1
|
Janža R, Stritih-Peljhan N, Škorjanc A, Polajnar J, Virant-Doberlet M. Vibrational noise disrupts Nezara viridula communication, irrespective of spectral overlap. Commun Biol 2024; 7:1533. [PMID: 39562693 DOI: 10.1038/s42003-024-07185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Insects rely on substrate vibrations in numerous intra- and interspecific interactions. Yet, our knowledge of noise impact in this modality lags behind that in audition, limiting our understanding of how anthropogenic noise affects insect communities. Auditory research has linked impaired signal perception in noise (i.e., masking) to spectral overlap. We investigated the impact of noise with different spectral compositions on the vibrational communication of the stink bug Nezara viridula, examining courtship behaviour and signal representation by sensory neurons. We found negative effects of vibrational noise regardless of spectral overlap, challenging common expectations. Noise impaired the ability of males to recognize the female signal and localise its source: overlapping noise decreased sensitivity of receptor neurons to the signal and disrupted signal frequency encoding by phase-locking units, while non-overlapping noise only affected frequency encoding. Modelling neuronal spike triggering in sensory neurons linked disrupted frequency encoding to interference-induced alterations of the signal waveform. These alterations also affected time delays between signal arrivals to different legs, crucial for localisation. Our study thus unveils a new masking mechanism, potentially unique to insect vibrosensory systems. The findings highlight the higher vulnerability of vibration-mediated behaviour to noise, with implications for insect interactions in natural and anthropogenically altered environments.
Collapse
Affiliation(s)
- Rok Janža
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 121, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Nataša Stritih-Peljhan
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 121, Ljubljana, Slovenia
| | - Aleš Škorjanc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Jernej Polajnar
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 121, Ljubljana, Slovenia.
| | - Meta Virant-Doberlet
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 121, Ljubljana, Slovenia
| |
Collapse
|
2
|
Kernan CE, Robillard T, Martinson SJ, Dong J, Hamel JA, Symes LB, Ter Hofstede HM. Levels of Airborne Sound And Substrate-borne Vibration Calling Are Negatively Related Across Neotropical False-leaf Katydids. Integr Comp Biol 2024; 64:120-133. [PMID: 38664061 DOI: 10.1093/icb/icae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 07/28/2024] Open
Abstract
Animals often signal in multiple sensory modalities to attract mates, but the level of signaling investment in each modality can differ dramatically between individuals and across species. When functionally overlapping signals are produced in different modalities, their relative use can be influenced by many factors, including differences in signal active space, energetic costs, and predation risk. Characterizing differences in total signal investment across time can shed light on these factors, but requires long focal recordings of signal production. Neotropical pseudophylline katydids produce mate advertisement signals as airborne sound and substrate-borne vibration. Airborne calls, produced via stridulation, are extremely short, high-frequency, and longer-range signals. Conversely, substrate-borne calls produced via abdominal tremulation are longer, low-frequency, relatively more energetically costly, and shorter-range signals. To examine patterns of stridulation and tremulation across species and test hypotheses about the drivers of signal use in each modality, we recorded multimodal signaling activity over 24 hours for males from 10 pseudophylline species from a single Panamanian community. We also collected data on demographic and morphological species characteristics, and acoustic features of airborne calls, such as bandwidth, peak frequency, and duration. Finally, we generated a molecular phylogeny for these species and used phylogenetic generalized least squares models to test for relationships between variables while controlling for evolutionary relationships. We found a negative relationship between sound and vibration calling, indicating that substrate-borne vibrational signaling may compensate for reduced airborne signaling in these species. Sound call bandwidth and the proportion of males collected at lights, a proxy for the amount of male movement, also explained a significant amount of variation in sound calling across species, indicating that the overall relationship between the two types of calling signals may be mediated by the specific characteristics of the signals as well as other species traits.
