1
|
Hoetzlein RC. Flock2: A model for orientation-based social flocking. J Theor Biol 2024; 593:111880. [PMID: 38972569 DOI: 10.1016/j.jtbi.2024.111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
The aerial flocking of birds, or murmurations, has fascinated observers while presenting many challenges to behavioral study and simulation. We examine how the periphery of murmurations remain well bounded and cohesive. We also investigate agitation waves, which occur when a flock is disturbed, developing a plausible model for how they might emerge spontaneously. To understand these behaviors a new model is presented for orientation-based social flocking. Previous methods model inter-bird dynamics by considering the neighborhood around each bird, and introducing forces for avoidance, alignment, and cohesion as three dimensional vectors that alter acceleration. Our method introduces orientation-based social flocking that treats social influences from neighbors more realistically as a desire to turn, indirectly controlling the heading in an aerodynamic model. While our model can be applied to any flocking social bird we simulate flocks of starlings, Sturnus vulgaris, and demonstrate the possibility of orientation waves in the absence of predators. Our model exhibits spherical and ovoidal flock shapes matching observation. Comparisons of our model to Reynolds' on energy consumption and frequency analysis demonstrates more realistic motions, significantly less energy use in turning, and a plausible mechanism for emergent orientation waves.
Collapse
|
2
|
Xiao Y, Lei X, Zheng Z, Xiang Y, Liu YY, Peng X. Perception of motion salience shapes the emergence of collective motions. Nat Commun 2024; 15:4779. [PMID: 38839782 PMCID: PMC11153630 DOI: 10.1038/s41467-024-49151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Despite the profound implications of self-organization in animal groups for collective behaviors, understanding the fundamental principles and applying them to swarm robotics remains incomplete. Here we propose a heuristic measure of perception of motion salience (MS) to quantify relative motion changes of neighbors from first-person view. Leveraging three large bird-flocking datasets, we explore how this perception of MS relates to the structure of leader-follower (LF) relations, and further perform an individual-level correlation analysis between past perception of MS and future change rate of velocity consensus. We observe prevalence of the positive correlations in real flocks, which demonstrates that individuals will accelerate the convergence of velocity with neighbors who have higher MS. This empirical finding motivates us to introduce the concept of adaptive MS-based (AMS) interaction in swarm model. Finally, we implement AMS in a swarm of ~102 miniature robots. Swarm experiments show the significant advantage of AMS in enhancing self-organization of the swarm for smooth evacuations from confined environments.
Collapse
Affiliation(s)
- Yandong Xiao
- College of System Engineering, National University of Defense Technology, Changsha, Hunan, China.
| | - Xiaokang Lei
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Zhicheng Zheng
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yalun Xiang
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Xingguang Peng
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Fenton AA. Remapping revisited: how the hippocampus represents different spaces. Nat Rev Neurosci 2024; 25:428-448. [PMID: 38714834 DOI: 10.1038/s41583-024-00817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/25/2024]
Abstract
The representation of distinct spaces by hippocampal place cells has been linked to changes in their place fields (the locations in the environment where the place cells discharge strongly), a phenomenon that has been termed 'remapping'. Remapping has been assumed to be accompanied by the reorganization of subsecond cofiring relationships among the place cells, potentially maximizing hippocampal information coding capacity. However, several observations challenge this standard view. For example, place cells exhibit mixed selectivity, encode non-positional variables, can have multiple place fields and exhibit unreliable discharge in fixed environments. Furthermore, recent evidence suggests that, when measured at subsecond timescales, the moment-to-moment cofiring of a pair of cells in one environment is remarkably similar in another environment, despite remapping. Here, I propose that remapping is a misnomer for the changes in place fields across environments and suggest instead that internally organized manifold representations of hippocampal activity are actively registered to different environments to enable navigation, promote memory and organize knowledge.
Collapse
Affiliation(s)
- André A Fenton
- Center for Neural Science, New York University, New York, NY, USA.
