1
|
Zhang N, Yue W, Jiao B, Cheng D, Wang J, Liang F, Wang Y, Liang X, Li K, Liu J, Li Y. Unveiling prognostic value of JAK/STAT signaling pathway related genes in colorectal cancer: a study of Mendelian randomization analysis. Infect Agent Cancer 2025; 20:9. [PMID: 39920741 PMCID: PMC11806682 DOI: 10.1186/s13027-025-00640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks among the frequently occurring malignant neoplasms affecting the gastrointestinal tract. This study aimed to explore JAK-STAT signaling pathway related genes in CRC and establish a new prognostic model. METHODS The data set used in this study is from a public database. JAK-STAT-differentially expressed genes (DEGs) were identified through differential expression analysis and weighted gene co-expression network analysis (WGCNA). Prognostic genes were selected from JAK-STAT-DEGs through Mendelian randomization (MR), univariate Cox regression, and least absolute shrinkage and selection operator (LASSO) analyses. The expressions of prognostic genes were verified by RT-qPCR. Then, a risk model was built and validated by the GSE39582. Independent prognostic factors were screened underlying risk scores and different clinical indicators, resulting in the construction of a nomogram. Additionally, immune infiltration, immune scores and immune checkpoint inhibitors analyses and gene set enrichment analysis (GSEA) were carried out. RESULTS The 3,668 JAK-STAT-DEGs were obtained by intersection of 5826 CRC-DEGs and 9766 JAK-STAT key module genes. Five prognostic genes were selected (ANK3, F5, FAM50B, KLHL35, MPP2), and their expressions were significantly different between CRC and control groups. A risk model was constructed according to prognostic genes and verified by GSE39582. In addition, the nomogram exhibited superior predictive accuracy for CRC. Furthermore, immune analysis results indicated a notable positive correlation between risk score and the scores of immune (R = 0.486), stromal (R = 0.309), and ESTIMATE (R = 0.422). Immune checkpoint inhibitor ADORA2A (Cor = 0.483263) exhibited the strongest positive correlation with risk score. And MPP2 exhibited the most potent activating influence on the cell cycle pathway, whereas ANK3 demonstrated the most significant inhibitory effect within the apoptosis pathway. CONCLUSIONS A new JAK-STAT related CRC prognostic model was constructed and validated, which possessed an underlying predictive potential for CRC patients' prognosis and could potentially enhance tailored guidance for immunotherapy.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China.
| | - Wenli Yue
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Bihang Jiao
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Duo Cheng
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Jingjing Wang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Fang Liang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Yingnan Wang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Xiyue Liang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Kunkun Li
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
- Medical Key Laboratory for Diagnosis and Treatment of Colorectal Cancer in Henan Province, Zhengzhou, Henan, China
| | - Junwei Liu
- Department of Anorectal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Yadong Li
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Luo X, Lv Y, Yang J, Long R, Qiu J, Deng Y, Tang G, Zhang C, Li J, Zuo J. Gamma delta T cells in cancer therapy: from tumor recognition to novel treatments. Front Med (Lausanne) 2024; 11:1480191. [PMID: 39748921 PMCID: PMC11693687 DOI: 10.3389/fmed.2024.1480191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Traditional immunotherapies mainly focus on αβ T cell-based strategies, which depend on MHC-mediated antigen recognition. However, this approach poses significant challenges in treating recurrent tumors, as immune escape mechanisms are widespread. γδ T cells, with their ability for MHC-independent antigen presentation, offer a promising alternative that could potentially overcome limitations observed in traditional immunotherapies. These cells play a role in tumor immune surveillance through a unique mechanism of antigen recognition and synergistic interactions with other immune effector cells. In this review, we will discuss the biological properties of the Vδ1 and Vδ2 T subsets of γδ T cells, their immunomodulatory role within the tumor microenvironment, and the most recent clinical advances in γδ T cell-based related immunotherapies, including cell engaging strategies and adoptive cell therapy.