Collapse
Affiliation(s)
- Ciara E Kernan
- Ecology, Evolution, Environment & Society Graduate Program, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá City, Republic of Panamá
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720-3114, USA
| | - Tony Robillard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE-PSL, UA, 57 rue Cuvier, CP 50, 75231 Paris Cedex 05, France
| | - Sharon J Martinson
- Ecology, Evolution, Environment & Society Graduate Program, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá City, Republic of Panamá
- Fish, Wildlife, & Conservation Biology Department, Colorado State University, 711 Oval Drive, Fort Collins, CO 80521, USA
| | - Jiajia Dong
- School of Life Sciences, Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Tongshan Road 209, 221004, China
| | - Jennifer A Hamel
- Department of Biology, Elon University, 100 Campus Drive, Elon, NC 27244, USA
| | - Laurel B Symes
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá City, Republic of Panamá
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Hannah M Ter Hofstede
- Ecology, Evolution, Environment & Society Graduate Program, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá City, Republic of Panamá
- Department of Integrative Biology, University of Windsor, 401 Sunset Ave., Windsor N9B 3P4 Ontario, Canada
| |
Collapse
|
3
|
Dalbosco Dell'Aglio D, Rivas-Sánchez DF, Wright DS, Merrill RM, Montgomery SH. The Sensory Ecology of Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041428. [PMID: 38052495 PMCID: PMC10759811 DOI: 10.1101/cshperspect.a041428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In this work, we explore the potential influence of sensory ecology on speciation, including but not limited to the concept of sensory drive, which concerns the coevolution of signals and sensory systems with the local environment. The sensory environment can influence individual fitness in a variety of ways, thereby affecting the evolution of both pre- and postmating reproductive isolation. Previous work focused on sensory drive has undoubtedly advanced the field, but we argue that it may have also narrowed our understanding of the broader influence of the sensory ecology on speciation. Moreover, the clearest examples of sensory drive are largely limited to aquatic organisms, which may skew the influence of contributing factors. We review the evidence for sensory drive across environmental conditions, and in this context discuss the importance of more generalized effects of sensory ecology on adaptive behavioral divergence. Finally, we consider the potential of rapid environmental change to influence reproductive barriers related to sensory ecologies. Our synthesis shows the importance of sensory conditions for local adaptation and divergence in a range of behavioral contexts and extends our understanding of the interplay between sensory ecology and speciation.
Collapse
Affiliation(s)
- Denise Dalbosco Dell'Aglio
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, United Kingdom
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - David F Rivas-Sánchez
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Daniel Shane Wright
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Richard M Merrill
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Stephen H Montgomery
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, United Kingdom
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| |
Collapse
|
4
|
Behavioural adjustments of predators and prey to wind speed in the boreal forest. Oecologia 2022; 200:349-358. [PMID: 36175692 DOI: 10.1007/s00442-022-05266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Wind speed can have multifaceted effects on organisms including altering thermoregulation, locomotion, and sensory reception. While forest cover can substantially reduce wind speed at ground level, it is not known if animals living in forests show any behavioural responses to changes in wind speed. Here, we explored how three boreal forest mammals, a predator and two prey, altered their behaviour in response to average daily wind speeds during winter. We collected accelerometer data to determine wind speed effects on activity patterns and kill rates of free-ranging red squirrels (n = 144), snowshoe hares (n = 101), and Canada lynx (n = 27) in Kluane, Yukon from 2015 to 2018. All 3 species responded to increasing wind speeds by changing the time they were active, but effects were strongest in hares, which reduced daily activity by 25%, and lynx, which increased daily activity by 25%. Lynx also increased the number of feeding events by 40% on windy days. These results highlight that wind speed is an important abiotic variable that can affect behaviour, even in forested environments.
