1
|
Shang P, Liu Y, Ren J, Liu Q, Song H, Jia J, Liu Q. Overexpression of miR-532-5p restrains oxidative stress response of chondrocytes in nontraumatic osteonecrosis of the femoral head by inhibiting ABL1. Open Med (Wars) 2024; 19:20240943. [PMID: 38584839 PMCID: PMC10997031 DOI: 10.1515/med-2024-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
This study is to probe into the meaning of serum miR-532-5p in nontraumatic osteonecrosis of the femoral head (ONFH), and a molecular mechanism of miR-532-5p in the development of nontraumatic ONFH. This study enrolled 96 patients diagnosed with nontraumatic ONFH and 96 patients with femoral neck fracture. The levels of miR-532-5p, ABL1, MMP-3, MMP-13, and cleaved-caspase3 were determined. Radiographic progression was assessed by ARCO staging system. Visual analog scale (VAS) and Harris hip score (HHS) were employed for evaluation of the symptomatic severity of nontraumatic ONFH. Cell viability and apoptosis in chondrocytes isolated from clinical samples were investigated with CCK-8 and flow cytometry. The levels of lactic dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA), mitochondrial membrane potential (ΔΨm), and reactive oxygen species (ROS) were determined. miR-532-5p was downregulated in tissues and serum of patients with nontraumatic ONFH, negatively related with ARCO staging and VAS, and positively correlated with HHS. Cell apoptosis, LDH, MDA, and ROS strengthened, while cell viability, ΔΨm, and SOD reduced in chondrocytes of nontraumatic ONFH patients. ABL1 was upregulated in cartilage tissues from nontraumatic ONFH patients. miR-532-5p targeted ABL1, and overexpressed miR-532-5p alleviated nontraumatic ONFH-induced oxidative stress damage of chondrocytes by restraining ABL1. miR-532-5p ameliorated oxidative stress injury in nontraumatic ONFH by inhibiting ABL1.
Collapse
Affiliation(s)
- Peng Shang
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Ying Liu
- Department of Oncology, Second Hospital of Shanxi Medial University, Taiyuan, Shanxi, 030001, P.R. China
| | - Jie Ren
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Qingqing Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Haobo Song
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
| | - Junqing Jia
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei, 430030, P.R. China
| | - Qiang Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei, 430030, P.R. China
| |
Collapse
|
2
|
Huber J, Longaker MT, Quarto N. Circulating and extracellular vesicle-derived microRNAs as biomarkers in bone-related diseases. Front Endocrinol (Lausanne) 2023; 14:1168898. [PMID: 37293498 PMCID: PMC10244776 DOI: 10.3389/fendo.2023.1168898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/31/2023] [Indexed: 06/10/2023] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNA molecules that regulate posttranscriptional gene expression by repressing messengerRNA-targets. MiRNAs are abundant in many cell types and are secreted into extracellular fluids, protected from degradation by packaging in extracellular vesicles. These circulating miRNAs are easily accessible, disease-specific and sensitive to small changes, which makes them ideal biomarkers for diagnostic, prognostic, predictive or monitoring purposes. Specific miRNA signatures can be reflective of disease status and development or indicators of poor treatment response. This is especially important in malignant diseases, as the ease of accessibility of circulating miRNAs circumvents the need for invasive tissue biopsy. In osteogenesis, miRNAs can act either osteo-enhancing or osteo-repressing by targeting key transcription factors and signaling pathways. This review highlights the role of circulating and extracellular vesicle-derived miRNAs as biomarkers in bone-related diseases, with a specific focus on osteoporosis and osteosarcoma. To this end, a comprehensive literature search has been performed. The first part of the review discusses the history and biology of miRNAs, followed by a description of different types of biomarkers and an update of the current knowledge of miRNAs as biomarkers in bone related diseases. Finally, limitations of miRNAs biomarker research and future perspectives will be presented.
