an independent risk factor for reduced patient survival (hazard ratio, 1.65; 95% CI, 1.09-2.50; P=0.018). Significantly reduced patient survival was also demonstrated in the subgroups of male patients, patients with primarily resected tumors, patients with HER2-negative tumors and patients with tumors exhibiting Y chromosome loss. Elevated expression of HK2 was identified as a risk factor for unfavorable patient survival in esophageal adenocarcinoma. This revelation suggests the potential for future diagnostic and therapeutic avenues tailored to this specific patient subset. Identifying patients with high HK2 expression may pinpoint a higher-risk cohort, paving the way for comprehensive prospective studies that could advocate for intensified monitoring and more aggressive therapeutic regimens. Furthermore, the targeted inhibition of HK2 could hold promise as a strategy to potentially enhance patient outcomes.
Collapse
Affiliation(s)
- Su Ir Lyu
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, D-50937 Cologne, Germany
| | - Adrian Georg Simon
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, D-50937 Cologne, Germany
| | - Jin-On Jung
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| | - Caroline Fretter
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, D-50937 Cologne, Germany
| | - Wolfgang SchrÖder
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| | - Christiane J. Bruns
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, D-50937 Cologne, Germany
| | - Karl Knipper
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| |
Collapse
|
4
|
Holtermann A, Gislon M, Angele M, Subklewe M, von Bergwelt-Baildon M, Lauber K, Kobold S. Prospects of Synergy: Local Interventions and CAR T Cell Therapy in Solid Tumors. BioDrugs 2024; 38:611-637. [PMID: 39080180 PMCID: PMC11358237 DOI: 10.1007/s40259-024-00669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/30/2024]
Abstract
Chimeric antigen receptor T cell therapy has been established in the treatment of various B cell malignancies. However, translating this therapeutic effect to treat solid tumors has been challenging because of their inter-tumoral as well as intratumoral heterogeneity and immunosuppressive microenvironment. Local interventions, such as surgery, radiotherapy, local ablation, and locoregional drug delivery, can enhance chimeric antigen receptor T cell therapy in solid tumors by improving tumor infiltration and reducing systemic toxicities. Additionally, ablation and radiotherapy have proven to (re-)activate systemic immune responses via abscopal effects and reprogram the tumor microenvironment on a physical, cellular, and chemical level. This review highlights the potential synergy of the combined approaches to overcome barriers of chimeric antigen receptor T cell therapy and summarizes recent studies that may pave the way for new treatment regimens.
Collapse
Affiliation(s)
- Anne Holtermann
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Mila Gislon
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Munich, Germany.
| |
Collapse
|
5
|
Chavanton A, Mialhe F, Abrey J, Baeza Garcia A, Garrido C. LAG-3 : recent developments in combinational therapies in cancer. Cancer Sci 2024; 115:2494-2505. [PMID: 38702996 PMCID: PMC11309939 DOI: 10.1111/cas.16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
The study of anticancer immune responses and in particular the action of immune checkpoint inhibitors that overcome T cell inhibition has revolutionized metastatic patients' care. Unfortunately, many patients are resistant to these innovative immunotherapies. Over the last decade, several immune checkpoint inhibitors, currently available in the clinic, have been developed, such as anti-PD-1/PD-L1 or anti-CTLA-4. More recently, other immune checkpoints have been characterized, among them lymphocyte activation gene 3 (LAG-3). LAG-3 has been the subject of numerous therapeutic studies and may be involved in cancer-associated immune resistance phenomena. This review summarizes the latest knowledge on LAG-3 as an immunotherapeutic target, particularly in combination with standard or innovative therapies. Indeed, many studies are looking at combining LAG-3 inhibitors with chemotherapeutic, immunotherapeutic, radiotherapeutic treatments, or adoptive cell therapies to potentiate their antitumor effects and/or to overcome patients' resistance. We will particularly focus on the association therapies that are currently in phase III clinical trials and innovative combinations in preclinical phase. These new discoveries highlight the possibility of developing other types of therapeutic combinations currently unavailable in the clinic, which could broaden the therapeutic spectrum of personalized medicine.
