1
|
Wray R, Paverd H, Machado I, Barbieri J, Easita F, Edwards AR, Gallagher FA, Mendichovszky IA, Mitchell TJ, de la Roche M, Shields JD, Ursprung S, Wallis L, Warren AY, Welsh SJ, Crispin-Ortuzar M, Stewart GD, Jones JO. Angiogenic and immune predictors of neoadjuvant axitinib response in renal cell carcinoma with venous tumour thrombus. Nat Commun 2025; 16:3870. [PMID: 40295487 PMCID: PMC12037771 DOI: 10.1038/s41467-025-58436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Venous tumour thrombus (VTT), where the primary tumour invades the renal vein and inferior vena cava, affects 10-15% of renal cell carcinoma (RCC) patients. Curative surgery for VTT is high-risk, but neoadjuvant therapy may improve outcomes. The NAXIVA trial demonstrated a 35% VTT response rate after 8 weeks of neoadjuvant axitinib, a VEGFR-directed therapy. However, understanding non-response is critical for better treatment. Here we show that response to axitinib in this setting is characterised by a distinct and predictable set of features. We conduct a multiparametric investigation of samples collected during NAXIVA using digital pathology, flow cytometry, plasma cytokine profiling and RNA sequencing. Responders have higher baseline microvessel density and increased induction of VEGF-A and PlGF during treatment. A multi-modal machine learning model integrating features predict response with an AUC of 0.868, improving to 0.945 when using features from week 3. Key predictive features include plasma CCL17 and IL-12. These findings may guide future treatment strategies for VTT, improving the clinical management of this challenging scenario.
Collapse
Affiliation(s)
- Rebecca Wray
- Early Cancer Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Hania Paverd
- Early Cancer Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ines Machado
- Early Cancer Institute, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Johanna Barbieri
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Farhana Easita
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Abigail R Edwards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ferdia A Gallagher
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Iosif A Mendichovszky
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Thomas J Mitchell
- Early Cancer Institute, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Maike de la Roche
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jacqueline D Shields
- Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Stephan Ursprung
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Lauren Wallis
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Anne Y Warren
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarah J Welsh
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Mireia Crispin-Ortuzar
- Early Cancer Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Grant D Stewart
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - James O Jones
- Department of Oncology, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Shin HS, Kim H, Kwon SG, Lee H, Lee JO, Kim YS. Tumor cells ectopically expressing the membrane-bound form of IL-7 develop an antitumor immune response efficiently in a colon carcinoma model. Mol Cells 2025; 48:100175. [PMID: 39743142 PMCID: PMC11873615 DOI: 10.1016/j.mocell.2024.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025] Open
Abstract
Various approaches employing cytokines and cytokine gene-modified tumor cells have been explored to induce antitumor responses, yet their widespread application has been limited due to efficacy concerns and adverse effects. In this study, interleukin-7 was engineered for expression both as a natural secretory form (sIL-7) and as a membrane-bound form fused with the B7.1 type I transmembrane protein (mbIL-7/B7) on CT26 colon cancer cells. Analysis of the resulting cell clones demonstrated that ectopically expressed sIL-7 and mbIL-7/B7 both retained similar capacities to induce the expansion and activation of CD8+ T cells and to enhance antitumor responses in vitro. While the sIL-7 or mbIL-7/B7 clones showed similar growth in culture, the mbIL-7/B7 clone exhibited lower tumorigenicity in mice compared with the sIL-7 clone or wild-type CT26 cells. Specifically, the mbIL-7/B7 clone failed to form tumors in approximately 60% of the mice injected with it. Moreover, 80% of mice that rejected the mbIL-7/B7 clone developed long-term systemic immunity against CT26 cells. Analysis of immune cells within the tumor masses revealed significant increases in CD4+ T cells, CD8+ T cells, and dendritic cells in tumors formed by the mbIL-7/B7 clone compared to those formed by the sIL-7 clone. These findings suggest that the membrane-bound form of IL-7 with B7.1 is more effective than the secretory form in establishing antitumor immunity within the tumor microenvironment. Our strategy of expressing the mbIL-7/B7 chimera holds promise as a novel approach for tumor therapy, particularly in cases requiring IL-7 supplementation.