Collapse
Affiliation(s)
- Julika Huber
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Plastic Surgery, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
3
|
Bian Y, Hu T, Lv Z, Xu Y, Wang Y, Wang H, Zhu W, Feng B, Liang R, Tan C, Weng X. Bone tissue engineering for treating osteonecrosis of the femoral head. EXPLORATION (BEIJING, CHINA) 2023; 3:20210105. [PMID: 37324030 PMCID: PMC10190954 DOI: 10.1002/exp.20210105] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/12/2022] [Indexed: 06/16/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a devastating and complicated disease with an unclear etiology. Femoral head-preserving surgeries have been devoted to delaying and hindering the collapse of the femoral head since their introduction in the last century. However, the isolated femoral head-preserving surgeries cannot prevent the natural progression of ONFH, and the combination of autogenous or allogeneic bone grafting often leads to many undesired complications. To tackle this dilemma, bone tissue engineering has been widely developed to compensate for the deficiencies of these surgeries. During the last decades, great progress has been made in ingenious bone tissue engineering for ONFH treatment. Herein, we comprehensively summarize the state-of-the-art progress made in bone tissue engineering for ONFH treatment. The definition, classification, etiology, diagnosis, and current treatments of ONFH are first described. Then, the recent progress in the development of various bone-repairing biomaterials, including bioceramics, natural polymers, synthetic polymers, and metals, for treating ONFH is presented. Thereafter, regenerative therapies for ONFH treatment are also discussed. Finally, we give some personal insights on the current challenges of these therapeutic strategies in the clinic and the future development of bone tissue engineering for ONFH treatment.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Tingting Hu
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yingjie Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Wei Zhu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Bin Feng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Chaoliang Tan
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARChina
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
4
|
Lnc Tmem235 promotes repair of early steroid-induced osteonecrosis of the femoral head by inhibiting hypoxia-induced apoptosis of BMSCs. Exp Mol Med 2022; 54:1991-2006. [PMID: 36380019 PMCID: PMC9723185 DOI: 10.1038/s12276-022-00875-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/24/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have been used in the treatment of early steroid-induced osteonecrosis of the femoral head (SONFH). However, the hypoxic microenvironment in the osteonecrotic area leads to hypoxia-induced apoptosis of transplanted BMSCs, which limits their efficacy. Therefore, approaches that inhibit hypoxia-induced apoptosis of BMSCs are promising for augmenting the efficacy of BMSC transplantation. Our present study found that under hypoxia, the expression of the long noncoding RNA (Lnc) transmembrane protein 235 (Tmem235) was downregulated, the expression of Bcl-2-associated X protein was upregulated, the expression of B-cell lymphoma-2 protein was downregulated, and the apoptotic rate of BMSCs was over 70%. However, overexpression of Lnc Tmem235 reversed hypoxia-induced apoptosis of BMSCs and promoted their survival. These results demonstrated that Lnc Tmem235 effectively inhibited hypoxia-induced apoptosis of BMSCs. Mechanistically, we found that Lnc Tmem235 exhibited competitive binding to miR-34a-3p compared with BIRC5 mRNA, which is an inhibitor of apoptosis; this competitive binding relieved the silencing effect of miR-34a-3p on BIRC5 mRNA to ultimately inhibit hypoxia-induced apoptosis of BMSCs by promoting the expression of BIRC5. Furthermore, we cocultured BMSCs overexpressing Lnc Tmem235 with xenogeneic antigen-extracted cancellous bone to construct tissue-engineered bone to repair a model of early SONFH in vivo. The results showed that overexpression of Lnc Tmem235 effectively reduced apoptosis of BMSCs in the hypoxic microenvironment of osteonecrosis and improved the effect of BMSC transplantation. Taken together, our findings show that Lnc Tmem235 inhibited hypoxia-induced apoptosis of BMSCs by regulating the miR-34a-3p/BIRC5 axis, thus improving the transplantation efficacy of BMSCs for treating early SONFH.