Collapse
Affiliation(s)
- Aude Chavanton
- INSERM, UMR 1231Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer »DijonFrance
- Faculty of MedicineUniversité de BourgogneDijonFrance
| | - Flavie Mialhe
- INSERM, UMR 1231Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer »DijonFrance
- Faculty of MedicineUniversité de BourgogneDijonFrance
| | - Jimena Abrey
- INSERM, UMR 1231Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer »DijonFrance
- Faculty of MedicineUniversité de BourgogneDijonFrance
| | - Alvaro Baeza Garcia
- INSERM, UMR 1231Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer »DijonFrance
- Faculty of MedicineUniversité de BourgogneDijonFrance
| | - Carmen Garrido
- INSERM, UMR 1231Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer »DijonFrance
- Faculty of MedicineUniversité de BourgogneDijonFrance
- Center for Cancer Georges‐François LeclercDijonFrance
| |
Collapse
|
6
|
Yang C, Cao F, He Y. An Immune-Related Gene Signature for Predicting Survival and Immunotherapy Efficacy in Esophageal Adenocarcinoma. Med Sci Monit 2023; 29:e940157. [PMID: 37632137 PMCID: PMC10467311 DOI: 10.12659/msm.940157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/30/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) therapy has attracted wide attention in the treatment of malignant tumors. This study was designed to build a prognostic model based on immune-related genes for esophageal adenocarcinoma (EAC). MATERIAL AND METHODS The expression of immune-related differentially-expressed genes (IRDEGs) between EAC and normal samples from The Cancer Genome Atlas database was analyzed. Univariate and multivariate Cox regressions were used to identify the prognostic IRDEGs and construct an immune-related gene signature (IRGS) to predict the overall survival (OS) of EAC patients. Then, the molecular mechanisms and immune characteristics were comprehensively analyzed. RESULTS A total of 111 IRDEGs were obtained from the weighted gene co-expression network analysis. Univariate Cox regression analysis showed that 12 IRDEGs (P<0.05 for all) were linked with OS in the EAC patients. Four genes were used to construct the IRGS based on the multivariate Cox regression analysis. Patients in the high-risk group showed worse OS than those in the low-risk group (P<0.001). A high-risk score was related to DNA replication relevant pathways, an increase in mutation rate, and an increase in activated mast cell infiltration. Patients with high-risk scores had lower tumor immune dysfunction and exclusion scores (P<0.001). CONCLUSIONS IRDEGs may be involved in the progression of EAC. The high-risk group is more suitable for immunotherapy, which may provide a reference value for the treatment of clinical EAC patients. Therefore, it is possible to identify the patients who are better suited for ICI therapy.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Feng Cao
- Anhui Medical University, Hefei, Anhui, PR China
| | - Yan He
- Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
7
|
Tian C, Wang X, Zhang S. CTLA-4 and its inhibitors in esophageal cancer: efficacy of therapy and potential mechanisms of adverse events. Am J Cancer Res 2023; 13:3140-3156. [PMID: 37559996 PMCID: PMC10408473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Esophageal cancer is one of the most prevalent diseases in the world, and its prognosis remains poor. Surgery, chemotherapy, and radiotherapy are the most common treatment strategies for esophageal cancer. Although these conventional treatment methods are sometimes beneficial, patients with esophageal cancer still have a high risk of local relapse and metastasis. Thus, novel and effective therapies are needed. Immune checkpoint inhibitors are a type of immunotherapy being studied as a treatment for patients with advanced cancers, and strategies using such inhibitors have rapidly progressed to be recognized as transformative treatments for various cancers in recent years. Immune checkpoint inhibitors combined with chemotherapy or radiotherapy have become the first-line and second-line treatment strategies for advanced esophageal cancer. In addition, immune checkpoint inhibitors have also been recognized as another option for patients with terminal esophageal cancer who cannot benefit from chemotherapy, and they even have potential benefits as a novel neoadjuvant treatment option for locally advanced esophageal cancer. Currently, there are two types of immune checkpoint inhibitors commonly applied in clinical practice: immune checkpoint inhibitors targeting programmed death 1/programmed cell death ligand 1 and immune checkpoint inhibitors targeting cytotoxic T-lymphocyte-associated protein 4. However, cytotoxic T-lymphocyte-associated protein 4 immune checkpoint inhibitors are rarely used compared with programmed death 1/programmed cell death ligand 1 inhibitors in esophageal cancer and other cancers, and the clinical benefit is unclear. We analyzed and summarized the efficacy and safety of cytotoxic T-lymphocyte-associated protein 4 immune checkpoint inhibitors in the treatment of esophageal cancer. Due to the lack of clinical applications, it is expected that cytotoxic T-lymphocyte-associated protein 4 immune checkpoint inhibitors in combination with other treatments may provide superior benefits and improve the prognosis of patients with esophageal cancer.
Collapse
Affiliation(s)
- Chenrui Tian
- Henan Provincial Peoples Hospital, Xinxiang Medical UniversityNo. 601, Jinsui Avenue, Hongqi District, Xinxiang 453003, Henan, China
| | - Xiaohui Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| |
Collapse
|
8
|
Oesophago-Gastric Anastomotic Audit (OGAA) Collaborative. Postoperative and Pathological Outcomes of CROSS and FLOT as Neoadjuvant Therapy for Esophageal and Junctional Adenocarcinoma: An International Cohort Study From the Oesophagogastric Anastomosis Audit (OGAA). Ann Surg 2023; 277:e1026-e1034. [PMID: 35099168 DOI: 10.1097/sla.0000000000005394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to compare the postoperative and pathological outcomes between carboplatin, paclitaxel, radiotherapy (CROSS) and 5-FU, leucovorine, oxaliplatin and docetaxel (FLOT) in esophageal adenocarcinoma (EAC) patients from an international, multicenter cohort. SUMMARY OF BACKGROUND DATA Ongoing debate exists around optimum approach to locally advanced EAC, with proponents for perioperative chemotherapy, such as FLOT, or multimodal therapy, in particular the CROSS regimen. METHODS Patients undergoing CROSS (n = 350) and FLOT (n = 368), followed by curative esophagectomy for EAC were identified from the Oesophagogastric Anastomosis Audit. RESULTS The 90-day mortality was higher after CROSS than FLOT (5% vs 1%, P = 0.005), even on adjusted analyses [odds ratio (OR): 3.97, confidence interval (CI) 95% : 1.34-13.67]. Postoperative mortality in CROSS were related to higher pulmonary (74% vs 60%) and cardiac complications (42% vs 20%) compared to FLOT. CROSS was associated with higher pathologic complete response (pCR) rates (18% vs 10%, P = 0.004) and margin-negative resections (93% vs 76%, P < 0.001) compared with FLOT. On adjusted analyses, CROSS was associated with higher pCR rates (OR: 2.05, CI 95% : 1.26-3.34) and margin-negative resections (OR: 4.55, CI 95% : 2.70-7.69) compared to FLOT. CONCLUSIONS This study provides real-world data CROSS was associated with higher 90-day mortality than FLOT, related to cardio-pulmonary complications with CROSS. These warrant a further review into causes and mechanisms in selected patients, and at minimum suggest the need for strict radiation therapy quality assurance. Research into impact of higher pCR rates and R0 resections with CROSS compared to FLOT on long-term survival is needed.
