1
|
Schoberleitner I, Lackner M, Coraça-Huber DC, Augustin A, Imsirovic A, Sigl S, Wolfram D. SMI-Capsular Fibrosis and Biofilm Dynamics: Molecular Mechanisms, Clinical Implications, and Antimicrobial Approaches. Int J Mol Sci 2024; 25:11675. [PMID: 39519227 PMCID: PMC11546664 DOI: 10.3390/ijms252111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Silicone mammary implants (SMIs) frequently result in capsular fibrosis, which is marked by the overproduction of fibrous tissue surrounding the implant. This review provides a detailed examination of the molecular and immunological mechanisms driving capsular fibrosis, focusing on the role of foreign body responses (FBRs) and microbial biofilm formation. We investigate how microbial adhesion to implant surfaces and biofilm development contribute to persistent inflammation and fibrotic responses. The review critically evaluates antimicrobial strategies, including preoperative antiseptic protocols and antimicrobial-impregnated materials, designed to mitigate infection and biofilm-related complications. Additionally, advancements in material science, such as surface modifications and antibiotic-impregnated meshes, are discussed for their potential to reduce capsular fibrosis and prevent contracture of the capsule. By integrating molecular insights with clinical applications, this review aims to elucidate the current understanding of SMI-related fibrotic responses and highlight knowledge gaps. The synthesis of these findings aims to guide future research directions of improved antimicrobial interventions and implant materials, ultimately advancing the management of capsular fibrosis and enhancing patient outcomes.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Débora C. Coraça-Huber
- BIOFILM Lab, Department of Orthopedics and Traumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Angela Augustin
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anja Imsirovic
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephan Sigl
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Guimier E, Carson L, David B, Lambert JM, Heery E, Malcolm RK. Pharmacological Approaches for the Prevention of Breast Implant Capsular Contracture. J Surg Res 2022; 280:129-150. [PMID: 35969932 DOI: 10.1016/j.jss.2022.06.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022]
Abstract
Capsular contracture is a common complication associated with breast implants following reconstructive or aesthetic surgery in which a tight or constricting scar tissue capsule forms around the implant, often distorting the breast shape and resulting in chronic pain. Capsulectomy (involving full removal of the capsule surrounding the implant) and capsulotomy (where the capsule is released and/or partly removed to create more space for the implant) are the most common surgical procedures used to treat capsular contracture. Various structural modifications of the implant device (including use of textured implants, submuscular placement of the implant, and the use of polyurethane-coated implants) and surgical strategies (including pre-operative skin washing and irrigation of the implant pocket with antibiotics) have been and/or are currently used to help reduce the incidence of capsular contracture. In this article, we review the pharmacological approaches-both commonly practiced in the clinic and experimental-reported in the scientific and clinical literature aimed at either preventing or treating capsular contracture, including (i) pre- and post-operative intravenous administration of drug substances, (ii) systemic (usually oral) administration of drugs before and after surgery, (iii) modification of the implant surface with grafted drug substances, (iv) irrigation of the implant or peri-implant tissue with drugs prior to implantation, and (v) incorporation of drugs into the implant shell or filler prior to surgery followed by drug release in situ after implantation.
Collapse
Affiliation(s)
| | - Louise Carson
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Benny David
- NuSil Technology LLC, Carpinteria, California
| | | | | | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
3
|
Silva EN, Ribas-Filho JM, Tabushi FI, Silva MAP, Siqueira EBD, de Noronha L, da Silva ABD, Lipinski LC, Guth I, Vosgerau LM. Smooth Muscle Alpha Actin Immunoexpression (α-Sma) and CD-117 Antibody (C-Kit) in Capsules Formed by Polyurethane Foam-Coated Silicone Implants and with Textured Surface: A Study on Rats. Aesthetic Plast Surg 2019; 43:233-242. [PMID: 30276460 DOI: 10.1007/s00266-018-1238-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/09/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND One of the undesirable complications that might occur after breast augmentation with silicone implants is capsular contracture. In its etiology, the relations between mast cells and myofibroblasts play an important role in collagen synthesis. Mast cells are able to activate fibroblasts into myofibroblasts, through paracrine secretions, inducing collagen production. The objectives of this study were to analyze the myofibroblast concentration through the α-SMA immunomarker and evaluate the intensity of mast cell expression against the C-Kit immunomarker. MATERIAL AND METHOD Sixty-four Wistar rats were used, divided into two groups (polyurethane foam and textured surface) with 32 animals in each. The animals received silicone implants on the back, below the panniculus carnosus, and after the determined period, they were killed and the capsules formed around the implants were studied. The capsules were analyzed employing the immunohistochemical technique, with the α-SMA and C-Kit immunomarkers in subgroups of 30, 50, 70 and 90 days. RESULTS The myofibroblast concentration was higher in the polyurethane group when compared to the textured group (30 days p = 0.105; 50 days p = 0.247; 70 days p = 0.014 and 90 days p = 0.536). The intensity of mast cell expression was more pronounced in the polyurethane group when compared to the textured group (30 days p = 0.798; 50 days p = 0.537; 70 days p = 0.094 and 90 days p = 0.536). CONCLUSIONS Polyurethane-coated implants induced higher concentrations of myofibroblasts and higher expression of mast cells, when compared to the textured surface implants. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Eduardo Nascimento Silva
- Evangelical Faculty of Medicine of Paraná (FEPAR), Evangelical University Hospital of Curitiba (HUEC) and Institute for Medical Research (IPEM), Curitiba, PR, Brazil.