Collapse
|
5
|
Lin RLC, Sung PH, Wu CT, Tu YK, Lu YD, Yip HK, Lee MS. Decreased Ankyrin Expression Is Associated with Repressed eNOS Signaling, Cell Proliferation, and Osteogenic Differentiation in Osteonecrosis of the Femoral Head. J Bone Joint Surg Am 2022; 104:2-12. [PMID: 35389901 DOI: 10.2106/jbjs.20.00465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Reduced nitric oxide synthase (NOS) activity and decreased reparative potentials in stem cells may be involved in the pathogenesis of osteonecrosis of the femoral head (ONFH), but the underlying mechanism is not clear. Ankyrin, a cytoskeletal protein, can promote NOS expression and many cellular functions when it interacts with the CD44 receptors on the stem cells. This study investigated whether ankyrin is involved in the pathogenesis of ONFH. MATERIALS AND METHODS Bone marrow stem cells (BMSCs) from ONFH patients were compared with cells from patients with proximal femoral fracture and BMSC cell lines (PT-2501, Lonza, NC, USA). Differences in the expression levels and downstream signal pathway of ankyrin-Akt-eNOS in BMSCs were studied between ONFH and control. The involvement of ankyrin in the signal cascade, cell proliferation, and differentiation were further investigated by silencing ankyrin using small interfering (si)RNA. RESULTS We found the basal mRNA levels of ankyrin and CD44 in BMSCs from the ONFH group were significantly lower as compared with those from the control group. The signal transduction of CD44-ankyrin-Akt-eNOS was significantly repressed in the ONFH group as compared with the control group after hyaluronic acid treatment. Knockdown of ankyrin by siRNA could attenuate the eNOS signaling as well as the BMSCs proliferation and osteogenic differentiation. The proliferation ability and osteogenic differentiation potential of the BMSCs from the ONFH group were significantly reduced as compared with the control group, but they can be enhanced to the baseline levels of the control group by hyaluronic acid treatment. CONCLUSION The aberrant eNOS signaling, reduced cell proliferation, and osteogenic differentiation potential in BMSCs from ONFH patients are associated with the decreased ankyrin expression. CLINICAL RELEVANCE Altered signal transduction, proliferation, and osteogenic differentiation ability in BMSCs may be involved in the pathogenesis of ONFH. These need further studies especially in BMSC-based cell therapy.
Collapse
Affiliation(s)
- Rio L C Lin
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Pei-Hsun Sung
- Department of Medicine, Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Chen-Ta Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedic Surgery, EDa Hospital, Kaohsiung, Taiwan
| | - Yu-Der Lu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Hon-Kan Yip
- Department of Medicine, Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Mel S Lee
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| |
Collapse
|
6
|
Role of microRNA-19b-3p on osteoporosis after experimental spinal cord injury in rats. Arch Biochem Biophys 2022; 719:109134. [DOI: 10.1016/j.abb.2022.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/21/2022]
|
7
|
Liu D, Lin Z, Huang Y, Qiu M. WITHDRAWN: Role of microRNA-19b-3p on osteoporosis after experimental spinal cord injury in rats. Arch Biochem Biophys 2021; 714:108805. [PMID: 33587904 DOI: 10.1016/j.abb.2021.108805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 11/30/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| | - Zhongying Lin
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Ying Huang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Min Qiu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| |
Collapse
|
8
|
Liu H, Liu P. Kartogenin Promotes the BMSCs Chondrogenic Differentiation in Osteoarthritis by Down-Regulation of miR-145-5p Targeting Smad4 Pathway. Tissue Eng Regen Med 2021; 18:989-1000. [PMID: 34669172 DOI: 10.1007/s13770-021-00390-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Transplantation of mesenchymal stem cells (MSCs) is a potential therapeutic strategy for cartilage degeneration of osteoarthritis (OA). But controlling chondrogenic differentiation of the implanted MSCs in the joints remains a challenge. The role of kartogenin (KGN) for chondrogenesis of MSCs has been widely reported, however, the mechanism of chondrogenesis has not been elucidated in OA. METHODS In this study, we investigated the miR-145-5p, TGF-β, Samd4, and p-stat3/stat3 expression in cartilage of OA patients and bone marrow mesenchymal stem cells (BMSCs) treated with KGN or miR-145-5p inhibitor. In addition, the cell proliferation and chondrogenic differentiation in vitro and in vivo of BMSCs treated with KGN was also detected. RESULTS In OA patients, the expression of miR-145-5p was up-regulated, and the expression of TGF-β, Samd4, and p-stat3/stat3 was inhibited. When the BMSCs treated with miR-145-5p inhibitor, the expression of TGF-β, Samd4, and p-stat3/stat3 was also significantly up-regulated. KGN-treated BMSCs had better proliferation and chondrogenic differentiation by up-regulating the expression of Sox 9, Col-2a1, aggrecan in vitro and in OA by down-regulation of miR-145-5p targeting Smad4 pathway. Moreover, intra-articular injection of KGN-treated BMSCs had a better pain relief effect in OA. CONCLUSION The double effect on cartilage protection and pain relief indicates a great potential of intra-articular injection of KGN-treated BMSCs for the treatment of OA.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Paediatrics, Liyuan Hospital Affiliated To Tongji Medical College of Huazhong University of Science and Technology, 43006, Wuhan, People's Republic of China
| | - Ping Liu
- Department of Orthopaedics, Liyuan Hospital Affiliated To Tongji Medical College of Huazhong University of Science and Technology, 43006, Wuhan, People's Republic of China.
