1
|
Pettas T, Lachanoudi S, Karageorgos FF, Ziogas IA, Fylaktou A, Papalois V, Katsanos G, Antoniadis N, Tsoulfas G. Immunotherapy and liver transplantation for hepatocellular carcinoma: Current and future challenges. World J Transplant 2025; 15:98509. [DOI: 10.5500/wjt.v15.i2.98509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 11/07/2024] [Indexed: 02/21/2025] Open
Abstract
Despite existing curative options like surgical removal, tissue destruction techniques, and liver transplantation for early-stage hepatocellular carcinoma (HCC), the rising incidence and mortality rates of this global health burden necessitate continuous exploration of novel therapeutic strategies. This review critically assesses the dynamic treatment panorama for HCC, focusing specifically on the burgeoning role of immunotherapy in two key contexts: early-stage HCC and downstaging advanced HCC to facilitate liver transplant candidacy. It delves into the unique immunobiology of the liver and HCC, highlighting tumor-mediated immune evasion mechanisms. Analyzing the diverse immunotherapeutic approaches including checkpoint inhibitors, cytokine modulators, vaccines, oncolytic viruses, antigen-targeting antibodies, and adoptive cell therapy, this review acknowledges the limitations of current diagnostic markers alpha-fetoprotein and glypican-3 and emphasizes the need for novel biomarkers for patient selection and treatment monitoring. Exploring the rationale for neoadjuvant and adjuvant immunotherapy in early-stage HCC, current research is actively exploring the safety and effectiveness of diverse immunotherapeutic approaches through ongoing clinical trials. The review further explores the potential benefits and challenges of combining immunotherapy and liver transplant, highlighting the need for careful patient selection, meticulous monitoring, and novel strategies to mitigate post-transplant complications. Finally, this review delves into the latest findings from the clinical research landscape and future directions in HCC management, paving the way for optimizing treatment strategies and improving long-term survival rates for patients with this challenging malignancy.
Collapse
Affiliation(s)
- Theodoros Pettas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Sofia Lachanoudi
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Filippos F Karageorgos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Ioannis A Ziogas
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Vassilios Papalois
- Department of Transplant Surgery, Imperial College Renal and Transplant Centre, London W12 0HS, United Kingdom
| | - Georgios Katsanos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 54642, Greece
| | - Nikolaos Antoniadis
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 54642, Greece
| |
Collapse
|
2
|
Sindeeva OA, Kozyreva ZV, Abdurashitov AS, Sukhorukov GB. Engineering colloidal systems for cell manipulation, delivery, and tracking. Adv Colloid Interface Sci 2025; 340:103462. [PMID: 40037017 DOI: 10.1016/j.cis.2025.103462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Men-made colloidal systems are widely presented across various aspects of biomedical science. There is a strong demand for engineering colloids to tailor their functions and properties to meet the requirements of biological and medical tasks. These requirements are not only related to size, shape, capacity to carry bioactive compounds as drug delivery systems, and the ability to navigate via chemical and physical targeting. Today, the more challenging aspects of colloid design are how the colloidal particles interact with biological cells, undergo internalization by cells, how they reside in the cell interior, and whether we can explore cells with colloids, intervene with biochemical processes, and alter cell functionality. Cell tracking, exploitation of cells as natural transporters of internalized colloidal carriers loaded with drugs, and exploring physical methods as external triggers of cell functions are ongoing topics in the research agenda. In this review, we summarize recent advances in these areas, focusing on how colloidal particles interact and are taken up by mesenchymal stem cells, dendritic cells, neurons, macrophages, neutrophils and lymphocytes, red blood cells, and platelets. The engineering of colloidal vesicles with cell membrane fragments and exosomes facilitates their application. The perspectives of different approaches in colloid design, their limitations, and obstacles on the biological side are discussed.
Collapse
Affiliation(s)
- Olga A Sindeeva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia.
| | - Zhanna V Kozyreva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia
| | - Arkady S Abdurashitov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia; Life Improvement by Future Technologies (LIFT) Center, Bolshoy Boulevard 30, Moscow 121205, Russia
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia.
| |
Collapse
|
3
|
Zhang G, Huang X, Liang T. mRNA vaccines for gastrointestinal malignancies: cutting-edge advances and future perspectives. Sci Bull (Beijing) 2025; 70:128-131. [PMID: 39581833 DOI: 10.1016/j.scib.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Affiliation(s)
- Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou 310003, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou 310003, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou 310003, China.
| |
Collapse
|
4
|
Wu X, Jin B, Liu X, Mao Y, Wan X, Du S. Research trends of cellular immunotherapy for primary liver cancer: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2426869. [PMID: 39538378 PMCID: PMC11572085 DOI: 10.1080/21645515.2024.2426869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Cellular immunotherapy has shown considerable potential for the treatment of primary liver cancer (PLC), particularly hepatocellular carcinoma (HCC), although it is in the early stages of development. This study used bibliometric methods to delineate the evolution of research on cellular immunotherapy for PLC. Data were sourced from the Web of Science Core Collection (WoSCC) on April 22, 2024. Using the "Bibliometrix" R package, we examined primary bibliometric features, collaboration frequency between countries, and article output of the journals. Furthermore, we employed VOSviewer for coauthorship analysis and visualization and CiteSpace to assess keyword co-occurrence, as well as to spotlight keywords and references with the strongest citation bursts. Our analysis encompassed 492 publications focused on PLC and cellular immunotherapy, and we pinpointed China, Japan, and the USA as the foremost contributing nations and identified "Cancer Immunology Immunotherapy" as the journal with the most contributions in this area. Sun Yat-sen University emerged as the institution with the most significant output, and Li Zonghai authored the greatest number of leading articles. Prominent keywords that displayed a notable citation burst in the later years included "chimeric antigen receptor," "combination therapy", "CAR-T cells," "TCR-T cells," and "liver transplantation." This bibliometric study outlined a foundational knowledge framework, surveyed over three decades of research on cellular immunotherapy for PLC, and revealed the key players and trends, thereby offering a thorough understanding of the field, especially in relation to HCC.
