1
|
Ding Y, Ye Z, Ding B, Feng S, Zhang Y, Shen Y. Identification of CXCL13 as a Promising Biomarker for Immune Checkpoint Blockade Therapy and PARP Inhibitor Therapy in Ovarian Cancer. Mol Biotechnol 2025; 67:2428-2442. [PMID: 38856873 DOI: 10.1007/s12033-024-01207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Ovarian cancer has poor response rates to immune checkpoint blockade (ICB) therapy, despite the use of genomic sequencing to identify molecular targets. Homologous recombination deficiency (HRD) is a conventional indicator of genomic instability (GI) and has been used as a marker for targeted therapies. Indicators reflecting HRD status have shown potential in predicting the efficacy of ICB treatment. Public databases, including TCGA, ICGC, and GEO, were used to obtain data. HRD scores, neoantigen load, and TMB were obtained from the TCGA cohort. Candidate biomarkers were validated in multiple databases, such as the Imvigor210 immunotherapy cohort and the open-source single-cell sequencing database. Immunohistochemistry was performed to further validate the results in independent cohorts. CXCL10, CXCL11, and CXCL13 were found to be significantly upregulated in HRD tumors and exhibited prognostic value. A comprehensive analysis of the tumor immune microenvironment (TIME) revealed that CXCL13 expression positively correlated with neoantigen load and immune cell infiltration. In addition, single-cell sequencing data and clinical trial results supported the utility of CXCL13 as a biomarker for ICB therapy. Not only does CXCL13 serve as a biomarker reflecting HRD status, but it also introduces a potentially novel perspective on prognostic biomarkers for ICB in ovarian cancer.
Collapse
Affiliation(s)
- Yue Ding
- Department of Obstetrics and Gynaecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Zheng Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Bo Ding
- Department of Obstetrics and Gynaecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Songwei Feng
- Department of Obstetrics and Gynaecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yang Zhang
- Department of Obstetrics and Gynecology, First People's Hospital of Lianyungang, No. 6 East Zhenhua Road, Haizhou, Lianyungang, China.
| | - Yang Shen
- Department of Obstetrics and Gynaecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Wei Y, Ren Q, Hu P, Zou Y, Yao W, Qiu H. Cancer cell-extrinsic STING shapes immune-active microenvironment and predicts clinical outcome in gastric cancer. Clin Transl Oncol 2025; 27:2281-2291. [PMID: 39412634 DOI: 10.1007/s12094-024-03726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/09/2024] [Indexed: 04/27/2025]
Abstract
PURPOSE The activation of cGAS-STING pathway can be triggered by cytosolic double-stranded DNA (dsDNA) in tumor and non-tumor compartments. We aim to assess the constitutive expression of dsDNA-cGAS-STING axis in different cellular contexts and compare their relative contribution to clinical outcomes. METHODS A cohort of 154 cases of patients with newly diagnosed gastric cancer were enrolled in this study to evaluate the histo-score of cytosolic dsDNA, cGAS, and STING via immunohistochemistry as well as the types and densities of tumor-infiltrating immune cells. Kaplan-Meier method, multivariable regression, and receiver operating characteristic curve were implemented to analyze the prognostic efficacy of dsDNA-cGAS-STING axis in distinct compartments. RESULTS The supra-normal concentration of cytosolic dsDNA correlated with the constitutive expression of cGAS-STING pathway in tumor compartments. In contrast to the lack of STING within cancer cells, the higher STING expression in non-tumor compartments indicated a transcellular cGAS-STING activation. Cancer cell-extrinsic STING was supported to potentiate nucleic acid immunity by sensing tumor-derived dsDNA fragments. Compartmental analyses also confirmed that the level of STING expressed in non-tumor cells was associated with the infiltration of protective immune cells, leading to the prolonged overall survival. Multivariate analysis further identified the independent prognostic value of cancer cell-extrinsic STING and its predictive accuracy could be significantly improved in combination with the immune cell infiltration. CONCLUSIONS Cancer cell-extrinsic STING facilitates the remodeling of immune-active tumor microenvironment and acts as an independent prognostic factor in gastric cancer.
Collapse
Affiliation(s)
- Ye Wei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Quanguang Ren
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Pengbo Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - You Zou
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wei Yao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
3
|
Nie AY, Xiao ZH, Deng JL, Li N, Hao LY, Li SH, Hu XY. Bidirectional regulation of the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon gene pathway and its impact on hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17:98556. [PMID: 39958554 PMCID: PMC11755995 DOI: 10.4251/wjgo.v17.i2.98556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks as the fourth leading cause of cancer-related deaths in China, and the treatment options are limited. The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) activates the stimulator of interferon gene (STING) signaling pathway as a crucial immune response pathway in the cytoplasm, which detects cytoplasmic DNA to regulate innate and adaptive immune responses. As a potential therapeutic target, cGAS-STING pathway markedly inhibits tumor cell proliferation and metastasis, with its activation being particularly relevant in HCC. However, prolonged pathway activation may lead to an immunosuppressive tumor microenvironment, which fostering the invasion or metastasis of liver tumor cells. AIM To investigate the dual-regulation mechanism of cGAS-STING in HCC. METHODS This review was conducted according to the PRISMA guidelines. The study conducted a comprehensive search for articles related to HCC on PubMed and Web of Science databases. Through rigorous screening and meticulous analysis of the retrieved literature, the research aimed to summarize and elucidate the impact of the cGAS-STING pathway on HCC tumors. RESULTS All authors collaboratively selected studies for inclusion, extracted data, and the initial search of online databases yielded 1445 studies. After removing duplicates, the remaining 964 records were screened. Ultimately, 55 articles met the inclusion criteria and were included in this review. CONCLUSION Acute inflammation can have a few inhibitory effects on cancer, while chronic inflammation generally promotes its progression. Extended cGAS-STING pathway activation will result in a suppressive tumor microenvironment.