| |
Collapse
|
9
|
Wang Q, Chen Y, Shen X, Chen J, Li Y. Intra-Articular Injection of miR-29a-3p of BMSCs Promotes Cartilage Self-Repairing and Alleviates Pain in the Rat Osteoarthritis. Tissue Eng Regen Med 2021; 18:1045-1055. [PMID: 34542842 DOI: 10.1007/s13770-021-00384-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Stem cells intra-articular injection stagey indicated a potential therapeutic effect on improving the pathological progress of osteoarthritis (OA). However, the long-term effect of stem cells intra-articular injection on the cartilage regeneration remains unclear. miR-29a-3p is predicted to be a critical target for inhibiting insulin-like growth factor-1 expression and may aggravate the progression of OA. METHODS In this study, we investigated the therapeutic efficacy of intra-articular injection of bone marrow mesenchymal stem cells (BMSCs) transfected with miR-29a-3p inhibitor in OA. RESULTS miR-29a-3p inhibitor transfection did not influence cell viability of BMSCs, while the chondrogenic differentiation potential of BMSCs was significantly improved. Interestingly, intra-articular injection of BMSCs with miR-29a-3p inhibition significantly prevented articular cartilage degeneration by up-regulating the expression of Sox 9, Col-2a1, aggrecan and down-regulating the expression of matrix metalloproteinase, as well as relieved pain in OA. CONCLUSION The double effects on cartilage protection and pain relief indicated a great potential of intra-articular injection of miR-29a-3p inhibitor-transfected BMSCs for the treatment of OA.
Collapse
Affiliation(s)
- Qing Wang
- Department of Orthopedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, China.,Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, China
| | - Yong Chen
- Department of Orthopedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, China.,Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, China
| | - Xiaofeng Shen
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, China
| | - Ji Chen
- Department of Orthopedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, China.,Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, China
| | - Yuwei Li
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, China.
| |
Collapse
|
10
|
Liu D, Wang B, Qiu M, Huang Y. MiR-19b-3p accelerates bone loss after spinal cord injury by suppressing osteogenesis via regulating PTEN/Akt/mTOR signalling. J Cell Mol Med 2021; 25:990-1000. [PMID: 33332749 PMCID: PMC7812263 DOI: 10.1111/jcmm.16159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Rapid and extensive bone loss, one of the skeletal complications after spinal cord injury (SCI) occurrence, drastically sacrifices the life quality of SCI patients. It has been demonstrated that microRNA (miRNA) dysfunction plays an important role in the initiation and development of bone loss post-SCI. Nevertheless, the effect of miR-19b-3p on bone loss after SCI is unknown and the accurate mechanism is left to be elucidated. The present work was conducted to explore the role of miR-19b-3p/phosphatase and tensin homolog deleted on chromosome ten (PTEN) axis on osteogenesis after SCI and further investigates the underlying mechanisms. We found that miR-19b-3p level was increased in the femurs of SCI rats with decreased autophagy. The overexpression of miR-19b-3p in bone marrow mesenchymal stem cells (BMSCs) targeted down-regulation of PTEN expression, facilitated protein kinase B (Akt) and mammalian target of rapamycin (mTOR) phosphorylation, and thereby suppressing BMSCs osteogenic differentiation via autophagy. Besides, the inhibiting effects of miR-19b-3p on osteogenic differentiation of BMSCs could be diminished by autophagy inducer rapamycin. Meanwhile, bone loss after SCI in rats was also reversed by antagomir-19b-3p treatment, suggesting miR-19b-3p was an essential target for osteogenic differentiation via regulating autophagy. These results indicated that miR-19b-3p was involved in bone loss after SCI by inhibiting osteogenesis via PTEN/Akt/mTOR signalling pathway.