Collapse
Affiliation(s)
- Hee-Su Shin
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hyejin Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Soon-Gyu Kwon
- Department of Life Sciences and Institute of Membrane Proteins, POSTECH, Pohang 37673, Korea
| | - Hayyoung Lee
- Department of Life Sciences and Postech Biotech Center, POSTECH, Pohang 37673, Korea
| | - Jie-Oh Lee
- Department of Life Sciences and Institute of Membrane Proteins, POSTECH, Pohang 37673, Korea.
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
3
|
Tomita K, Yamashita M, Ikegami K, Shimizu Y, Amino N, Nakao S. Combination with oxaliplatin improves abscopal effect of oncolytic virotherapy through reorganization of intratumoral macrophages. Mol Ther 2025; 33:401-414. [PMID: 39663702 PMCID: PMC11764124 DOI: 10.1016/j.ymthe.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/18/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
Intratumoral administration is a widely used method for oncolytic virotherapy, as it enables immediate access of virus particles to the target tumor and potentially lead to the suppression of untreated distant tumors via in situ vaccination. However, because the injection volume and concentration of the virus solution are physically limited, the dose level cannot be increased. Additionally, efficacy in distant tumors needs improvement to prolong patient survival. Here, we demonstrate the benefit of oxaliplatin, with detailed mechanisms revealed through transcriptome analysis, which may provide a solution for the crucial deficiencies of oncolytic virotherapy. In virus-injected tumors, oxaliplatin improved virus retention through suppression of type I interferons. In distant virus-naive tumors, oxaliplatin induced alterations in the intratumoral macrophage characteristics, leading to the chemotaxis and recruitment of activated T cells and subsequently inducing an inflammatory state in the non-injected tumors. Our findings can be a trigger to change the therapeutic paradigm of oncolytic virotherapy for patients with systemic metastases.
Collapse
Affiliation(s)
- Kyoko Tomita
- Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Japan
| | | | | | | | - Nobuaki Amino
- Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Japan
| | | |
Collapse
|
4
|
Li Z, Hu L, Wang Y, Liu Q, Liu J, Long H, Li Q, Luo L, Peng Y. Local administration of mRNA encoding cytokine cocktail confers potent anti-tumor immunity. Front Immunol 2024; 15:1455019. [PMID: 39290693 PMCID: PMC11406011 DOI: 10.3389/fimmu.2024.1455019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Immunotherapy using inflammatory cytokines, such as interleukin (IL)-2 and interferon (IFN)-α, has been clinically validated in treating various cancers. However, systemic immunocytokine-based therapies are limited by the short half-life of recombinant proteins and severe dose-limiting toxicities. In this study, we exploited local immunotherapy by intratumoral administration of lipid nanoparticle (LNP)-encapsulated mRNA cocktail encoding cytokines IL-12, IL-7, and IFN-α. The cytokine mRNA cocktail induced tumor regression in multiple syngeneic mouse models and anti-tumor immune memory in one syngeneic mouse model. Additionally, immune checkpoint blockade further enhanced the anti-tumor efficacy of the cytokine mRNAs. Furthermore, human cytokine mRNAs exhibited robust anti-tumor efficacy in humanized mouse tumor models. Mechanistically, cytokine mRNAs induced tumor microenvironment inflammation, characterized by robust T cell infiltration and significant inflammatory cytokine and chemokine production.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Ling Hu
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Yi Wang
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Qi Liu
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Jun Liu
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Haiyan Long
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Qi Li
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Liping Luo
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Yucai Peng
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| |
Collapse
|
5
|
Xu Y, Sun X, Tong Y. Interleukin-12 in multimodal tumor therapies for induction of anti-tumor immunity. Discov Oncol 2024; 15:170. [PMID: 38753073 PMCID: PMC11098992 DOI: 10.1007/s12672-024-01011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Interleukin-12 (IL-12) can be used as an immunomodulator in cancer immunotherapy. And it has demonstrated enormous potential in inhibiting tumor growth and improving the tumor microenvironment (TME) by several preclinical models. However, some disappointing results have showed in the early clinical trials when IL-12 used as a single agent for systemic cancer therapy. Combination therapy is an effective way to significantly fulfill the great potential of IL-12 as an immunomodulator. Here, we discuss the effects of IL-12 combined with traditional methods (chemotherapy, radiotherapy and surgery), targeted therapy or immunotherapy in the preclinical and clinical studies. Moreover, we summarized the potential mechanism underlying the anti-tumor effect of IL-12 in the combination strategies. And we also discussed the delivery methods and tumor-targeted modification of IL-12 and outlines future prospects for IL-12 as an immunomodulator.