Collapse
Affiliation(s)
- Ai-Yu Nie
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Zhong-Hui Xiao
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Jia-Li Deng
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Na Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Li-Yuan Hao
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Sheng-Hao Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Xiao-Yu Hu
- Department of Infection, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
4
|
Pindiprolu SKSS, Singh MT, Magham SV, Kumar CSP, Dasari N, Gummadi R, Krishnamurthy PT. Nanocarrier-mediated modulation of cGAS-STING signaling pathway to disrupt tumor microenvironment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03835-3. [PMID: 39907784 DOI: 10.1007/s00210-025-03835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
The cGAS-STING signaling plays an important role in the immune response in a tumor microenvironment (TME) of triple-negative breast cancer (TNBC). The acute and controlled activation of cGAS-STING signaling results in tumor suppression, while chronic activation of cGAS-STING signaling results in immune-suppressive TME that could result in tumor survival. There is a need, therefore, to develop therapeutic strategies for harnessing tumor suppressive effects of cGAS-STING signaling while minimizing the risks associated with chronic activation. Combination therapies and nanocarriers-based delivery of cGAS-STING agonists have emerged as promising strategies in immunotherapy for controlled modulation of cGAS-STING signaling in cancer. These approaches aim to optimize the tumor suppressive effects of the cGAS-STING pathway while minimizing the challenges associated with modulators of cGAS-STING signaling. In the present review, we discuss recent advancements and strategies in combination therapies and nanocarrier-based delivery systems for effectively controlling cGAS-STING signaling in cancer immunotherapy. Further, we emphasized the significance of nanocarrier-based approaches for effective targeting of the cGAS-STING signaling, tackling resistance mechanisms, and overcoming key challenges like immune suppression, tumor heterogeneity, and off-target effects.
Collapse
Affiliation(s)
| | - Madhu Tanya Singh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, 20, Rocklands, Ooty, 643001, The Nilgiris, Tamil Nadu, India
| | - Sai Varshini Magham
- Department of Pharmacology, Vignan Pharmacy College, Vadlamudi, Guntur, India
| | | | - Nagasen Dasari
- School of Pharmacy, Aditya University, Surampalem, Andhra Pradesh, India
| | | | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, 20, Rocklands, Ooty, 643001, The Nilgiris, Tamil Nadu, India.
| |
Collapse
|
5
|
Xia J, Shen Y, Jiang Q, Li X, Yan Y, Xu Z, Zhou L. Poly (ADP-Ribose) Polymerase 1 Induces Cyclic GMP-AMP Synthase-stimulator of Interferon Genes Pathway Dysregulation to Promote Immune Escape of Colorectal Cancer Cells. J Immunother 2025; 48:35-45. [PMID: 39787528 DOI: 10.1097/cji.0000000000000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025]
Abstract
Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment. Initially targeting poly (ADP-ribose) polymerase 1 (PARP-1), a gene overexpressed in CRC tissues per The Cancer Genome Atlas, we examined its correlation with immune cell infiltration using the Tumor Immune Estimation Resource tool. Quantitative reverse transcription polymerase chain reaction assessed PARP-1 mRNA and inflammation-related gene expression in tumor tissues and cells. Assessing CD8 + T-cell proliferation and cytotoxicity towards HCT116 cells involved carboxyfluorescein diacetate succinimidyl ester and lactate dehydrogenase kits. Chemotaxis was gauged using a Transwell system in a CD8 + T-cell coculture setup, with immunofluorescence revealing cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) levels in HCT116 cells. Enzyme-linked immunosorbent assay kits measured CD8 + T-cell cytokine secretion. The findings suggested that PARP-1 was overexpressed in CRC tissues and cells and this overexpression was positively correlated with Treg cell infiltration. Overexpression of PARP-1 could significantly reduce the proportion of cGAS and STING-positive cells in HCT116 cells, dampen the proliferation, tumor-killing capacity, and chemotaxis of CD8 + T cells, and inhibit the secretion of related cytokines. The introduction of STING agonists could reverse the effects caused by overexpressed PARP-1. In vivo experiments affirmed the independent anti-tumor effects of PARP-1 inhibitors and STING agonists, synergistically inhibiting tumor growth. Silencing PARP-1 in HCT116 cells potentially boosts CD8 + T-cell activity against these cells through the cGAS-STING pathway.