Collapse
Affiliation(s)
- Da Liu
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangPeople’s Republic of China
| | - Bo Wang
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangPeople’s Republic of China
| | - Min Qiu
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangPeople’s Republic of China
| | - Ying Huang
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangPeople’s Republic of China
| |
Collapse
|
11
|
Zhang X, You J, Dong X, Wu Y. Administration of mircoRNA-135b-reinforced exosomes derived from MSCs ameliorates glucocorticoid-induced osteonecrosis of femoral head (ONFH) in rats. J Cell Mol Med 2020; 24:13973-13983. [PMID: 33089961 PMCID: PMC7754047 DOI: 10.1111/jcmm.16006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/20/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Exosomes were found to exert a therapeutic effect in the treatment of osteonecrosis of the femoral head (ONFH), while miR-135b was shown to play an important role in the development of ONFH. In this study, we investigated the effects of concomitant administration of exosomes and miR-135b on the treatment of ONFH. A rat mode of ONFH was established. TEM, Western blotting and nanoparticle analysis were used to characterize the exosomes collected from human-induced pluripotent stem cell-derived mesenchymal stem cells (hiPS-MSC-Exos). Micro-CT was used to observe the trabecular bone structure of the femoral head. Real-time PCR, Western blot analysis, IHC assay, TUNEL assay, MTT assay and flow cytometry were performed to detect the effect of hiPS-MSC-Exos and miR-135b on cell apoptosis and the expression of PDCD4/caspase-3/OCN. Moreover, computational analysis and luciferase assay were conducted to identify the regulatory relationship between PDCD4 mRNA and miR-135b. The hiPS-MSC-Exos collected in this study displayed a spheroidal morphology with sizes ranging from 20 to 100 nm and a mean concentration of 1 × 1012 particles/mL. During the treatment of ONFH, the administration of hiPS-MSC-Exos and miR-135b alleviated the magnitude of bone loss. Furthermore, the treatment of MG-63 and U-2 cells with hiPS-MSC-Exos and miR-135b could promote cell proliferation and inhibit cell apoptosis. Moreover, PDCD4 mRNA was identified as a virtual target gene of miR-135b. HiPS-MSC-Exos exerted positive effects during the treatment of ONFH, and the administration of miR-135b could reinforce the effect of hiPS-MSC-Exos by inhibiting the expression of PDCD4.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of OrthopedicsWenzhou Hospital of Integrated Traditional Chinese and Western MedicineZhejiang University of Traditional Chinese MedicineWenzhouChina
| | - Jiong‐ming You
- Department of OrthopedicsWenzhou Hospital of Integrated Traditional Chinese and Western MedicineZhejiang University of Traditional Chinese MedicineWenzhouChina
| | - Xiao‐jun Dong
- Department of OrthopaedicsWuhan Hospital of Traditional Chinese MedicineWuhanChina
| | - Yang Wu
- Department of Internal Medicine of TCMWenzhou Hospital of Integrated Traditional Chinese and Western MedicineZhejiang University of Traditional Chinese MedicineWenzhouChina
| |
Collapse
|
12
|
李 晓, 孔 清. [The regulatory role of microRNA in osteogenic differentiation of mesenchymal stem cells and its application as a therapeutic target and diagnostic tool in orthopedic diseases]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1332-1340. [PMID: 33063501 PMCID: PMC8171876 DOI: 10.7507/1002-1892.201912092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/17/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To summarize the research progress of the regulatory role of microRNA (miRNA) in osteogenic differentiation of mesenchymal stem cells (MSCs) and its application as a therapeutic target and diagnostic tool in orthopedic diseases. METHODS The recent literature on the regulation of MSCs osteogenic differentiation by miRNAs was extensively reviewed, and its regulatory mechanism and its application as a therapeutic target and diagnostic tool in orthopedic diseases were reviewed. RESULTS miRNAs are small endogenous non-coding RNAs with a length of 20-22 nucleotides, which play an important role in the osteogenic differentiation of MSCs. Osteogenesis begins with the differentiation of MSCs into mature osteoblasts, and each stage of dynamic homeostasis of bone metabolism is associated with the regulation of different miRNAs. miRNAs are regulated from the post-transcriptional level by mRNAs cleavage, degradation, translational repression, or methylation. In addition, current studies suggest that miRNAs can be used as a new diagnostic tool and therapeutic target for orthopedic diseases. CONCLUSION Further study on the regulation mechanism of miRNAs will provide more ideas for finding new therapeutic targets and diagnostic tools for orthopedic disease.