- Plastic Surgery and Anatomy, State University of Ponta Grossa (UEPG), Avenida Doutor Francisco Búrzio, 991, 84010-200, Ponta Grossa, PR, Brazil.
| | - Jurandir Marcondes Ribas-Filho
- Evangelical Faculty of Medicine of Paraná (FEPAR), Evangelical University Hospital of Curitiba (HUEC) and Institute for Medical Research (IPEM), Curitiba, PR, Brazil
| | - Fernando Issamu Tabushi
- Evangelical Faculty of Medicine of Paraná (FEPAR), Evangelical University Hospital of Curitiba (HUEC) and Institute for Medical Research (IPEM), Curitiba, PR, Brazil
| | | | - Elisa Beatriz Dalledone Siqueira
- Evangelical Faculty of Medicine of Paraná (FEPAR), Evangelical University Hospital of Curitiba (HUEC) and Institute for Medical Research (IPEM), Curitiba, PR, Brazil
| | - Lucia de Noronha
- Anatomical Pathology, Pontifical Catholic University of Paraná (PUC-PR), Curitiba, PR, Brazil
| | - Alfredo Benjamim Duarte da Silva
- Plastic Surgery and Anatomy, State University of Ponta Grossa (UEPG), Avenida Doutor Francisco Búrzio, 991, 84010-200, Ponta Grossa, PR, Brazil
- Operative Technique, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Isabelle Guth
- Evangelical Faculty of Medicine of Paraná (FEPAR), Evangelical University Hospital of Curitiba (HUEC) and Institute for Medical Research (IPEM), Curitiba, PR, Brazil
| | - Larissa Maria Vosgerau
- Evangelical Faculty of Medicine of Paraná (FEPAR), Evangelical University Hospital of Curitiba (HUEC) and Institute for Medical Research (IPEM), Curitiba, PR, Brazil
| |
Collapse
|
4
|
Acuner B, Baser NT, Aslan G, Terzioglu A, Caydere M, Ustun H, Görgü M. The Effects of Colchicine-Impregnated Oxidized Regenerated Cellulose on Capsular Contracture. Surg Innov 2017; 24:417-422. [PMID: 28681666 DOI: 10.1177/1553350617718915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Capsular contracture is the most common complication of breast augmentation. Oxidized regenerated cellulose can be used as a matrix for drug transport. Colchicine is an antimitotic drug that interferes with various steps of wound healing. The aim of this study was to evaluate the effects of oxidized regenerated cellulose alone or in combination with colchicine on capsular contracture. Twenty-one adult female Wistar-Albino rats were divided into 3 groups. In group 1 silicone blocks only, in group 2 oxidized regenerated cellulose-wrapped silicone blocks, and in group 3 colchicine-impregnated oxidized regenerated cellulose-wrapped silicone blocks were inserted in the dorsal region. Four weeks later, implants were removed and histopathological examination was performed. Capsular thickness, inflammatory infiltrate degree, collagen fiber organization, and myofibroblast density were evaluated. Macroscopic examination revealed a distinct capsule formation only in group 1 animals, with average measurement being 134.65 µm on histopathological examination. In groups 2 and 3 animals, no distinct capsule formation was seen. Inflammatory infiltrate degree was found to be less in groups 2 and 3 animals than in group 1 animals. Collagen fiber organization around the implants was found to be parallel and organized in group 1 animals, whereas it was random and disorganized in animals in both groups 2 and 3. High myofibroblast density was observed in animals in groups 1 and 2, while no myofibroblast was found in animals in group 3. The results of our study suggest that coating silicone implants with oxidized regenerated cellulose or with colchicine-impregnated oxidized regenerated cellulose may be effective in preventing capsular contracture.
