1
|
Fresilli S, Labanca R, Turi S, Casuale V, Vietri S, Lombardi G, Covello RD, Lee TC, Landoni G, Greco M. Remote ischaemic preconditioning and survival in noncardiac surgery: a meta-analysis of randomised trials. Br J Anaesth 2025; 134:1373-1384. [PMID: 40185666 DOI: 10.1016/j.bja.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Remote ischaemic preconditioning (RIPC) is an intervention involving brief periods of limb ischaemia to protect remote organs from subsequent ischaemic injury. Although evidence exists on the beneficial effects of RIPC on biomarkers, its effect on survival is unknown. We performed a meta-analysis of randomised controlled trials (RCTs) to evaluate whether RIPC improves survival in noncardiac surgery. METHODS We searched several electronic databases for randomised trials comparing RIPC vs a control group in adult noncardiac surgical settings. The primary outcome was mortality at the longest follow-up available. We conducted a random-effects meta-analysis to calculate the risk ratio (RR) and 95% confidence intervals (CIs). Bayesian statistics were used to estimate the probability of mortality benefit (RR <1). RESULTS We identified 72 RCTs, which included 7457 subjects. Mortality was reported in 28 RCTs and was lower in the RIPC group compared with the control group (88/2122 [4.1%] vs 102/1767 [5.8%]; RR 0.74, 95% CI 0.57-0.98, P=0.03; I2=0%; moderate certainty; number needed to treat = 67), corresponding to a 97.0% probability of any reduction in mortality. RIPC was also associated with a reduced incidence of postoperative stroke (moderate certainty) and with a shorter duration of hospital stay (low certainty). CONCLUSIONS Remote ischaemic preconditioning was associated with improved survival and reduced postoperative stroke and hospital stay in noncardiac surgery. These findings warrant careful considerations of the benefits of RIPC and support the need for a large, multicentre RCT to confirm these promising results. SYSTEMATIC REVIEW PROTOCOL CRD42024588358 (PROSPERO).
Collapse
Affiliation(s)
- Stefano Fresilli
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosa Labanca
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Turi
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Casuale
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simone Vietri
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Gaetano Lombardi
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Remo Daniel Covello
- Anesthesia and Intensive Care Unit, Emergency Department, Busto Arsizio Hospital, ASST Valle Olona, Busto Arsizio, Italy
| | - Todd Campbell Lee
- Division of Infectious Diseases, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Giovanni Landoni
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
| | - Massimiliano Greco
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Department of Anesthesiology and Intensive Care, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
2
|
Andric V, Zaric RZ, Andric D, Petrovic J, Davidovic G. Impact of peripheral conditioning on reperfusion injury following primary percutaneous coronary intervention in diabetic and non-diabetic STEMI patients. Open Med (Wars) 2025; 20:20251175. [PMID: 40181841 PMCID: PMC11967474 DOI: 10.1515/med-2025-1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/28/2025] [Accepted: 03/09/2025] [Indexed: 04/05/2025] Open
Abstract
Background Peripheral conditioning induces transient ischemia, promoting antioxidant production in ischemia-affected tissues, which helps reduce heart reperfusion injury in ST-elevation myocardial infarction (STEMI) patients. This study compares troponin and creatine kinase-MB (CK-MB) levels among STEMI patients with and without remote conditioning. Methods This study included 160 patients treated for STEMI at a tertiary care centre. The study protocol involved cyclic inflation and deflation of a blood pressure cuff on the brachial region in four cycles of 5 min each. Markers of myocardial necrosis, CK-MB, and troponin, were monitored before percutaneous coronary intervention (PCI), immediately after, and at 24, 48, and 72 h post-PCI. Results CK-MB and troponin levels were significantly lower in non-diabetic patients who underwent remote peripheral conditioning compared to those who did not, with significant reductions observed after PCI (CK-MB: p = 0.001; troponin: p = 0.033), and at 24 (CK-MB: p = 0.015; troponin: p = 0.001) and 48 h post-PCI (troponin: p = 0.002). In the second phase, no significant differences in CK-MB or troponin levels were found between diabetic patients with and without conditioning. However, a trend toward lower values was noted in the conditioned group. In the third phase, significant reductions in CK-MB (p = 0.002) and troponin levels (after PCI: p = 0.007; 24 h post-PCI: p = 0.045) were observed across all patients who underwent conditioning compared to the control group. Conclusion Peripheral pre- and post-conditioning is an economical, simple, and physiological method that effectively prevents and reduces heart damage caused by reperfusion injury, particularly in non-diabetic STEMI patients.
Collapse
Affiliation(s)
- Veljko Andric
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Internal Medicine, Health Center Raška, Raska, Serbia
| | - Radica Zivkovic Zaric
- Department of Pharmacology and Toxicology, University Clinical Centre Kragujevac, Kragujevac, Serbia
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac, Serbia
| | - Dusan Andric
- Department of Cardiology, University Children’s Clinic, Belgrade, Serbia
| | - Jovan Petrovic
- Department of Cardiology and Internal Medicine, Vascular Surgery Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Goran Davidovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Internal Medicine, Faculty of Medical Sciences University of Kragujevac, University Clinical Centre Kragujevac, Kragujevac, Serbia
| |
Collapse
|
3
|
Brzezińska P, Mieszkowski J, Stankiewicz B, Kowalik T, Reczkowicz J, Niespodziński B, Durzyńska A, Kowalski K, Borkowska A, Antosiewicz J, Kochanowicz A. Direct effects of remote ischemic preconditioning on post-exercise-induced changes in kynurenine metabolism. Front Physiol 2024; 15:1462289. [PMID: 39659803 PMCID: PMC11628380 DOI: 10.3389/fphys.2024.1462289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose Tryptophan (TRP) degradation through the kynurenine pathway is responsible for converting 95% of free TRP into kynurenines, which modulate skeletal muscle bioenergetics, immune and central nervous system activity. Therefore, changes in the kynurenines during exercise have been widely studied but not in the context of the effects of remote ischemic preconditioning (RIPC). In this study, we analyzed the effect of 14-day RIPC training on kynurenines and TRP in runners after running intervals of 20 × 400 m. Methods In this study, 27 semi-professional long-distance runners were assigned to two groups: a RIPC group performing 14 days of RIPC training (n = 12), and a placebo group, SHAM (n = 15). Blood was collected for analysis before, immediately after, and at 6 h and 24 h after the run. Results After the 14-day RIPC/SHAM intervention, post hoc analysis showed a significantly lower concentration of XANA and kynurenic acid to kynurenine ratio (KYNA/KYN) in the RIPC group than in the SHAM group immediately after the running test. Conversely, the decrease in serum TRP levels was higher in the RIPC population. Conclusion RIPC modulates post-exercise changes in XANA and TRP levels, which can affect brain health, yet further research is needed.