- Neuroscience Institute at the NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Storms RF, Carere C, Musters R, Hulst R, Verhulst S, Hemelrijk CK. A robotic falcon induces similar collective escape responses in different bird species. J R Soc Interface 2024; 21:20230737. [PMID: 38689546 PMCID: PMC11061643 DOI: 10.1098/rsif.2023.0737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/13/2024] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Patterns of collective escape of a bird flock from a predator are fascinating, but difficult to study under natural conditions because neither prey nor predator is under experimental control. We resolved this problem by using an artificial predator (RobotFalcon) resembling a peregrine falcon in morphology and behaviour. We imitated hunts by chasing flocks of corvids, gulls, starlings and lapwings with the RobotFalcon, and compared their patterns of collective escape to those when chased by a conventional drone and, in case of starlings, hunted by wild peregrine falcons. Active pursuit of flocks, rather than only flying nearby by either the RobotFalcon or the drone, made flocks collectively escape more often. The RobotFalcon elicited patterns of collective escape in flocks of all species more often than the drone. Attack altitude did not affect the frequency of collective escape. Starlings escaped collectively equally often when chased by the RobotFalcon or a wild peregrine falcon. Flocks of all species reacted most often by collective turns, second most often by compacting and third by splitting into subflocks. This study demonstrates the potential of an artificial aerial predator for studying the collective escape behaviour of free-living birds, opening exciting avenues in the empirical study of prey-predator interactions.
Collapse
Affiliation(s)
- Rolf F. Storms
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Claudio Carere
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | | | - Ronja Hulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Charlotte K. Hemelrijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Pertzelan A, Ariel G, Kiflawi M. Schooling of light reflecting fish. PLoS One 2023; 18:e0289026. [PMID: 37478091 PMCID: PMC10361475 DOI: 10.1371/journal.pone.0289026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
One of the hallmarks of the collective movement of large schools of pelagic fish are waves of shimmering flashes that propagate across the school, usually following an attack by a predator. Such flashes arise when sunlight is reflected off the specular (mirror-like) skin that characterizes many pelagic fishes, where it is otherwise thought to offer a means for camouflage in open waters. While it has been suggested that these 'shimmering waves' are a visual manifestation of the synchronized escape response of the fish, the phenomenon has been regarded only as an artifact of esthetic curiosity. In this study we apply agent-based simulations and deep learning techniques to show that, in fact, shimmering waves contain information on the behavioral dynamics of the school. Our analyses are based on a model that combines basic rules of collective motion and the propagation of light beams in the ocean, as they hit and reflect off the moving fish. We use the resulting reflection patterns to infer the essential dynamics and inter-individual interactions which are necessary to generate shimmering waves. Moreover, we show that light flashes observed by the school members themselves may extend the range at which information can be communicated across the school. Assuming that fish pay heed to this information, for example by entering an apprehensive state of reduced response-time, our analysis suggests that it can speed up the propagation of information across the school. Further still, we use an artificial neural network to show that light flashes are, on their own, indicative of the state and dynamics of the school, and are sufficient to infer the direction of attack and the shape of the school with high accuracy.
Collapse
Affiliation(s)
- Assaf Pertzelan
- Faculty of Life Sciences, Ben Gurion University, Beer-Sheva, Israel
- The Interuniversity Institute for Marine Sciences at Eilat (IUI), Eilat, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel
| | - Moshe Kiflawi
- Faculty of Life Sciences, Ben Gurion University, Beer-Sheva, Israel
- The Interuniversity Institute for Marine Sciences at Eilat (IUI), Eilat, Israel
| |
Collapse
|
6
|
Wu W, Zhang X, Miao Y. Starling-Behavior-Inspired Flocking Control of Fixed-Wing Unmanned Aerial Vehicle Swarm in Complex Environments with Dynamic Obstacles. Biomimetics (Basel) 2022; 7:biomimetics7040214. [PMID: 36546914 PMCID: PMC9775248 DOI: 10.3390/biomimetics7040214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
For the sake of accomplishing the rapidity, safety and consistency of obstacle avoidance for a large-scale unmanned aerial vehicle (UAV) swarm in a dynamic and unknown 3D environment, this paper proposes a flocking control algorithm that mimics the behavior of starlings. By analyzing the orderly and rapid obstacle avoidance behavior of a starling flock, a motion model inspired by a flock of starlings is built, which contains three kinds of motion patterns, including the collective pattern, evasion pattern and local-following pattern. Then, the behavior patterns of the flock of starlings are mapped on a fixed-wing UAV swarm to improve the ability of obstacle avoidance. The key contribution of this paper is collective and collision-free motion planning for UAV swarms in unknown 3D environments with dynamic obstacles. Numerous simulations are conducted in different scenarios and the results demonstrate that the proposed algorithm improves the speed, order and safety of the UAV swarm when avoiding obstacles.