Collapse
|
5
|
Gomez-Morales DA, Acevedo-Charry O. Satellite remote sensing of environmental variables can predict acoustic activity of an orthopteran assemblage. PeerJ 2022; 10:e13969. [PMID: 36071828 PMCID: PMC9443809 DOI: 10.7717/peerj.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/08/2022] [Indexed: 01/19/2023] Open
Abstract
Passive acoustic monitoring (PAM) is a promising method for biodiversity assessment, which allows for longer and less intrusive sampling when compared to traditional methods (e.g., collecting specimens), by using sound recordings as the primary data source. Insects have great potential as models for the study and monitoring of acoustic assemblages due to their sensitivity to environmental changes. Nevertheless, ecoacoustic studies focused on insects are still scarce when compared to more charismatic groups. Insects' acoustic activity patterns respond to environmental factors, like temperature, moonlight, and precipitation, but community acoustic perspectives have been barely explored. Here, we provide an example of the usefulness of PAM to track temporal patterns of acoustic activity for a nocturnal assemblage of insects (Orthoptera). We integrate satellite remote sensing and astronomically measured environmental factors at a local scale in an Andean Forest of Colombia and evaluate the acoustic response of orthopterans through automated model detections of their songs for nine weeks (March and April of 2020). We describe the acoustic frequency range and diel period for the calling song of each representative species. Three species overlapped in frequency and diel acoustics but inhabit different strata: canopy, understory, and ground surface level. Based on the acoustic frequency and activity, we identified three trends: (i) both sampled cricket species call at lower frequency for shorter periods of time (dusk); (ii) all sampled katydid species call at higher frequency for longer time periods, including later hours at night; and (iii) the diel acoustic activity span window seems to increase proportionally with dominant acoustic frequency, but further research is required. We also identified a dusk chorus in which all the species sing at the same time. To quantify the acoustic response to environmental factors, we calculated a beta regression with the singing activity as a response variable and moon phase, surface temperature and daily precipitation as explanatory variables. The response to the moon phase was significant for the katydids but not for the crickets, possibly due to differences in diel activity periods. Crickets are active during dusk, thus the effects of moonlight on acoustic activity are negligible. The response to precipitation was significant for the two crickets and not for the katydids, possibly because of higher likelihood of rain interrupting crickets' shorter diel activity period. Our study shows how the local survey of orthopteran acoustic assemblages, with a species taxonomic resolution coupled with remote-sensing environmental measurements can reveal responses to environmental factors. In addition, we demonstrate how satellite data might prove to be a useful alternative source of environmental data for community studies with geographical, financial, or other constraints.
Collapse
Affiliation(s)
- Diego A. Gomez-Morales
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Bogotá D.C., Colombia,Department of Biology, California State University, Northridge, California, United States
| | - Orlando Acevedo-Charry
- Colección de Sonidos Ambientales Mauricio Álvarez-Rebolledo, Colecciones Biológicas, Subdirección de Investigaciones, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Villa de Leyva, Boyacá, Colombia,School of Natural Resources and Environment, Department of Wildlife Ecology and Conservation & Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
6
|
Zhu B, Zhang H, Chen Q, He Q, Zhao X, Sun X, Wang T, Wang J, Cui J. Noise affects mate choice based on visual information via cross-sensory interference. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119680. [PMID: 35787421 DOI: 10.1016/j.envpol.2022.119680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Animal communication is often hampered by noise interference. Noise masking has primarily been studied in terms of its unimodal effect on sound information provision and use, while little is known about its cross-modal effect and how animals weigh unimodal and multimodal courtship cues in noisy environments. Here, we examined the cross-modal effects of background noise on female visual perception of mate choice and female preference for multimodal displays (sound + vocal sac) in a species of treefrog. We tested female mate choices using audio/video playbacks in the presence and absence of noise (white noise band-filtered to match or mismatch female sensitive hearing range, heterospecific chorus). Surprisingly, multimodal displays do not improve receiver performance in noise. The heterospecific chorus and white noise band-filtered to match female sensitive hearing ranges, significantly reduced female responses to the attractive visual stimuli in addition to directly impairing auditory information use. Meanwhile, the cross-modal impacts of background noise are influenced to some extent by whether the noise band matches female sensitive hearing range and the difficulty of distinguishing tasks. Our results add to the evidence for cross-modal effects of noise and are the first to demonstrate that background noise can disrupt female responses to visual information related to mate choice, which may reduce the communication efficiency of audiovisual signals in noisy environments and impose fitness consequences. This study has key ecological and evolutionary implications because it illustrates how noise influences mate choice in wildlife via cross-sensory interference, which is crucial in revealing the function and evolution of multimodal signals in noisy environments as well as informing evidence-based conservation strategies for forecasting and mitigating the multimodal impacts of noise interference on wildlife.