Collapse
Affiliation(s)
- Yulian Xu
- College of Life Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang, China
| | - Xueli Sun
- College of Life Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang, China
| | - Yunguang Tong
- College of Life Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang, China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Omigen, Inc, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
6
|
Fu C, Zhang X, Zhang X, Wang D, Han S, Ma Z. Advances in IL-7 Research on Tumour Therapy. Pharmaceuticals (Basel) 2024; 17:415. [PMID: 38675377 PMCID: PMC11054630 DOI: 10.3390/ph17040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukin-7 (IL-7) is a versatile cytokine that plays a crucial role in regulating the immune system's homeostasis. It is involved in the development, proliferation, and differentiation of B and T cells, as well as being essential for the differentiation and survival of naïve T cells and the production and maintenance of memory T cells. Given its potent biological functions, IL-7 is considered to have the potential to be widely used in the field of anti-tumour immunotherapy. Notably, IL-7 can improve the tumour microenvironment by promoting the development of Th17 cells, which can in turn promote the recruitment of effector T cells and NK cells. In addition, IL-7 can also down-regulate the expression of tumour growth factor-β and inhibit immunosuppression to promote anti-tumour efficacy, suggesting potential clinical applications for anti-tumour immunotherapy. This review aims to discuss the origin of IL-7 and its receptor IL-7R, its anti-tumour mechanism, and the recent advances in the application of IL-7 in tumour therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (C.F.); (X.Z.); (X.Z.); (D.W.); (S.H.)
| |
Collapse
|
7
|
Rocha FA, Silveira CRF, Dos Santos AF, Stefanini ACB, Hamerschlak N, Marti LC. Development of a highly cytotoxic, clinical-grade virus-specific T cell product for adoptive T cell therapy. Cell Immunol 2024; 395-396:104795. [PMID: 38101075 DOI: 10.1016/j.cellimm.2023.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
At present, recipients of allogeneic hematopoietic stem-cells are still suffering from recurrent infections after transplantation. Infusion of virus-specific T cells (VST) post-transplant reportedly fights several viruses without increasing the risk of de novo graft-versus-host disease. This study targeted cytomegalovirus (CMV) for the development of an innovative approach for generating a very specific VST product following Good Manufacturing Practices (GMP) guidelines. We used a sterile disposable compartment named the Leukoreduction System Chamber (LRS-chamber) from the apheresis platelet donation kit as the starting material, which has demonstrated high levels of T cells. Using a combination of IL-2 and IL-7 we could improve expansion of CMV-specific T cells. Moreover, by developing and establishing a new product protocol, we were able to stimulate VST proliferation and favors T cell effector memory profile. The expanded VST were enriched in a closed automated system, creating a highly pure anti-CMV product, which was pre-clinically tested for specificity in vitro and for persistence, biodistribution, and toxicity in vivo using NOD scid mice. Our results demonstrated very specific VST, able to secrete high amounts of interferon only in the presence of cells infected by the human CMV strain (AD169), and innocuous to cells partially HLA compatible without viral infection.