Collapse
Affiliation(s)
- Xiang’an Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Xueshuai Wan
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Couzinet A, Suzuki T, Nakatsura T. Progress and challenges in glypican-3 targeting for hepatocellular carcinoma therapy. Expert Opin Ther Targets 2024; 28:895-909. [PMID: 39428649 DOI: 10.1080/14728222.2024.2416975] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Glypican-3 (GPC3) is a cell membrane-anchored heparan sulfate proteoglycan that has recently garnered attention as a cancer antigen owing to its high expression in numerous cancers, particularly hepatocellular carcinoma (HCC), and to limited expression in adult normal tissue. AREAS COVERED Here, we propose the potential of GPC3 as a cancer antigen based on our experience with the GPC3 peptide vaccine against HCC, having developed a vaccine that progressed from preclinical studies to first-in-human clinical trials. In this review, we present a summary of the current status and future prospects of immunotherapies targeting GPC3 by focusing on clinical trials; peptide vaccines, mRNA vaccines, antibody therapy, and chimeric antigen receptor/T-cell receptor - T-cell therapy and discuss additional strategies for effectively eliminating HCC through immunotherapy. EXPERT OPINION GPC3 is an ideal cancer antigen for HCC immunotherapy. In resectable HCC, immunotherapies that leverage physiological immune surveillance, immune checkpoint inhibitors, and GPC3-target cancer vaccines appear promising in preventing recurrence and could be considered as a prophylactic adjuvant therapy. However, in advanced HCC, clinical trials have not demonstrated sufficient anti-tumor efficacy, in contrast with preclinical studies. Reverse translation, bedside-to-bench research, is crucial to identify the factors that have hindered GPC3 target immunotherapies.
Collapse
Affiliation(s)
- Arnaud Couzinet
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
6
|
Stefanini B, Manfredi GF, D’Alessio A, Fulgenzi CA, Awosika N, Celsa C, Pirisi M, Rigamonti C, Burlone M, Vincenzi F, Minisini R, Gennari A, Yip V, Slater S, El-Shakankery K, Jain A, Tovoli F, Piscaglia F, Spalding D, Pai M, Pinato DJ. Delivering adjuvant and neoadjuvant treatments in the early stages of hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2024; 18:647-660. [PMID: 39435480 PMCID: PMC11601036 DOI: 10.1080/17474124.2024.2419519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) presents a formidable challenge in oncology, demanding innovative treatment approaches. Both adjuvant and neoadjuvant therapies, thanks to the introduction of immunotherapy, have emerged as promising strategies in the management of HCC, aiming to reduce the risk of relapse and ultimately to improve survival. AREAS COVERED This review considers current evidence, ongoing clinical trials, and future strategies to elucidate the evolving landscape of neoadjuvant and adjuvant treatments in HCC. EXPERT OPINION Both adjuvant and neoadjuvant regimens, notably those incorporating immune checkpoint inhibitors, demonstrated encouraging safety profiles and efficacy outcomes in HCC.While significant challenges persist, including optimizing patient selection and endpoint definition, the evolving landscape of neoadjuvant and adjuvant therapy holds promise for maximizing the therapeutic potential of immunotherapy across all stages of HCC. Further insights into tumor biology and host immunity will shape the role of these approaches which are close to becoming reality in clinical practice.
Collapse
Affiliation(s)
- Bernardo Stefanini
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giulia F. Manfredi
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Internal Medicine, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Antonio D’Alessio
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Claudia A.M. Fulgenzi
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Nichola Awosika
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Ciro Celsa
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy
| | - Mario Pirisi
- Division of Internal Medicine, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristina Rigamonti
- Division of Internal Medicine, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Michela Burlone
- Division of Internal Medicine, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Federica Vincenzi
- Division of Internal Medicine, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Rosalba Minisini
- Division of Internal Medicine, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alessandra Gennari
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Vincent Yip
- Barts and the London HPB Centre, Royal London Hospital, Whitechapel, UK
| | - Sarah Slater
- Barts and the London HPB Centre, Royal London Hospital, Whitechapel, UK
| | - Karim El-Shakankery
- Edinburgh Cancer Centre, Western General Hospital, NHS Lothian, Edinburgh, UK
| | - Ananya Jain
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Duncan Spalding
- Hepatobiliary Surgery, Imperial College London and Imperial College NHS Trust, Hammersmith Hospital, London, UK
| | - Madhava Pai
- Hepatobiliary Surgery, Imperial College London and Imperial College NHS Trust, Hammersmith Hospital, London, UK
| | - David J. Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
7
|
Li W, Chen G, Peng H, Zhang Q, Nie D, Guo T, Zhu Y, Zhang Y, Lin M. Research Progress on Dendritic Cells in Hepatocellular Carcinoma Immune Microenvironments. Biomolecules 2024; 14:1161. [PMID: 39334927 PMCID: PMC11430656 DOI: 10.3390/biom14091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells that play a crucial role in initiating immune responses by cross-presenting relevant antigens to initial T cells. The activation of DCs is a crucial step in inducing anti-tumor immunity. Upon recognition and uptake of tumor antigens, activated DCs present these antigens to naive T cells, thereby stimulating T cell-mediated immune responses and enhancing their ability to attack tumors. It is particularly noted that DCs are able to cross-present foreign antigens to major histocompatibility complex class I (MHC-I) molecules, prompting CD8+ T cells to proliferate and differentiate into cytotoxic T cells. In the malignant progression of hepatocellular carcinoma (HCC), the inactivation of DCs plays an important role, and the activation of DCs is particularly important in anti-HCC immunotherapy. In this review, we summarize the mechanisms of DCs activation in HCC, the involved regulatory factors and strategies to activate DCs in HCC immunotherapy. It provides a basis for the study of HCC immunotherapy through DCs activation.