Collapse
Affiliation(s)
- Bicheng Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Haodi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Chen
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, Guangdong, China
| | - Qiaoling He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomeng Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqian Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongliang Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Jianguo Cui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Godfrey JA, Murray TM, Rypstra AL. The effects of environmental light on the role of male chemotactile cues in wolf spider mating interactions. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Stink Bug Communication and Signal Detection in a Plant Environment. INSECTS 2021; 12:insects12121058. [PMID: 34940147 PMCID: PMC8705670 DOI: 10.3390/insects12121058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022]
Abstract
Plants influenced the evolution of plant-dwelling stink bugs' systems underlying communication with chemical and substrate-borne vibratory signals. Plant volatiles provides cues that increase attractiveness or interfere with the probability of finding a mate in the field. Mechanical properties of herbaceous hosts and associated plants alter the frequency, amplitude, and temporal characteristics of stink bug species and sex-specific vibratory signals. The specificity of pheromone odor tuning has evolved through highly specific odorant receptors located within the receptor membrane. The narrow-band low-frequency characteristics of the signals produced by abdomen vibration and the frequency tuning of the highly sensitive subgenual organ vibration receptors match with filtering properties of the plants enabling optimized communication. A range of less sensitive mechanoreceptors, tuned to lower vibration frequencies, detect signals produced by other mechanisms used at less species-specific levels of communication in a plant environment. Whereas the encoding of frequency-intensity and temporal parameters of stink bug vibratory signals is relatively well investigated at low levels of processing in the ventral nerve cord, processing of this information and its integration with other modalities at higher neuronal levels still needs research attention.
Collapse
|
9
|
Classen-Rodríguez L, Tinghitella R, Fowler-Finn K. Anthropogenic noise affects insect and arachnid behavior, thus changing interactions within and between species. CURRENT OPINION IN INSECT SCIENCE 2021; 47:142-153. [PMID: 34252592 DOI: 10.1016/j.cois.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Urbanization and the by-product pollutants of anthropogenic activity pose unique threats to arthropods by altering their sensory environments. Sounds generated by human activities, like construction and road traffic, can oversaturate or interfere with biotic acoustic cues that regulate important ecological processes, such as trophic interactions and the coordination of mating. Here, we review recent work exploring how anthropogenic noise impacts inter-intra-specific interactions in insects and arachnids. We outline empirical frameworks for future research that integrate three mechanisms by which anthropogenic noise alters behavior through interference with acoustic cues: masking, distraction, and misleading. Additionally, we emphasize the need for experimental designs that more accurately replicate natural soundscapes. We encourage future investigations on the effects of developmental exposure to noise pollution and the impacts of multiple interacting sensory pollutants on insect and arachnid behavior.
Collapse
Affiliation(s)
- Leticia Classen-Rodríguez
- Department of Biology, Saint Louis University, Macelwane Hall, 3507 Laclede Avenue, St. Louis, MO 63103, USA.
| | - Robin Tinghitella
- Department of Biological Sciences, University of Denver, Olin Hall, 2190 E Iliff Avenue, Denver, CO 80210, USA
| | - Kasey Fowler-Finn
- Department of Biology, Saint Louis University, Macelwane Hall, 3507 Laclede Avenue, St. Louis, MO 63103, USA; Living Earth Collaborative, Saint Louis, MO, USA
| |
Collapse
|
10
|
Šturm R, Rexhepi B, López Díez JJ, Blejec A, Polajnar J, Sueur J, Virant-Doberlet M. Hay meadow vibroscape and interactions within insect vibrational community. iScience 2021; 24:103070. [PMID: 34585116 PMCID: PMC8456062 DOI: 10.1016/j.isci.2021.103070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/30/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Our experiences shape our knowledge and understanding of the world around us. The natural vibrational environment (vibroscape) is hidden to human senses but is nevertheless perceived and exploited by the majority of animals. Here, we show that the vibroscape recorded on plants in a temperate hay meadow is a dynamic low-frequency world, rich in species-specific vibrational signals. The overall vibroscape composition changed throughout the season and also depended on the plant species, as well as on the spatial position of individual plants within the meadow. Within the studied community, vibrationally signaling species sharing this communication channel avoided interference primarily by partitioning vibrational space on a fine temporal scale. The vibroscape is a reliable source of information in the environment and expands our understanding of ecological and evolutionary processes.