Collapse
|
9
|
McNamee N, Nindra U, Shahnam A, Yoon R, Asghari R, Ng W, Karikios D, Wong M. Haematological and nutritional prognostic biomarkers for patients receiving CROSS or FLOT. J Gastrointest Oncol 2023; 14:494-503. [PMID: 37201072 PMCID: PMC10186526 DOI: 10.21037/jgo-22-886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/10/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Neoadjuvant carboplatin and paclitaxel with radiotherapy (CROSS) and perioperative docetaxel, oxaliplatin, calcium folinate and fluorouracil (FLOT) are widely used for gastric (GC), gastro-oesophageal junction (GOJ) and oesophageal cancers (OC). Prognostic and predictive markers for response and survival outcomes are lacking. This study evaluates dynamic neutrophil-lymphocyte ratios (NLR), platelet-lymphocyte ratios (PLR), albumin and body mass index (BMI) as predictors of survival, response and toxicity. METHODS This multi-centre retrospective observational study across 5 Sydney hospitals included patients receiving CROSS or FLOT from 2015 to 2021. Haematological results and BMI were recorded at baseline and pre-operatively, and after adjuvant treatment for FLOT. Toxicities were also recorded. An NLR ≥2 and PLR ≥200 was used to stratify patients. Univariate and multivariate analyses were performed to determine predictors of overall survival (OS), disease free survival (DFS), rates of pathological complete response (pCR) and toxicity. RESULTS One hundred sixty-eight patients were included (95 FLOT, 73 FLOT). A baseline NLR ≥2 was predictive for worse DFS (HR 2.78, 95% CI: 1.41-5.50, P<0.01) and OS (HR 2.90, 95% CI: 1.48-5.67, P<0.01). Sustained elevation in NLR was predictive for DFS (HR 1.54, 95% CI: 1.08-2.17, P=0.01) and OS (HR 1.65, 95% CI: 1.17-2.33, P<0.01). An NLR ≥2 correlated with worse pCR rates (16% for NLR ≥2, 48% for NLR <2, P=0.04). A baseline serum albumin <33 was predictive of worse DFS and OS with a HR of 6.17 (P=0.01) and 4.66 (P=0.01) respectively. Baseline PLR, BMI, and dynamic changes in these markers were not associated with DFS, OS or pCR rates. There was no association of the aforementioned variables with toxicity. CONCLUSIONS This demonstrates that a high inflammatory state represented by an NLR ≥2, both at baseline and sustained, is prognostic and predictive of response in patients receiving FLOT or CROSS. Baseline hypoalbuminaemia is predictive of poorer outcomes.
Collapse
Affiliation(s)
- Nicholas McNamee
- Department of Medical Oncology, Westmead Hospital, Sydney, Australia
| | - Udit Nindra
- Department of Medical Oncology, Liverpool Hospital, Sydney, Australia
| | - Adel Shahnam
- Department of Medical Oncology, Westmead Hospital, Sydney, Australia
| | - Robert Yoon
- Department of Medical Oncology, Liverpool Hospital, Sydney, Australia
| | - Ray Asghari
- Department of Medical Oncology, Bankstown-Lidcombe Hospital, Sydney, Australia
| | - Weng Ng
- Department of Medical Oncology, Liverpool Hospital, Sydney, Australia
| | - Deme Karikios
- Department of Medical Oncology, Nepean Hospital, Sydney, Australia
| | - Mark Wong
- Department of Medical Oncology, Westmead Hospital, Sydney, Australia
| |
Collapse
|
10
|
Laurent PA, Morel D, Meziani L, Depil S, Deutsch E. Radiotherapy as a means to increase the efficacy of T-cell therapy in solid tumors. Oncoimmunology 2022; 12:2158013. [PMID: 36567802 PMCID: PMC9788698 DOI: 10.1080/2162402x.2022.2158013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have demonstrated significant improvements in the treatment of refractory B-cell malignancies that previously showed limited survival. In contrast, early-phase clinical studies targeting solid tumors have been disappointing. This may be due to both a lack of specific and homogeneously expressed targets at the surface of tumor cells, as well as intrinsic properties of the solid tumor microenvironment that limit homing and activation of adoptive T cells. Faced with these antagonistic conditions, radiotherapy (RT) has the potential to change the overall tumor landscape, from depleting tumor cells to reshaping the tumor microenvironment. In this article, we describe the current landscape and discuss how RT may play a pivotal role for enhancing the efficacy of adoptive T-cell therapies in solid tumors. Indeed, by improving homing, expansion and activation of infused T cells while reducing tumor volume and heterogeneity, the use of RT could help the implementation of engineered T cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Pierre-Antoine Laurent
- Department of Radiation Oncology, Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| | - Daphne Morel
- Drug Development Department (D.I.T.E.P), Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
| | - Lydia Meziani
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| | | | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| |
Collapse
|
11
|
Wang X, Zhang Y, Wang S, Ni H, Zhao P, Chen G, Xu B, Yuan L. The role of CXCR3 and its ligands in cancer. Front Oncol 2022; 12:1022688. [PMID: 36479091 PMCID: PMC9720144 DOI: 10.3389/fonc.2022.1022688] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
Chemokines are a class of small cytokines or signaling proteins that are secreted by cells. Owing to their ability to induce directional chemotaxis of nearby responding cells, they are called chemotactic cytokines. Chemokines and chemokine receptors have now been shown to influence many cellular functions, including survival, adhesion, invasion, and proliferation, and regulate chemokine levels. Most malignant tumors express one or more chemokine receptors. The CXC subgroup of chemokine receptors, CXCR3, is mainly expressed on the surface of activated T cells, B cells, and natural killer cells, and plays an essential role in infection, autoimmune diseases, and tumor immunity by binding to specific receptors on target cell membranes to induce targeted migration and immune responses. It is vital to treat infections, autoimmune diseases, and tumors. CXCR3 and its ligands, CXCL9, CXCL10, and CXCL11, are closely associated with the development and progression of many tumors. With the elucidation of its mechanism of action, CXCR3 is expected to become a new indicator for evaluating the prognosis of patients with tumors and a new target for clinical tumor immunotherapy. This article reviews the significance and mechanism of action of the chemokine receptor CXCR3 and its specific ligands in tumor development.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yangyang Zhang