Collapse
Affiliation(s)
- Paulina Brzezińska
- Department of Gymnastics and Dance, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Jan Mieszkowski
- Department of Gymnastics and Dance, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
- Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Błażej Stankiewicz
- Department of Theory and Methodology of Physical Education and Sport, Faculty of Health Sciences and Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Tomasz Kowalik
- Department of Theory and Methodology of Physical Education and Sport, Faculty of Health Sciences and Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Joanna Reczkowicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Bartłomiej Niespodziński
- Department of Biological Foundations of Physical Education, Faculty of Health Sciences and Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | | | - Konrad Kowalski
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Andżelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Kochanowicz
- Department of Gymnastics and Dance, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| |
Collapse
|
4
|
Wu Y, Tang H, Liao Q, Tu Y, Fang S, He J, Cui S. Curcumol Inhibits the Progression of Hepatocellular Carcinoma by Regulating the Expression of hsa_circ_0028861. Cancer Biother Radiopharm 2024; 39:203-210. [PMID: 38181186 DOI: 10.1089/cbr.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Background: Hsa_circ_0028861, a newly discovered serum exosome circular RNA (circRNA), is greatly reduced in the serum of patients with hepatocellular carcinoma (HCC). However, the exact role of hsa_circ_0028861 in the progression of liver cancer is still unknown. Materials and Methods: Thirty patients with HCC were enrolled in this study. Hsa_circ_0028861 expression was explored via real-time polymerase chain reaction (PCR) assay. The influence of curcumol on HCC cells were tested using CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, cell wound healing assay, and migration assay, respectively. The related mechanism was determined by Western blot. A xenograft tumor model was constructed, and mice were administrated with curcumol. Results: The expression of hsa_circ_0028861 in tumor tissues was elevated of patients with HCC and in HCC cells. Curcumol treatment decreased the expression of hsa_circ_0028861 in HCC cells. Curcumol treatment could largely suppress the viability, proliferation, and migration of HCC cells by reducing hsa_circ_0028861 expression and mediating the epithelial-mesenchymal transition (EMT) process. Curcumol also effectively restrained tumor growth in the HCC mice model. Conclusions: Curcumol exerted an inhibitory role in HCC progression by downregulating hsa_circ_0028861 expression and mediating the EMT process, which provides evidence for screening new therapeutic targets and drug therapies for HCC treatment.
Collapse
Affiliation(s)
- Yinbing Wu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huafei Tang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Quanxing Liao
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yinuo Tu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuxian Fang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jinfu He
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuzhong Cui
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
5
|
Tian C, Wang A, Huang H, Chen Y. Effects of remote ischemic preconditioning in hepatectomy: a systematic review and meta-analysis. BMC Anesthesiol 2024; 24:118. [PMID: 38532332 PMCID: PMC10964603 DOI: 10.1186/s12871-024-02506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Animal experiments have confirmed that remote ischemic preconditioning (RIPC) can reduce hepatic ischemia-reperfusion injuries (HIRIs), significantly improving early tissue perfusion and oxygenation of the residual liver after resections, accelerating surgical prognoses, and improving survival rates. However, there is still controversy over the role of RIPC in relieving HIRI in clinical studies, which warrants clarification. This study aimed to evaluate the beneficial effects and applicability of RIPC in hepatectomy and to provide evidence-based information for clinical decision-making. METHODS Randomized controlled trials (RCTs) evaluating the efficacy and safety of RIPC interventions were collected, comparing RIPC to no preconditioning in patients undergoing hepatectomies. This search spanned from database inception to January 2024. Data were extracted independently by two researchers according to the PRISMA guidelines. The primary outcomes assessed were postoperative alanine transaminase (ALT), aspartate transaminase (AST), total bilirubin (TBIL), and albumin (ALB) levels. The secondary outcomes assessed included duration of surgery and Pringle, length of postoperative hospital stay, intraoperative blood loss and transfusion, indocyanine green (ICG) clearance, hepatocyte apoptosis index, postoperative complications, and others. RESULTS Ten RCTs were included in this meta-analysis, with a total of 865 patients (428 in the RIPC group and 437 in the control group). ALT levels in the RIPC group were lower than those in the control group on postoperative day (POD) 1 (WMD = - 59.24, 95% CI: - 115.04 to - 3.45; P = 0.04) and POD 3 (WMD = - 27.47, 95% CI: - 52.26 to - 2.68; P = 0.03). However, heterogeneities were significant (I2 = 89% and I2 = 78%), and ALT levels on POD 3 were unstable based on a sensitivity analysis. AST levels on POD 1 in the RIPC group were lower than those in the control group (WMD = - 50.03, 95% CI: - 94.35 to - 5.71; P = 0.03), but heterogeneity was also significant (I2 = 81%). A subgroup analysis showed no significant differences in ALT and AST levels on POD 1 between groups, regardless of whether the Pringle maneuver or propofol was used for anesthesia (induction only or induction and maintenance, P > 0.05). The remaining outcome indicators were not statistically significant or could not be analyzed due to lack of sufficient data. CONCLUSION RIPC has some short-term liver protective effects on HIRIs during hepatectomies. However, there is still insufficient evidence to encourage its routine use to improve clinical outcomes. TRIAL REGISTRATION The protocol of this study was registered with PROSPERO (CRD42022333383).