Collapse
Affiliation(s)
- Fernanda Agostini Rocha
- Hospital Israelita Albert Einstein, Department of Experimental Research, Rua Comendador Elias Jafet, 755 Zip code: 05653 000, São Paulo, SP, Brazil
| | - Caio Raony Farina Silveira
- Hospital Israelita Albert Einstein, Department of Experimental Research, Rua Comendador Elias Jafet, 755 Zip code: 05653 000, São Paulo, SP, Brazil
| | - Ancély Ferreira Dos Santos
- Hospital Israelita Albert Einstein, Department of Experimental Research, Rua Comendador Elias Jafet, 755 Zip code: 05653 000, São Paulo, SP, Brazil
| | - Ana Carolina Buzzo Stefanini
- Hospital Israelita Albert Einstein, Department of Experimental Research, Rua Comendador Elias Jafet, 755 Zip code: 05653 000, São Paulo, SP, Brazil
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, Department of Bone Marrow Transplant, Avenida Albert Einstein, 627 Zip code: 05652 000, São Paulo, SP, Brazil
| | - Luciana Cavalheiro Marti
- Hospital Israelita Albert Einstein, Department of Experimental Research, Rua Comendador Elias Jafet, 755 Zip code: 05653 000, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Hesari M, Attar Z, Soltani-Shirazi S, Keshavarzian O, Taheri R, Tabrizi R, Fouladseresht H. The Therapeutic Values of IL-7/IL-7R and the Recombinant Derivatives in Glioma: A Narrative Review. J Interferon Cytokine Res 2023; 43:319-334. [PMID: 37566474 DOI: 10.1089/jir.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Interleukin-7 (IL-7) is essential for maintaining the immune system's defense functions by regulating the development and homeostasis of lymphocytes. Findings have shown the high efficacy of IL-7/IL-7 receptor (IL-7R)-based immunotherapy on various malignancies, with confirmation in both animal models and humans. In recent years, the progression-free survival and overall survival of patients suffering from gliomas significantly increased by introducing C7R-expressing chimeric antigen receptor (CAR)-T cells and long-acting IL-7 agonists such as NT-I7 (rhIL-7-hyFc, Efineptakin alfa). However, the effect of IL-7-based immunotherapies on the resistance of tumor cells to chemotherapy (when used simultaneously with chemotherapy agents) is still ambiguous and requires further studies. This article first reviews the pathophysiological roles of IL-7/IL-7R in tumors, focusing on gliomas. Subsequently, it discusses the therapeutic values of IL-7/IL-7R and the recombinant derivatives in gliomas.
Collapse
Affiliation(s)
| | - Zeinab Attar
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shakiba Soltani-Shirazi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Reza Taheri
- Department of Neurosurgery, Fasa University of Medical Sciences, Fasa, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Riederer S, Del Canizo A, Navas J, Peter MG, Link EK, Sutter G, Rojas JJ. Improving poxvirus-mediated antitumor immune responses by deleting viral cGAMP-specific nuclease. Cancer Gene Ther 2023:10.1038/s41417-023-00610-5. [PMID: 37016144 DOI: 10.1038/s41417-023-00610-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023]
Abstract
cGAMP-specific nucleases (poxins) are a recently described family of proteins dedicated to obstructing cyclic GMP-AMP synthase signaling (cGAS), an important sensor triggered by cytoplasmic viral replication that activates type I interferon (IFN) production. The B2R gene of vaccinia viruses (VACV) codes for one of these nucleases. Here, we evaluated the effects of inactivating the VACV B2 nuclease in the context of an oncolytic VACV. VACV are widely used as anti-cancer vectors due to their capacity to activate immune responses directed against tumor antigens. We aimed to elicit robust antitumor immunity by preventing viral inactivation of the cGAS/STING/IRF3 pathway after infection of cancer cells. Activation of such a pathway is associated with a dominant T helper 1 (Th1) cell differentiation of the response, which benefits antitumor outcomes. Deletion of the B2R gene resulted in enhanced IRF3 phosphorylation and type I IFN expression after infection of tumor cells, while effective VACV replication remained unimpaired, both in vitro and in vivo. In syngeneic mouse tumor models, the absence of the VACV cGAMP-specific nuclease translated into improved antitumor activity, which was associated with antitumor immunity directed against tumor epitopes.