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Sen Wang
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hongyan Ni
- Department of Surgery, Henan No.3 Provincial People’s Hospital, Zhengzhou, China
| | - Peng Zhao
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Guangyu Chen
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Benling Xu
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Long Yuan
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
12
|
Liu S, Liu Y, Lin J, Wang Y, Li D, Xie GY, Guo AY, Liu BF, Cheng L, Liu X. Three Major Gastrointestinal Cancers Could Be Distinguished through Subclass-Specific IgG Glycosylation. J Proteome Res 2022; 21:2771-2782. [PMID: 36268885 DOI: 10.1021/acs.jproteome.2c00572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Esophageal cancer (EC), gastric cancer (GC), and colorectal cancer (CRC) are three major digestive tract tumors with higher morbidity and mortality due to significant molecular heterogeneity. Altered IgG glycosylation has been observed in inflammatory activities and disease progression, and the IgG glycome profile could be used for disease stratification. However, IgG N-glycome profiles in these three cancers have not been systematically investigated. Herein, subclass-specific IgG glycosylation in CRC, GC, and EC was comprehensively characterized by liquid chromatography-tandem mass spectrometry. It was found that IgG1 sialylation was decreased in all three cancers, and the alterations in CRC and EC may be subclass-specific. IgG4 mono-galactosylation was increased in all three cancers, which was a subclass-specific change in all of them. Additionally, glycopeptides of IgG1-H5N5, IgG2-H4N3F1, and IgG4-H4N4F1 could distinguish all three cancer groups from controls with fair diagnostic performance. Furthermore, bioinformatics verified the differential expression of relevant glycosyltransferase genes in cancer progression. Significantly, those three gastrointestinal cancers could be distinguished from each other using subclass-specific IgG glycans. These findings demonstrated the spatial and temporal diversity of IgG N-glycome among digestive cancers, increasing our understanding of the molecular mechanisms of EC, GC, and CRC pathogenesis.
Collapse
Affiliation(s)
- Si Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanyuan Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiajing Lin
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dong Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gui-Yan Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - An-Yuan Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
To N, Evans RPT, Pearce H, Kamarajah SK, Moss P, Griffiths EA. Current and Future Immunotherapy-Based Treatments for Oesophageal Cancers. Cancers (Basel) 2022; 14:3104. [PMID: 35804876 PMCID: PMC9265112 DOI: 10.3390/cancers14133104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Oesophageal cancer is a disease that causes significant morbidity and mortality worldwide, and the prognosis of this condition has hardly improved in the past few years. Standard treatment includes a combination of chemotherapy, radiotherapy and surgery; however, only a proportion of patients go on to treatment intended to cure the disease due to the late presentation of this disease. New treatment options are of utmost importance, and immunotherapy is a new option that has the potential to transform the landscape of this disease. This treatment is developed to act on the changes within the immune system caused by cancer, including checkpoint inhibitors, which have recently shown great promise in the treatment of this disease and have recently been included in the adjuvant treatment of oesophageal cancer in many countries worldwide. This review will outline the mechanisms by which cancer evades the immune system in those diagnosed with oesophageal cancer and will summarize current and ongoing trials that focus on the use of our own immune system to combat disease.
Collapse
Affiliation(s)
- Natalie To
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Richard P. T. Evans
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Sivesh K. Kamarajah
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Ewen A. Griffiths
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
| |
Collapse
|
14
|
Haddad R, Zlotnik O, Goshen-Lago T, Levi M, Brook E, Brenner B, Kundel Y, Ben-Aharon I, Kashtan H. Tumor Lymphocyte Infiltration Is Correlated with a Favorable Tumor Regression Grade after Neoadjuvant Treatment for Esophageal Adenocarcinoma. J Pers Med 2022; 12:jpm12040627. [PMID: 35455743 PMCID: PMC9029859 DOI: 10.3390/jpm12040627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
(1) Background: We aimed to explore the association between neoadjuvant treatment, tumor-infiltrating immune lymphocyte (TIL), and tumor-associated macrophage (TAM) and survival in patients with esophageal adenocarcinoma. (2) Methods: Patients who underwent esophagectomy were divided into three groups according to their treatment modality and tumor regression grade (TRG): (i) surgery-only group (SG), (ii) good responders (GR) group (TRG 0−1), and (iii) bad responders (BR) group (TRG 2−3). We then carried out statistical correlations of the immunofluorescence analysis of the immune infiltrate in the esophageal surgical specimens with several clinical and pathological parameters. In addition, we analyzed The Cancer Genomic Atlas (TCGA) dataset for differences in TILs, TAMs, and protein expression in immune pathways. (3) Results: Forty-three patients (SG—15, GR—13, and BR—13) were evaluated. The highest enrichment of CD3+ (p < 0.001), CD8+ (p = 0.001) and CD4+ (p = 0.009) was observed in the stroma of GR patients. On multivariate analysis, only CD8+ T cell and signet-ring features were independent prognostic factors for overall survival. In TCGA analysis, we identified overexpression of TAM and colony-stimulating factor 1 receptor (CSF-1R). (4) Conclusions: High enrichment of lymphocyte subpopulations in the microenvironment of esophageal adenocarcinoma is associated with a favorable response to neoadjuvant treatment and an improved patient outcome.