Collapse
Affiliation(s)
- Chun Tian
- Department of Anesthesiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Aihua Wang
- Department of Critical Care Medicine, Chongqing Yongchuan District People's Hospital, Chongqing, 402160, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Youwan Chen
- Department of Critical Care Medicine, Chongqing Yongchuan District People's Hospital, Chongqing, 402160, China.
| |
Collapse
|
6
|
Xiao Y, Zhang S, Ren Q. The New Orientation of Postoperative Analgesia: Remote Ischemic Preconditioning. J Pain Res 2024; 17:1145-1152. [PMID: 38524690 PMCID: PMC10959302 DOI: 10.2147/jpr.s455127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose of Review Postoperative analgesia is currently a significant topic in anesthesiology. Currently, the predominant approach for achieving multimodal analgesia involves the utilization of pharmacotherapy and regional anesthesia procedures. The primary objectives of this approach are to mitigate postoperative pain, enhance patient satisfaction, and diminish overall opioid usage. Nevertheless, there is a scarcity of research on the use of remote ischemia preconditioning aimed at mitigating postoperative pain. Recent Findings Transient stoppage of blood flow to an organ has been found to elicit remote ischemia preconditioning (RIPC), which serves as a potent intrinsic mechanism for protecting numerous organs. In addition to its established role in protecting against reperfusion injury, RIPC has recently been identified as having potential benefits in the context of postoperative analgesia. Summary In addition to traditional perioperative analgesia, RIPC provides perioperative analgesia and organ protection.
Collapse
Affiliation(s)
- Yunyu Xiao
- Department of Anesthesiology, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, 311225, People’s Republic of China
| | - Shaofeng Zhang
- Department of Anesthesiology, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, 311225, People’s Republic of China
| | - Qiusheng Ren
- Department of Anesthesiology, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, 311225, People’s Republic of China
| |
Collapse
|
7
|
Hardt JLS, Pohlmann P, Reissfelder C, Rahbari NN. Remote ischemic preconditioning for reduction of ischemia-reperfusion injury after hepatectomy: A randomized sham-controlled trial. Surgery 2024; 175:424-431. [PMID: 37951812 DOI: 10.1016/j.surg.2023.09.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/03/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Remote ischemic preconditioning reduces ischemia-reperfusion injury in patients undergoing hepatectomy. Moreover, there is evidence that the protective effects of remote ischemic preconditioning may be more pronounced in pre-damaged livers. The objective of this trial was to investigate the extent to which remote ischemic preconditioning can attenuate ischemia-reperfusion injury after hepatectomy and Pringle maneuver in patients with chronic liver disease. METHODS In this randomized, controlled, triple-blind monocenter trial, a total of 102 patients with chronic liver disease and planned hepatectomy were enrolled between December 2019 and March 2022. Eligible patients were randomized to the remote ischemic preconditioning or sham arms. Remote ischemic preconditioning was induced through 3 10-minute cycles of alternating ischemia and reperfusion of the upper extremity. The study was prospectively registered in the German Clinical Trials Registry (DRKS00018931). RESULTS A total of 102 patients were included in the study and were randomized (51 per arm). The median age was 69.5 years, approximately two-thirds of the patients were male (69/102, 67.7%), and the mean body mass index was 25.6 kg/m2. Most patients were classified as American Society of Anesthesiologists II (55/102, 53.9%) or III (45/102, 44.1%). The primary endpoint, the transaminases on the first postoperative day (alanine aminotransferase /aspartate aminotransferase: remote ischemic preconditioning arm: 250 (35-1721)/320 (42-1525) U/L versus sham control arm: 283 (32-792)/356 (20-1851) U/L, P = .820/0.639), clinical outcomes as well as remote ischemic preconditioning biomarker levels were comparable between both arms. CONCLUSION Remote ischemic preconditioning did not achieve a significant reduction in postoperative transaminase levels, nor did it affect clinical results and biomarkers.
Collapse
Affiliation(s)
- Julia L S Hardt
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Paulina Pohlmann
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nuh N Rahbari
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Papadopoulou A, Dickinson M, Samuels TL, Heiss C, Forni L, Creagh-Brown B. Efficacy of remote ischaemic preconditioning on outcomes following non-cardiac non-vascular surgery: a systematic review and meta-analysis. Perioper Med (Lond) 2023; 12:9. [PMID: 37038219 PMCID: PMC10084674 DOI: 10.1186/s13741-023-00297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Remote ischaemic preconditioning (RIPC) has been investigated as a simple intervention to potentially mitigate the ischaemic effect of the surgical insult and reduce postoperative morbidity. This review systematically evaluates the effect of RIPC on morbidity, including duration of hospital stay and parameters reflective of cardiac, renal, respiratory, and hepatic dysfunction following non-cardiac non-vascular (NCNV) surgery. METHODS The electronic databases PubMed, Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL) were searched from their inception date to November 2021. Studies investigating the effect of local preconditioning or postconditioning were excluded. Methodological quality and risk of bias were determined according to the Revised Cochrane risk-of-bias tool for randomised trials (RoB 2). Calculation of the odds ratios and a random effects model was used for dichotomous outcomes and mean differences or standardised mean differences as appropriate were used for continuous outcomes. The primary outcomes of interest were cardiac and renal morbidity, and the secondary outcomes included other organ function parameters and hospital length of stay. RESULTS A systematic review of the published literature identified 36 randomised controlled trials. There was no significant difference in postoperative troponin or acute kidney injury. RIPC was associated with lower postoperative serum creatinine (9 studies, 914 patients, mean difference (MD) - 3.81 µmol/L, 95% confidence interval (CI) - 6.79 to - 0.83, p = 0.01, I2 = 5%) and lower renal stress biomarker (neutrophil gelatinase-associated lipocalin (NGAL), 5 studies, 379 patients, standardized mean difference (SMD) - 0.66, 95% CI - 1.27 to - 0.06, p = 0.03, I2 = 86%). RIPC was also associated with improved oxygenation (higher PaO2/FiO2, 5 studies, 420 patients, MD 51.51 mmHg, 95% CI 27.32 to 75.69, p < 0.01, I2 = 89%), lower biomarker of oxidative stress (malondialdehyde (MDA), 3 studies, 100 patients, MD - 1.24 µmol/L, 95% CI - 2.4 to - 0.07, p = 0.04, I2 = 91%)) and shorter length of hospital stay (15 studies, 2110 patients, MD - 0.99 days, 95% CI - 1.75 to - 0.23, p = 0.01, I2 = 88%). CONCLUSIONS This meta-analysis did not show an improvement in the primary outcomes of interest with the use of RIPC. RIPC was associated with a small improvement in certain surrogate parameters of organ function and small reduction in hospital length of stay. Our results should be interpreted with caution due to the limited number of studies addressing individual outcomes and the considerable heterogeneity identified. TRIAL REGISTRATION PROSPERO CRD42019129503.