Collapse
Affiliation(s)
- Wenya Li
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guojie Chen
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Medical School, Nantong University, Nantong 226019, China
| | - Hailin Peng
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Qingfang Zhang
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Dengyun Nie
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting Guo
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinxing Zhu
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Yuhan Zhang
- The First School of Clinical Medicine Southern Medical University, Guangzhou 510515, China
| | - Mei Lin
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
8
|
Teodoro Da Silva L, Tiaki Tiyo B, de Jesus Mota S, Mazzilli Ortega M, Justamante Handel Schmitz G, Nosomi Taniwaki N, Mitsue Namiyama Nishina G, José da Silva Duarte A, Miyuki Oshiro T. Effects of Injectable Solutions on the Quality of Monocyte-Derived Dendritic Cells for Immunotherapy. J Immunol Res 2024; 2024:6817965. [PMID: 38962578 PMCID: PMC11221978 DOI: 10.1155/2024/6817965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 07/05/2024] Open
Abstract
Therapeutic vaccines based on monocyte-derived dendritic cells have been shown to be promising strategies and may act as complementary treatments for viral infections, cancers, and, more recently, autoimmune diseases. Alpha-type-1-polarized dendritic cells (aDC1s) have been shown to induce type-1 immunity with a high capacity to produce interleukin-12p70 (IL-12p70). In the clinical use of cell-based therapeutics, injectable solutions can affect the morphology, immunophenotypic profile, and viability of cells before delivery and their survival after injection. In this sense, preparing a cell suspension that maintains the quality of aDC1s is essential to ensure effective immunotherapy. In the present study, monocytes were differentiated into aDC1s in the presence of IL-4 and GM-CSF. On day 5, the cells were matured by the addition of a cytokine cocktail consisting of IFN-α, IFN-γ, IL-1β, TNF-α, and Poly I:C. After 48 hr, mature aDC1s were harvested and suspended in two different solutions: normal saline and Ringer's lactate. The maintenance of cells in suspension was evaluated after 4, 6, and 8 hr of storage. Cell viability, immunophenotyping, and apoptosis analyses were performed by flow cytometry. Cellular morphology was observed by electron microscopy, and the production of IL-12p70 by aDC1s was evaluated by ELISA. Compared with normal saline, Ringer's lactate solution was more effective at maintaining DC viability for up to 8 hr of incubation at 4 or 22°C.
Collapse
Affiliation(s)
- Laís Teodoro Da Silva
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Bruna Tiaki Tiyo
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Silvia de Jesus Mota
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Marina Mazzilli Ortega
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Gabriela Justamante Handel Schmitz
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Telma Miyuki Oshiro
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
9
|
Xiao M, Wang L, Tang Q, Yang Q, Yang X, Zhu G, Lei L, Li S. Postoperative tumor treatment strategies: From basic research to clinical therapy. VIEW 2024; 5. [DOI: 10.1002/viw.20230117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/15/2024] [Indexed: 07/04/2024] Open
Abstract
AbstractDespite progression in advanced treatments for malignant tumors, surgery remains the primary treatment intervention, which removes a large portion of firm tumor tissues; however, the postoperative phase poses a possible risk for provincial tumor recurrence and metastasis. Consequently, the prevention of tumor recurrence and metastasis has attracted research attention. In this review, we summarized the postoperative treatment strategies for various tumors from both basic research and clinical perspectives. We delineated the underlying factors contributing to the recurrence of malignant tumors with a substantial prevalence rate, related molecular mechanisms of tumor recurrence post‐surgery, and related means of monitoring recurrence and metastasis after surgery. Furthermore, we described relevant therapeutic approaches for postoperative tumor recurrence, including chemotherapy, radiation therapy, immunotherapy, targeted therapy, and photodynamic therapy. This review focused on the emerging technologies used for postoperative tumor treatment in recent years in terms of functional classification, including the prevention of postoperative tumor recurrence, functional reconstruction, and monitoring of recurrence. Finally, we discussed the future development and deficiencies of postoperative tumor therapy. To understand postoperative treatment strategies for tumors from clinical treatment and basic research and further guide the research directions for postoperative tumors.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery Binzhou People's Hospital Binzhou China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lanjie Lei
- Institute of Translational Medicine Zhejiang Shuren University Hangzhou China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| |
Collapse
|
10
|
Hsu CY, Mustafa MA, Kumar A, Pramanik A, Sharma R, Mohammed F, Jawad IA, Mohammed IJ, Alshahrani MY, Ali Khalil NAM, Shnishil AT, Abosaoda MK. Exploiting the immune system in hepatic tumor targeting: Unleashing the potential of drugs, natural products, and nanoparticles. Pathol Res Pract 2024; 256:155266. [PMID: 38554489 DOI: 10.1016/j.prp.2024.155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024]
Abstract
Hepatic tumors present a formidable challenge in cancer therapeutics, necessitating the exploration of novel treatment strategies. In recent years, targeting the immune system has attracted interest to augment existing therapeutic efficacy. The immune system in hepatic tumors includes numerous cells with diverse actions. CD8+ T lymphocytes, T helper 1 (Th1) CD4+ T lymphocytes, alternative M1 macrophages, and natural killer (NK) cells provide the antitumor immunity. However, Foxp3+ regulatory CD4+ T cells (Tregs), M2-like tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) are the key immune inhibitor cells. Tumor stroma can also affect these interactions. Targeting these cells and their secreted molecules is intriguing for eliminating malignant cells. The current review provides a synopsis of the immune system components involved in hepatic tumor expansion and highlights the molecular and cellular pathways that can be targeted for therapeutic intervention. It also overviews the diverse range of drugs, natural products, immunotherapy drugs, and nanoparticles that have been investigated to manipulate immune responses and bolster antitumor immunity. The review also addresses the potential advantages and challenges associated with these approaches.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Atreyi Pramanik
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Rajiv Sharma
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Iraq
| | | | - Imad Jasim Mohammed
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | | | - Munther Kadhim Abosaoda
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| |
Collapse
|
11
|
Heras-Murillo I, Adán-Barrientos I, Galán M, Wculek SK, Sancho D. Dendritic cells as orchestrators of anticancer immunity and immunotherapy. Nat Rev Clin Oncol 2024; 21:257-277. [PMID: 38326563 DOI: 10.1038/s41571-024-00859-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Dendritic cells (DCs) are a heterogeneous group of antigen-presenting innate immune cells that regulate adaptive immunity, including against cancer. Therefore, understanding the precise activities of DCs in tumours and patients with cancer is important. The classification of DC subsets has historically been based on ontogeny; however, single-cell analyses are now additionally revealing a diversity of functional states of DCs in cancer. DCs can promote the activation of potent antitumour T cells and immune responses via numerous mechanisms, although they can also be hijacked by tumour-mediated factors to contribute to immune tolerance and cancer progression. Consequently, DC activities are often key determinants of the efficacy of immunotherapies, including immune-checkpoint inhibitors. Potentiating the antitumour functions of DCs or using them as tools to orchestrate short-term and long-term anticancer immunity has immense but as-yet underexploited therapeutic potential. In this Review, we outline the nature and emerging complexity of DC states as well as their functions in regulating adaptive immunity across different cancer types. We also describe how DCs are required for the success of current immunotherapies and explore the inherent potential of targeting DCs for cancer therapy. We focus on novel insights on DCs derived from patients with different cancers, single-cell studies of DCs and their relevance to therapeutic strategies.