Collapse
Affiliation(s)
- Weihuan Wu
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Engineering Research Center of Digital Community, Ministry of Education, Beijing 100124, China
| | - Xiangyin Zhang
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Engineering Research Center of Digital Community, Ministry of Education, Beijing 100124, China
- Correspondence:
| | - Yang Miao
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Papadopoulou M, Hildenbrandt H, Sankey DWE, Portugal SJ, Hemelrijk CK. Emergence of splits and collective turns in pigeon flocks under predation. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211898. [PMID: 35223068 PMCID: PMC8864349 DOI: 10.1098/rsos.211898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/25/2022] [Indexed: 05/03/2023]
Abstract
Complex patterns of collective behaviour may emerge through self-organization, from local interactions among individuals in a group. To understand what behavioural rules underlie these patterns, computational models are often necessary. These rules have not yet been systematically studied for bird flocks under predation. Here, we study airborne flocks of homing pigeons attacked by a robotic falcon, combining empirical data with a species-specific computational model of collective escape. By analysing GPS trajectories of flocking individuals, we identify two new patterns of collective escape: early splits and collective turns, occurring even at large distances from the predator. To examine their formation, we extend an agent-based model of pigeons with a 'discrete' escape manoeuvre by a single initiator, namely a sudden turn interrupting the continuous coordinated motion of the group. Both splits and collective turns emerge from this rule. Their relative frequency depends on the angular velocity and position of the initiator in the flock: sharp turns by individuals at the periphery lead to more splits than collective turns. We confirm this association in the empirical data. Our study highlights the importance of discrete and uncoordinated manoeuvres in the collective escape of bird flocks and advocates the systematic study of their patterns across species.
Collapse
Affiliation(s)
- Marina Papadopoulou
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Hanno Hildenbrandt
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | | - Steven J. Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, UK
| | - Charlotte K. Hemelrijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Papadopoulou M, Hildenbrandt H, Sankey DWE, Portugal SJ, Hemelrijk CK. Self-organization of collective escape in pigeon flocks. PLoS Comput Biol 2022; 18:e1009772. [PMID: 35007287 PMCID: PMC8782486 DOI: 10.1371/journal.pcbi.1009772] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/21/2022] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
Bird flocks under predation demonstrate complex patterns of collective escape. These patterns may emerge by self-organization from local interactions among group-members. Computational models have been shown to be valuable for identifying what behavioral rules may govern such interactions among individuals during collective motion. However, our knowledge of such rules for collective escape is limited by the lack of quantitative data on bird flocks under predation in the field. In the present study, we analyze the first GPS trajectories of pigeons in airborne flocks attacked by a robotic falcon in order to build a species-specific model of collective escape. We use our model to examine a recently identified distance-dependent pattern of collective behavior: the closer the prey is to the predator, the higher the frequency with which flock members turn away from it. We first extract from the empirical data of pigeon flocks the characteristics of their shape and internal structure (bearing angle and distance to nearest neighbors). Combining these with information on their coordination from the literature, we build an agent-based model adjusted to pigeons' collective escape. We show that the pattern of turning away from the predator with increased frequency when the predator is closer arises without prey prioritizing escape when the predator is near. Instead, it emerges through self-organization from a behavioral rule to avoid the predator independently of their distance to it. During this self-organization process, we show how flock members increase their consensus over which direction to escape and turn collectively as the predator gets closer. Our results suggest that coordination among flock members, combined with simple escape rules, reduces the cognitive costs of tracking the predator while flocking. Such escape rules that are independent of the distance to the predator can now be investigated in other species. Our study showcases the important role of computational models in the interpretation of empirical findings of collective behavior.