Collapse
Affiliation(s)
- Xinyu Luo
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yufan Lv
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinsai Yang
- Computer Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Rou Long
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jieya Qiu
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuqi Deng
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guiyang Tang
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chaohui Zhang
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiale Li
- Computer Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianhong Zuo
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Computer Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Third Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Fertitta V, Varano B, Del Cornò M, Fortini P, Aureli A, Conti L. Akkermansia muciniphila- and Pathogenic Bacteria-Derived Endotoxins Differently Regulate Human Dendritic Cell Generation and γδ T Lymphocyte Activation. Biomolecules 2024; 14:1571. [PMID: 39766278 PMCID: PMC11673428 DOI: 10.3390/biom14121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Lipopolysaccharide (LPS) is a potent endotoxin released at high concentrations in acute infections, causing massive host inflammatory response. Accumulating evidence indicates that dysbiosis-associated chronic low levels of circulating LPS can sustain a prolonged sterile low-grade inflammation that increases the risk of several non-communicable diseases. Interventions aimed at increasing the abundance of beneficial/probiotic bacteria, including Akkermansia muciniphila, result in reduced inflammation, favoring metabolic and immune health. Immunosuppression is a common feature in conditions of chronic inflammation, and dendritic cells (DCs) represent key targets given their ability to shift the balance toward immunity or tolerance. In this study, the effects of low concentrations of LPS from pathogenic (Escherichia coli and Salmonella enterica) and probiotic (Akkermansia muciniphila) bacterial species on human DC generation and functions were compared. We report that monocyte precursor priming with Escherichia coli and Salmonella enterica LPS forces the differentiation of PD-L1-expressing DCs, releasing high levels of IL-6 and IL-10, and impairs their capacity to drive full TCR-Vδ2 T cell activation. Conversely, comparable concentrations of Akkermansia muciniphila promoted the generation of DCs with preserved activating potential and immunostimulatory properties. These results shed light on potential mechanisms underlying the impact of low endotoxemia on disease risk and pathogenesis, and increase our understanding of the immunomodulatory effects of Akkermansia muciniphila.
Collapse
Affiliation(s)
- Veronica Fertitta
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.F.); (P.F.)
| | - Barbara Varano
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.V.); (M.D.C.)
| | - Manuela Del Cornò
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.V.); (M.D.C.)
| | - Paola Fortini
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.F.); (P.F.)
| | - Anna Aureli
- Institute of Translational Pharmacology, National Research Council, 67100 L’Aquila, Italy;
| | - Lucia Conti
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.V.); (M.D.C.)
| |
Collapse
|
4
|
Ran R, Trapecar M, Brubaker DK. Systematic analysis of human colorectal cancer scRNA-seq revealed limited pro-tumoral IL-17 production potential in gamma delta T cells. Neoplasia 2024; 58:101072. [PMID: 39454432 PMCID: PMC11539345 DOI: 10.1016/j.neo.2024.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Gamma delta T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin-17 (IL-17) within the tumor microenvironment of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including poised effector-like T cells, tissue-resident memory T cells, progenitor exhausted-like T cells, and exhausted T cells, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. We proposed anti-tumor γδ T effector cells may arise from tissue-resident progenitor cells based on the trajectory analysis. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA.
| |
Collapse
|
5
|
DeTemple VK, Ritter C, Srinivas N, Spassova I, Gambichler T, Hüning S, Gräger N, Gutzmer R, Bröcker EB, Ugurel S, Schrama D, Becker JC. Short- and long-term immunosuppressive effects of melanoma influence the prognostic value of the sentinel lymph node status. Eur J Cancer 2024; 212:115054. [PMID: 39388865 DOI: 10.1016/j.ejca.2024.115054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Presence of micrometastases in the sentinel lymph node (SLN) is currently used to assess prognosis of melanoma patients. The immunoactivity within the SLN is known to be influenced by the primary tumor (PT), which may in turn impact the SLNs' metastatic state. AIM We characterize the temporal dependence and underlying mechanisms of the immunological effects of the PT on the SLN. METHODS The prognostic value of SLN state as a function of PT removal time was evaluated. To put the results into a functional context, selected PTs and corresponding SLNs were analyzed for gene and protein expression patterns. RESULTS In a cohort of 202 patients with known distant metastasis and similar PT prognostic characteristics, SLNs removed before or within one week after the PT (IM-SLN) had a higher incidence of micrometastases than those removed at least one week after the PT (DEL-SLN). The immunoactivity in IM-SLN was found to be lower than in DEL-SLN. Specifically, in IM-SLNs, T helper 17 / regulatory T-cells were predominant, whereas in DEL-SLNs, cytotoxic γδT-cells were more frequent. The higher immune activity in DEL-SLNs was probably facilitated by CD209+ antigen-presenting cells. Indeed, in PT with high TGFβ expression CD209+ cells appear to be trapped and no increased immunoactivity was observed in DEL-SLN. CONCLUSIONS Presence of micrometastases in DEL-SLNs have a higher negative prognostic value as in IM-SLNs since they indicate not only a melanoma's propensity to metastasize, but possibly also its capacity to escape immune responses.