Collapse
Affiliation(s)
- Ignacio Heras-Murillo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Irene Adán-Barrientos
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Galán
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Stefanie K Wculek
- Innate Immune Biology Laboratory, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
12
|
Shbeer AM. Current state of knowledge and challenges for harnessing the power of dendritic cells in cancer immunotherapy. Pathol Res Pract 2024; 253:155025. [PMID: 38147726 DOI: 10.1016/j.prp.2023.155025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
DCs have great promise for cancer immunotherapy and are essential for coordinating immune responses. In the battle against cancer, using DCs' ability to stimulate the immune system and focus it on tumor cells has shown to be a viable tactic. This study offers a thorough summary of recent developments as well as potential future paths for DC-based immunotherapy against cancer. This study reviews the many methods used in DC therapy, such as vaccination and active cellular immunotherapy. The effectiveness and safety of DC-based treatments for metastatic castration-resistant prostate cancer and non-small cell lung cancer are highlighted in these investigations. The findings indicate longer survival times and superior results for particular patient groups. We are aware of the difficulties and restrictions of DC-based immunotherapy, though. These include the immunosuppressive tumor microenvironment, the intricacy of DC production, and the heterogeneity within DC populations. More study and development are needed to overcome these challenges to enhance immunological responses, optimize treatment regimens, and increase scalability.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
13
|
Ye Y, Wang Y, Xu H, Yi F. Network meta-analysis of adjuvant treatments for patients with hepatocellular carcinoma after curative resection. BMC Gastroenterol 2023; 23:320. [PMID: 37730533 PMCID: PMC10510134 DOI: 10.1186/s12876-023-02955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
PURPOSE The prevention of recurrence for patients with hepatocellular carcinoma after curative resection is still a great challenge in clinical practice. There are numerous studies that trying to search for favorable strategies to decrease the recurrence and prolong life span for these patients, whereas no consensus is reached till now. Herein, we aim to compare the efficacy between different reported treatments by network meta-analysis(NMA). METHODS We searched Pubmed, Web of Science and Cochrane Library for abstracts and full-text articles published from database inception through February 2023. All of the random controlled trials(RCTs) were evaluated and collected as eligible studies. The primary outcome was the prevention of recurrence between different procedures. The second outcomes were one-year survival, three-year survival and five-year survival. RESULTS Thirty-two RCTs including 5783 patients were selected, and 12 treatments were classified. Most of the studies were high quality with low bias. Thirty-one studies including 5629 patients were recruited for recurrence analysis. The network meta-analysis showed benefits from transarterial chemoembolization(TACE) + portal vein chemotherapy(PVC)[OR, 2.84 (1.15,6.99)] and internal radiotherapy(IRT) [OR, 2.63 (1.41,4.91)] compared to non-adjuvant(NA) treatment when considering prevention of recurrence. Seventeen studies including 2047 patients were collected for one-year survival analysis. The network meta-analysis showed benefit from TACE[OR, 0.33 (0.14,0.75)] when considering one-year survival. Twenty-one studies including 2463 patients were collected for three-year survival analysis. The network meta-analysis showed TACE [OR, 0.51 (0.30,0.86)], IRT[OR, 0.41 (0.20,0.83)] and dendritic cell(DC) [OR, 0.09 (0.01,0.98)] were better than NA when considering three-year survival. Sixteen studies including 1915 patients were collected for five-year survival analysis. The network meta-analysis didn't show any benefit from different treatments when considering five-year survival. Other strategies including external radiotherapy(ERT), branched-chain amino acids(BCAA), hepatic artery infusion chemotherapy(HAIC), cytokine-induced killer(CIK), adoptive immunotherapy(AIT), Huaier, interferon(IFN), oral chemotherapy(OCT) and sorafenib(SOR) didn't show significant benefit regardless of prevention of recurrence or short-, long- time survival. CONCLUSION This NMA found that TACE + PVC and IRT were considered as the procedures to decrease HCC recurrence rate. TACE, IRT and DC were preferred when considering the extending of life span for post-operative patients with HCC. Large scale of RCTs are needed to verify it.
Collapse
Affiliation(s)
- Yanyan Ye
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. of China
| | - Ying Wang
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. of China
- JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, 330006, P.R. of China
| | - Haoqian Xu
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. of China
- JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, 330006, P.R. of China
| | - Fengming Yi
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. of China.
- JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, 330006, P.R. of China.
| |
Collapse
|
14
|
Han CL, Yan YC, Yan LJ, Meng GX, Yang CC, Liu H, Ding ZN, Dong ZR, Hong JG, Chen ZQ, Li T. Efficacy and security of tumor vaccines for hepatocellular carcinoma: a systemic review and meta-analysis of the last 2 decades. J Cancer Res Clin Oncol 2023; 149:1425-1441. [PMID: 35482077 DOI: 10.1007/s00432-022-04008-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tumor vaccines for hepatocellular carcinoma (HCC) is an area of intense interest. Tremendous clinical trials have been conducted globally, but the efficacy and security of tumor vaccines are elusive. The aim of our study was to evaluate the efficacy and security of tumor vaccines. METHODS All relevant studies were identified in PubMed, EMBASE, Web of science and Cochrane Library databases. Objective response rate (ORR), median overall survival (OS), or median progression-free survival (PFS) and 95% CI were meta-analyzed based on the random-effects model. The individual-level data of OS, PFS were pooled by conducting survival analysis. All observed adverse events were collected. RESULTS 31 studies containing 35 eligible cohorts with 932 HCC patients were included. The pooled ORR were 7% (95% CI 3-14%), while ORR of dendritic cell (DC) vaccine (19%, 95% CI 11-29%) were highly significant than ORR of peptide vaccine (1%, 95% CI 0-5%). The pooled median OS and PFS were 13.67 months (95% CI 8.20-22.80) and 6.19 months (95% CI 2.97-12.91), respectively. The pooled median OS (DC vaccine: median OS = 21.77 months, 95% CI 18.33-25.86; Peptide vaccine: median OS = 10.08 months, 95% CI 5.23-19.44) and PFS (DC vaccine: median PFS = 11.01 months, 95% CI 5.25-23.09; Peptide vaccine: median PFS = 1.97 months, 95% CI 1.53-2.54) of DC vaccine were also longer than that of peptide vaccine. HBV-related HCC may acquire more benefits from tumor vaccines than HCV-related HCC. In almost all studies, the observed toxicities were moderate even tiny. CONCLUSIONS Tumor vaccines for HCC, especially DC vaccine, are safe and worth exploring. More high-quality prospective studies are warranted.
Collapse
Affiliation(s)
- Cheng-Long Han
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China.
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
15
|
Zhao K, Zhou G, Liu Y, Zhang J, Chen Y, Liu L, Zhang G. HSP70 Family in Cancer: Signaling Mechanisms and Therapeutic Advances. Biomolecules 2023; 13:601. [PMID: 37189349 PMCID: PMC10136146 DOI: 10.3390/biom13040601] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The 70 kDa heat shock proteins (HSP70s) are a group of highly conserved and inducible heat shock proteins. One of the main functions of HSP70s is to act as molecular chaperones that are involved in a large variety of cellular protein folding and remodeling processes. HSP70s are found to be over-expressed and may serve as prognostic markers in many types of cancers. HSP70s are also involved in most of the molecular processes of cancer hallmarks as well as the growth and survival of cancer cells. In fact, many effects of HSP70s on cancer cells are not only related to their chaperone activities but rather to their roles in regulating cancer cell signaling. Therefore, a number of drugs directly or indirectly targeting HSP70s, and their co-chaperones have been developed aiming to treat cancer. In this review, we summarized HSP70-related cancer signaling pathways and corresponding key proteins regulated by the family of HSP70s. In addition, we also summarized various treatment approaches and progress of anti-tumor therapy based on targeting HSP70 family proteins.
Collapse
Affiliation(s)
- Kejia Zhao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Guanyu Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong 999077, China
| | - Jian Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Yaohui Chen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong 999077, China
| |
Collapse
|
16
|
DnaJ, a promising vaccine candidate against Ureaplasma urealyticum infection. Appl Microbiol Biotechnol 2022; 106:7643-7659. [PMID: 36269329 PMCID: PMC9589543 DOI: 10.1007/s00253-022-12230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022]
Abstract
Abstract
Ureaplasma urealyticum (U. urealyticum, Uu) is a common sexually transmitted pathogen that is responsible for diseases such as non-gonococcal urethritis, chorioamnionitis, and neonatal respiratory diseases. The rapid emergence of multidrug-resistant bacteria threatens the effective treatment of Uu infections. Considering this, vaccination could be an efficacious medical intervention to prevent Uu infection and disease. As a highly conserved molecular chaperone, DnaJ is expressed and upregulated by pathogens soon after infection. Here, we assessed the vaccine potential of recombinant Uu-DnaJ in a mouse model and dendritic cells. Results showed that intramuscular administration of DnaJ induced robust humoral- and T helper (Th) 1 cell-mediated immune responses and protected against genital tract infection, inflammation, and the pathologic sequelae after Uu infection. Importantly, the DnaJ protein also induced the maturation of mouse bone marrow–derived dendritic cells (BMDCs), ultimately promoting naïve T cell differentiation toward the Th1 phenotype. In addition, adoptive immunization of DnaJ-pulsed BMDCs elicited antigen-specific Immunoglobulin G2 (IgG2) antibodies as well as a Th1-biased cellular response in mice. These results support DnaJ as a promising vaccine candidate to control Uu infections. Key points • A novel recombinant vaccine was constructed against U. urealyticum infection. • Antigen-specific humoral and cellular immune responses after DnaJ vaccination. • Dendritic cells are activated by Uu-DnaJ, which results in a Th1-biased immune response. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12230-4.