Collapse
Affiliation(s)
| | - Matthew Dickinson
- Department of Anesthesia, Royal Surrey County Hospital, Guildford, UK
| | - Theophilus L Samuels
- Department of Critical Care, Surrey and Sussex Healthcare NHS Trust, Redhill, UK
| | - Christian Heiss
- Vascular Department, Surrey and Sussex Healthcare NHS Trust, Redhill, UK
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Lui Forni
- Department of Critical Care, Royal Surrey County Hospital, Guildford, UK
| | - Ben Creagh-Brown
- Department of Critical Care, Royal Surrey County Hospital, Guildford, UK
| |
Collapse
|
9
|
Chen H, Lu D, Yang X, Hu Z, He C, Li H, Lin Z, Yang M, Xu X. One Shoot, Two Birds: Alleviating Inflammation Caused by Ischemia/Reperfusion Injury to Reduce the Recurrence of Hepatocellular Carcinoma. Front Immunol 2022; 13:879552. [PMID: 35634295 PMCID: PMC9130551 DOI: 10.3389/fimmu.2022.879552] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is crucial to tumorigenesis and the development of metastasis. Hepatic ischemia/reperfusion injury (IRI) is an unresolved problem in liver resection and transplantation which often establishes and remodels the inflammatory microenvironment in liver. More and more experimental and clinical evidence unmasks the role of hepatic IRI and associated inflammation in promoting the recurrence of hepatocellular carcinoma (HCC). Meanwhile, approaches aimed at alleviating hepatic IRI, such as machine perfusion, regulating the gut-liver axis, and targeting key inflammatory components, have been proved to prevent HCC recurrence. This review article highlights the underlying mechanisms and promising therapeutic strategies to reduce tumor recurrence through alleviating inflammation induced by hepatic IRI.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Di Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Zhihang Hu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Chiyu He
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Huigang Li
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Modan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
| |
Collapse
|
10
|
Papamichail M, Pizanias M, Heaton ND, M P, M P, Nd H. Minimizing the risk of small-for-size syndrome after liver surgery. Hepatobiliary Pancreat Dis Int 2022; 21:113-133. [PMID: 34961675 DOI: 10.1016/j.hbpd.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Primary and secondary liver tumors are not always amenable to resection due to location and size. Inadequate future liver remnant (FLR) may prevent patients from having a curative resection or may result in increased postoperative morbidity and mortality from complications related to small-for-size syndrome (SFSS). DATA SOURCES This comprehensive review analyzed the principles, mechanism and risk factors associated with SFSS and presented current available options in the evaluation of FLR when planning liver surgery. In addition, it provided a detailed description of specific modalities that can be used before, during or after surgery, in order to optimize the conditions for a safe resection and minimize the risk of SFSS. RESULTS Several methods which aim to reduce tumor burden, preserve healthy liver parenchyma, induce hypertrophy of FLR or prevent postoperative complications help minimize the risk of SFSS. CONCLUSIONS With those techniques the indications of radical treatment for patients with liver tumors have significantly expanded. The successful outcome depends on appropriate patient selection, the individualization and modification of interventions and the right timing of surgery.
Collapse
Affiliation(s)
- Michail Papamichail
- Department of Hepato-Pancreato-Biliary Surgery, Royal Blackburn Hospital, Blackburn BB2 3HH, UK.
| | - Michail Pizanias
- Department of General Surgery, Whittington Hospital, London N19 5NF, UK
| | - Nigel D Heaton
- Department of Liver Transplant and Hepato-Pancreato-Biliary Surgery, Institute of Liver Studies, Kings Health Partners at King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Papamichail M
- Department of Hepato-Pancreato-Biliary Surgery, Royal Blackburn Hospital, Blackburn BB2 3HH, UK; Department of General Surgery, Whittington Hospital, London N19 5NF, UK; Department of Liver Transplant and Hepato-Pancreato-Biliary Surgery, Institute of Liver Studies, Kings Health Partners at King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Pizanias M
- Department of Hepato-Pancreato-Biliary Surgery, Royal Blackburn Hospital, Blackburn BB2 3HH, UK; Department of General Surgery, Whittington Hospital, London N19 5NF, UK; Department of Liver Transplant and Hepato-Pancreato-Biliary Surgery, Institute of Liver Studies, Kings Health Partners at King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Heaton Nd
- Department of Hepato-Pancreato-Biliary Surgery, Royal Blackburn Hospital, Blackburn BB2 3HH, UK; Department of General Surgery, Whittington Hospital, London N19 5NF, UK; Department of Liver Transplant and Hepato-Pancreato-Biliary Surgery, Institute of Liver Studies, Kings Health Partners at King's College Hospital NHS Trust, London SE5 9RS, UK
| |
Collapse
|
11
|
Teodoro JS, Da Silva RT, Machado IF, Panisello-Roselló A, Roselló-Catafau J, Rolo AP, Palmeira CM. Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022; 11:688. [PMID: 35203337 PMCID: PMC8870414 DOI: 10.3390/cells11040688] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.
Collapse
Affiliation(s)
- João S. Teodoro
- MitoLab, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal; (J.S.T.); (A.P.R.)
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
- IIIUC–Institute of Interdisciplinary Research, University of Coimbra, Pólo II da Universidade de Coimbra, 3000 Coimbra, Portugal
| | - Rui T. Da Silva
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Ivo F. Machado
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
- IIIUC–Institute of Interdisciplinary Research, University of Coimbra, Pólo II da Universidade de Coimbra, 3000 Coimbra, Portugal
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Anabela P. Rolo
- MitoLab, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal; (J.S.T.); (A.P.R.)