Collapse
Affiliation(s)
- Marina Papadopoulou
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Hanno Hildenbrandt
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Daniel W. E. Sankey
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Steven J. Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Charlotte K. Hemelrijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Causes of variation of darkness in flocks of starlings, a computational model. SWARM INTELLIGENCE 2021. [DOI: 10.1007/s11721-021-00207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Tuliozi B, Camerlenghi E, Griggio M. Dyadic leader–follower dynamics change across situations in captive house sparrows. Behav Ecol 2021. [DOI: 10.1093/beheco/araa148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Individuals can behave as either leaders or followers in many taxa of collectively moving animals. Leaders initiate movements and may incur predation risks, while followers are thought to be more risk-averse. As a group encounters different challenges and ecological situations, individuals in the group may change their social role. We investigated leader and follower roles using dyads of captive house sparrow (Passer domesticus) during both exploration of a novel environment and a simulation of predator attack. During the exploration of a novel environment, individuals behaved consistently either as leaders or followers. However, in the simulated attack tests, individuals in the dyads switched their roles, with “followers” leading the escape flights and “leaders” following them. Our study provides evidence of 1) consistent differences between individuals in behavior during social escape and 2) a relationship between social roles across different situations. We suggest that such relationship hinges on individual risk-taking tendencies, which manifest through different social roles across different ecological situations. We further speculate that risk-taking individuals might gain benefits by following risk-averse individuals during an escape flight.
Collapse
Affiliation(s)
- Beniamino Tuliozi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova,Italy
| | - Ettore Camerlenghi
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria,Australia
| | - Matteo Griggio
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova,Italy
| |
Collapse
|
11
|
Balázs B, Vásárhelyi G, Vicsek T. Adaptive leadership overcomes persistence-responsivity trade-off in flocking. J R Soc Interface 2020; 17:20190853. [PMID: 32517635 PMCID: PMC7328404 DOI: 10.1098/rsif.2019.0853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/28/2020] [Indexed: 11/12/2022] Open
Abstract
The living world is full of cohesive collectives that have evolved to move together with high efficiency. Schools of fish or flocks of birds maintain their global direction despite significant noise perturbing the individuals, yet they are capable of performing abrupt collective turns when relevant agitation alters the state of a few members. Ruling local fluctuations out of global movement leads to persistence and requires overdamped interaction dynamics, while propagating swift turns throughout the group leads to responsivity and requires underdamped interaction dynamics. In this paper we show a way to avoid this conflict by introducing a time-dependent leadership hierarchy that adapts locally to will: agents' intention of changing direction. Integrating our new concept of will-based inter-agent behaviour highly enhances the responsivity of standard collective motion models, thus enables breaking out of their former limit, the persistence-responsivity trade-off. We also show that the increased responsivity to environmental cues scales well with growing flock size. Our solution relies on active communication or advanced cognition for the perception of will. The incorporation of these into collective motion is a plausible hypothesis in higher order species, while it is a realizable feature for artificial robots, as demonstrated by our swarm of 52 drones.
Collapse
Affiliation(s)
| | - Gábor Vásárhelyi
- MTA-ELTE Statistical and Biological Physics Research Group, Budapest, Hungary
| | - Tamás Vicsek
- Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Statistical and Biological Physics Research Group, Budapest, Hungary
| |
Collapse
|
12
|
Gompper G, Winkler RG, Speck T, Solon A, Nardini C, Peruani F, Löwen H, Golestanian R, Kaupp UB, Alvarez L, Kiørboe T, Lauga E, Poon WCK, DeSimone A, Muiños-Landin S, Fischer A, Söker NA, Cichos F, Kapral R, Gaspard P, Ripoll M, Sagues F, Doostmohammadi A, Yeomans JM, Aranson IS, Bechinger C, Stark H, Hemelrijk CK, Nedelec FJ, Sarkar T, Aryaksama T, Lacroix M, Duclos G, Yashunsky V, Silberzan P, Arroyo M, Kale S. The 2020 motile active matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:193001. [PMID: 32058979 DOI: 10.1088/1361-648x/ab6348] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area.
Collapse
Affiliation(s)
- Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Mills R, Taylor GK, Hemelrijk CK. Sexual size dimorphism, prey morphology and catch success in relation to flight mechanics in the peregrine falcon: a simulation study. JOURNAL OF AVIAN BIOLOGY 2019; 50:jav.01979. [PMID: 35873526 PMCID: PMC7613156 DOI: 10.1111/jav.01979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/18/2019] [Indexed: 06/15/2023]
Abstract
In common with many other raptors, female peregrine falcons Falco peregrinus are about 50% heavier than males. Their sexual dimorphism is thought to allow breeding pairs to exploit a wider range of prey through a division of labor: the male being able to catch more maneuverable prey species; the female capable of carrying larger ones. Given the difficulty of assessing the catch success and load carrying capacity of both sexes of falcon in the field, we here adopt a novel approach to test the division-of-labor theory by using a detailed physics-based flight simulator of birds. We study attacks by male and female peregrines on prey species ranging from small passerines to large ducks, testing how catch success relates to the flight performance of predator and prey. Males prove to be better than females at catching highly maneuverable prey in level flight, but the catch success of both sexes improves and becomes more similar when diving, because of the higher aerodynamic forces that are available to both sexes for maneuvering in high-speed flight. The higher maximum roll acceleration of the male peregrine explains its edge over the female in catching maneuverable prey in level flight. Overall, catch success is more strongly influenced by the differences in maneuverability that exist between different species of prey than between the different sexes of falcon. On the other hand, the female can carry up to 50% greater loads than the male. More generally, our detailed simulation approach highlights the importance of several previously overlooked features of attack and escape. In particular, we find that it is not the prey's instantaneous maximum centripetal acceleration but the prey's ability to sustain a high centripetal acceleration for an extended period of time that is the primary driver of the variation in catch success across species.