Collapse
Affiliation(s)
- 晓龙 李
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 清泉 孔
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
13
|
Wu F, Huang W, Yang Y, Liu F, Chen J, Wang G, Sun Z. miR-155-5p regulates mesenchymal stem cell osteogenesis and proliferation by targeting GSK3B in steroid-associated osteonecrosis. Cell Biol Int 2020; 45:83-91. [PMID: 32991030 DOI: 10.1002/cbin.11470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/14/2020] [Accepted: 09/26/2020] [Indexed: 01/31/2023]
Abstract
microRNAs (miRNAs) have recently been recognized as playing an important role in bone-associated diseases. This study investigated whether the reduced miR-155-5p in steroid-associated osteonecrosis of the femoral head (ONFH) attenuated osteogenic differentiation and cell proliferation by targeting GSK3B. Bone marrow was collected from the proximal femurs of patients with steroid-associated ONFH (n = 10) and patients with new femoral neck fracture (n = 10) and mesenchymal stem cells (MSCs) were isolated. The expression profile, the biological function of miR-155-5p, and the interaction between miR-155-5p and GSK3B were investigated by cell viability measurement, western blot, real-time polymerase chain reaction, luciferase reporter assay, and Alizarin Red S (ARS) staining of MSCs. The MSCs that were obtained from the femoral neck fracture group and from the steroid-associated ONFH group were transfected with or without miR-155-5p. We found that, in ONFH samples, the level of mature miR-155-5p was significantly lower than that of control samples. By inhibiting GSK3B, miR-155-5p promoted the nuclear translocation of β-catenin, increased the expression of osteogenesis-related genes, and facilitated the proliferation and differentiation of MSCs. Restoring the expression of GSK3B in MSCs partially reversed the effect of miR-155-5p. These findings suggest that reduced miR-155-5p in steroid-associated ONFH attenuates osteogenic differentiation and cell proliferation by increased levels of GSK3B and inhibition of Wnt signaling.
Collapse
Affiliation(s)
- Fei Wu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wei Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Yang
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Feng Liu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jin Chen
- Department of Orthopedics, Yiling Hospital, Yichang, Hubei, China
| | - Guangyong Wang
- Department of Orthopedics, Yiling Hospital, Yichang, Hubei, China
| | - Zhibo Sun
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Colleti C, Melo-Hanchuk TD, da Silva FRM, Saito Â, Kobarg J. Complex interactomes and post-translational modifications of the regulatory proteins HABP4 and SERBP1 suggest pleiotropic cellular functions. World J Biol Chem 2019; 10:44-64. [PMID: 31768228 PMCID: PMC6872977 DOI: 10.4331/wjbc.v10.i3.44] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
The 57 kDa antigen recognized by the Ki-1 antibody, is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7% identity and 67.4% similarity with serpin mRNA binding protein 1, which is also named CGI-55, or plasminogen activator inhibitor type-1-RNA binding protein-1, indicating that they might be paralog proteins, possibly with similar or redundant functions in human cells. Through the identification of their protein interactomes, both regulatory proteins have been functionally implicated in transcriptional regulation, mRNA metabolism, specifically RNA splicing, the regulation of mRNA stability, especially, in the context of the progesterone hormone response, and the DNA damage response. Both proteins also show a complex pattern of post-translational modifications, involving Ser/Thr phosphorylation, mainly through protein kinase C, arginine methylation and SUMOylation, suggesting that their functions and locations are highly regulated. Furthermore, they show a highly dynamic cellular localization pattern with localizations in both the cytoplasm and nucleus as well as punctuated localizations in both granular cytoplasmic protein bodies, upon stress, and nuclear splicing speckles. Several reports in the literature show altered expressions of both regulatory proteins in a series of cancers as well as mutations in their genes that may contribute to tumorigenesis. This review highlights important aspects of the structure, interactome, post-translational modifications, sub-cellular localization and function of both regulatory proteins and further discusses their possible functions and their potential as tumor markers in different cancer settings.