Collapse
Affiliation(s)
- Riad Haddad
- Department of Surgery, Carmel Medical Center, Haifa 3436212, Israel; (R.H.); (H.K.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 3525433, Israel
| | - Oran Zlotnik
- Department of Surgery, Rabin Medical Center, Petach Tikva 4941492, Israel;
| | - Tal Goshen-Lago
- Division of Oncology, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Mattan Levi
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 6329302, Israel; (M.L.); (B.B.); (Y.K.)
| | - Elena Brook
- Department of Pathology, Rabin Medical Center, Petach Tikva 4941492, Israel;
| | - Baruch Brenner
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 6329302, Israel; (M.L.); (B.B.); (Y.K.)
- Institute of Oncology, Davidoff Center, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Yulia Kundel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 6329302, Israel; (M.L.); (B.B.); (Y.K.)
- Institute of Oncology, Davidoff Center, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Irit Ben-Aharon
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 3525433, Israel
- Division of Oncology, Rambam Health Care Campus, Haifa 3109601, Israel;
- Correspondence:
| | - Hanoch Kashtan
- Department of Surgery, Carmel Medical Center, Haifa 3436212, Israel; (R.H.); (H.K.)
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 6329302, Israel; (M.L.); (B.B.); (Y.K.)
| |
Collapse
|
15
|
Barrientos-Robledo SG, Cebada-Ruiz JA, Rodríguez-Alba JC, Baltierra-Uribe SL, Díaz Y Orea MA, Romero-Ramírez H. CD38 a biomarker and therapeutic target in non-hematopoietic tumors. Biomark Med 2022; 16:387-400. [PMID: 35195042 DOI: 10.2217/bmm-2021-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The type II transmembrane glycoprotein CD38 has recently been implicated in regulating metabolism and the pathogenesis of multiple conditions, including aging, inflammation and cancer. CD38 is overexpressed in several tumor cells and microenvironment tumoral cells, associated to migration, angiogenesis, cell invasion and progression of the disease. Thus, CD38 has been used as a progression marker for different cancer types as well as in immunotherapy. This review focuses on describing the involvement of CD38 in various non-hematopoietic cancers.
Collapse
Affiliation(s)
- Susana G Barrientos-Robledo
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Jorge A Cebada-Ruiz
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Juan C Rodríguez-Alba
- Unidad de Citometría de Flujo, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Shantal L Baltierra-Uribe
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Maria A Díaz Y Orea
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Héctor Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| |
Collapse
|
16
|
Killcoyne S, Fitzgerald RC. Evolution and progression of Barrett's oesophagus to oesophageal cancer. Nat Rev Cancer 2021; 21:731-741. [PMID: 34545238 DOI: 10.1038/s41568-021-00400-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Cancer cells are shaped through an evolutionary process of DNA mutation, cell selection and population expansion. Early steps in this process are driven by a set of mutated driver genes and structural alterations to the genome through copy number gains or losses. Oesophageal adenocarcinoma (EAC) and the pre-invasive tissue, Barrett's oesophagus (BE), provide an ideal example in which to observe and study this evolution. BE displays early genomic instability, specifically in copy number changes that may later be observed in EAC. Furthermore, these early changes result in patterns of progression (that is, 'born bad', gradual or catastrophic) that may help to describe the evolution of EAC. As only a small proportion of patients with BE will go on to develop cancer, a better understanding of these patterns and the resulting genomic changes should improve early detection in EAC and may provide clues for the evolution of cancer more broadly.
Collapse
Affiliation(s)
- Sarah Killcoyne
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Rebecca C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
He S, Xu J, Liu X, Zhen Y. Advances and challenges in the treatment of esophageal cancer. Acta Pharm Sin B 2021; 11:3379-3392. [PMID: 34900524 PMCID: PMC8642427 DOI: 10.1016/j.apsb.2021.03.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/24/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Esophageal cancer (EC) is one of the most common cancers with high morbidity and mortality rates. EC includes two histological subtypes, namely esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC primarily occurs in East Asia, whereas EAC occurs in Western countries. The currently available treatment strategies for EC include surgery, chemotherapy, radiation therapy, molecular targeted therapy, and combinations thereof. However, the prognosis remains poor, and the overall five-year survival rate is very low. Therefore, achieving the goal of effective treatment remains challenging. In this review, we discuss the latest developments in chemotherapy and molecular targeted therapy for EC, and comprehensively analyze the application prospects and existing problems of immunotherapy. Collectively, this review aims to provide a better understanding of the currently available drugs through in-depth analysis, promote the development of new therapeutic agents, and eventually improve the treatment outcomes of patients with EC.
