1
|
Peshkova M, Korneev A, Revokatova D, Smirnova O, Klyucherev T, Shender V, Arapidi G, Kosheleva N, Timashev P. Four sides to the story: A proteomic comparison of liquid-phase and matrix-bound extracellular vesicles in 2D and 3D cell cultures. Proteomics 2024; 24:e2300375. [PMID: 38197488 DOI: 10.1002/pmic.202300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
Multipotent mesenchymal stromal cells (MSCs)-derived extracellular vesicles (EVs) play important roles in cellular communication and are extensively studied as promising therapeutic agents. While there is a substantial pool of studies on liquid-phase EVs, data on EVs bound to the extracellular matrix (ECM) is lacking. There is also an emerging trend of accumulating and comparing data on characteristics of EVs obtained in different culturing conditions. Aiming to reveal proteomic signatures of EVs obtained from conditioned media and ECM of MSCs cultured in 2D and 3D conditions, we performed liquid chromatography with tandem mass spectrometry. Bioinformatic analysis revealed common patterns in proteomic composition of liquid-phase EVs and matrix-bound vesicles (MBVs), namely extracellular environment organization, immune, and transport pathways enrichment. However, extracellular environmental organization pathways are more enriched in liquid-phase EVs than in MBVs, while MBVs proteins noticeably enrich enzymatic pathways. Furthermore, each type of EVs from 2D and 3D cultures has a unique differential abundance profile. We have also performed comparative functional assays, namely scratch assay to assess EVs effect on cell migration and tubulogenesis assay to evaluate EVs angiogenic potential. We found that both liquid-phase EVs and MBVs enhance cell migration, while angiogenic potential is higher in MBVs. Results of the present study suggest that while both liquid-phase EVs and MBVs have therapeutic potential, some unique features of each subgroup may determine optimal areas of their application.
Collapse
Affiliation(s)
- Maria Peshkova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia
| | - Alexander Korneev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia
- Laboratory of the Polymers Synthesis for Medical Applications, Sechenov University, Moscow, Russia
| | - Daria Revokatova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia
| | - Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia
| | - Timofey Klyucherev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia
| | - Victoria Shender
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Georgij Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Moscow Region, Russia
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Wang Z, Yuan J, Xu Y, Shi N, Lin L, Wang R, Dai R, Xu L, Hao N, Li Q. Olea europaea leaf exosome-like nanovesicles encapsulated in a hyaluronic acid / tannic acid hydrogel dressing with dual "defense-repair" effects for treating skin photoaging. Mater Today Bio 2024; 26:101103. [PMID: 38933415 PMCID: PMC11201150 DOI: 10.1016/j.mtbio.2024.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Photoaging, primarily caused by ultraviolet (UV) light, is the major factor in extrinsic skin aging. Existing anti-photoaging strategies mainly focus on early sun protection or repairing damaged skin, lacking a comprehensive treatment strategy. Therefore, this study developed a dressing that actively shields against UV radiation and repairs photoaged skin, offering double protection. This study utilized exosome-like nanovesicles derived from Olea europaea leaves (OLELNVs), enhancing them into a potent core biomaterial with high-dose effects and skin-friendly, non-cytotoxic inhibition of cell aging. These nanovesicles were incorporated into a cross-linked hyaluronic acid (HA) and tannic acid (TA) hydrogel with strong UV-absorbing properties, creating the OLELNVs@HA/TA hydrogel system. In vitro and in vivo experiments demonstrated that OLELNVs@HA/TA hydrogel can effectively reduce UV-induced skin damage and promote skin repair and regeneration. Additionally, RNA-seq and clustering analysis of miR168a-5p predicted targets revealed significant down-regulation of the NF-κB signaling pathway, mediating inflammatory aging responses. Overall, the OLELNVs@HA/TA hydrogel represents a novel dual-strategy approach for clinical application in combating photoaging.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Peterson's Lab, Shanghai, PR China
- Baudry Biotech. Co., Ltd, Nanjing, Jiangsu, PR China
| | | | - Yan Xu
- Institute of Symbolcell Biotechology, Nanjing, Jiangsu, PR China
| | - Nuo Shi
- Peterson's Lab, Shanghai, PR China
| | - Lin Lin
- Peterson's Lab, Shanghai, PR China
| | | | - Rong Dai
- Baudry Biotech. Co., Ltd, Nanjing, Jiangsu, PR China
| | - Lin Xu
- Peterson's Lab, Shanghai, PR China
- Institute of Symbolcell Biotechology, Nanjing, Jiangsu, PR China
| | - Ning Hao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, PR China
| | - Qianyi Li
- International Laboratory in Cancer, Aging and Hematology, Shanghai Jiao Tong University, School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, PR China