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
| | - Carlos M. Palmeira
- MitoLab, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal; (J.S.T.); (A.P.R.)
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
| |
Collapse
|
12
|
Wu J, Yu C, Zeng X, Sun C. The hepatoprotective effect from ischemia-reperfusion injury of remote ischemic preconditioning in the liver related surgery: a meta-analysis. ANZ J Surg 2021; 92:1332-1337. [PMID: 34854193 DOI: 10.1111/ans.17236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND This study aimed to assess the hepatoprotective effect of remote ischemic preconditioning (RIPC) in the liver related surgery. METHODS Published articles in PubMed, Embase and Cochrane clinical trial databases were searched from the inception to May 2021. Randomized control trials (RCTs) comparing the RIPC with control or other conditionings were included for analysis. The postoperative liver synthetic function was used as the primary outcome. RESULTS A total of six RCTs were included the present meta-analysis. There were 216 patients underwent RIPC and 212 patients in the control group. The RIPC group had a significantly lower level of postoperative alanine transaminase and aspartate transaminase (p<0.001). The postoperative bilirubin level was also significant lower in the RIPC group than the control group (MD = -9.0, 95%CI, -13.94 to -4.03; p<0.001). ICG clearance was reduced in controls versus RIPC (p<0.001). There was no significant difference between the RIPC and control group in terms of the complication rate. CONCLUSION The RIPC was evaluated to have a strong hepatoprotective effect from ischemia-reperfusion injury in the liver related surgery.
Collapse
Affiliation(s)
- Jinli Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Chao Yu
- Department of General Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianggang Zeng
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chengyi Sun
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Soochow, China
| |
Collapse
|
13
|
de Klein GW, Brohet RM, Liem MSL, Klaase JM. Post-operative Day 1 Serum Transaminase Levels in Relation to Morbidity After Liver Resection. World J Surg 2021; 46:433-440. [PMID: 34797398 DOI: 10.1007/s00268-021-06280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Post-operative serum transaminases have been proposed as possible early predictors of morbidity after liver resection. This study aimed to verify the clinical value of post-operative serum transaminases. METHODS Clinical data from 2001 to 2016 in a single non-academic referral HPB center were collected from a prospectively held database. Post-operative day 1 serum aspartate transaminase (AST) and alanine transaminase (ALT) were tested for their relationship with post-operative major morbidity, defined by a Clavien-Dindo score 3 or higher, and mortality. RESULTS For this analysis, 371 patients were included, including 149 (40%) undergoing major liver resections. In total, 17% of the patients developed major morbidity. Stepwise logistic regression demonstrated that AST, and not ALT, is an independent predictor for major morbidity (p = 0.017). The probability of major morbidity significantly increased with increasing AST values. A threshold value of 242 U/L was found to be predictive for one or more major complications. CONCLUSIONS In this study, post-operative serum AST on day 1 was a predictive factor for major morbidity after liver resection. For patients with low AST value, early discharge could be considered. However, because of the substantial inter-individual variability of AST values, more studies are needed to translate these results into clinical practice.
Collapse
Affiliation(s)
- G W de Klein
- Department of Surgery, Medisch Spectrum Twente, Koningsplein 1, 7512 KZ, Enschede, The Netherlands
| | - R M Brohet
- Department of Research and Innovation, Isala, Zwolle, Netherlands
| | - M S L Liem
- Department of Surgery, Medisch Spectrum Twente, Koningsplein 1, 7512 KZ, Enschede, The Netherlands
| | - J M Klaase
- Department of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
14
|
Krag AE, Hvas CL, Kiil BJ, Hvas AM. Effect of Remote Ischemic Conditioning on Bleeding Complications in Surgery: A Systematic Review and Meta-Analysis. Semin Thromb Hemost 2021; 48:229-239. [PMID: 34428800 DOI: 10.1055/s-0041-1732468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Remote ischemic conditioning (RIC) is administered with an inflatable tourniquet by inducing brief, alternating cycles of limb ischemia and reperfusion. RIC possibly impacts the hemostatic system, and the intervention has been tested as protective therapy against ischemia-reperfusion injury and thrombotic complications in cardiac surgery and other surgical procedures. In the present systematic review, we aimed to investigate the effect of RIC on intraoperative and postoperative bleeding complications in meta-analyses of randomized controlled trials including adult patients undergoing surgery. A systematic search was performed on November 7, 2020 in PubMed, Embase, and the Cochrane Central Register of Controlled Trials. Randomized controlled trials comparing RIC versus no RIC in adult patients undergoing surgery that reported bleeding outcomes in English publications were included. Effect estimates with 95% confidence intervals were calculated using the random-effects model for intraoperative and postoperative bleeding outcomes. Thirty-two randomized controlled trials with 3,804 patients were eligible for inclusion. RIC did not affect intraoperative bleeding volume (nine trials; 392 RIC patients, 399 controls) with the effect estimate -0.95 [-9.90; 7.99] mL (p = 0.83). RIC significantly reduced postoperative drainage volume (seven trials; 367 RIC patients, 365 controls) with mean difference -83.6 [-134.9; -32.4] mL (p = 0.001). The risk of re-operation for bleeding was reduced in the RIC group (16 trials; 838 RIC patients, 839 controls), albeit not significantly, with the relative risk 0.65 [0.39; 1.09] (p = 0.10). In conclusion, RIC reduced postoperative bleeding measured by postoperative drainage volume in this meta-analysis of adult patients undergoing surgery.