Collapse
Affiliation(s)
- Shiming He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jian Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Xiujun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Yongsu Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
18
|
Chen Z, Huang Y, Hu Z, Zhao M, Bian Y, Chen Z, Zheng Y, Bi G, Pang Y, Zhan C, Lin Z, Guo W, Wang Q, Tan L. Dissecting the single-cell transcriptome network in patients with esophageal squamous cell carcinoma receiving operative paclitaxel plus platinum chemotherapy. Oncogenesis 2021; 10:71. [PMID: 34697289 PMCID: PMC8546051 DOI: 10.1038/s41389-021-00359-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) accounts for 90% of all cases of esophageal cancers worldwide. Although neoadjuvant chemotherapy (NACT-ESCC) improves the survival of ESCC patients, the five-year survival rate of these patients is dismal. The tumor microenvironment (TME) and tumor heterogeneity decrease the efficacy of ESCC therapy. In our study, 113,581 cells obtained from five ESCC patients who underwent surgery alone (SA-ESCC) and five patients who underwent preoperative paclitaxel plus platinum chemotherapy (NACT-ESCC), were used for scRNA-seq analysis to explore molecular and cellular reprogramming patterns. The results showed samples from NACT-ESCC patients exhibited the characteristics of malignant cells and TME unlike samples from SA-ESCC patients. Cancer cells from NACT-ESCC samples were mainly at the ‘intermediate transient stage’. Stromal cell dynamics showed molecular and functional shifts that formed the immune-activation microenvironment. APOE, APOC1, and SPP1 were highly expressed in tumor-associated macrophages resulting in anti-inflammatory macrophage phenotypes. Levels of CD8+ T cells between SA-ESCC and NACT-ESCC tissues were significantly different. Immune checkpoints analysis revealed that LAG3 is a potential immunotherapeutic target for both NACT-ESCC and SA-ESCC patients. Cell–cell interactions analysis showed the complex cell-cell communication networks in the TME. In summary, our findings elucidate on the molecular and cellular reprogramming of NACT-ESCC and ESCC patients. These findings provide information on the potential diagnostic and therapeutic targets for ESCC patients.
Collapse
Affiliation(s)
- Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Zongwei Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Yuansheng Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Yanrui Pang
- Department of Pathology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China.
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China.
| | - Weigang Guo
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China.
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| |
Collapse
|
19
|
Junttila A, Väyrynen JP, Ahtiainen M, Kuopio T, Mrena J, Sihvo E, Helminen O. Immune cell score, PD-L1 expression and prognosis in esophageal cancer. Acta Oncol 2021; 60:544-548. [PMID: 33438497 DOI: 10.1080/0284186x.2020.1868571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anna Junttila
- Department of Surgery, Central Finland Central Hospital, Jyväskylä, Finland
| | - Juha P. Väyrynen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Maarit Ahtiainen
- Department of Education and Research, Central Finland Health Care District, Jyväskylä, Finland
| | - Teijo Kuopio
- Department of Education and Research, Central Finland Health Care District, Jyväskylä, Finland
- Department of Pathology, Central Finland Central Hospital, Jyväskylä, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna Mrena
- Department of Surgery, Central Finland Central Hospital, Jyväskylä, Finland
| | - Eero Sihvo
- Department of Surgery, Central Finland Central Hospital, Jyväskylä, Finland
| | - Olli Helminen
- Department of Surgery, Central Finland Central Hospital, Jyväskylä, Finland
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
20
|
Bhat AA, Nisar S, Maacha S, Carneiro-Lobo TC, Akhtar S, Siveen KS, Wani NA, Rizwan A, Bagga P, Singh M, Reddy R, Uddin S, Grivel JC, Chand G, Frenneaux MP, Siddiqi MA, Bedognetti D, El-Rifai W, Macha MA, Haris M. Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy. Mol Cancer 2021; 20:2. [PMID: 33390169 PMCID: PMC7780621 DOI: 10.1186/s12943-020-01294-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
Esophageal cancer (EC) is a disease often marked by aggressive growth and poor prognosis. Lack of targeted therapies, resistance to chemoradiation therapy, and distant metastases among patients with advanced disease account for the high mortality rate. The tumor microenvironment (TME) contains several cell types, including fibroblasts, immune cells, adipocytes, stromal proteins, and growth factors, which play a significant role in supporting the growth and aggressive behavior of cancer cells. The complex and dynamic interactions of the secreted cytokines, chemokines, growth factors, and their receptors mediate chronic inflammation and immunosuppressive TME favoring tumor progression, metastasis, and decreased response to therapy. The molecular changes in the TME are used as biological markers for diagnosis, prognosis, and response to treatment in patients. This review highlighted the novel insights into the understanding and functional impact of deregulated cytokines and chemokines in imparting aggressive EC, stressing the nature and therapeutic consequences of the cytokine-chemokine network. We also discuss cytokine-chemokine oncogenic potential by contributing to the Epithelial-Mesenchymal Transition (EMT), angiogenesis, immunosuppression, metastatic niche, and therapeutic resistance development. In addition, it discusses the wide range of changes and intracellular signaling pathways that occur in the TME. Overall, this is a relatively unexplored field that could provide crucial insights into tumor immunology and encourage the effective application of modulatory cytokine-chemokine therapy to EC.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Selma Maacha
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Nissar A Wani
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Arshi Rizwan
- Department of Nephrology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Gyan Chand
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
21
|
Quaas A, Pamuk A, Klein S, Quantius J, Rehkaemper J, Barutcu AG, Rueschoff J, Zander T, Gebauer F, Hillmer A, Buettner R, Schroeder W, Bruns CJ, Löser H, Schoemig-Markiefka B, Alakus H. Sex-specific prognostic effect of CD66b-positive tumor-infiltrating neutrophils (TANs) in gastric and esophageal adenocarcinoma. Gastric Cancer 2021; 24:1213-1226. [PMID: 34009535 PMCID: PMC8502159 DOI: 10.1007/s10120-021-01197-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumor-associated neutrophils (TANs) have recently been identified as a relevant component of the tumor microenvironment (TME) in solid tumors. Within the TME TANs mediate either tumor-promoting or tumor-inhibiting activities. So far, their prognostic relevance remains to be determined. This study aims to evaluate the prognostic relevance of TANs in different molecular subtypes of gastric and esophageal adenocarcinoma. METHODS We analyzed a total of 1118 Caucasian patients divided into gastric adenocarcinoma (n = 458) and esophageal adenocarcinoma cohort (n = 660) of primarily resected and neoadjuvant-treated individuals. The amount of CD66b + TANs in the tumor stroma was determined using quantitative image analysis and correlated to both molecular, as well as clinical data. RESULTS An accumulation of TANs in the tumor stroma of gastric carcinomas was associated to a significant favorable prognosis (p = 0.026). A subgroup analysis showed that this effect was primarily related to the molecular chromosomal instable subtype (CIN) of gastric carcinomas (p = 0.010). This was only observed in female patients (p = 0.014) but not in male patients (p = 0.315). The same sex-specific effect could be confirmed in adenocarcinomas of the esophagus (p = 0.027), as well as in female individuals after receiving neoadjuvant therapy (p = 0.034). CONCLUSIONS Together, we show a sex-specific prognostic effect of TANs in gastric cancer within a Caucasian cohort. For the first time, we showed that this sex-specific prognostic effect of TANs can also be seen in esophageal cancer.