- Pôle Sino-Français de Recherches en Sciences du Vivant et G'enomique, Shanghai, PR China
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| |
Collapse
|
3
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
4
|
García Coronado PL, Franco Molina MA, Zárate Triviño DG, Hernández Martínez SP, Castro Valenzuela BE, Zapata Benavides P, Rodríguez Padilla C. Exosomes isolated from IMMUNEPOTENT CRP, a hemoderivative, to accelerate diabetic wound healing. Front Bioeng Biotechnol 2024; 12:1356028. [PMID: 38835975 PMCID: PMC11149424 DOI: 10.3389/fbioe.2024.1356028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024] Open
Abstract
The increasing risk of amputation due to diabetic foot ulcer calls for new therapeutic options; for that, we determined the role of IMMUNEPOTENT CRP (ICRP) and its parts in the wound healing process of superficial wounds in diabetic BALB/c mice. A potency test was performed to confirm the batch of ICRP, and then its parts were separated into pellets, supernatants, and exosomes, and another group of exosomes loaded with insulin was added. Viability and scratch healing were assessed in NIH-3T3, HUVEC, and HACAT cell lines. Diabetes was induced with streptozotocin, and wounds were made by dissecting the back skin. Treatments were topically applied, and closure was monitored; inflammatory cytokines in sera were also evaluated by flow cytometry, and histological analysis was performed by Masson's staining and immunohistochemistry for p-AKT, p-FOXO, p-P21, and p-TSC2. ICRP pellets and exosomes increased cellular viability, and exosomes and exosome-insulin accelerated scratch healing in vitro. Exosome-insulin releases insulin constantly over time in vitro. In vivo, treatments accelerated wound closure, and better performance was observed in pellet, exosome, and exosome-insulin treatments. Best collagen expression was induced by ICRP. P-AKT and p-FOXO were overexpressed in healing tissues. Inflammatory cytokines were downregulated by all treatments. In conclusion, IMMUNEPOTENT CRP components, especially exosomes, and the process of encapsulation of exosome-insulin accelerate diabetic wound healing and enhance cellular proliferation, collagen production, and inflammation modulation through the phosphorylation of components of the AKT pathway.
Collapse
Affiliation(s)
- Paola Leonor García Coronado
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Moisés Armides Franco Molina
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Diana Ginette Zárate Triviño
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | - Beatriz Elena Castro Valenzuela
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Pablo Zapata Benavides
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Cristina Rodríguez Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
5
|
Kim MJ, Ko H, Kim JY, Kim HJ, Kim HY, Cho HE, Cho HD, Seo WS, Kang HC. Improvement in Yield of Extracellular Vesicles Derived from Edelweiss Callus Treated with LED Light and Enhancement of Skin Anti-Aging Indicators. Curr Issues Mol Biol 2023; 45:10159-10178. [PMID: 38132480 PMCID: PMC10742862 DOI: 10.3390/cimb45120634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
The process of skin aging is currently recognized as a disease, and extracellular vesicles (EVs) are being used to care for it. While various EVs are present in the market, there is a growing need for research on improving skin conditions through microbial and plant-derived EVs. Edelweiss is a medicinal plant and is currently an endangered species. Callus culture is a method used to protect rare medicinal plants, and recently, research on EVs using callus culture has been underway. In this study, the researchers used LED light to increase the productivity of Edelweiss EVs and confirmed that productivity was enhanced by LED exposure. Additionally, improvements in skin anti-aging indicators were observed. Notably, M-LED significantly elevated callus fresh and dry weight, with a DW/FW ratio of 4.11%, indicating enhanced proliferation. Furthermore, M-LED boosted secondary metabolite production, including a 20% increase in total flavonoids and phenolics. The study explores the influence of M-LED on EV production, revealing a 2.6-fold increase in concentration compared to darkness. This effect is consistent across different plant species (Centella asiatica, Panax ginseng), demonstrating the universality of the phenomenon. M-LED-treated EVs exhibit a concentration-dependent inhibition of reactive oxygen species (ROS) production, surpassing dark-cultured EVs. Extracellular melanin content analysis reveals M-LED-cultured EVs' efficacy in reducing melanin production. Additionally, the expression of key skin proteins (FLG, AQP3, COL1) is significantly higher in fibroblasts treated with M-LED-cultured EVs. These results are expected to provide valuable insights into research on improving the productivity of plant-derived EVs and enhancing skin treatment using plant-derived EVs.