Collapse
Affiliation(s)
- Robin Mills
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen, Groningen, the Netherlands
| | | | - Charlotte K Hemelrijk
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Sumpter DJT, Szorkovszky A, Kotrschal A, Kolm N, Herbert-Read JE. Using activity and sociability to characterize collective motion. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0015. [PMID: 29581400 PMCID: PMC5882985 DOI: 10.1098/rstb.2017.0015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/11/2017] [Indexed: 11/12/2022] Open
Abstract
A wide range of measurements can be made on the collective motion of groups, and the movement of individuals within them. These include, but are not limited to: group size, polarization, speed, turning speed, speed or directional correlations, and distances to near neighbours. From an ecological and evolutionary perspective, we would like to know which of these measurements capture biologically meaningful aspects of an animal's behaviour and contribute to its survival chances. Previous simulation studies have emphasized two main factors shaping individuals' behaviour in groups; attraction and alignment. Alignment responses appear to be important in transferring information between group members and providing synergistic benefits to group members. Likewise, attraction to conspecifics is thought to provide benefits through, for example, selfish herding. Here, we use a factor analysis on a wide range of simple measurements to identify two main axes of collective motion in guppies (Poecilia reticulata): (i) sociability, which corresponds to attraction (and to a lesser degree alignment) to neighbours, and (ii) activity, which combines alignment with directed movement. We show that for guppies, predation in a natural environment produces higher degrees of sociability and (in females) lower degrees of activity, while female guppies sorted for higher degrees of collective alignment have higher degrees of both sociability and activity. We suggest that the activity and sociability axes provide a useful framework for measuring the behaviour of animals in groups, allowing the comparison of individual and collective behaviours within and between species.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
| | | | | | - Niclas Kolm
- Zoology Department, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
16
|
Storms RF, Carere C, Zoratto F, Hemelrijk CK. Complex patterns of collective escape in starling flocks under predation. Behav Ecol Sociobiol 2019; 73:10. [PMID: 30930523 PMCID: PMC6404399 DOI: 10.1007/s00265-018-2609-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/13/2018] [Accepted: 11/12/2018] [Indexed: 11/04/2022]
Abstract
ABSTRACT Collective behaviour of animals has been a main focus of recent research, yet few empirical studies deal with this issue in the context of predation, a major driver of social complexity in many animal species. When starling (Sturnus vulgaris) flocks are under attack by a raptor, such as a peregrine falcon (Falco peregrinus), they show a great diversity of patterns of collective escape. The corresponding structural complexity concerns rapid variation in density and shape of the flock over time. Here, we present a first step towards unravelling this complexity. We apply a time series analysis to video footage of 182 sequences of hunting by falcons on flocks of thousands of starlings close to two urban roosts during winter. We distinguish several types of collective escape by determining the position and movement of individuals relative to each other (which determines darkness and shape of the flock over time) as well as relative to the predator, namely 'flash expansion', 'blackening', 'wave event', 'vacuole', 'cordon' and 'split'. We show that the specific type of collective escape depends on the collective pattern that precedes it and on the level of threat posed by the raptor. A wave event was most likely to occur when the predator attacked at medium speed. Flash expansion occurred more frequently when the predator approached the flock at faster rather than slower speed and attacked from above rather than from the side or below. Flash expansion was often followed by split, but in many cases, the flock showed resilience by remaining intact. During a hunting sequence, the frequencies of different patterns of collective escape increased when the frequency of attack by the raptor was higher. Despite their complexity, we show that patterns of collective escape depend on the predatory threat, which resembles findings in fish. SIGNIFICANCE STATEMENT Patterns of collective escape in flocks of starlings have always intrigued laymen and scientists. A detailed analysis of their complex dynamics has been lacking so far, and is the focus of our present study: we analysed video footage of hunting by falcons on flocks of thousands of starlings and show how patterns of collective escape (namely flash expansion, blackening, wave event, vacuole, cordon and split) depend on the preceding pattern and on details of attack. A higher frequency of attack during a hunting sequence resulted in a higher frequency of collective escape events. Flash expansion happened most often when the predator attacks at greater speed. A wave event was most likely when the raptor attacks at medium (rather than high or low) speed. These results provide a first quantitative approach to social complexity in collective avoidance of a predator.