Collapse
Affiliation(s)
- Stephanie Riederer
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Ana Del Canizo
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona-UB, Barcelona, Spain
- Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Navas
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona-UB, Barcelona, Spain
- Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Marlowe G Peter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Ellen K Link
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| | - Juan J Rojas
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany.
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona-UB, Barcelona, Spain.
- Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
10
|
Fernandes MB, Barata JT. IL-7 and IL-7R in health and disease: An update through COVID times. Adv Biol Regul 2023; 87:100940. [PMID: 36503870 DOI: 10.1016/j.jbior.2022.100940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The role of IL-7 and IL-7R for normal lymphoid development and an adequately functioning immune system has been recognized for long, with severe immune deficiency and lymphoid leukemia as extreme examples of the consequences of deregulation of the IL-7-IL-7R axis. In this review, we provide an update (focusing on the past couple of years) on IL-7 and IL-7R in health and disease. We highlight the findings on IL-7/IL-7R signaling mechanisms and the, sometimes controversial, impact of IL-7 and its receptor on leukocyte biology, COVID-19, acute lymphoblastic leukemia, and different solid tumors, as well as their relevance as therapeutic tools or targets.
Collapse
Affiliation(s)
- Marta B Fernandes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
11
|
Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P, Guo ZS. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer 2022; 21:196. [PMID: 36221123 PMCID: PMC9554963 DOI: 10.1186/s12943-022-01664-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Oncolytic viruses (OVs) represent a new class of multi-modal immunotherapies for cancer, with OV-elicited antitumor immunity being key to their overall therapeutic efficacy. Currently, the clinical effectiveness of OV as monotherapy remains limited, and thus investigators have been exploring various combinations with other anti-cancer agents and demonstrated improved therapeutic efficacy. As cancer cells have evolved to alter key signaling pathways for enhanced cell proliferation, cancer progression and metastasis, these cellular and molecular changes offer promising targets for rational cancer therapy design. In this regard, key molecules in relevant signaling pathways for cancer cells or/and immune cells, such as EGFR-KRAS (e.g., KRASG12C), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53, PD-1-PD-L1, and epigenetic, or immune pathways (e.g., histone deacetylases, cGAS-STING) are currently under investigation and have the potential to synergize with OV to modulate the immune milieu of the tumor microenvironment (TME), thereby improving and sustaining antitumor immunity. As many small molecule modulators of these signaling pathways have been developed and have shown strong therapeutic potential, here we review key findings related to both OV-mediated immunotherapy and the utility of small molecule modulators of signaling pathways in immuno-oncology. Then, we focus on discussion of the rationales and potential strategies for combining OV with selected modulators targeting key cellular signaling pathways in cancer or/and immune cells to modulate the TME and enhance antitumor immunity and therapeutic efficacy. Finally, we provide perspectives and viewpoints on the application of novel experimental systems and technologies that can propel this exciting branch of medicine into a bright future.