Collapse
Affiliation(s)
- Mi-Jung Kim
- Human & Microbiome Communicating Laboratory, GFC Co., Ltd., Hwaseong 18471, Republic of Korea; (M.-J.K.); (J.-Y.K.); (H.-J.K.)
| | - Hoon Ko
- Creative Innovation Research Center, Cosmecca Korea Co., Ltd., Seongnam 13488, Republic of Korea; (H.K.); (H.-Y.K.); (H.-E.C.); (H.-D.C.)
| | - Ji-Young Kim
- Human & Microbiome Communicating Laboratory, GFC Co., Ltd., Hwaseong 18471, Republic of Korea; (M.-J.K.); (J.-Y.K.); (H.-J.K.)
| | - Hye-Jin Kim
- Human & Microbiome Communicating Laboratory, GFC Co., Ltd., Hwaseong 18471, Republic of Korea; (M.-J.K.); (J.-Y.K.); (H.-J.K.)
| | - Hwi-Yeob Kim
- Creative Innovation Research Center, Cosmecca Korea Co., Ltd., Seongnam 13488, Republic of Korea; (H.K.); (H.-Y.K.); (H.-E.C.); (H.-D.C.)
| | - Hang-Eui Cho
- Creative Innovation Research Center, Cosmecca Korea Co., Ltd., Seongnam 13488, Republic of Korea; (H.K.); (H.-Y.K.); (H.-E.C.); (H.-D.C.)
| | - Hyun-Dae Cho
- Creative Innovation Research Center, Cosmecca Korea Co., Ltd., Seongnam 13488, Republic of Korea; (H.K.); (H.-Y.K.); (H.-E.C.); (H.-D.C.)
| | - Won-Sang Seo
- Human & Microbiome Communicating Laboratory, GFC Co., Ltd., Hwaseong 18471, Republic of Korea; (M.-J.K.); (J.-Y.K.); (H.-J.K.)
| | - Hee-Cheol Kang
- Human & Microbiome Communicating Laboratory, GFC Co., Ltd., Hwaseong 18471, Republic of Korea; (M.-J.K.); (J.-Y.K.); (H.-J.K.)
| |
Collapse
|
6
|
Amondarain M, Gallego I, Puras G, Saenz-Del-Burgo L, Luzzani C, Pedraz JL. The role of microfluidics and 3D-bioprinting in the future of exosome therapy. Trends Biotechnol 2023; 41:1343-1359. [PMID: 37302911 DOI: 10.1016/j.tibtech.2023.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Exosome-based strategies constitute a promising tool for therapeutics, avoiding potential immunogenic and tumorigenic side-effects of cell therapies. However, the collection of a suitable exosome pool, and the need for high doses with conventional administration approaches, hamper their clinical translation. To overcome these challenges, versatile exosome collection strategies together with advanced delivery platforms may represent major progress in this field. Microfluidics enables large-scale gathering of both natural and synthetic exosomes for their implementation into bioinks, while 3D-bioprinting holds great promise in regenerative medicine with the use of exosome-loaded scaffolds that mimic the target tissue with controlled pharmacokinetics and pharmacodynamics. Hence, the combination of both strategies might become the key for the translation of exosome therapies to clinical practice.