Collapse
Affiliation(s)
| | | | - Gurcan Aslan
- 3 Ankara Training and Research Hospital, Ankara, Turkey
| | - Ahmet Terzioglu
- 4 Near East University, Plastic Surgery Department, Nicosia-Cyprus, Turkey
| | | | - Huseyın Ustun
- 3 Ankara Training and Research Hospital, Ankara, Turkey
| | - Metin Görgü
- 5 Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
5
|
Miller KE, Hontanilla B, Cabello A, Marre D, Armendariz L, Leiva J. The effect of late infection and antibiotic treatment on capsular contracture in silicone breast implants: A rat model. J Plast Reconstr Aesthet Surg 2016; 69:70-6. [DOI: 10.1016/j.bjps.2015.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/16/2015] [Accepted: 08/23/2015] [Indexed: 10/23/2022]
|
6
|
Abstract
Clinicians and investigators have been implanting biomedical devices into patients and experimental animals for centuries. There is a characteristic complex inflammatory response to the presence of the biomedical device with diverse cell signaling, followed by migration of fibroblasts to the implant surface and the eventual walling off of the implant in a collagen capsule. If the device is to interact with the surrounding tissues, the collagen envelope will eventually incapacitate the device or myofibroblasts can cause capsular contracture with resulting distortion, migration, or firmness. This review analyzes the various tactics used in the past to modify or control capsule formation with suggestions for future investigative approaches.
Collapse
|
7
|
Pulsed acoustic cellular expression (PACE) reduces capsule formation around silicone implants. Aesthetic Plast Surg 2014; 38:244-251. [PMID: 24337950 DOI: 10.1007/s00266-013-0235-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/11/2013] [Indexed: 01/17/2023]
Abstract
UNLABELLED Capsular contracture remains a major complication after reconstructive or aesthetic breast augmentation. Formation of capsular fibrosis is a multifactorial process. An initial inflammatory reaction appears to be key to the development of capsular contracture. Recent studies have shown that pulsed acoustic cellular expression (PACE) has significant antiinflammatory effects. Thus, this study aimed to determine the potential of PACE to prevent or attenuate capsular contracture around silicone implants in a rodent model. For this study, 36 Lewis rats were divided into two groups, and a textured silicone implant was placed in a dorsal submuscular pocket. One group received PACE treatment, whereas the other group served as the control group and received no treatment. Follow-up evaluations were performed after 10, 35, and 100 days. Capsule thickness, collagen density, myofibroblasts, vascular density, and a semiquantitative real-time polymerase chain reaction that addressed differential gene expression were assessed. The PACE treatment significantly reduced capsule thickness on days 10, 35, and 100 compared with the control group (day 10: 632.9 ± 164.5 vs 932.6 ± 160.8, p < 0.05; day 35: 709.5 ± 175 vs 825.9 ± 313.3, p < 0.0.5; day 100: 736.3 ± 198.1 vs 1,062.3 ± 151.9, p < 0.05). This was accompanied by a significant suppression of proinflammatory genes (cluster of differentiation 68, monocyte chemotactic protein-1, CCL4) and synergistic alterations of pro- and antifibrotic proteins (transforming growth factor-beta 1, matrix metalloproteinase-2). This study showed that the PACE application significantly reduces capsular contracture around silicone implants. A decrease in capsular thickness after PACE treatment seems to be associated with a downregulation of proinflammatory genes and proteins. The study identifies PACE technology as a potential low-cost technique that is easy to use for reduction of capsular contracture after augmentation using silicone implants. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .
Collapse
|
8
|
Steiert AE, Boyce M, Sorg H. Capsular contracture by silicone breast implants: possible causes, biocompatibility, and prophylactic strategies. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2013; 6:211-8. [PMID: 24324348 PMCID: PMC3855100 DOI: 10.2147/mder.s49522] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The most common implanted material in the human body consists of silicone. Breast augmentation and breast reconstruction using silicone-based implants are procedures frequently performed by reconstructive and aesthetic surgeons. A main complication of this procedure continues to be the development of capsular contracture (CC), displaying the result of a fibrotic foreign body reaction after the implantation of silicone. For many years, experimental and clinical trials have attempted to analyze the problem of its etiology, treatment, and prophylaxis. Different theories of CC formation are known; however, the reason why different individuals develop CC in days or a month, or only after years, is unknown. Therefore, we hypothesize that CC formation, might primarily be induced by immunological mechanisms along with other reasons. This article attempts to review CC formation, with special attention paid to immunological and inflammatory reasons, as well as actual prophylactic strategies. In this context, the word “biocompatibility” has been frequently used to describe the overall biological innocuousness of silicone in the respective studies, although without clear-cut definitions of this important feature. We have therefore developed a new five-point scale with distinct key points of biocompatibility. Hence, this article might provide the basis for ongoing discussion in this field to reduce single-publication definitions as well as increase the understanding of biocompatibility.
Collapse
Affiliation(s)
- Andreas E Steiert
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
9
|
Zhang YM, Wang SL, Lei ZY, Fan DL. Mechanical and biological evaluations of beta-tricalcium phosphate/silicone rubber composite as a novel soft-tissue implant. Aesthetic Plast Surg 2009; 33:760-9. [PMID: 19452200 DOI: 10.1007/s00266-009-9363-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 04/14/2009] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although silicone rubber (SR) implants are most commonly used and effective for soft-tissue augmentation, they still have been implicated in many adverse reactions. To overcome this problem, a novel composite beta-tricalcium phosphate/silicone rubber (beta-TCP/SR) was prepared by adding beta-TCP into a SR matrix. This study was to evaluate its application potential by investigating the mechanical properties and biocompatibility of beta-TCP/SR. METHODS Mechanical properties, including Shore A hardness and tensile strength, were evaluated with 3-mm-thick samples and a universal testing machine. Cytocompatibility tests were conducted in vitro using 0.2-mm-thick beta-TCP/SR samples by seeding fibroblasts onto different samples. Soft-tissue response to beta-TCP/SR and pull-out measurements were investigated 4 weeks and 24 weeks after implantation. RESULTS The main mechanical properties were all significantly changed after mixing beta-TCP into the SR matrix, except for tearing strength. The cytocompatibility test showed enhanced adhesion and proliferation of fibroblasts onto beta-TCP/SR. Fibrous tissue ingrowth after resorption of beta-TCP was observed by in vivo histologic analysis. The peri-implant capsules in the beta-TCP/SR group were thinner than in the SR group 24 weeks after implantation. In a 24-week test, the maximum force required to pull out the beta-TCP/SR sheet was about six times greater than that needed for SR. CONCLUSION Although some mechanical properties were significantly changed, the results of the cytocompatibility test and in vivo animal study still suggest that beta-TCP/SR may be more suitable as a soft-tissue implant than SR and has the potential to be used in plastic surgery.
Collapse
Affiliation(s)
- Yi-ming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, China
| | | | | | | |
Collapse
|
10
|
Effect of verapamil on reduction of peri-implant capsular thickness. Aesthetic Plast Surg 2009; 33:570-5. [PMID: 19101759 DOI: 10.1007/s00266-008-9288-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 11/19/2008] [Indexed: 10/21/2022]
Abstract
Silicone is a material commonly used in reconstructive and aesthetic surgery, but capsular formation is a very frequent complication of silicone implants. This study aimed to investigate whether verapamil, a calcium-channel blocker, can reduce the thickness of the peri-implant capsule in rats when it is instilled into the subcutaneous pockets. For this study, 60 female Wistar albino rats were used, and cubes of silicone blocks (10 x 10 x 5 mm) were crafted. The rats were divided into five groups of 12 each, and the groups were distinguished according to the use of silicone and artificially created hematoma relevant to administration of a single dose of 5 mg verapamil (Isoptin). The control group was left without silicone. In two of the four silicone groups, hematoma was artificially created around the silicone by a 1-ml injection of blood. The implants were removed 6 months later, and capsulectomy was performed. Under light microscopic examination, no severe inflammation was observed in any of the capsule tissues. Additionally, the thickness of the capsule was measured and found to be significantly reduced statistically in all the verapamil-treated groups, including the groups with the artificially created hematoma. In conclusion, based on the statistically significant data obtained in this study, subcutaneous verapamil administration may be a useful adjunct for preventing formation of capsular contracture after silicone implantations. This preliminary work in rats should be confirmed with larger mammals before carefully controlled clinical trials are considered.
Collapse
|