Collapse
Affiliation(s)
- Zhi Zhu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - A J Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Weijian Jiang
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
12
|
Wang C, Kong L, Kim S, Lee S, Oh S, Jo S, Jang I, Kim TD. The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy. Int J Mol Sci 2022; 23:ijms231810412. [PMID: 36142322 PMCID: PMC9499417 DOI: 10.3390/ijms231810412] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Interleukin-7 (IL-7) is a multipotent cytokine that maintains the homeostasis of the immune system. IL-7 plays a vital role in T-cell development, proliferation, and differentiation, as well as in B cell maturation through the activation of the IL-7 receptor (IL-7R). IL-7 is closely associated with tumor development and has been used in cancer clinical research and therapy. In this review, we first summarize the roles of IL-7 and IL-7Rα and their downstream signaling pathways in immunity and cancer. Furthermore, we summarize and discuss the recent advances in the use of IL-7 and IL-7Rα as cancer immunotherapy tools and highlight their potential for therapeutic applications. This review will help in the development of cancer immunotherapy regimens based on IL-7 and IL-7Rα, and will also advance their exploitation as more effective and safe immunotherapy tools.
Collapse
Affiliation(s)
- Chunli Wang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Lingzu Kong
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Seokmin Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Sechan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seona Jo
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Inhwan Jang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
13
|
Leilei Z, Kewen Z, Biao H, Fang H, Yigang W. The Role of Chemokine IL-7 in Tumor and Its Potential Antitumor Immunity. J Interferon Cytokine Res 2022; 42:243-250. [PMID: 35613386 DOI: 10.1089/jir.2021.0236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interleukin-7 (IL-7) is a cytokine belonging to the chemokine family. It plays a key role in the differentiation, development, and maturation of T lymphocytes and B lymphocytes, which is pivotal to adaptive immunity. In addition to its role in lymphocyte development, recent studies have indicated the antitumor functions of IL-7 in the tumor microenvironment. In this review, we discuss the role of IL-7 in tumors and summarize its antitumor potential and clinical application in lymphoma, leukemia, breast cancer, colon cancer, and so on. Furthermore, the combinational strategies of IL-7 and other antitumor drugs have been also discussed.
Collapse
Affiliation(s)
- Zhang Leilei
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China
| | - Zhou Kewen
- Department of Immunology, University of Toronto, Bachelor of Science, Toronto, Canada
| | - Huang Biao
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huang Fang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Wang Yigang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China
| |
Collapse
|
14
|
Hu H, Zhang S, Cai L, Duan H, Li Y, Yang J, Wang Y, Liu B, Dong S, Fang Z, Liu B. A novel cocktail therapy based on quintuplet combination of oncolytic herpes simplex virus-2 vectors armed with interleukin-12, interleukin-15, GM-CSF, PD1v, and IL-7 × CCL19 results in enhanced antitumor efficacy. Virol J 2022; 19:74. [PMID: 35459242 PMCID: PMC9034647 DOI: 10.1186/s12985-022-01795-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/03/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Selectively replicating herpes simplex virus-2 (HSV-2) vector is a promising treatment for cancer therapy. The insertion of multiple transgenes into the viral genome has been performed to improve its oncolytic activity. METHODS Herein, we simultaneously constructed five "armed" oncolytic viruses (OVs), designated oHSV2-IL12, -IL15, GM-CSF, -PD1v, and IL7 × CCL19. These OVs delete the ICP34.5 and ICP47 genes with the insertion of transgenes into the deleted ICP34.5 locus. The anti-tumor efficacy in vivo was tested in the syngeneic 4T1 and CT26 tumor-bearing mice model. RESULTS The OVs showed comparable oncolytic capability in vitro. The combination therapy of oHSV2-IL12, -IL15, GM-CSF, -PD1v, and IL7 × CCL19 exhibited the highest tumor inhibition efficacy compared with the treatment of single OV or two OVs combination. CONCLUSIONS The OVs armed with different transgenes combination therapy also named 5-valent oHSV2 (also called cocktail therapy) might be an effective therapeutic strategy for solid tumors.