Collapse
Affiliation(s)
- Viola K DeTemple
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), partner site Essen, University Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany; Department of Dermatology, University Medicine Essen, Hufelandstraße 55, 45147 Essen, Germany; Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Hans-Nolte-Str. 1, 32429 Minden, Germany.
| | - Cathrin Ritter
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), partner site Essen, University Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Nalini Srinivas
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), partner site Essen, University Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Ivelina Spassova
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), partner site Essen, University Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Thilo Gambichler
- Skin Cancer Center, Department of Dermatology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstraße 56, 44791 Bochum, Germany; Department of Dermatology, Hospital Dortmund, Beurhausstraße 40, 44137 Dortmund, Germany; Department of Dermatology, Christian Hospital Unna, Obere Husemannstraße 2, 59423 Unna, Germany.
| | - Svea Hüning
- Department of Dermatology, Hospital Dortmund, Beurhausstraße 40, 44137 Dortmund, Germany.
| | - Nikolai Gräger
- Department of Visceral and Minimal Invasive Surgery, KRH Siloah Hospital, Stadionbrücke 4, 30459 Hannover, Germany.
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Hans-Nolte-Str. 1, 32429 Minden, Germany.
| | - Eva-Bettina Bröcker
- Department of Dermatology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany.
| | - Selma Ugurel
- Department of Dermatology, University Medicine Essen, Hufelandstraße 55, 45147 Essen, Germany.
| | - David Schrama
- Department of Dermatology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany.
| | - Jürgen C Becker
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), partner site Essen, University Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany; Department of Dermatology, University Medicine Essen, Hufelandstraße 55, 45147 Essen, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Gu Q, Qi A, Wang N, Zhou Z, Zhou X. Macrophage dynamics in prostate cancer: Molecular to therapeutic insights. Biomed Pharmacother 2024; 177:117002. [PMID: 38960836 DOI: 10.1016/j.biopha.2024.117002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
This review provides an in-depth examination of the role that tumor-associated macrophages (TAMs) play in the progression of prostate cancer (PCa), with a particular focus on the factors influencing the polarization of M1 and M2 macrophages and the implications of targeting these cells for cancer progression. The development and prognosis of PCa are significantly influenced by the behavior of macrophages within the tumor microenvironment. M1 macrophages typically exhibit anti-tumor properties by secreting pro-inflammatory cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α), thereby enhancing the immune response. Conversely, M2 macrophages contribute to tumor cell migration and invasion through the production of factors like arginase-1 (Arg1) and interleukin-10 (IL-10). This review not only explores the diverse factors that affect macrophage polarization but also delves into the potential therapeutic strategies targeting macrophage polarization, including the critical roles of non-coding RNA and exosomes in regulating this process. The polarization state of macrophages is highlighted as a key determinant in PCa progression, offering a novel perspective for clinical treatment. Future research should concentrate on gaining a deeper understanding of the molecular mechanisms underlying macrophage polarization and on developing effective targeted therapeutic strategies. The exploration of the potential of combination therapies to improve treatment efficacy is also emphasized. By emphasizing the importance of macrophages as a therapeutic target in PCa, this review aims to provide valuable insights and research directions for clinicians and researchers.
Collapse
Affiliation(s)
- Qiannan Gu
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China
| | - Anning Qi
- Medical Laboratory, Liuhe People's Hospital of Jiangsu Province, Nanjing, Jiangsu 211500, China
| | - Ne Wang
- Jiangning Hospital Tiandi New City Branch, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211198, China
| | - Zhenxian Zhou
- Nanjing Second People's Hospital, Jiangsu Province 211103, China
| | - Xiaohui Zhou
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China; Jiangning Outpatient Department of China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
7
|
Zanotta S, Galati D, De Filippi R, Pinto A. Enhancing Dendritic Cell Cancer Vaccination: The Synergy of Immune Checkpoint Inhibitors in Combined Therapies. Int J Mol Sci 2024; 25:7509. [PMID: 39062753 PMCID: PMC11277144 DOI: 10.3390/ijms25147509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Dendritic cell (DC) cancer vaccines are a promising therapeutic approach, leveraging the immune system to fight tumors. These vaccines utilize DCs' ability to present tumor-associated antigens to T cells, triggering a robust immune response. DC vaccine development has progressed through three generations. The first generation involved priming DCs with tumor-associated antigens or messenger RNA outside the body, showing limited clinical success. The second generation improved efficacy by using cytokine mixtures and specialized DC subsets to enhance immunogenicity. The third generation used blood-derived DCs to elicit a stronger immune response. Clinical trials indicate that cancer vaccines have lower toxicity than traditional cytotoxic treatments. However, achieving significant clinical responses with DC immunotherapy remains challenging. Combining DC vaccines with immune checkpoint inhibitors (ICIs), such as anticytotoxic T-lymphocyte Antigen 4 and antiprogrammed death-1 antibodies, has shown promise by enhancing T-cell responses and improving clinical outcomes. These combinations can transform non-inflamed tumors into inflamed ones, boosting ICIs' efficacy. Current research is exploring new checkpoint targets like LAG-3, TIM-3, and TIGIT, considering their potential with DC vaccines. Additionally, engineering T cells with chimeric antigen receptors or T-cell receptors could further augment the antitumor response. This comprehensive strategy aims to enhance cancer immunotherapy, focusing on increased efficacy and improved patient survival rates.