Collapse
Affiliation(s)
- Rok Šturm
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Behare Rexhepi
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Juan José López Díez
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Andrej Blejec
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Jernej Polajnar
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Jérôme Sueur
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 Rue Cuvier, CP 50, 75005 Paris, France
| | - Meta Virant-Doberlet
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| |
Collapse
|
11
|
Fisher DN, Kilgour RJ, Siracusa ER, Foote JR, Hobson EA, Montiglio PO, Saltz JB, Wey TW, Wice EW. Anticipated effects of abiotic environmental change on intraspecific social interactions. Biol Rev Camb Philos Soc 2021; 96:2661-2693. [PMID: 34212487 DOI: 10.1111/brv.12772] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Social interactions are ubiquitous across the animal kingdom. A variety of ecological and evolutionary processes are dependent on social interactions, such as movement, disease spread, information transmission, and density-dependent reproduction and survival. Social interactions, like any behaviour, are context dependent, varying with environmental conditions. Currently, environments are changing rapidly across multiple dimensions, becoming warmer and more variable, while habitats are increasingly fragmented and contaminated with pollutants. Social interactions are expected to change in response to these stressors and to continue to change into the future. However, a comprehensive understanding of the form and magnitude of the effects of these environmental changes on social interactions is currently lacking. Focusing on four major forms of rapid environmental change currently occurring, we review how these changing environmental gradients are expected to have immediate effects on social interactions such as communication, agonistic behaviours, and group formation, which will thereby induce changes in social organisation including mating systems, dominance hierarchies, and collective behaviour. Our review covers intraspecific variation in social interactions across environments, including studies in both the wild and in laboratory settings, and across a range of taxa. The expected responses of social behaviour to environmental change are diverse, but we identify several general themes. First, very dry, variable, fragmented, or polluted environments are likely to destabilise existing social systems. This occurs as these conditions limit the energy available for complex social interactions and affect dissimilar phenotypes differently. Second, a given environmental change can lead to opposite responses in social behaviour, and the direction of the response often hinges on the natural history of the organism in question. Third, our review highlights the fact that changes in environmental factors are not occurring in isolation: multiple factors are changing simultaneously, which may have antagonistic or synergistic effects, and more work should be done to understand these combined effects. We close by identifying methodological and analytical techniques that might help to study the response of social interactions to changing environments, highlight consistent patterns among taxa, and predict subsequent evolutionary change. We expect that the changes in social interactions that we document here will have consequences for individuals, groups, and for the ecology and evolution of populations, and therefore warrant a central place in the study of animal populations, particularly in an era of rapid environmental change.