Collapse
Affiliation(s)
- Han Hu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Siqi Zhang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Linkang Cai
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Haixiao Duan
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yuying Li
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Junhan Yang
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yang Wang
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Biao Liu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Shuang Dong
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhizheng Fang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Binlei Liu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China. .,Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China.
| |
Collapse
|
15
|
Emery A, Moore S, Turner JE, Campbell JP. Reframing How Physical Activity Reduces The Incidence of Clinically-Diagnosed Cancers: Appraising Exercise-Induced Immuno-Modulation As An Integral Mechanism. Front Oncol 2022; 12:788113. [PMID: 35359426 PMCID: PMC8964011 DOI: 10.3389/fonc.2022.788113] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Undertaking a high volume of physical activity is associated with reduced risk of a broad range of clinically diagnosed cancers. These findings, which imply that physical activity induces physiological changes that avert or suppress neoplastic activity, are supported by preclinical intervention studies in rodents demonstrating that structured regular exercise commonly represses tumour growth. In Part 1 of this review, we summarise epidemiology and preclinical evidence linking physical activity or regular structured exercise with reduced cancer risk or tumour growth. Despite abundant evidence that physical activity commonly exerts anti-cancer effects, the mechanism(s)-of-action responsible for these beneficial outcomes is undefined and remains subject to ongoing speculation. In Part 2, we outline why altered immune regulation from physical activity - specifically to T cells - is likely an integral mechanism. We do this by first explaining how physical activity appears to modulate the cancer immunoediting process. In doing so, we highlight that augmented elimination of immunogenic cancer cells predominantly leads to the containment of cancers in a 'precancerous' or 'covert' equilibrium state, thus reducing the incidence of clinically diagnosed cancers among physically active individuals. In seeking to understand how physical activity might augment T cell function to avert cancer outgrowth, in Part 3 we appraise how physical activity affects the determinants of a successful T cell response against immunogenic cancer cells. Using the cancer immunogram as a basis for this evaluation, we assess the effects of physical activity on: (i) general T cell status in blood, (ii) T cell infiltration to tissues, (iii) presence of immune checkpoints associated with T cell exhaustion and anergy, (iv) presence of inflammatory inhibitors of T cells and (v) presence of metabolic inhibitors of T cells. The extent to which physical activity alters these determinants to reduce the risk of clinically diagnosed cancers - and whether physical activity changes these determinants in an interconnected or unrelated manner - is unresolved. Accordingly, we analyse how physical activity might alter each determinant, and we show how these changes may interconnect to explain how physical activity alters T cell regulation to prevent cancer outgrowth.
Collapse
Affiliation(s)
- Annabelle Emery
- Department for Health, University of Bath, Bath, United Kingdom
| | - Sally Moore
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James E Turner
- Department for Health, University of Bath, Bath, United Kingdom
| | - John P Campbell
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
16
|
Chen D, Tang TX, Deng H, Yang XP, Tang ZH. Interleukin-7 Biology and Its Effects on Immune Cells: Mediator of Generation, Differentiation, Survival, and Homeostasis. Front Immunol 2021; 12:747324. [PMID: 34925323 PMCID: PMC8674869 DOI: 10.3389/fimmu.2021.747324] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Interleukin-7 (IL-7), a molecule known for its growth-promoting effects on progenitors of B cells, remains one of the most extensively studied cytokines. It plays a vital role in health maintenance and disease prevention, and the congenital deficiency of IL-7 signaling leads to profound immunodeficiency. IL-7 contributes to host defense by regulating the development and homeostasis of immune cells, including T lymphocytes, B lymphocytes, and natural killer (NK) cells. Clinical trials of recombinant IL-7 have demonstrated safety and potent immune reconstitution effects. In this article, we discuss IL-7 and its functions in immune cell development, drawing on a substantial body of knowledge regarding the biology of IL-7. We aim to answer some remaining questions about IL-7, providing insights essential for designing new strategies of immune intervention.
Collapse
Affiliation(s)
- Deng Chen
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Xuan Tang
- Class 1901, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hai Deng
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Tang
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|