Collapse
Affiliation(s)
- Alexander Quaas
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Aylin Pamuk
- grid.411097.a0000 0000 8852 305XDepartment of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Sebastian Klein
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Jennifer Quantius
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Jan Rehkaemper
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Atakan G. Barutcu
- grid.411097.a0000 0000 8852 305XDepartment of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Josef Rueschoff
- Institute of Pathology, Nordhessen and Targos Molecular Pathology GmbH, Kassel, Germany
| | - Thomas Zander
- grid.6190.e0000 0000 8580 3777Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Gastrointestinal Cancer Group Cologne GCGC, University of Cologne, Cologne, Germany
| | - Florian Gebauer
- grid.411097.a0000 0000 8852 305XDepartment of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Axel Hillmer
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Reinhard Buettner
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Wolfgang Schroeder
- grid.411097.a0000 0000 8852 305XDepartment of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Christiane J. Bruns
- grid.411097.a0000 0000 8852 305XDepartment of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Heike Löser
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Birgid Schoemig-Markiefka
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Hakan Alakus
- grid.411097.a0000 0000 8852 305XDepartment of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
22
|
Plum PS, Löser H, Zander T, Essakly A, Bruns CJ, Hillmer AM, Alakus H, Schröder W, Büttner R, Gebauer F, Quaas A. GATA binding protein 6 (GATA6) is co-amplified with PIK3CA in patients with esophageal adenocarcinoma and is linked to neoadjuvant therapy. J Cancer Res Clin Oncol 2020; 147:1031-1040. [PMID: 33300112 PMCID: PMC7954758 DOI: 10.1007/s00432-020-03486-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022]
Abstract
Purpose Driver mutations are typically absent in esophageal adenocarcinoma (EAC). Mostly, oncogenes are amplified as driving molecular events (including GATA6-amplification in 14% of cases). However, only little is known about its biological function and clinical relevance. Methods We examined a large number of EAC (n = 496) for their GATA6 amplification by fluorescence in situ hybridization (FISH) analyzing both primary resected (n = 219) and neoadjuvant treated EAC (n = 277). Results were correlated to clinicopathological data and known mutations/amplifications in our EAC-cohort. Results GATA6 amplification was detectable in 49 (9.9%) EACs of our cohort. We observed an enrichment of GATA6-positive tumors among patients after neoadjuvant treatment (12,3% amplified tumors versus 6,8% in the primary resected group; p = 0.044). Additionally, there was a simultaneous amplification of PIK3CA and GATA6 (p < 0.001) not detectable when analyzing other genes such as EGFR, ERBB2, KRAS or MDM2. Although we did not identify a survival difference depending on GATA6 in the entire cohort (p = 0.212), GATA6 amplification was associated with prolonged overall survival among patients with primary surgery (median overall-survival 121.1 vs. 41.4 months, p = 0.032). Multivariate cox-regression analysis did not confirm GATA6 as an independent prognostic marker, neither in the entire cohort (p = 0.210), nor in the subgroup with (p = 0.655) or without pretreatment (p = 0.961). Conclusions Our study investigates the relevance of GATA6 amplification on a large tumor collective, which includes primary resected tumors and the clinically relevant group of neoadjuvant treated EACs. Especially in the pretreated group, we found an accumulation of GATA6-amplified tumors (12.3%) and a frequent co-amplification of PIK3CA. Our data suggest an increased resistance to radio-chemotherapy in GATA6-amplified tumors.
Collapse
Affiliation(s)
- Patrick Sven Plum
- Department of General, Visceral, Cancer, and Transplantation Surgery, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
- Gastrointestinal Cancer Group Cologne (GCGC), Cologne, Germany.
- Else Kröner Forschungskolleg Cologne "Clonal Evolution in Cancer", Cologne, Germany.