Collapse
Affiliation(s)
- Jianhong Xia
- Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China
| | - Yue Shen
- Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China
| | - Qian Jiang
- Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China
| | - Xin Li
- Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China
| | - Yan Yan
- Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China
| | - Zhi Xu
- Medical Affairs, ICON Public Limited Company (ICON Plc), Beijing, China
| | - Liqing Zhou
- Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China
| |
Collapse
|
6
|
Yin Y, Ma Z, Yuan S, Xu K, Wang X. OPA3 inhibits the cGAS-STING pathway mediated by mtDNA stress to promote colorectal cancer progression. In Vitro Cell Dev Biol Anim 2025; 61:165-177. [PMID: 39725842 DOI: 10.1007/s11626-024-01000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
Colorectal cancer (CRC) is an extremely harmful malignant tumor. Optic atrophy 3 (OPA3) is highly expressed in multiple tumors, but its action in CRC is still unknown. This research aims to explore the role of OPA3 and its related molecular mechanisms for CRC. Firstly, we overexpressed and knocked down OPA3 to examine its effect on CRC cell (HT29 cell) growth. CRC cell viability, migration, invasion, and levels of proliferation markers and cell cycle-associated proteins were measured. Then, we treated cells with carbonyl cyanide m-chlorophenyl hydrazone (CCCP) to explore mitochondrial dysfunction and mtDNA stress in HT29 cells. Next, we overexpressed cGAS and STING to examine their correlation with OPA3. The results showed that OPA3 overexpression enhanced CRC cell viability, migration, invasion, and the levels of PCNA, Cyclin A2, and Cyclin B1. Knockdown of OPA3 had the opposite effects. Moreover, OPA3 knockdown facilitated mitochondrial dysfunction and mtDNA stress in CRC cells. OPA3 overexpression also inhibited CCCP-induced mitochondrial stress disorder. Additionally, OPA3 knockdown elevated the protein levels of p-STING and cGAS and the mRNA level of STING target genes. Furthermore, overexpression of either cGAS or STING partially alleviated the enhancement of HT29 cell proliferation, migration, and invasion mediated by OPA3 overexpression. In conclusion, OPA3 promotes CRC progression via inhibiting the cGAS-STING pathway, which is mediated by mtDNA stress. OPA3 may be a new potential target for CRC.
Collapse
Affiliation(s)
- Yuqiang Yin
- Department of General Surgery, The First People's Hospital of Pingjiang County, Yueyang, 410400, China
| | - Zhenxin Ma
- Department of General Surgery, The First People's Hospital of Pingjiang County, Yueyang, 410400, China
| | - Siwen Yuan
- Department of General Surgery, The First People's Hospital of Pingjiang County, Yueyang, 410400, China
| | - Kangfeng Xu
- Department of General Surgery, The First People's Hospital of Pingjiang County, Yueyang, 410400, China
| | - Xiaofeng Wang
- The First People's Hospital of Pingjiang County, Yueyang, 410400, China.
| |
Collapse
|
7
|
Huang X, Lv X, Cao X. Identification of Prognosis Signature Based on cGAS-STING Pathway and Its Immunotherapeutic Significance in Lung Adenocarcinoma. Mol Biotechnol 2025:10.1007/s12033-025-01376-x. [PMID: 39890699 DOI: 10.1007/s12033-025-01376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Lung adenocarcinoma (LUAD) is a leading cause of cancer-related deaths worldwide, and there is an urgent need to develop personalized prognostic models for effective treatment strategies. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathways has been confirmed to engage in multiple cancer progression, prognosis, and immunotherapy benefits. However, the prognostic significance and immunotherapy response of cGAS-STING pathway-associated genes (CSPAGs) in LUAD remain unclear. Herein, we aimed to establish a CSPAG-based prognostic signature for LUAD patients. A total of 139 CSPAGs derived from the GSEA website were enrolled for subsequent analysis. Univariate Cox regression analysis shows that 22 of 139 CSPAGs were associated with LUAD prognosis. Lasso analysis identified 6 CSPAGs (IFNE, NFKB2, POL3RG, TRAF2, TICAM1 and NLRC3) as the most significant prognostic CSPAGs with the best model efficacy. The CSPAG signature classified LUAD patients into low-risk (LR) and high-risk (HR) groups. Kaplan-Meier analysis demonstrated that patients in the LR group had significantly better overall survival (OS) than those in the HR group (p < 0.05 represents statistical significance), indicating the predictive power of the CSPAG signature in LUAD prognosis. The receiver operating characteristic (ROC) curve analysis showed that the area under the curve (AUC) values for the CSPAG signature were higher than those for other well-established predictive factors, suggesting that the CSPAG signature had a higher predictive efficacy. The CSPAG nomogram incorporating clinical factors such as age, TNM status and the CSPAG risk score accurately predicted the OS of LUAD patients at 1, 3, and 5 years, indicating its potential clinical application in LUAD prognosis. Furthermore, we investigated the expression pattern of the 6 signature CSPAGs in different LUAD subpopulations with distinct clinical features. The CSPAG risk score was increased in the immune-high groups, suggesting a positive correlation between immune infiltration degree and CSPAG risk score. There was a heterogenicity of somatic mutation landscape between the two groups. The LR group had a strong immune cell activity, and most immune checkpoints were significantly expressed in the LR group, implying that this group benefited from immune checkpoint blockade (ICB) therapy. In addition, we verified the high predictive accuracy of the CSPAG signature in the GSE31210 and GSE203360 datasets. Taken together, this study established a CSPAG-based prognostic signature for LUAD patients with high predictive efficacy and clinical relevance. The association between CSPAGs and immune infiltration, and ICB therapy response, highlights the potential of the CSPAG signature as a personalized treatment strategy for LUAD patients.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Clinical Laboratory, Luohe Central Hospital, No.56 Renmin Road, Luohe, 462000, People's Republic of China.