Collapse
Affiliation(s)
- Mikele Amondarain
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Buenos Aires, Argentina
| | - Idoia Gallego
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Gustavo Puras
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Laura Saenz-Del-Burgo
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Carlos Luzzani
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Buenos Aires, Argentina
| | - José Luis Pedraz
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
7
|
Shekari F, Alibhai FJ, Baharvand H, Börger V, Bruno S, Davies O, Giebel B, Gimona M, Salekdeh GH, Martin‐Jaular L, Mathivanan S, Nelissen I, Nolte‐’t Hoen E, O'Driscoll L, Perut F, Pluchino S, Pocsfalvi G, Salomon C, Soekmadji C, Staubach S, Torrecilhas AC, Shelke GV, Tertel T, Zhu D, Théry C, Witwer K, Nieuwland R. Cell culture-derived extracellular vesicles: Considerations for reporting cell culturing parameters. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e115. [PMID: 38939735 PMCID: PMC11080896 DOI: 10.1002/jex2.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 09/17/2023] [Indexed: 06/29/2024]
Abstract
Cell culture-conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM-derived EVs (CCM-EV). The CCM-EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell-specific recommendations may need to be established for non-mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM-EV research.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP‐TDC), Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
| | - Verena Börger
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology CenterUniversity of TorinoTurinItaly
| | - Owen Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Bernd Giebel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Mario Gimona
- GMP UnitSpinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS) and Research Program “Nanovesicular Therapies” Paracelsus Medical UniversitySalzburgAustria
| | | | - Lorena Martin‐Jaular
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVICAustralia
| | - Inge Nelissen
- VITO (Flemish Institute for Technological Research), Health departmentBoeretangBelgium
| | - Esther Nolte‐’t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology LabIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Stefano Pluchino
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResourcesNational Research CouncilNaplesItaly
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae‐Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Carolina Soekmadji
- School of Biomedical Sciences, Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | | | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)SPBrazil
| | - Ganesh Vilas Shelke
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Tobias Tertel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Dandan Zhu
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVICAustralia
| | - Clotilde Théry
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Kenneth Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology and Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam University Medical CentersLocation AMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
8
|
Yuan ZD, Wu JJ, Jia Y, Li YY, Yuan FL. Comments on "Extracellular Vesicles From a Three-Dimensional Culture of Perivascular Cells Accelerate Skin Wound Healing in a Rat". Aesthetic Plast Surg 2023; 47:146-147. [PMID: 36214873 DOI: 10.1007/s00266-022-03110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Zheng-Dong Yuan
- Wuxi Institute of Integrated traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Jun-Jie Wu
- Wuxi Institute of Integrated traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Yuan Jia
- Wuxi Institute of Integrated traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Yue-Yue Li
- Wuxi Institute of Integrated traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Feng-Lai Yuan
- Wuxi Institute of Integrated traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China.
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214041, China.
| |
Collapse
|
9
|
Extracellular Vesicles in Facial Aesthetics: A Review. Int J Mol Sci 2022; 23:ijms23126742. [PMID: 35743181 PMCID: PMC9223821 DOI: 10.3390/ijms23126742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Facial aesthetics involve the application of non-invasive or minimally invasive techniques to improve facial appearance. Currently, extracellular vesicles (EVs) are attracting much interest as nanocarriers in facial aesthetics due to their lipid bilayer membrane, nanosized dimensions, biological origin, intercellular communication ability, and capability to modulate the molecular activities of recipient cells that play important roles in skin rejuvenation. Therefore, EVs have been suggested to have therapeutic potential in improving skin conditions, and these highlighted the potential to develop EV-based cosmetic products. This review summarizes EVs’ latest research, reporting applications in facial aesthetics, including scar removal, facial rejuvenation, anti-aging, and anti-pigmentation. This review also discussed the advanced delivery strategy of EVs, the therapeutic potential of plant EVs, and clinical studies using EVs to improve skin conditions. In summary, EV therapy reduces scarring, rejuvenates aging skin, and reduces pigmentation. These observations warrant the development of EV-based cosmetic products. However, more efforts are needed to establish a large-scale EV production platform that can consistently produce functional EVs and understand EVs’ underlying mechanism of action to improve their efficacy.
Collapse
|
10
|
Dong X, Zhang M, Jin X. Extracellular Vesicles from a Three-Dimensional Culture of Perivascular Cells Accelerate Skin Wound Healing in a Rat. Aesthetic Plast Surg 2022; 46:581-582. [PMID: 33973046 DOI: 10.1007/s00266-021-02320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Xinhang Dong
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolei Jin
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|