- Centre for Integrated Oncology (CIO), Cologne Bonn, Cologne, Germany.
| | - Heike Löser
- Gastrointestinal Cancer Group Cologne (GCGC), Cologne, Germany
- Institute of Pathology, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Thomas Zander
- Centre for Integrated Oncology (CIO), Cologne Bonn, Cologne, Germany
- Department of Internal Medicine I, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Ahlem Essakly
- Institute of Pathology, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral, Cancer, and Transplantation Surgery, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- Centre for Integrated Oncology (CIO), Cologne Bonn, Cologne, Germany
| | - Axel M Hillmer
- Institute of Pathology, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral, Cancer, and Transplantation Surgery, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- Centre for Integrated Oncology (CIO), Cologne Bonn, Cologne, Germany
| | - Wolfgang Schröder
- Department of General, Visceral, Cancer, and Transplantation Surgery, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- Centre for Integrated Oncology (CIO), Cologne Bonn, Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Florian Gebauer
- Department of General, Visceral, Cancer, and Transplantation Surgery, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- Centre for Integrated Oncology (CIO), Cologne Bonn, Cologne, Germany
| | - Alexander Quaas
- Gastrointestinal Cancer Group Cologne (GCGC), Cologne, Germany
- Centre for Integrated Oncology (CIO), Cologne Bonn, Cologne, Germany
- Institute of Pathology, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| |
Collapse
|
23
|
Kotsafti A, Scarpa M, Cavallin F, Fassan M, Salmaso R, Porzionato A, Saadeh L, Cagol M, Alfieri R, Castoro C, Rugge M, Castagliuolo I, Scarpa M. Immune surveillance activation after neoadjuvant therapy for esophageal adenocarcinoma and complete response. Oncoimmunology 2020; 9:1804169. [PMID: 32923165 PMCID: PMC7458640 DOI: 10.1080/2162402x.2020.1804169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
After neoadjuvant chemoradiotherapy for esophageal adenocarcinoma, up to 29% of patients have a pathological complete response (pCR). What to do afterward is still under debate. The aim of this prospective study was to define which local markers of immune response might act as predictors of pCR and of recurrence after pCR. The peritumoral healthy mucosa of the surgical specimen was sampled at esophagectomy and analyzed by immunohistochemistry, flow cytometry and Real-Time PCR. One hundred and twenty-three patients received neoadjuvant therapy for esophageal adenocarcinoma and were included in the study. Significantly higher rate of natural killer (NK) cells (CD57+), intraepithelial CD8 + T lymphocytes and degranulating T- and NK-cells (CD107+) were observed in the healthy mucosa of patients with pCR. Moreover, pCR was characterized by a lower immune-check points gene expression level. T-cell activation markers mRNA levels were significantly lower in patients with pCR and recurrent disease, showing an excellent accuracy in the prediction of the postoperative recurrence. Costimulatory molecules mRNA relative levels tended to be lower in patients with pCR and recurrent disease, showing a good accuracy in the prediction of postoperative recurrence in patients with pCR. The immune profile identified in this study might further be tested in large prospective trials as marker of pCR after neoadjuvant therapy and as predictor of recurrence after pCR.
Collapse
Affiliation(s)
- Andromachi Kotsafti
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Melania Scarpa
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | | | - Matteo Fassan
- Department of Medicine DIMED, University of Padua, Padua, Italy
| | - Roberta Salmaso
- Department of Medicine DIMED, University of Padua, Padua, Italy
| | - Andrea Porzionato
- Department of Neurosciences DNS, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Luca Saadeh
- General Surgery Unit, Rovigo Hospital, Rovigo, Italy
| | - Matteo Cagol
- Oncological Surgery, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Rita Alfieri
- Oncological Surgery, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Carlo Castoro
- Dept. Of Upper GI Surgery, Humanitas Research Hospital-Humanitas University, Rozzano, Italy
| | - Massimo Rugge
- Department of Medicine DIMED, University of Padua, Padua, Italy
| | | | - Marco Scarpa
- General Surgery Unit, Azienda Ospedaliera Di Padova, Padova, Italy
| |
Collapse
|
24
|
Zhu X, Xie X, Zhao Q, Zhang L, Li C, Zhao D. Potential Prognostic Value and Mechanism of Stromal-Immune Signature in Tumor Microenvironment for Stomach Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4673153. [PMID: 32685487 PMCID: PMC7335387 DOI: 10.1155/2020/4673153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
Stomach adenocarcinoma (STAD) is one of the most common malignancies. But the molecular mechanism is unknown. In this study, we downloaded the transcriptional profiles and clinical data of 344 STAD and 30 normal samples from The Cancer Genome Atlas (TCGA) database. Stromal and immune scores of STAD were calculated by the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm, and association of stromal/immune scores with tumor differentiation/T/N/M stage and survival was investigated. The differentially expressed genes (DEGs) between high and low score groups (based on media) were identified, and prognostic genes over-/underexpressed in both STAD and stromal/immune signature were retrieved. Furthermore, proportions of 22 infiltrating immune cells for the cohort from TCGA were estimated by the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm, and association of 22 immune cells with tumor differentiation/T/N/M stage and survival was investigated. Next, coexpression analysis of 22 immune cells and intersection genes over-/underexpressed in both STAD and stromal signature was conducted. We found high stromal and immune scores and macrophage infiltration predicting poor tumor differentiation and severe local invasion, obtained a list of prognostic genes based on stromal-immune signature, and explored the interaction of collagen, chemokines such as CXCL9, CXCL10, and CXCL11, and macrophage through coexpression analysis and may provide novel prognostic biomarkers and immunotherapeutic targets for STAD.
Collapse
Affiliation(s)
- Xinying Zhu
- Department of Gastroenterology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei Province, China
- Department of Gastroenterology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Xiaoli Xie
- Department of Gastroenterology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei Province, China
| | - Qingchao Zhao
- Department of Gastroenterology, Second Hospital of Baoding, Baoding, 071051 Hebei Province, China
| | - Lixian Zhang
- Department of Gastroenterology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei Province, China
| | - Changjuan Li
- Department of Gastroenterology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei Province, China
| | - Dongqiang Zhao
- Department of Gastroenterology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei Province, China
| |
Collapse
|