Collapse
Affiliation(s)
- Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| | - Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | - Antonio Pinto
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| |
Collapse
|
8
|
Mehdikhani F, Bahar A, Bashi M, Mohammadlou M, Yousefi B. From immunomodulation to therapeutic prospects: Unveiling the biology of butyrophilins in cancer. Cell Biochem Funct 2024; 42:e4081. [PMID: 38934382 DOI: 10.1002/cbf.4081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Butyrophilin (BTN) proteins are a type of membrane protein that belongs to the Ig superfamily. They exhibit a high degree of structural similarity to molecules in the B7 family. They fulfill a complex function in regulating immune responses, including immunomodulatory roles, as they influence γδ T cells. The biology of BTN molecules indicates that they are capable of inhibiting the immune system's ability to detect antigens within tumors. A dynamic association between BTN molecules and cellular surfaces is also recognized in specific contexts, influencing their biology. Notably, the dynamism of BTN3A1 is associated with the immunosuppression of T cells or the activation of Vγ9Vδ2 T cells. Cancer immunotherapy relies heavily on T cells to modulate immune function within the intricate interaction of the tumor microenvironment (TME). A significant interaction between the TME and antitumor immunity involves the presence of BTN, which should be taken into account when developing immunotherapy. This review explores potential therapeutic applications of BTN molecules, based on the current understanding of their biology.
Collapse
Affiliation(s)
- Fatemeh Mehdikhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Bahar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Bashi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Mohammadlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
9
|
Zhang C, Liu X, Xiao J, Jiang F, Fa L, Jiang H, Zhou L, Su W, Xu Z. γδ T cells in autoimmune uveitis pathogenesis: A promising therapeutic target. Biochem Pharmacol 2023; 213:115629. [PMID: 37257721 DOI: 10.1016/j.bcp.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Autoimmune uveitis is a non-infectious, inflammatory intraocular disease that affects the uveal and adjacent tissues. It frequently causes varying degrees of visual loss. Evidence for the strong association between activated γδ T cells and the development of autoimmune uveitis is growing. The innate and adaptive immune response are connected in the early phases by the γδ T cells that contain the γ and δ chains. γδ T cells can identify antigens in a manner that is not constrained by the MHC. When activated by various pathways, γδ T cells can not only secrete pro-inflammatory factors early on (such as IL-17), but they can also promote Th17 cells responses, which ultimately exacerbates autoimmune uveitis. Therefore, we review the mechanisms by which γδ T cells affect autoimmune uveitis in different activation and disease states. Moreover, we also prospect for immunotherapies targeting different γδ T cell-related action pathways, providing a reference for exploring new drug for the treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanwen Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Luzhong Fa
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
10
|
Chen Y, Du J, Liu Y, Luo Z, Guo L, Xu J, Jia L, Liu Y. γδT cells in oral tissue immune surveillance and pathology. Front Immunol 2023; 13:1050030. [PMID: 36703983 PMCID: PMC9871479 DOI: 10.3389/fimmu.2022.1050030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
The oral mucosa's immune system is composed of tissue-resident and specifically recruited leukocytes that could effectively tolerate a wide range of microbial and mechanical assaults. Shortly after CD4+ helper T cells (TH17 cells) that produce interleukin 17 (IL-17) were identified, it was discovered that γδT cells could also induce substantial levels of this pro-inflammatory cytokine. In the past decades, it has become clear that due to a complicated thymic program of development, γδT cells frequently serve as the primary sources of IL-17 in numerous models of inflammatory diseases while also assisting in the maintenance of tissue homeostasis in the skin and intestine. But it wasn't until recently that we took thorough insight into the complex features of γδT cells in the oral mucosa. Most gingival intraepithelial γδT cells reside in the junctional epithelium adjacent to the dental biofilm, suggesting their potential role in regulating oral microbiota. However, inconsistent results have been published in this regard. Similarly, recent findings showed contradictory data about the role of γδT lymphocytes in experimental periodontitis based on different models. In addition, conflicting findings were presented in terms of alveolar bone physiology and pathology underlying the oral mucosa. This review provided an overview of current knowledge and viewpoints regarding the complex roles played by oral-resident γδT cells in host-microbiota interactions, gingivitis and periodontitis, bone physiology and pathology.