Collapse
Affiliation(s)
- Andreas E Krag
- Thrombosis and Hemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Plastic and Breast Surgery, Aarhus University Hospital, Denmark
| | - Christine L Hvas
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Denmark
| | - Birgitte J Kiil
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Denmark
| | - Anne-Mette Hvas
- Thrombosis and Hemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Stankiewicz R, Grąt M. Direct, remote and combined ischemic conditioning in liver surgery. World J Hepatol 2021; 13:533-542. [PMID: 34131468 PMCID: PMC8173344 DOI: 10.4254/wjh.v13.i5.533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Liver ischemia-reperfusion injury is a major cause of postoperative liver dysfunction, morbidity and mortality following liver resection and transplantation. Ischemic conditioning has been shown to ameliorate ischemia-reperfusion injury in small animal models. It can be applied directly or remotely when cycles of ischemia and reperfusion are applied to a distant site or organ. Considering timing of the procedure, different protocols are available. Ischemic preconditioning refers to that performed before the duration of ischemia of the target organ. Ischemic perconditioning is performed over the duration of ischemia of the target organ. Ischemic postconditioning applies brief episodes of ischemia at the onset of reperfusion following a prolonged ischemia. Animal studies pointed towards suppressing cytokine release, enhancing the production of hepatoprotective adenosine and reducing liver apoptotic response as the potential mechanisms responsible for the protective effect of direct tissue conditioning. Interactions between neural, humoral and systemic pathways all lead to the protective effect of remote ischemic preconditioning. Despite promising animal studies, none of the aforementioned protocols proved to be clinically effective in liver surgery with the exception of morbidity reduction in cirrhotic patients undergoing liver resection. Further human clinical trials with application of novel conditioning protocols and combination of methods are warranted before implementation of ischemic conditioning in day-to-day clinical practice.
Collapse
Affiliation(s)
- Rafał Stankiewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland.
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
16
|
Wahlstrøm KL, Bjerrum E, Gögenur I, Burcharth J, Ekeloef S. Effect of remote ischaemic preconditioning on mortality and morbidity after non-cardiac surgery: meta-analysis. BJS Open 2021; 5:zraa026. [PMID: 33733660 PMCID: PMC7970092 DOI: 10.1093/bjsopen/zraa026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/16/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Remote ischaemic preconditioning (RIPC) has been shown to have a protective role on vital organs exposed to reperfusion injury. The aim of this systematic review was to evaluate the effects of non-invasive RIPC on clinical and biochemical outcomes in patients undergoing non-cardiac surgery. METHODS A systematic literature search of PubMed, EMBASE, Scopus, and Cochrane databases was carried out in February 2020. RCTs investigating the effect of non-invasive RIPC in adults undergoing non-cardiac surgery were included. Meta-analyses and trial sequential analyses (TSAs) were performed on cardiovascular events, acute kidney injury, and short- and long-term mortality. RESULTS Some 43 RCTs including 3660 patients were included. The surgical areas comprised orthopaedic, vascular, abdominal, pulmonary, neurological, and urological surgery. Meta-analysis showed RIPC to be associated with fewer cardiovascular events in non-cardiac surgery (13 trials, 1968 patients, 421 events; odds ratio (OR) 0.68, 95 per cent c.i. 0.47 to 0.96; P = 0.03). Meta-analyses of the effect of RIPC on acute kidney injury (12 trials, 1208 patients, 211 events; OR 1.14, 0.78 to 1.69; P = 0.50; I2 = 9 per cent), short-term mortality (7 trials, 1239 patients, 65 events; OR 0.65, 0.37 to 1.12; P = 0.12; I2 = 0 per cent), and long-term mortality (4 trials, 1167 patients, 9 events; OR 0.67, 0.18 to 2.55; P = 0.56; I2 = 0 per cent) showed no significant differences for RIPC compared with standard perioperative care in non-cardiac surgery. However, TSAs showed that the required information sizes have not yet been reached. CONCLUSION Application of RIPC to non-cardiac surgery might reduce cardiovascular events, but not acute kidney injury or all-cause mortality, but currently available data are inadequate to confirm or reject an assumed intervention effect.
Collapse
Affiliation(s)
- K L Wahlstrøm
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - E Bjerrum
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - I Gögenur
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - J Burcharth
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - S Ekeloef
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| |
Collapse
|
17
|
Effects of remote ischemic preconditioning on liver injury following hepatectomy: a systematic review and meta-analysis of randomized control trials. Surg Today 2021; 51:1251-1260. [PMID: 33464413 DOI: 10.1007/s00595-020-02205-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/02/2020] [Indexed: 01/27/2023]
Abstract
The protective effect of remote ischemic preconditioning (RIPC) against liver ischemia-reperfusion injury caused by hepatectomy remains controversial. We conducted this meta-analysis to evaluate the effectiveness and safety of RIPC strategies. PubMed, SinoMed, Embase, Cochrane Library, Medline, and Web of Science databases were searched for randomized controlled trials (RCT) that assessed the effectiveness and safety of RIPC strategies. The primary outcomes were operation time, index of liver function on postoperative day (POD) 1, postoperative complications, and postoperative hospital stay. The pooled odds ratios and weighted mean differences at 95% confidence interval (95% CI) were estimated using a fixed-effects or random-effects model. A total of 459 patients were included in seven RCTs. The alanine aminotransferase (ALT) and alanine aminotransferase (AST) values on POD1 were significantly different between the RIPC group and the N-RIPC group (P = 0.009 and P = 0.02, respectively). However, the heterogeneity was significant (I2 = 84% and I2 = 86%), and the results of a sensitivity analysis were unstable. There was no significant difference in the total bilirubin levels (P = 0.25) between the two groups on POD1. Subgroup analysis revealed no significant difference in the AST and ALT levels on POD1 between the RIIPC group and the N-RIPC group, regardless of whether the vascular control technique was used (all P > 0.05). Based on current evidence, RIPC does not alleviate liver injury caused by IRI after hepatectomy.