Collapse
|
17
|
Zhou L, Chen G, Liu T, Liu X, Yang C, Jiang J. MJDs family members: Potential prognostic targets and immune-associated biomarkers in hepatocellular carcinoma. Front Genet 2022; 13:965805. [PMID: 36159990 PMCID: PMC9500549 DOI: 10.3389/fgene.2022.965805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common gastrointestinal malignancies. It is not easy to be diagnosed in the early stage and is prone to relapse, with a very poor prognosis. And immune cell infiltration and tumor microenvironment play important roles in predicting therapeutic response and prognosis of HCC. Machado-Joseph domain-containing proteases (MJDs), as a gene family extensively involved in tumor progression, has pro-cancer and anti-cancer effects. However, the relationship between MJDs family members and immune cell infiltration and tumor microenvironment in HCC remains unclear. Therefore, cBio Cancer Genomics Portal (cBioPortal), The Cancer Genome Atlas (TCGA), UALCAN, Human Protein Atlas (HPA), MethSurv, and Tumor Immune Estimation Resource (TIMER) databases were performed to investigate the mRNA expression, DNA methylation, clinicopathologic features, immune cell infiltration and other related functions of MJDs family members in HCC. The results indicated that the expression of ATXN3, JOSD1, and JOSD2 was dramatically increased in HCC tissues and cell lines, and was correlated with histological grade, specimen type, TP53 mutation, lymph node metastatic, gender, and age of patients with HCC. Meanwhile, these genes also showed clinical value in improving the overall survival (OS), disease-specific survival (DSS), progression free survival (PFS), and relapse-free survival (RFS) in patients with HCC. The prognostic model indicated that the worse survival was associated with overall high expression of MJDs members. Next, the results suggested that promotor methylation levels of the MJDs family were closely related to these family mRNA expression levels, clinicopathologic features, and prognostic values in HCC. Moreover, the MJDs family were significantly correlated with CD4+ T cells, CD8+ T cells, B cells, neutrophils, macrophages, and DCs. And MJDs family members’ expression were substantially associated with the levels of several lymphocytes, immunomoinhibitors, immunomostimulators, chemokine ligands, and chemokine receptors. In addition, the expression levels of MJDs family were significantly correlated with cancer-related signaling pathways. Taken together, our results indicated that the aberrant expression of MJDs family in HCC played a critical role in clinical feature, prognosis, tumor microenvironment, immune-related molecules, mutation, gene copy number, and promoter methylation level. And MJDs family may be effective immunotherapeutic targets for patients with HCC and have the potential to be prognostic biomarkers.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guojie Chen
- Hunan YoBon Biotechnology Limited Company, Changsha, China
| | - Tao Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xinyuan Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Chengxiao Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jianxin Jiang,
| |
Collapse
|
18
|
Jeng LB, Liao LY, Shih FY, Teng CF. Dendritic-Cell-Vaccine-Based Immunotherapy for Hepatocellular Carcinoma: Clinical Trials and Recent Preclinical Studies. Cancers (Basel) 2022; 14:cancers14184380. [PMID: 36139542 PMCID: PMC9497058 DOI: 10.3390/cancers14184380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Although many surgical and nonsurgical therapeutic options have been well-established, hepatocellular carcinoma (HCC) remains the third most common cause of cancer-related death worldwide. Therefore, the discovery of novel potential therapeutic strategies is still urgently required for improving survival and prognosis of HCC patients. As the most potent antigen-presenting cells in the human immune system, dendritic cells (DCs) play an important role in activating not only innate but also adaptive immune responses to specifically destroy tumor cells. As a result, DC-based vaccines, which are prepared by different tumor-antigen-pulsing strategies or maturation-stimulating reagents, either alone or in combination with various anticancer therapies and/or immune effector cells, have been developed as a promising personalized cancer immunotherapy. This review provides a comprehensive summary of the evidence from clinical trials evaluating the safety, feasibility, and efficacy of DC-based vaccines in treating HCC patients and highlights the data from recent preclinical studies regarding the development of promising strategies for optimizing the efficacy of DC-vaccine-based immunotherapy for HCC.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 404, Taiwan
- Cell Therapy Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Li-Ying Liao
- Development of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Fu-Ying Shih
- Ph.D. Program for Biotech Pharmaceutical Industry, School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Chiao-Fang Teng
- Organ Transplantation Center, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Program for Cancer Biology and Drug Development, China Medical University, Taichung 404, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2205-2121
| |
Collapse
|
19
|
Tustumi F, Agareno GA, Galletti RP, da Silva RBR, Quintas JG, Sesconetto LDA, Szor DJ, Wolosker N. The Role of the Heat-Shock Proteins in Esophagogastric Cancer. Cells 2022; 11:2664. [PMID: 36078072 PMCID: PMC9454628 DOI: 10.3390/cells11172664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/05/2023] Open
Abstract
Heat-shock proteins (HSPs) are a family of proteins that have received considerable attention over the last several years. They have been classified into six prominent families: high-molecular-mass HSP, 90, 70, 60, 40, and small heat shock proteins. HSPs participate in protein folding, stability, and maturation of several proteins during stress, such as in heat, oxidative stress, fever, and inflammation. Due to the immunogenic host's role in the combat against cancer cells and the role of the inflammation in the cancer control or progression, abnormal expression of these proteins has been associated with many types of cancer, including esophagogastric cancer. This study aims to review all the evidence concerning the role of HSPs in the pathogenesis and prognosis of esophagogastric cancer and their potential role in future treatment options. This narrative review gathers scientific evidence concerning HSPs in relation to esophagus and gastric cancer. All esophagogastric cancer subtypes are included. The role of HSPs in carcinogenesis, prognostication, and therapy for esophagogastric cancer are discussed. The main topics covered are premalignant conditions for gastric cancer atrophic gastritis, Barrett esophagus, and some viral infections such as human papillomavirus (HPV) and Epstein-Barr virus (EBV). HSPs represent new perspectives on the development, prognostication, and treatment of esophagogastric cancer.