Collapse
Affiliation(s)
- Yilong Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lu Jia
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China,*Correspondence: Lu Jia, ; Yi Liu,
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China,*Correspondence: Lu Jia, ; Yi Liu,
| |
Collapse
|
11
|
γδ T Lymphocytes as a Double-Edged Sword-State of the Art in Gynecological Diseases. Int J Mol Sci 2022; 23:ijms232314797. [PMID: 36499125 PMCID: PMC9740168 DOI: 10.3390/ijms232314797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Human gamma-delta (γδ) T cells are a heterogeneous cell population that bridges the gap between innate and acquired immunity. They are involved in a variety of immunological processes, including tumor escape mechanisms. However, by being prolific cytokine producers, these lymphocytes also participate in antitumor cytotoxicity. Which one of the two possibilities takes place depends on the tumor microenvironment (TME) and the subpopulation of γδ T lymphocytes. The aim of this paper is to summarize existing knowledge about the phenotype and dual role of γδ T cells in cancers, including ovarian cancer (OC). OC is the third most common gynecological cancer and the most lethal gynecological malignancy. Anticancer immunity in OC is modulated by the TME, including by immunosuppressive cells, cytokines, and soluble factors. Immune cells are exposed in the TME to many signals that determine their immunophenotype and can manipulate their functions. The significance of γδ T cells in the pathophysiology of OC is enigmatic and remains to be investigated.
Collapse
|
12
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Jing H, Saed B, Pálmai M, Gunasekara H, Snee PT, Hu YS. Fluorescent Artificial Antigens Revealed Extended Membrane Networks Utilized by Live Dendritic Cells for Antigen Uptake. NANO LETTERS 2022; 22:4020-4027. [PMID: 35499493 DOI: 10.1021/acs.nanolett.2c00629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dendritic cells (DCs) can infiltrate tight junctions of the epithelium to collect remote antigens during immune surveillance. While elongated membrane structures represent a plausible structure to perform this task, their functional mechanisms remain elusive owing to the lack of high-resolution characterizations in live DCs. Here, we developed fluorescent artificial antigens (FAAs) based on quantum dots coated with polyacrylic acid. Single-particle tracking of FAAs enables us to superresolve the membrane fiber network responsible for the antigen uptake. Using the DC2.4 cell line as a model system, we discovered the extensive membrane network approaching 200 μm in length with tunnel-like cavities about 150 nm in width. The membrane fiber network also contained heterogeneous circular migrasomes. Disconnecting the membrane network from the cell body decreased the intracellular FAA density. Our study enables mechanistic investigations of DC membrane networks and nanocarriers that target this mechanism.
Collapse
Affiliation(s)
- Haoran Jing
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Marcell Pálmai
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Preston T Snee
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
14
|
Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol 2022; 11:3. [PMID: 35074008 PMCID: PMC8784280 DOI: 10.1186/s40164-022-00257-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) vaccines induce specific immune responses that can selectively eliminate target cells. In recent years, many studies have been conducted to explore DC vaccination in the treatment of hematological malignancies, including acute myeloid leukemia and myelodysplastic syndromes, as well as other nonleukemia malignancies. There are at least two different strategies that use DCs to promote antitumor immunity: in situ vaccination and canonical vaccination. Monocyte-derived DCs (mo-DCs) and leukemia-derived DCs (DCleu) are the main types of DCs used in vaccines for AML and MDS thus far. Different cancer-related molecules such as peptides, recombinant proteins, apoptotic leukemic cells, whole tumor cells or lysates and DCs/DCleu containing a vaster antigenic repertoire with RNA electroporation, have been used as antigen sources to load DCs. To enhance DC vaccine efficacy, new strategies, such as combination with conventional chemotherapy, monospecific/bispecific antibodies and immune checkpoint-targeting therapies, have been explored. After a decade of trials and tribulations, much progress has been made and much promise has emerged in the field. In this review we summarize the recent advances in DC vaccine immunotherapy for AML/MDS as well as other nonleukemia malignancies.