Collapse
|
18
|
Lamidi S, Baker DM, Wilson MJ, Lee MJ. Remote Ischemic Preconditioning in Non-cardiac Surgery: A Systematic Review and Meta-analysis. J Surg Res 2021; 261:261-273. [PMID: 33460972 DOI: 10.1016/j.jss.2020.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Remote ischemic preconditioning (RIPC) may mitigate physiological stress related to surgery. There is no clear consensus on conduct of RIPC studies, or whether it is effective. The aim of this study was to (i) assess delivery of RIPC, (ii) identify reported outcomes, (iii) measure effect on key clinical outcomes. METHODS This review was registered on PROSPERO (CRD:42020180725). EMBASE and Medline databases were searched, and results screened by two reviewers. Full-texts were assessed for eligibility by two reviewers. Data extracted were methods of RIPC and outcomes reported. Meta-analysis of key clinical events was performed using a Mantel-Haenszel random effects model. The TIDieR framework was used to assess intervention reporting, and Cochrane risk of bias tool was used for all studies included. RESULTS Searches identified 25 studies; 25 were included in the narrative analysis and 18 in the meta-analysis. RIPC was frequently performed by occluding arm circulation (15/25), at 200 mmHg (9/25), with three cycles of 5 min ischemia and 5 min of reperfusion (16/25). No study fulfilled all 12 TIDieR items (mean score 7.68). Meta-analysis showed no benefit of RIPC on MI (OR 0.71 95% CI 0.48-1.04, I2 = 0%), mortality (OR 0.56, 95% CI 0.31-1.01, I2 = 0%), or acute kidney injury (OR 0.72 95% CI 0.48-1.08). CONCLUSIONS RIPC could be standardized as 200 mmHg pressure in 3 × 5 min on and off cycles. The signal of benefit should be explored in a larger well-designed randomized trial.
Collapse
Affiliation(s)
- Segun Lamidi
- The Medical School, University of Sheffield, Sheffield, UK
| | - Daniel M Baker
- Academic Directorate of General Surgery, Sheffield Teaching Hospitals NHS FT, Sheffield, UK
| | - Matthew J Wilson
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Matthew J Lee
- Academic Directorate of General Surgery, Sheffield Teaching Hospitals NHS FT, Sheffield, UK; Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK.
| |
Collapse
|
19
|
Qu Y, Liu J, Guo ZN, Zhang PD, Yan XL, Zhang P, Qi S, Yang Y. The Impact of Remote Ischaemic Conditioning on Beat-to-Beat Heart Rate Variability Circadian Rhythm in Healthy Adults. Heart Lung Circ 2020; 30:531-539. [PMID: 33032892 DOI: 10.1016/j.hlc.2020.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Remote ischaemic conditioning (RIC) is an intervention that may exert a protective effect over multiple tissues or organs by regulating neuronal signal transduction. Heart rate variability (HRV) can assess the state of the autonomic nervous system. However, whether RIC can also regulate HRV in humans remains unknown. METHOD This was a self-controlled interventional study in which serial beat-to-beat monitoring was performed at the same seven time points (7, 9, and 11 AM; 2, 5, and 8 PM; and 8 AM on the next day) with or without RIC in 50 healthy adults. The seven time points on the RIC day were defined as baseline, 1 hour, 3 hours, 6 hours, 9 hours, 12 hours, and 24 hours after RIC. The RIC protocol consisted of 4×5-minute inflation/deflation in one arm and one thigh cuff at 200 mmHg pressure from 7:20 to 8 AM. This study is registered on ClinicalTrials.gov (NCT02965547). RESULTS We included 50 healthy adult volunteers (aged 34.54±12.01 years, 22 men [44%], all Asian). The variables analysed in frequency-domain measures performed as power of low-frequency in normalised units (0.04-0.15 Hz), high-frequency in normalised units (0.15-0.40 Hz), and ratio of low frequency to high frequency. The time-domain parameters standard deviation (SD) of all normal to normal (NN) intervals (SDNN), mean of the 5-minute SD of the NN intervals, SD of the consecutive 5-minute averages of NN intervals, and the root mean square of successive differences of NN intervals, and time-domain parameters calculated from Poincaré plots, SD of the short diagonal axis in Poincaré plot (SD1), SD of the long diagonal axis in Poincaré plot (SD2), and SD1/SD2 were also obtained. The SDNN and SD2 significantly increased 1 hour after RIC (p=0.029 and p=0.045, respectively). Additionally, the SD2 increased a second time 12 hours after RIC (p=0.041), which represented inhibited sympathetic activity. CONCLUSIONS Heart rate variability increase and sympathetic inhibition induced by RIC appeared both on the early and delayed protective window of RIC, which may indicate some of the underlying mechanisms by which RIC may offer protection.
Collapse
Affiliation(s)
- Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, Jilin, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, Chang Chun, Jilin, China
| | - Pan-Deng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiu-Li Yan
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, Jilin, China
| | - Peng Zhang
- Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, Chang Chun, Jilin, China
| | - Shuang Qi
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, Jilin, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, Jilin, China; Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
20
|
Kasepalu T, Kuusik K, Lepner U, Starkopf J, Zilmer M, Eha J, Vähi M, Kals J. Remote ischaemic preconditioning influences the levels of acylcarnitines in vascular surgery: a randomised clinical trial. Nutr Metab (Lond) 2020; 17:76. [PMID: 32968425 PMCID: PMC7501679 DOI: 10.1186/s12986-020-00495-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background Vascular surgery patients have reduced tissues` blood supply, which may lead to mitochondrial dysfunction and accumulation of acylcarnitines (ACs).
It has been suggested that remote ischaemic preconditioning (RIPC) has its organ protective effect via promoting mitochondrial function.