| | - Xuefeng Lv
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xinghua Cao
- Department of Clinical Laboratory, Luohe Central Hospital, No.56 Renmin Road, Luohe, 462000, People's Republic of China
| |
Collapse
|
8
|
Orhan A, Justesen TF, Raskov H, Qvortrup C, Gögenur I. Introducing Neoadjuvant Immunotherapy for Colorectal Cancer: Advancing the Frontier. Ann Surg 2025; 281:95-104. [PMID: 39005208 DOI: 10.1097/sla.0000000000006443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
OBJECTIVE To give surgeons a review of the current and future use of neoadjuvant immunotherapy in patients with localized colorectal cancer (CRC). BACKGROUND Immunotherapy has revolutionized the standard of care in oncology and improved survival outcomes in several cancers. However, the applicability of immunotherapy is still an ongoing challenge. Some cancer types are less responsive to immunotherapy, and the heterogeneity in responses within cancer types is poorly understood. Clinical characteristics of the patient, the timing of immunotherapy in relation to surgery, diversities in the immune responses, clonal heterogeneity, different features of the tumor microenvironment, and genetic alterations are some factors among many that may influence the efficacy of immunotherapy. RESULTS In this narrative review, we describe the major types of immunotherapy used to treat localized CRC. Furthermore, we discuss the prediction of response to immunotherapy in relation to biomarkers and radiologic assessment. Finally, we consider the future perspectives of clinical implications and response patterns, as well as the potential and challenges of neoadjuvant immunotherapy in localized CRC. CONCLUSIONS Establishing mismatch repair (MMR) status at the time of diagnosis is central to the potential use of neoadjuvant immunotherapy, in particular immune checkpoint inhibitors, in localized CRC. To date, efficacy is primarily seen in patients with deficient MMR status and polymerase epsilon mutations, although a small group of patients with proficient MMR does respond. In conclusion, neoadjuvant immunotherapy shows promising complete response rates, which may open a future avenue of an organ-sparing watch-and-wait approach for a group of patients.
Collapse
Affiliation(s)
- Adile Orhan
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Tobias F Justesen
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Hans Raskov
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Camilla Qvortrup
- Department of Clinical Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Ismail Gögenur
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Luo Y, Liang G, Zhang Q, Luo B. The role of cGAS-STING signaling pathway in colorectal cancer immunotherapy: Mechanism and progress. Int Immunopharmacol 2024; 143:113447. [PMID: 39515043 DOI: 10.1016/j.intimp.2024.113447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor in the gastrointestinal tract, it is known as the "silent killer", which poses a serious threat to the lives of patients. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway responds to DNA by sensing, which plays an important role in anti-infection, autoimmune diseases and anti-tumor immunity. Recent studies have found that the activation of cGAS-STING pathway in CRC can induce the expression and secretion of type I interferon (IFN-I) and a variety of inflammatory factors, further activate anti-tumor CD8+ T cells, exert anti-tumor immune response, and inhibit the progression of CRC. Therefore, targeting the cGAS-STING pathway and developing drugs that can regulate the cGAS-STING pathway are of great significance for improving the therapeutic effect and prognosis of CRC patients. In this review, we introduce the cGAS-STING signaling pathway and the regulatory role of this signaling pathway in CRC immune microenvironment. In addition, we discussed the research progress of cGAS-STING pathway in CRC immunotherapy and the clinical research status of STING agonists developed against this pathway, emphasizing the clinical potential of CRC immunotherapy based on the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Yan Luo
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China.
| | - Gai Liang
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China
| | - Qu Zhang
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China
| | - Bo Luo
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China.
| |
Collapse
|
10
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Nishida H, Ohara N, Kato A, Kaimori R, Kondo Y, Kusaba T, Kadowaki H, Kawamura K, Daa T. The relationship between tumor immunity and the cGAS-STING pathway in breast cancer: An immunohistochemical study. Exp Mol Pathol 2024; 139:104917. [PMID: 39053305 DOI: 10.1016/j.yexmp.2024.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Breast cancer (BC) is classified into four major histological subtypes, namely luminal A, luminal B, HER2, and basal-like, and its treatment is based on these subtypes. The use of immune checkpoint inhibitors against BC depends on the expression of PD-1/PD-L1. Another tumor immune system-the cGAS-STING pathway-is a potential target for cancer immunotherapy. However, the status of the cGAS-STING pathway in BC has not been fully established. Therefore, we investigated the expression status of the cGAS-STING pathway and immune-related proteins in BC. We classified 111 BCs into six groups-29 hormone receptor-positive carcinomas, 12 HER2+ carcinomas (HER2), 8 luminal-HER2 carcinomas, 26 triple-negative breast carcinomas (TNBCs), 21 lobular carcinomas (LC), and 15 carcinomas with apocrine differentiation (CAD)-and investigated the relationship between BC and tumor immunity via the cGAS-STING pathway using histopathological and immunohistochemical methods. Expression of cGAS was high in CADs (100%) and low in TNBCs (35%); STING-positive lymphocytes were high in TNBC (85%, P = 0.0054). Expression of pSTAT3 was significantly high in patients with TNBC (≥10%, 88%). The proportion of PD-L1-positive tumor cells was higher in TNBCs (54%) than in other BCs (30%). SRGN expression was significantly higher in the TNBC group than in the other BC groups (58%). Tumor immune responses may differ among tumor subtypes. The cGAS-STING pathway may be functional in TNBC and CAD but not in LC. Therefore, targeting the cGAS-STING pathway might be useful in BC, particularly TNBC and CAD.