Collapse
Affiliation(s)
- Jifeng Yu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Hao Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weijie Cao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China.
| | - Zhongxing Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
15
|
Wei J, Fang D, Zhou W. CCR2 and PTPRC are regulators of tumor microenvironment and potential prognostic biomarkers of lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1419. [PMID: 34733971 PMCID: PMC8506762 DOI: 10.21037/atm-21-3301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022]
Abstract
Background Tumor microenvironment (TME) plays an essential role in lung adenocarcinoma (LUAD) development and metastasis. With the development of TME research, it has been proved that differences in tumor-infiltrating immune cells (TICs) and gene expression profile are related to the prognosis of cancer. The aim of our study was to identify key genes affecting immune state in TME of LUAD. Methods The RNA-seq data and clinical characteristics of 594 LUAD patients were downloaded from the TCGA database. ImmuneScore, StromalScore and ESTIMATEScore of each LUAD sample were calculated using ESTIMATE algorithm. Based on the median of different scores, LUAD samples were divided into high and low score groups. Differentially expressed genes (DEGs) between groups were obtained, and univariate Cox regression analysis and protein-protein interaction (PPI) network were used to screen the shared DEGs generating in the intersection analysis. Finally, the CIBORSORT algorithm was performed to calculate the relative contents of TICs for each LUAD sample, and the correlation analysis between TICs and key genes was used to determine the influence of key genes to the TME. Results In the presented study, we found that three different scores were positively correlated with the prognosis of LUAD patients, and correlation analysis showed the different scores were closely related to tumor progression and metastasis. After performing the intersection analysis, a total of 585 up-regulated and 107 down-regulated DEGs between the high and low score groups were obtained, all of which were enriched in immune-related functions. Having used univariate COX regression analysis and PPI network, the key genes, CCR2 and PTPRC, affecting the immune status of TME and the prognosis of LUAD were acquired. Analysis based on the CIBERSORT algorithm suggested that CCR2 and PTPRC were correlated with a variety of TICs, and closely related to the clinical characteristics of the LUAD patients. Conclusions Our research showed that CCR2 and PTPRC may be potential prognostic markers in LUAD, which may affect the function of γδT cells and other immune cells by participating in the regulation of TME immune state.
Collapse
Affiliation(s)
- Jie Wei
- Department of Hematology, Baise People's Hospital, Baise, China
| | - Dalang Fang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Weijie Zhou
- Department of Clinical Laboratory, Baise Peopl's Hospital, Baise, China
| |
Collapse
|
16
|
Bocchino M, Zanotta S, Capitelli L, Galati D. Dendritic Cells Are the Intriguing Players in the Puzzle of Idiopathic Pulmonary Fibrosis Pathogenesis. Front Immunol 2021; 12:664109. [PMID: 33995394 PMCID: PMC8121252 DOI: 10.3389/fimmu.2021.664109] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most devastating progressive interstitial lung disease that remains refractory to treatment. Pathogenesis of IPF relies on the aberrant cross-talk between injured alveolar cells and myofibroblasts, which ultimately leads to an aberrant fibrous reaction. The contribution of the immune system to IPF remains not fully explored. Recent evidence suggests that both innate and adaptive immune responses may participate in the fibrotic process. Dendritic cells (DCs) are the most potent professional antigen-presenting cells that bridge innate and adaptive immunity. Also, they exert a crucial role in the immune surveillance of the lung, where they are strategically placed in the airway epithelium and interstitium. Immature DCs accumulate in the IPF lung close to areas of epithelial hyperplasia and fibrosis. Conversely, mature DCs are concentrated in well-organized lymphoid follicles along with T and B cells and bronchoalveolar lavage of IPF patients. We have recently shown that all sub-types of peripheral blood DCs (including conventional and plasmacytoid DCs) are severely depleted in therapy naïve IPF patients. Also, the low frequency of conventional CD1c+ DCs is predictive of a worse prognosis. The purpose of this mini-review is to focus on the main evidence on DC involvement in IPF pathogenesis. Unanswered questions and opportunities for future research ranging from a better understanding of their contribution to diagnosis and prognosis to personalized DC-based therapies will be explored.
Collapse
Affiliation(s)
- Marialuisa Bocchino
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Serena Zanotta
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Ludovica Capitelli
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Domenico Galati
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| |
Collapse
|