Collapse
Affiliation(s)
- Carolina Colleti
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Talita Diniz Melo-Hanchuk
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Flávia Regina Moraes da Silva
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Ângela Saito
- Laboratório Nacional de Biociências, CNPEM, Campinas 13083-970, Brazil
| | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| |
Collapse
|
15
|
Wu RW, Lian WS, Kuo CW, Chen YS, Ko JY, Wang FS. S100 Calcium Binding Protein A9 Represses Angiogenic Activity and Aggravates Osteonecrosis of the Femoral Head. Int J Mol Sci 2019; 20:ijms20225786. [PMID: 31752076 PMCID: PMC6887714 DOI: 10.3390/ijms20225786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Ischemic damage aggravation of femoral head collapse is a prominent pathologic feature of osteonecrosis of the femoral head (ONFH). In this regard, S100 calcium binding protein A9 (S100A9) is known to deteriorate joint integrity, however, little is understood about which role S100A9 may play in ONFH. In this study, a proteomics analysis has revealed a decrease in the serum S100A9 level in patients with ONFH upon hyperbaric oxygen therapy. Serum S100A9 levels, along with serum vascular endothelial growth factor (VEGF), soluble vascular cell adhesion molecule-1 (sVCAM-1), interleukin-6 (IL-6), and tartrate-resistant acid phosphatase 5b levels were increased in patients with ONFH, whereas serum osteocalcin levels were decreased as compared to healthy controls. Serum S100A9 levels were increased with the Ficat and Arlet stages of ONFH and correlated with the patients with a history of being on glucocorticoid medication and alcohol consumption. Osteonecrotic tissue showed hypovasculature histopathology together with weak immunostaining for vessel marker CD31 and von Willrbrand factor (vWF) as compared to femoral head fracture specimens. Thrombosed vessels, fibrotic tissue, osteocytes, and inflammatory cells displayed strong S100A9 immunoreactivity in osteonecrotic lesion. In vitro, ONFH serum and S100A9 inhibited the tube formation of vessel endothelial cells and vessel outgrowth of rat aortic rings, whereas the antibody blockade of S100A9 improved angiogenic activities. Taken together, increased S100A9 levels are relevant to the development of ONFH. S100A9 appears to provoke avascular damage, ultimately accelerating femoral head deterioration through reducing angiogenesis. This study provides insight into the molecular mechanism underlying the development of ONFH. Here, analysis also highlights that serum S100A9 is a sensitive biochemical indicator of ONFH.
Collapse
Affiliation(s)
- Re-Wen Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
- Department of Medicine; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wei-Shiung Lian
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chung-Wen Kuo
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yu-Shan Chen
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
| | - Feng-Sheng Wang
- Department of Medicine; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Correspondence:
| |
Collapse
|
16
|
Expression Profile Analysis of Differentially Expressed Circular RNAs in Steroid-Induced Osteonecrosis of the Femoral Head. DISEASE MARKERS 2019; 2019:8759642. [PMID: 31827647 PMCID: PMC6885284 DOI: 10.1155/2019/8759642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
Background A growing number of studies have suggested that circular RNAs (circRNAs) serve as potential diagnostic biomarkers in many diseases. However, the role of circRNAs in steroid-induced osteonecrosis of the femoral head (SONFH) has not been reported. Methods Secondary sequencing was performed to profile circRNA expression in peripheral blood samples from three SONFH patients and three healthy individuals. We confirmed our preliminary findings by qRT-PCR. Bioinformatics analysis was conducted to predict their functions. Results The result showed 345 dysregulated circRNAs. qRT-PCR of eight selected circRNAs preliminarily confirmed the results, which were consistent with RNA sequencing. Bioinformatics analyses were performed to predict the functions of circRNAs to target the genes of miRNAs and the networks of circRNA-miRNA-mRNA interactions. Conclusions This study provides a new and fundamental circRNA profile of SONFH and a theoretical basis for further studies on the functions of circRNAs in SONFH.