Collapse
Affiliation(s)
- Francisco Tustumi
- Department of Gastroenterology, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255, São Paulo 05403-000, SP, Brazil
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Gabriel Andrade Agareno
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Ricardo Purchio Galletti
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Rafael Benjamim Rosa da Silva
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Julia Grams Quintas
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Lucas de Abreu Sesconetto
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Daniel José Szor
- Department of Gastroenterology, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255, São Paulo 05403-000, SP, Brazil
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Nelson Wolosker
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| |
Collapse
|
20
|
Laureano RS, Sprooten J, Vanmeerbeerk I, Borras DM, Govaerts J, Naulaerts S, Berneman ZN, Beuselinck B, Bol KF, Borst J, Coosemans A, Datsi A, Fučíková J, Kinget L, Neyns B, Schreibelt G, Smits E, Sorg RV, Spisek R, Thielemans K, Tuyaerts S, De Vleeschouwer S, de Vries IJM, Xiao Y, Garg AD. Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology 2022; 11:2096363. [PMID: 35800158 PMCID: PMC9255073 DOI: 10.1080/2162402x.2022.2096363] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/01/2022] [Accepted: 06/28/2022] [Indexed: 12/21/2022] Open
Abstract
Dendritic cell (DC)-based vaccination for cancer treatment has seen considerable development over recent decades. However, this field is currently in a state of flux toward niche-applications, owing to recent paradigm-shifts in immuno-oncology mobilized by T cell-targeting immunotherapies. DC vaccines are typically generated using autologous (patient-derived) DCs exposed to tumor-associated or -specific antigens (TAAs or TSAs), in the presence of immunostimulatory molecules to induce DC maturation, followed by reinfusion into patients. Accordingly, DC vaccines can induce TAA/TSA-specific CD8+/CD4+ T cell responses. Yet, DC vaccination still shows suboptimal anti-tumor efficacy in the clinic. Extensive efforts are ongoing to improve the immunogenicity and efficacy of DC vaccines, often by employing combinatorial chemo-immunotherapy regimens. In this Trial Watch, we summarize the recent preclinical and clinical developments in this field and discuss the ongoing trends and future perspectives of DC-based immunotherapy for oncological indications.
Collapse
Affiliation(s)
- Raquel S Laureano
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeerk
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M Borras
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Zwi N Berneman
- Department of Haematology, Antwerp University Hospital, Edegem, Belgium
- Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | | | - Kalijn F Bol
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - an Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Ku Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Jitka Fučíková
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Lisa Kinget
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - Bart Neyns
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
| | - Gerty Schreibelt
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien Smits
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Wilrijk, Belgium
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandra Tuyaerts
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - I Jolanda M de Vries
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yanling Xiao
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Ni L. Advances in Human Dendritic Cell-Based Immunotherapy Against Gastrointestinal Cancer. Front Immunol 2022; 13:887189. [PMID: 35619702 PMCID: PMC9127253 DOI: 10.3389/fimmu.2022.887189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Dendritic cells (DCs), the strongest antigen-presenting cells, are a focus for orchestrating the immune system in the fight against cancer. Basic scientific investigations elucidating the cellular biology of the DCs have resulted in new strategies in this fight, including cancer vaccinology, combination therapy, and adoptive cellular therapy. Although immunotherapy is currently becoming an unprecedented bench-to-bedside success, the overall response rate to the current immunotherapy in patients with gastrointestinal (GI) cancers is pretty low. Here, we have carried out a literature search of the studies of DCs in the treatment of GI cancer patients. We provide the advances in DC-based immunotherapy and highlight the clinical trials that indicate the therapeutic efficacies and toxicities related with each vaccine. Moreover, we also offer the yet-to-be-addressed questions about DC-based immunotherapy. This study focuses predominantly on the data derived from human studies to help understand the involvement of DCs in patients with GI cancers.
Collapse
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Chen M, Wang H, Guo H, Zhang Y, Chen L. Systematic Investigation of Biocompatible Cationic Polymeric Nucleic Acid Carriers for Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2021; 14:85. [PMID: 35008249 PMCID: PMC8750096 DOI: 10.3390/cancers14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third-largest cause of cancer death worldwide, while immunotherapy is rapidly being developed to fight HCC with great potential. Nucleic acid drugs are the most important modulators in HCC immunotherapy. To boost the efficacy of therapeutics and amplify the efficiency of genetic materials, biocompatible polymers are commonly used. However, under the strong need of a summary for current developments of biocompatible polymeric nucleic acid carriers for immunotherapy of HCC, there is rare review article specific to this topic to our best knowledge. In this article, we will discuss the current progress of immunotherapy for HCC, biocompatible cationic polymers (BCPs) as nucleic acid carriers used (or potential) to fight HCC, the roles of biocompatible polymeric carriers for nucleic acid delivery, and nucleic acid delivery by biocompatible polymers for immunotherapy. At the end, we will conclude the review and discuss future perspectives. This article discusses biocompatible polymeric nucleic acid carriers for immunotherapy of HCC from multidiscipline perspectives and provides a new insight in this domain. We believe this review will be interesting to polymer chemists, pharmacists, clinic doctors, and PhD students in related disciplines.
Collapse
Affiliation(s)
- Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hao Wang
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hongying Guo
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Ying Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liang Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| |
Collapse
|
23
|
Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev 2021; 179:114003. [PMID: 34653533 DOI: 10.1016/j.addr.2021.114003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is shaped by dynamic metabolic and immune interactions between precancerous and cancerous tumor cells and stromal cells like epithelial cells, fibroblasts, endothelial cells, and hematopoietically-derived immune cells. The metabolic states of the TME, including the hypoxic and acidic niches, influence the immunosuppressive phenotypes of the stromal and immune cells, which confers resistance to both host-mediated tumor killing and therapeutics. Numerous in vitro TME platforms for studying immunotherapies, including cell therapies, are being developed. However, we do not yet understand which immune and stromal components are most critical and how much model complexity is needed to answer specific questions. In addition, scalable sourcing and quality-control of appropriate TME cells for reproducibly manufacturing these platforms remain challenging. In this regard, lessons from the manufacturing of immunomodulatory cell therapies could provide helpful guidance. Although immune cell therapies have shown unprecedented results in hematological cancers and hold promise in solid tumors, their manufacture poses significant scale, cost, and quality control challenges. This review first provides an overview of the in vivo TME, discussing the most influential cell populations in the tumor-immune landscape. Next, we summarize current approaches for cell therapies against cancers and the relevant manufacturing platforms. We then evaluate current immune-tumor models of the TME and immunotherapies, highlighting the complexity, architecture, function, and cell sources. Finally, we present the technical and fundamental knowledge gaps in both cell manufacturing systems and immune-TME models that must be addressed to elucidate the interactions between endogenous tumor immunity and exogenous engineered immunity.