Collapse
Affiliation(s)
- Haruto Nishida
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan.
| | - Naoto Ohara
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Ami Kato
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Ryo Kaimori
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoshihiko Kondo
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takahiro Kusaba
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Hiroko Kadowaki
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazuhiro Kawamura
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
12
|
Kanoda R, Nakajima S, Fukai S, Saito M, Saito K, Suzuki H, Kikuchi T, Nirei A, Okayama H, Mimura K, Hanayama H, Sakamoto W, Momma T, Saze Z, Kono K. High levels of tumor cell-intrinsic STING signaling are associated with increased infiltration of CD8 + T cells in dMMR/MSI-H gastric cancer. Sci Rep 2024; 14:20859. [PMID: 39242811 PMCID: PMC11379867 DOI: 10.1038/s41598-024-71974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) gastric cancer (GC) exhibits an immune-active tumor microenvironment (TME) compared to MMR proficient (pMMR)/microsatellite stable/Epstein-Barr virus-negative [EBV (-)] GC. The tumor cell-intrinsic cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has been considered a key regulator of immune cell activation in the TME. However, its significance in regulating the immune-active TME in dMMR/MSI-H GC remains unclear. Here, we demonstrated that tumor cell-intrinsic cGAS-STING was highly expressed in dMMR GC compared to pMMR/EBV (-) GC. The expression of tumor cell-intrinsic STING was significantly and positively associated with the number of CD8+ tumor-infiltrating lymphocytes in GC. Analysis of TCGA datasets revealed that the expression of interferon-stimulated genes and STING downstream T-cell attracting chemokines was significantly higher in MSI-H GC compared to other subtypes of GC with EBV (-). These results suggest that tumor cell-intrinsic STING signaling plays a key role in activating immune cells in the dMMR/MSI-H GC TME and might serve as a novel biomarker predicting the efficacy of immunotherapy for GC treatment.
Collapse
Affiliation(s)
- Ryo Kanoda
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, 1 Hikariga-Oka, Fukushima City, Fukushima, 960-1295, Japan.
| | - Satoshi Fukai
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroya Suzuki
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomohiro Kikuchi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Azuma Nirei
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, 1 Hikariga-Oka, Fukushima City, Fukushima, 960-1295, Japan
| |
Collapse
|
13
|
Teng HW, Wang TY, Lin CC, Tong ZJ, Cheng HW, Wang HT. Interferon Gamma Induces Higher Neutrophil Extracellular Traps Leading to Tumor-Killing Activity in Microsatellite Stable Colorectal Cancer. Mol Cancer Ther 2024; 23:1043-1056. [PMID: 38346939 DOI: 10.1158/1535-7163.mct-23-0744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 07/03/2024]
Abstract
Many patients with colorectal cancer do not respond to immune checkpoint blockade (ICB) therapy, highlighting the urgent need to understand tumor resistance mechanisms. Recently, the link between the IFNγ signaling pathway integrity and ICB resistance in the colorectal cancer tumor microenvironment has been revealed. The immunosuppressive microenvironment poses a significant challenge to antitumor immunity in colorectal cancer development. Tumor-associated neutrophils found in tumor tissues exhibit an immunosuppressive phenotype and are associated with colorectal cancer patient prognosis. Neutrophil extracellular traps (NET), DNA meshes containing cytotoxic enzymes released into the extracellular space, may be promising therapeutic targets in cancer. This study showed increased NETs in tumor tissues and peripheral neutrophils of high levels of microsatellite instability (MSI-H) patients with colorectal cancer compared with microsatellite stable (MSS) patients with colorectal cancer. IFNγ response genes were enriched in MSI-H patients with colorectal cancer compared with patients with MSS colorectal cancer. Co-culturing neutrophils with MSI-H colorectal cancer cell lines induced more NET formation and higher cellular apoptosis than MSS colorectal cancer cell lines. IFNγ treatment induced more NET formation and apoptosis in MSS colorectal cancer cell lines. Using subcutaneous or orthotopic CT-26 (MSS) tumor-bearing mice models, IFNγ reduced tumor size and enhanced PD-1 antibody-induced tumor-killing activity, accompanied by upregulated NETs and cellular apoptosis. These findings suggest that IFNγ could be a therapeutic strategy for MSS colorectal cancer.