Collapse
|
17
|
Down-regulation of microRNA-138 improves immunologic function via negatively targeting p53 by regulating liver macrophage in mice with acute liver failure. Biosci Rep 2019; 39:BSR20190763. [PMID: 31152110 PMCID: PMC6639459 DOI: 10.1042/bsr20190763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) have been frequently identified as key mediators in almost all developmental and pathological processes, including those in the liver. The present study was conducted with aims of investigating the role of microRNA-138 (miR-138) in acute liver failure (ALF) via a mechanism involving p53 and liver macrophage in a mouse model. The ALF mouse model was established using C57BL/6 male mice via tail vein injection of Concanamycin A (Con A) solution. The relationship between miR-138 and p53 was tested. The mononuclear macrophages were infected with mimic and inhibitor of miR-138 in order to identify roles of miR-138 in p53 and levels of inflammatory factors. Reverse transcription quantitative polymerase chain reaction (RT-qPCR), Western blot analysis and ELISA were conducted in order to determine the levels of miR-138, inflammatory factors, and p53 during ALF. The results showed an increase in the levels of miR-138 and inflammatory factors in ALF mice induced by the ConA as time progressed and reached the peak at 12 h following treatment with ConA, while it was on the contrary when it came to the level of p53. Dual-luciferase reporter gene assay revealed that p53 was a target gene of miR-138. Furthermore, the results from the in vitro transfection experiments in primary macrophages of ALF mouse showed that miR-138 down-regulated p53 and enhanced levels of inflammatory factors; thus, improving immune function in ALF mice. In conclusion, by negatively targeting p53, the decreased miR-138 improves immunologic function by regulating liver macrophage in mouse models of ALF.
Collapse
|
18
|
Dai Z, Jin Y, Zheng J, Liu K, Zhao J, Zhang S, Wu F, Sun Z. MiR-217 promotes cell proliferation and osteogenic differentiation of BMSCs by targeting DKK1 in steroid-associated osteonecrosis. Biomed Pharmacother 2019; 109:1112-1119. [PMID: 30551361 DOI: 10.1016/j.biopha.2018.10.166] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) have recently been recognized to play an important role in bone-associated diseases. This study aims to explore the expression profile and biological function of miR-217, which is known to be related to tumor cell proliferation and migration, to the proliferation and osteogenic differentiation of MSCs from the patients with steroid-associated osteonecrosis (ONFH). Bone marrow was obtained from the proximal femur of 10 patients with ONFH and 10 patients with femoral neck fractures. Bone marrow-derived mesenchymal stem cells (MSCs) were isolated and cultured. The expression profile, biological function of miR-217 and the interaction between miR-217 and DKK1 were assayed using cell viability measurement, western blot, Real-time PCR, luciferase reporter assay, Alizarin Red S (ARS) staining. We noted that the expression level of miR-217 was significantly decreased in the ONFH samples compared to the control samples (P < 0.0001). By targeting DKK1, miR-217 promoted nuclear translocation of β-catenin, increased expression of RUNX2, COL1A1 and obviously promoted the proliferation and differentiation of MSCs. Restoring the expression of DKK1 in the MSCs partially reversed the role of miR-217. These findings suggest that miR-217 promotes cell proliferation and osteogenic differentiation by inhibiting DKK1 during the development of steroid-associated osteonecrosis.
Collapse
Affiliation(s)
- Zhipeng Dai
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yi Jin
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | - Jia Zheng
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Ke Liu
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jiajun Zhao
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Shanfeng Zhang
- Department of Orthopedics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Wu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhibo Sun
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei, China; Department of Orthopedics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Discrepant hypoxia tolerance aggravates subchondral delamination in osteonecrosis of the femoral head. INTERNATIONAL ORTHOPAEDICS 2018; 43:753-754. [PMID: 30448884 DOI: 10.1007/s00264-018-4236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022]
|
20
|
Hip osteonecrosis: stem cells for life or behead and arthroplasty? INTERNATIONAL ORTHOPAEDICS 2018; 42:1425-1428. [PMID: 29934715 DOI: 10.1007/s00264-018-4026-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
|