Collapse
Affiliation(s)
- R. F. Storms
- Theoretical Research in Evolutionary Life Sciences (TRÊS), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - C. Carere
- Department of Ecological and Biological Sciences, University of Tuscia, viale dell‘Università s.n.c., 01100 Viterbo, Italy
| | - F. Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, viale Regina Elena 299, I-00161 Rome, Italy
| | - C. K. Hemelrijk
- Theoretical Research in Evolutionary Life Sciences (TRÊS), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
17
|
Azaïs M, Blanco S, Bon R, Fournier R, Pillot MH, Gautrais J. Traveling pulse emerges from coupled intermittent walks: A case study in sheep. PLoS One 2018; 13:e0206817. [PMID: 30517114 PMCID: PMC6281248 DOI: 10.1371/journal.pone.0206817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/20/2018] [Indexed: 12/04/2022] Open
Abstract
Monitoring small groups of sheep in spontaneous evolution in the field, we decipher behavioural rules that sheep follow at the individual scale in order to sustain collective motion. Individuals alternate grazing mode at null speed and moving mode at walking speed, so cohesive motion stems from synchronising when they decide to switch between the two modes. We propose a model for the individual decision making process, based on switching rates between stopped / walking states that depend on behind / ahead locations and states of the others. We parametrize this model from data. Next, we translate this (microscopic) individual-based model into its density-flow (macroscopic) equations counterpart. Numerical solving these equations display a traveling pulse propagating at constant speed even though each individual is at any moment either stopped or walking. Considering the minimal model embedded in these equations, we derive analytically the steady shape of the pulse (sech square). The parameters of the pulse (shape and speed) are expressed as functions of individual parameters. This pulse emerges from the non linear coupling of start/stop individual decisions which compensate exactly for diffusion and promotes a steady ratio of walking / stopped individuals, which in turn determines the traveling speed of the pulse. The system seems to converge to this pulse from any initial condition, and to recover the pulse after perturbation. This gives a high robustness to this coordination mechanism.
Collapse
Affiliation(s)
- Manon Azaïs
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Stéphane Blanco
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Richard Bon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Richard Fournier
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Marie-Hélène Pillot
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Jacques Gautrais
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
- * E-mail:
| |
Collapse
|
18
|
Paranjape AA, Chung SJ, Kim K, Shim DH. Robotic Herding of a Flock of Birds Using an Unmanned Aerial Vehicle. IEEE T ROBOT 2018. [DOI: 10.1109/tro.2018.2853610] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Goodenough AE, Little N, Carpenter WS, Hart AG. Birds of a feather flock together: Insights into starling murmuration behaviour revealed using citizen science. PLoS One 2017. [PMID: 28628640 PMCID: PMC5476259 DOI: 10.1371/journal.pone.0179277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Pre-roost murmuration displays by European starlings Sturnus vulgaris are a spectacular example of collective animal behaviour. To date, empirical research has focussed largely on flock movement and biomechanics whereas research on possible causal mechanisms that affect flock size and murmuration duration has been limited and restricted to a small number of sites. Possible explanations for this behaviour include reducing predation through the dilution, detection or predator confusion effects (the “safer together” hypotheses) or recruiting more birds to create larger (warmer) roosts (the “warmer together” hypothesis). We collected data on size, duration, habitat, temperature and predators from >3,000 murmurations using citizen science. Sightings were submitted from 23 countries but UK records predominated. Murmurations occurred across a range of habitats but there was no association between habitat and size/duration. Size increased significantly from October to early February, followed by a decrease until the end of the season in March (overall mean 30,082 birds; maximum 750,000 birds). Mean duration was 26 minutes (± 44 seconds SEM). Displays were longest at the start/end of the season, probably due to a significant positive relationship with day length. Birds of prey were recorded at 29.6% of murmurations. The presence of predators including harrier Circus, peregrine Falco peregrinus, and sparrowhawk Accipiter nisus was positively correlated with murmuration size (R2 = 0.401) and duration (R2 = 0.258), especially when these species were flying near to, or actively engaging with, starlings. Temperature was negatively correlated with duration but the effect was much weaker than that of day length. When predators were present, murmurations were statistically more likely to end with all birds going down en masse to roost rather than dispersing from the site. Our findings suggest that starling murmurations are primarily an anti-predator adaptation rather than being undertaken to attract larger numbers of individuals to increase roost warmth.