Collapse
Affiliation(s)
- Hao-Wei Teng
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tean-Ya Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Chi Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Zhen-Jie Tong
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Wei Cheng
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Doctor degree program in Toxicology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Menz A, Zerneke J, Viehweger F, Büyücek S, Dum D, Schlichter R, Hinsch A, Bawahab AA, Fraune C, Bernreuther C, Kluth M, Hube-Magg C, Möller K, Lutz F, Reiswich V, Luebke AM, Lebok P, Weidemann SA, Sauter G, Lennartz M, Jacobsen F, Clauditz TS, Marx AH, Simon R, Steurer S, Burandt E, Gorbokon N, Minner S, Krech T. Stimulator of Interferon Genes Protein (STING) Expression in Cancer Cells: A Tissue Microarray Study Evaluating More than 18,000 Tumors from 139 Different Tumor Entities. Cancers (Basel) 2024; 16:2425. [PMID: 39001487 PMCID: PMC11240524 DOI: 10.3390/cancers16132425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Stimulator of interferon genes protein (STING) activates the immune response in inflammatory cells. STING expression in cancer cells is less well characterized, but STING agonists are currently being evaluated as anticancer drugs. A tissue microarray containing 18,001 samples from 139 different tumor types was analyzed for STING by immunohistochemistry. STING-positive tumor cells were found in 130 (93.5%) of 139 tumor entities. The highest STING positivity rates occurred in squamous cell carcinomas (up to 96%); malignant mesothelioma (88.5%-95.7%); adenocarcinoma of the pancreas (94.9%), lung (90.3%), cervix (90.0%), colorectum (75.2%), and gallbladder (68.8%); and serous high-grade ovarian cancer (86.0%). High STING expression was linked to adverse phenotypes in breast cancer, clear cell renal cell carcinoma, colorectal adenocarcinoma, hepatocellular carcinoma, and papillary carcinoma of the thyroid (p < 0.05). In pTa urothelial carcinomas, STING expression was associated with low-grade carcinoma (p = 0.0002). Across all tumors, STING expression paralleled PD-L1 positivity of tumor and inflammatory cells (p < 0.0001 each) but was unrelated to the density of CD8+ lymphocytes. STING expression is variable across tumor types and may be related to aggressive tumor phenotype and PD-L1 positivity. The lack of relationship with tumor-infiltrating CD8+ lymphocytes argues against a significant IFN production by STING positive tumor cells.
Collapse
Affiliation(s)
- Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Julia Zerneke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Sören A Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| |
Collapse
|
15
|
Cornista AM, Giolito MV, Baker K, Hazime H, Dufait I, Datta J, Khumukcham SS, De Ridder M, Roper J, Abreu MT, Breckpot K, Van der Jeught K. Colorectal Cancer Immunotherapy: State of the Art and Future Directions. GASTRO HEP ADVANCES 2023; 2:1103-1119. [PMID: 38098742 PMCID: PMC10721132 DOI: 10.1016/j.gastha.2023.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy has become an indispensable mode of treatment for a multitude of solid tumor cancers. Colorectal cancer (CRC) has been one of the many cancer types to benefit from immunotherapy, especially in advanced disease where standard treatment fails to prevent recurrence or results in poor survival. The efficacy of immunotherapy in CRC has not been without challenge, as early clinical trials observed dismal responses in unselected CRC patients treated with checkpoint inhibitors. Many studies and clinical trials have since refined immunotherapies available for CRC, solidifying immunotherapy as a powerful asset for CRC treatment. This review article examines CRC immunotherapies, from their foundation, through emerging avenues for improvement, to future directions.
Collapse
Affiliation(s)
- Alyssa Mauri Cornista
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Maria Virginia Giolito
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Laboratory for Molecular and Cellular Therapy, Brussels, Belgium
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Hajar Hazime
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jashodeep Datta
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Saratchandra Singh Khumukcham
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Maria T. Abreu
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Karine Breckpot
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Laboratory for Molecular and Cellular Therapy, Brussels, Belgium
| | - Kevin Van der Jeught
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
16
|
Zhang J, Wu Y, Shen Z. Integration of bulk RNA sequencing data and single-cell RNA sequencing analysis on the heterogeneity in patients with colorectal cancer. Funct Integr Genomics 2023; 23:209. [PMID: 37355491 PMCID: PMC10290593 DOI: 10.1007/s10142-023-01102-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 06/26/2023]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has emerged as a critical innate immune pathway that could virtually impact nearly all aspects of tumorigenesis including colorectal cancer. This work aimed to develop and validate molecular subtypes related to cGAS-STING pathways for colorectal cancer using Bulk RNA-seq and single-cell RNA-seq (scRNA-seq) data. Bulk RNA-seq data were acquired from The Cancer Genome Atlas dataset (training dataset) and Gene Expression Omnibus dataset (validation dataset). Univariate COX survival analysis was utilized to identify prognostic differentially expressed genes (DEGs) from 6 immune pathways related to cGAS-STING. ConsensusClusterPlus package was used to classify different subtypes based on DEGs. scRNA-seq data were used to validate differences in immune status between different subtypes. Two clusters with distinct prognosis were identified based on 27 DEGs. The six cGAS-STING-related pathways had different levels of significance between the two clusters. Clust1 had most number of amplified CNVs and clust2 had the most number of loss CNVs. TP53 was the top mutated gene of which missense mutations contributed the most of single-nucleotide variants. Immune score of clust1 was higher than that in clust2, as reflected in macrophages, T cells, and natural killer cells. Three unfavorable genes and 31 protection factors were screened between the two clusters in three datasets. ScRNA-seq data analysis demonstrated that macrophages were more enriched in clust1, and tumor cells and immune cells had close interaction. We classified two distinct subtypes with different prognosis, mutation landscape, and immune characteristics.