Collapse
Affiliation(s)
- David N Fisher
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, AB24 3FX, U.K
| | - R Julia Kilgour
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, U.S.A
| | - Erin R Siracusa
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Stocker Road, Exeter, EX4 4PY, U.K
| | - Jennifer R Foote
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH, 45221, U.S.A
| | - Pierre-Olivier Montiglio
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue Président-Kennedy, Montréal, QC, H2X 3X8, Canada
| | - Julia B Saltz
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| | - Tina W Wey
- Maelstrom Research, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montréal, QC, H3G 1A4, Canada
| | - Eric W Wice
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| |
Collapse
|
12
|
Symes LB, Robillard T, Martinson SJ, Dong J, Kernan CE, Miller CR, Ter Hofstede HM. Daily signaling rate and the duration of sound per signal are negatively related in Neotropical forest katydids. Integr Comp Biol 2021; 61:887-899. [PMID: 34137809 DOI: 10.1093/icb/icab138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Researchers have long examined the structure of animal advertisement signals, but comparatively little is known about how often these signals are repeated and what factors predict variation in signaling rate across species. Here, we focus on acoustic advertisement signals to test the hypothesis that calling males experience a tradeoff between investment in the duration or complexity of individual calls and investment in signaling over long time periods. This hypothesis predicts that the number of signals that a male produces per 24 hours will negatively correlate with 1) the duration of sound that is produced in each call (the sum of all pulses) and 2) the number of sound pulses per call. To test this hypothesis, we measured call parameters and the number of calls produced per 24 hours in 16 species of sympatric phaneropterine katydids from the Panamanian rainforest. This assemblage also provided us with the opportunity to test a second taxonomically-specific hypothesis about signaling rates in taxa such as phaneropterine katydids that transition from advertisement calls to mating duets to facilitate mate localization. To establish duets, male phaneropterine katydids call and females produce a short acoustic reply. These duets facilitate searching by males, females, or both sexes, depending on the species. We test the hypothesis that males invest either in calling or in searching for females. This hypothesis predicts a negative relationship between how often males signal over 24 hours and how much males move across the landscape relative to females. For the first hypothesis, there was a strong negative relationship between the number of signals and the duration of sound that is produced in each signal, but we find no relationship between the number of signals produced per 24 hours and the number of pulses per signal. This result suggests the presence of cross-taxa tradeoffs that limit signal production and duration, but not the structure of individual signals. These tradeoffs could be driven by energetic limitations, predation pressure, signal efficacy, or other signaling costs. For the second hypothesis, we find a negative relationship between the number of signals produced per day and proportion of the light trap catch that is male, likely reflecting males investing either in calling or in searching. These cross-taxa relationships point to the presence of pervasive trade-offs that fundamentally shape the spatial and temporal dynamics of communication.
Collapse
Affiliation(s)
- Laurel B Symes
- Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá.,Dartmouth College, Department of Biological Sciences, 78 College Street, Hanover, NH 03755, USA
| | - Tony Robillard
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, CP 50, 75231 Paris Cedex 05, France
| | - Sharon J Martinson
- Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá.,Dartmouth College, Department of Biological Sciences, 78 College Street, Hanover, NH 03755, USA
| | - Jiajia Dong
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, College of Life Sciences, Xuzhou Medical University, Xuzhou 221004, China
| | - Ciara E Kernan
- Dartmouth College, Graduate Program in Ecology, Evolution, Environment and Society, Hanover, NH 03755, USA
| | - Colleen R Miller
- Department of Ecology and Evolutionary Biology, Cornell University
| | - Hannah M Ter Hofstede
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá.,Dartmouth College, Department of Biological Sciences, 78 College Street, Hanover, NH 03755, USA.,Dartmouth College, Graduate Program in Ecology, Evolution, Environment and Society, Hanover, NH 03755, USA
| |
Collapse
|
13
|
Velilla E, Collinson E, Bellato L, Berg MP, Halfwerk W. Vibrational noise from wind energy‐turbines negatively impacts earthworm abundance. OIKOS 2021. [DOI: 10.1111/oik.08166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Estefania Velilla
- Dept of Ecological Science, Vrije Univ. Amsterdam Amsterdam the Netherlands
| | - Eleanor Collinson
- Dept of Ecological Science, Vrije Univ. Amsterdam Amsterdam the Netherlands
| | - Laura Bellato
- Dept of Ecological Science, Vrije Univ. Amsterdam Amsterdam the Netherlands
| | - Matty P. Berg
- Dept of Ecological Science, Vrije Univ. Amsterdam Amsterdam the Netherlands
- Groningen Inst. of Evolutionary Life Sciences, Univ. of Groningen Groningen the Netherlands
| | - Wouter Halfwerk
- Dept of Ecological Science, Vrije Univ. Amsterdam Amsterdam the Netherlands
| |
Collapse
|