Collapse
Affiliation(s)
- Anne E Goodenough
- School of Natural & Social Sciences, Francis Close Hall, University of Gloucestershire, Cheltenham, Gloucestershire, United Kingdom
| | - Natasha Little
- Royal Society of Biology, Charles Darwin House, London, United Kingdom
| | - William S Carpenter
- School of Natural & Social Sciences, Francis Close Hall, University of Gloucestershire, Cheltenham, Gloucestershire, United Kingdom
| | - Adam G Hart
- School of Natural & Social Sciences, Francis Close Hall, University of Gloucestershire, Cheltenham, Gloucestershire, United Kingdom
| |
Collapse
|
20
|
|
21
|
Abstract
Moving animal groups display remarkable feats of coordination. This coordination is largely achieved when individuals adjust their movement in response to their neighbours' movements and positions. Recent advancements in automated tracking technologies, including computer vision and GPS, now allow researchers to gather large amounts of data on the movements and positions of individuals in groups. Furthermore, analytical techniques from fields such as statistical physics now allow us to identify the precise interaction rules used by animals on the move. These interaction rules differ not only between species, but also between individuals in the same group. These differences have wide-ranging implications, affecting how groups make collective decisions and driving the evolution of collective motion. Here, I describe how trajectory data can be used to infer how animals interact in moving groups. I give examples of the similarities and differences in the spatial and directional organisations of animal groups between species, and discuss the rules that animals use to achieve this organisation. I then explore how groups of the same species can exhibit different structures, and ask whether this results from individuals adapting their interaction rules. I then examine how the interaction rules between individuals in the same groups can also differ, and discuss how this can affect ecological and evolutionary processes. Finally, I suggest areas of future research.
Collapse
Affiliation(s)
- J E Herbert-Read
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden Department of Mathematics, Uppsala University, S-75106 Uppsala, Sweden
| |
Collapse
|
22
|
Hemelrijk CK, Hildenbrandt H. Diffusion and topological neighbours in flocks of starlings: relating a model to empirical data. PLoS One 2015; 10:e0126913. [PMID: 25993474 PMCID: PMC4436282 DOI: 10.1371/journal.pone.0126913] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/01/2015] [Indexed: 11/21/2022] Open
Abstract
Moving in a group while avoiding collisions with group members causes internal dynamics in the group. Although these dynamics have recently been measured quantitatively in starling flocks (Sturnus vulgaris), it is unknown what causes them. Computational models have shown that collective motion in groups is likely due to attraction, avoidance and, possibly, alignment among group members. Empirical studies show that starlings adjust their movement to a fixed number of closest neighbours or topological range, namely 6 or 7 and assume that each of the three activities is done with the same number of neighbours (topological range). Here, we start from the hypothesis that escape behavior is more effective at preventing collisions in a flock when avoiding the single closest neighbor than compromising by avoiding 6 or 7 of them. For alignment and attraction, we keep to the empirical topological range. We investigate how avoiding one or several neighbours affects the internal dynamics of flocks of starlings in our computational model StarDisplay. By comparing to empirical data, we confirm that internal dynamics resemble empirical data more closely if flock members avoid merely their single, closest neighbor. Our model shows that considering a different number of interaction partners per activity represents a useful perspective and that changing a single parameter, namely the number of interaction partners that are avoided, has several effects through selforganisation.
Collapse
Affiliation(s)
- Charlotte K. Hemelrijk
- Behavioural Ecology and Self-organisation, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Hanno Hildenbrandt
- Behavioural Ecology and Self-organisation, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|