Collapse
Affiliation(s)
- Jiawei Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yangsheng Wu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Shen
- Department of Coloproctology, The Hangzhou Third People's Hospital, the No.38 Westlake Avenue, Hangzhou City, 310009, Zhejiang Province, China.
| |
Collapse
|
17
|
Mowat C, Dhatt J, Bhatti I, Hamie A, Baker K. Short chain fatty acids prime colorectal cancer cells to activate antitumor immunity. Front Immunol 2023; 14:1190810. [PMID: 37304266 PMCID: PMC10248408 DOI: 10.3389/fimmu.2023.1190810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a leading cause of death worldwide and its growth can either be promoted or inhibited by the metabolic activities of intestinal microbiota. Short chain fatty acids (SCFAs) are microbial metabolites with potent immunoregulatory properties yet there is a poor understanding of how they directly regulate immune modulating pathways within the CRC cells. Methods We used engineered CRC cell lines, primary organoid cultures, orthotopic in vivo models, and patient CRC samples to investigate how SCFA treatment of CRC cells regulates their ability to activate CD8+ T cells. Results CRC cells treated with SCFAs induced much greater activation of CD8+ T cells than untreated CRC cells. CRCs exhibiting microsatellite instability (MSI) due to inactivation of DNA mismatch repair were much more sensitive to SCFAs and induced much greater CD8+ T cell activation than chromosomally instable (CIN) CRCs with intact DNA repair, indicating a subtype-dependent response to SCFAs. This was due to SCFA-induced DNA damage that triggered upregulation of chemokine, MHCI, and antigen processing or presenting genes. This response was further potentiated by a positive feedback loop between the stimulated CRC cells and activated CD8+ T cells in the tumor microenvironment. The initiating mechanism in the CRCs was inhibition of histone deacetylation by the SCFAs that triggered genetic instability and led to an overall upregulation of genes associated with SCFA signaling and chromatin regulation. Similar gene expression patterns were found in human MSI CRC samples and in orthotopically grown MSI CRCs independent of the amount of SCFA producing bacteria in the intestine. Discussion MSI CRCs are widely known to be more immunogenic than CIN CRCs and have a much better prognosis. Our findings indicate that a greater sensitivity to microbially produced SCFAs contributes to the successful activation of CD8+ T cells by MSI CRCs, thereby identifying a mechanism that could be therapeutically targeted to improve antitumor immunity in CIN CRCs.
Collapse
Affiliation(s)
- Courtney Mowat
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jasmine Dhatt
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Ilsa Bhatti
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Angela Hamie
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Nakajima S, Kaneta A, Okayama H, Saito K, Kikuchi T, Endo E, Matsumoto T, Fukai S, Sakuma M, Sato T, Mimura K, Saito M, Saze Z, Sakamoto W, Onozawa H, Momma T, Kono K. The Impact of Tumor Cell-Intrinsic Expression of Cyclic GMP-AMP Synthase (cGAS)-Stimulator of Interferon Genes (STING) on the Infiltration of CD8 + T Cells and Clinical Outcomes in Mismatch Repair Proficient/Microsatellite Stable Colorectal Cancer. Cancers (Basel) 2023; 15:2826. [PMID: 37345163 DOI: 10.3390/cancers15102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a crucial role in activating immune cells in the tumor microenvironment, thereby contributing to a more favorable response to immune checkpoint inhibitors (ICI) in colorectal cancer (CRC). However, the impact of the expression of cGAS-STING in tumor cells on the infiltration of CD8+ T cells and clinical outcomes in mismatch repair proficient/microsatellite stable (pMMR/MSS) CRC remains largely unknown. Our findings reveal that 56.8% of all pMMR CRC cases were cGAS-negative/STING-negative expressions (cGAS-/STING-) in tumor cells, whereas only 9.9% of all pMMR CRC showed cGAS-positive/STING-positive expression (cGAS+/STING+) in tumor cells. The frequency of cGAS+/STING+ cases was reduced in the advanced stages of pMMR/MSS CRC, and histone methylation might be involved in the down-regulation of STING expression in tumor cells. Since the expression level of cGAS-STING in tumor cells has been associated with the infiltration of CD8+ and/or CD4+ T cells and the frequency of recurrence in pMMR/MSS CRC, decreased expression of cGAS-STING in tumor cells might lead to poor immune cell infiltration and worse prognosis in most pMMR/MSS CRC patients. Our current findings provide a novel insight for the treatment of patients with pMMR/MSS CRC.
Collapse
Affiliation(s)
- Shotaro Nakajima
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Akinao Kaneta
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomohiro Kikuchi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Eisei Endo
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Takuro Matsumoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Satoshi Fukai
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Mei Sakuma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Takahiro Sato
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hisashi Onozawa
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koji Kono
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
19
|
Kunac N, Degoricija M, Viculin J, Omerović J, Terzić J, Vilović K, Korac-Prlic J. Activation of cGAS-STING Pathway Is Associated with MSI-H Stage IV Colorectal Cancer. Cancers (Basel) 2022; 15:cancers15010221. [PMID: 36612217 PMCID: PMC9818394 DOI: 10.3390/cancers15010221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer is the second most common cause of cancer-related mortality in adults. Understanding colorectal tumorigenesis at both the cellular and molecular levels is crucial for developing effective treatment options. Forty-one biopsy samples from patients with metastatic CRC (mCRC) were collected at Split University Hospital in Croatia. A total of 41 patients (21 with microsatellite unstable tumours and 20 with microsatellite stable tumours) were randomly included in the study. Immunolabelling of cGAS and STING in metastatic CRC was performed and further complemented by histological classification, tumour grade, and KRAS, NRAS, and BRAF mutational status of mCRC. In bivariate analysis, elevated expression of cGAS and STING was positively associated with MSI-H colon cancer (Fisher's exact test, both p = 0.0203). Combined expression analysis of cGAS and STING showed a significantly higher percentage of patients with mCRC MSI-H with a fully or partially activated cGAS-STING signalling pathway (chi-square test, p = 0.0050). After adjusting for age, sex, and STING expression, increased cGAS expression remained significantly associated with MSI-H colon cancer in a multiple logistic regression model (β = 1.588, SE = ±0.799, p = 0.047). The cGAS-STING signalling axis represents a compelling new target for optimization of immune checkpoint inhibitor therapeutic approaches in patients with MSI-H stage IV CRC.