Collapse
|
24
|
Filin IY, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Recent Advances in Experimental Dendritic Cell Vaccines for Cancer. Front Oncol 2021; 11:730824. [PMID: 34631558 PMCID: PMC8495208 DOI: 10.3389/fonc.2021.730824] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 01/21/2023] Open
Abstract
The development of immunotherapeutic methods for the treatment of oncological diseases have made it possible to improve the effectiveness of standard therapies. There was no breakthrough after first using of personalized therapeutic vaccines based on dendritic cells in clinical practice. A deeper study of the biology of dendritic cells, as well as the use of new approaches and agents for antigenic work, have made it possible to expand the field of application of dendritic cell (DC) vaccines and improve the indicators of cancer patients. In addition, the low toxicity of DC vaccines in clinical trials makes it possible to use promising predictions of their applicability in wider clinical practice. This review examines new approaches and recent advances of the DC vaccine in clinical trials.
Collapse
Affiliation(s)
- Ivan Y Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Catrin S Rutland
- Faculty of Medicine and Health Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
25
|
Qing X, Xu W, Zong J, Du X, Peng H, Zhang Y. Emerging treatment modalities for systemic therapy in hepatocellular carcinoma. Biomark Res 2021; 9:64. [PMID: 34419152 PMCID: PMC8380325 DOI: 10.1186/s40364-021-00319-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has long been a major global clinical problem as one of the most common malignant tumours with a high rate of recurrence and mortality. Although potentially curative therapies are available for the early and intermediate stages, the treatment of patients with advanced HCC remains to be resolved. Fortunately, the past few years have shown the emergence of successful systemic therapies to treat HCC. At the molecular level, HCC is a heterogeneous disease, and current research on the molecular characteristics of HCC has revealed numerous therapeutic targets. Targeted agents based on signalling molecules have been successfully supported in clinical trials, and molecular targeted therapy has already become a milestone for disease management in patients with HCC. Immunotherapy, a viable approach for the treatment of HCC, recognizes the antigens expressed by the tumour and treats the tumour using the immune system of the host, making it both selective and specific. In addition, the pipeline for HCC is evolving towards combination therapies with promising clinical outcomes. More drugs designed to focus on specific pathways and immune checkpoints are being developed in the clinic. It has been demonstrated that some drugs can improve the prognosis of patients with HCC in first- or second-line settings, and these drugs have been approved by the Food and Drug Administration or are nearing approval. This review describes targeting pathways and systemic treatment strategies in HCC and summarizes effective targeted and immune-based drugs for patients with HCC and the problems encountered.
Collapse
Affiliation(s)
- Xin Qing
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Wenjing Xu
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Jingjing Zong
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xuanlong Du
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Hao Peng
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Yewei Zhang
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
26
|
Kim H, Lee JW, Han G, Kim K, Yang Y, Kim SH. Extracellular Vesicles as Potential Theranostic Platforms for Skin Diseases and Aging. Pharmaceutics 2021; 13:pharmaceutics13050760. [PMID: 34065468 PMCID: PMC8161370 DOI: 10.3390/pharmaceutics13050760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs), naturally secreted by cells, act as mediators for communication between cells. They are transported to the recipient cells along with cargoes such as nucleic acids, proteins, and lipids that reflect the changes occurring within the parent cells. Thus, EVs have been recognized as potential theranostic agents for diagnosis, treatment, and prognosis. In particular, the evidence accumulated to date suggests an important role of EVs in the initiation and progression of skin aging and various skin diseases, including psoriasis, systemic lupus erythematosus, vitiligo, and chronic wounds. This review highlights recent research that investigates the role of EVs and their potential as biomarkers and therapeutic agents for skin diseases and aging.
Collapse
Affiliation(s)
- Hyosuk Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jong Won Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Geonhee Han
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| |
Collapse
|
27
|
Matsui HM, Hazama S, Nakajima M, Xu M, Matsukuma S, Tokumitsu Y, Shindo Y, Tomochika S, Yoshida S, Iida M, Suzuki N, Takeda S, Yoshino S, Ueno T, Oka M, Nagano H. Novel adjuvant dendritic cell therapy with transfection of heat-shock protein 70 messenger RNA for patients with hepatocellular carcinoma: a phase I/II prospective randomized controlled clinical trial. Cancer Immunol Immunother 2020; 70:945-957. [PMID: 33074442 DOI: 10.1007/s00262-020-02737-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION A proteomic analysis of hepatocellular carcinoma (HCC) has revealed that Heat Shock Protein 70 (HSP70) is among the cancer antigen proteins of HCC. Moreover, we confirmed that HSP70 was highly expressed in HCC by immunohistochemical staining. Based on these results, we developed an HSP70 mRNA-transfected dendritic cell (DC) therapy for treating unresectable or recurrent HCC, and the phase I trial was completed successfully. Thus, we aimed to investigate the safety and efficacy of this therapy as a postoperative adjuvant treatment after curative resection for HCC to prevent recurrence by conducting a phase I/II randomized controlled clinical trial. METHODS Patients (n = 45) with resectable HCC of stages II-IVa were registered and randomly assigned into two groups (DC group: 31 patients, control group: 14 patients) before surgery. The primary endpoint was disease-free survival (DFS), and the secondary endpoints were safety and overall survival. The DC therapy was initially administered at approximately 1 week after surgery, and twice every 3-4 weeks thereafter. RESULTS No adverse events specific to the immunotherapy were observed in the DC group. There was no difference in DFS between the DC and control groups (p = 0.666). However, in the subgroup with HSP70-expressing HCC, DFS of the DC group tended to be better (p = 0.090) and OS of the DC group was significantly longer (p = 0.003) than those of the control group. CONCLUSION The HSP70 mRNA-transfected DC therapy was performed safely as an adjuvant therapy. The prognosis of HSP70-expressing HCC cases could be expected to improve with this therapy.
Collapse
Affiliation(s)
- Hiroto Matsui Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Department of Translational Research and Developmental Therapeutics Against Cancer, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Satoshi Matsukuma
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yukio Tokumitsu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shin Yoshida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigefumi Yoshino
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Yamaguchi University Hospital Cancer Center, Ube, Yamaguchi, Japan
| | - Tomio Ueno
- Department of Digestive Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Masaaki Oka
- Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|