Collapse
Affiliation(s)
- Nenad Kunac
- Department of Pathology, Forensic Medicine and Cytology, University Hospital Centre Split, 21000 Split, Croatia
| | - Marina Degoricija
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia
| | - Jelena Viculin
- Department of Oncology, University Hospital Centre Split, 21000 Split, Croatia
| | - Jasminka Omerović
- Laboratory for Cancer Research, Department of Immunology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Janoš Terzić
- Laboratory for Cancer Research, Department of Immunology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Katarina Vilović
- Department of Pathology, Forensic Medicine and Cytology, University Hospital Centre Split, 21000 Split, Croatia
- School of Medicine, University of Split, 21000 Split, Croatia
| | - Jelena Korac-Prlic
- Laboratory for Cancer Research, Department of Immunology, School of Medicine, University of Split, 21000 Split, Croatia
- Correspondence: ; Tel.: +385-21557877; Fax: +385-21557880
| |
Collapse
|
20
|
Tian Z, Zeng Y, Peng Y, Liu J, Wu F. Cancer immunotherapy strategies that target the cGAS-STING pathway. Front Immunol 2022; 13:996663. [PMID: 36353640 PMCID: PMC9639746 DOI: 10.3389/fimmu.2022.996663] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 10/22/2023] Open
Abstract
Activation of the cGAS-STING pathway by cytoplasmic DNA induces the production of Type-1 interferons. Recent advances in research suggest that the cGAS-STING pathway is involved in different parts of the cancer-immunity cycle (CIC) to promote or suppress antitumor immune responses. Combination therapy of STING agonists has made certain progress in preclinical as well as clinical trials, but the selection of combination therapy regimens remains a challenge. In this review, we summarize the role of the cGAS-STING in all aspects of CIC, and focus on the combination immunotherapy strategies of STING agonists and current unsolved challenges.
Collapse
Affiliation(s)
- Zhuoying Tian
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yurong Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junqi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Pu Z, Liu J, Liu Z, Peng F, Zhu Y, Wang X, He J, Yi P, Hu X, Fan X, Chen J. STING pathway contributes to the prognosis of hepatocellular carcinoma and identification of prognostic gene signatures correlated to tumor microenvironment. Cancer Cell Int 2022; 22:314. [PMID: 36224658 PMCID: PMC9554977 DOI: 10.1186/s12935-022-02734-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most malignant solid tumors worldwide. Recent evidence shows that the stimulator of interferon genes (STING) pathway is essential for anti-tumor immunity via inducing the production of downstream inflammatory cytokines. However, its impact on the prognosis and tumor microenvironment of HCC was still limited known. Methods We obtained gene expression profiles of HCC from GEO, TCGA, and ICGC databases, and immune-related genes (IRGs) from the ImmPort database. Multivariate Cox regression was performed to identify independent prognostic factors. Nomogram was established to predict survival probability for individual patients. Kaplan–Meier curve was used to evaluate the survival difference. Afterward, ESTIMATE, TISCH, and TIMER databases were combined to assess the immune cell infiltration. Furthermore, the qPCR, western blotting, and immunohistochemistry were done to evaluate gene expression, and in vitro cell models were built to determine cell migratory ability. Results We found that gene markers of NLRC3, STING1, TBK1, TRIM21, and XRCC6 within STING pathway were independent prognostic factors in HCC patients. Underlying the finding, a predictive nomogram was constructed in TCGA-training cohort and further validated in TCGA-all and ICGC datasets, showing credible performance. Experimentally, up-regulated TBK1 promotes the ability of HCC cell migration. Next, the survival-related immune-related co-expressed gene signatures (IRCGS) (VAV1, RHOA, and ZC3HAV1) were determined in HCC cohorts and their expression was verified in human HCC cells and clinical samples. Furthermore, survival-related IRCGS was associated with the infiltration of various immune cell subtypes in HCC, the transcriptional expression of prominent immune checkpoints, and immunotherapeutic response. Conclusion Collectively, we constructed a novel prognostic nomogram model for predicting the survival probability of individual HCC patients. Moreover, an immune-related prognostic gene signature was determined. Both might function as potential therapeutic targets for HCC treatment in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02734-4.
Collapse
Affiliation(s)
- Zhangya Pu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.,Department of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Jinghua Liu
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Zelong Liu
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Fang Peng
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, 41800, Hunan Province, China
| | - Yuanyuan Zhu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, 41800, Hunan Province, China
| | - Xiaofang Wang
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China
| | - Jiayan He
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Panpan Yi
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China
| | - Xingwang Hu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.
| | - Xuegong Fan
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|