The aim of this study was to evaluate the effect of RIPC on the profile of ACs in the vascular surgery patients. Methods This is a randomised, sham-controlled, double-blinded, single-centre study. Patients undergoing open surgical repair of abdominal aortic aneurysm, surgical lower limb revascularisation surgery or carotid endarterectomy were recruited non-consecutively. The RIPC protocol consisting of 4 cycles of 5 min of ischaemia, followed by 5 min of reperfusion, was applied. A blood pressure cuff was used for RIPC or a sham procedure. Blood was collected preoperatively and approximately 24 h postoperatively. The profile of ACs was analysed using the AbsoluteIDQp180 kit (Biocrates Life Sciences AG, Innsbruck, Austria). Results Ninety-eight patients were recruited and randomised into the study groups and 45 patients from the RIPC group and 47 patients from the sham group were included in final analysis. There was a statistically significant difference between the groups regarding the changes in C3-OH (p = 0.023)—there was a decrease (− 0.007 µmol/L, ± 0.020 µmol/L, p = 0.0233) in the RIPC group and increase (0.002 µmol/L, ± 0.015 µmol/L, p = 0.481) in the sham group. Additionally, a decrease from baseline to 24 h after surgery (p < 0.05) was detected both in the sham and the RIPC group in the levels of following ACs: C2, C8, C10, C10:1, C12, C12:1, C14:1, C14:2, C16, C16:1, C18, C18:1, C18:2. In the sham group, there was an increase (p < 0.05) in the levels of C0 (carnitine) and a decrease in the level of C18:1-OH. In the RIPC group, a decrease (p < 0.05) was noted in the levels of C3-OH, C3-DC (C4-OH), C6:1, C9, C10:2. Conclusions It can be concluded that RIPC may have an effect on the levels of ACs and might therefore have protective effects on mitochondria in the vascular surgery patients. Further larger studies conducted on homogenous populations are needed to make more definite conclusions about the effect of RIPC on the metabolism of ACs. Trial registration ClinicalTrials.gov database, NCT02689414. Registered 24 February 2016—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02689414. Electronic supplementary material The online version of this article (10.1186/s12986-020-00495-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teele Kasepalu
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, Puusepa 8, 50406 Tartu, Estonia.,Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Karl Kuusik
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.,Department of Cardiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Urmas Lepner
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, Puusepa 8, 50406 Tartu, Estonia.,Tartu University Hospital, Tartu, Estonia
| | - Joel Starkopf
- Tartu University Hospital, Tartu, Estonia.,Department of Anaesthesiology and Intensive Care, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mihkel Zilmer
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jaan Eha
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Tartu University Hospital, Tartu, Estonia
| | - Mare Vähi
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Jaak Kals
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, Puusepa 8, 50406 Tartu, Estonia.,Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.,Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
21
|
Teo JY, Ho AFW, Bulluck H, Gao F, Chong J, Koh YX, Tan EK, Abdul Latiff JB, Chua SH, Goh BKP, Chan CY, Chung AYF, Lee SY, Cheow PC, Ooi LLPJ, Davidson BR, Jevaraj PR, Hausenloy DJ. Effect of remote ischemic preConditioning on liver injury in patients undergoing liver resection: the ERIC-LIVER trial. HPB (Oxford) 2020; 22:1250-1257. [PMID: 32007393 DOI: 10.1016/j.hpb.2019.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Novel hepatoprotective strategies are needed to improve clinical outcomes during liver surgery. There is mixed data on the role of remote ischemic preconditioning (RIPC). We investigated RIPC in partial hepatectomy for primary hepatocellular carcinoma (HCC). METHODS This was a Phase II, single-center, sham-controlled, randomized controlled trial (RCT). The primary hypothesis was that RIPC would reduce acute liver injury following surgery indicated by serum alanine transferase (ALT) 24 h following hepatectomy in patients with primary HCC, compared to sham. Patients were randomized to receive either four cycles of 5 min/5 min arm cuff inflation/deflation immediately prior to surgery, or sham. Secondary endpoints included clinical, biochemical and pathological outcomes. Liver function measured by Indocyanine Green pulse densitometry was performed in a subset of patients. RESULTS 24 and 26 patients were randomized to RIPC and control groups respectively. The groups were balanced for baseline characteristics, except the duration of operation was longer in the RIPC group. Median ALT at 24 h was similar between groups (196 IU/L IQR 113.5-419.5 versus 172.5 IU/L IQR 115-298 respectively, p = 0.61). Groups were similar in secondary endpoints. CONCLUSION This RCT did not demonstrate beneficial effects with RIPC on serum ALT levels 24 h after partial hepatectomy.
Collapse
Affiliation(s)
- Jin Yao Teo
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Andrew F W Ho
- Department of Emergency Medicine, Singapore General Hospital, Singapore; SingHealth Duke-NUS Emergency Medicine Academic Clinical Programme, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore
| | | | - Fei Gao
- National Heart Research Institute Singapore, National Heart Centre, Singapore; Health Services and Systems Research, Duke-National University of Singapore Medical School, Singapore
| | - Jun Chong
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore
| | - Ye Xin Koh
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Ek Khoon Tan
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Julianah B Abdul Latiff
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Siew H Chua
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Brian K P Goh
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Chung Yip Chan
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Alexander Y F Chung
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Ser Yee Lee
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Peng Chung Cheow
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - London L P J Ooi
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Brian R Davidson
- Division of Surgery and Intervention Science, Royal Free Campus, University College London, UK; Department of Hepato Pancreato Biliary Surgery and Liver Transplantation, Royal Free Hospital Foundation Trust, UK
| | - Prema Raj Jevaraj
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan; Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico.
| |
Collapse
|
22
|
Birgin E, Reissfelder C, Rahbari N. Remote Ischemic Preconditioning in a Cirrhotic Patient Undergoing Major Hepatectomy. Cureus 2020; 12:e9056. [PMID: 32782875 PMCID: PMC7413310 DOI: 10.7759/cureus.9056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) has been shown to reduce ischemic reperfusion injury for patients undergoing hepatectomy for colorectal liver metastasis. We present a case of a 69-year-old male who underwent right hepatectomy for a multifocal hepatocellular carcinoma of the right liver and concomitant liver cirrhosis (Child-Pugh stage A). We performed portal vein embolization prior to surgery and intraoperative RIPC of the iliac vessels. The postoperative course after major hepatectomy went uneventful.
Collapse
Affiliation(s)
- Emrullah Birgin
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, DEU
| | - Christoph Reissfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, DEU
| | - Nuh Rahbari
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, DEU
| |
Collapse
|
23
|
Effect of Remote Ischemic Preconditioning Conducted in Living Liver Donors on Postoperative Liver Function in Donors and Recipients Following Liver Transplantation: A Randomized Clinical Trial. Ann Surg 2020; 271:646-653. [PMID: 31356262 DOI: 10.1097/sla.0000000000003498] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study aimed to assess the effects of remote ischemic preconditioning (RIPC) on liver function in donors and recipients after living donor liver transplantation (LDLT). BACKGROUND Ischemia reperfusion injury (IRI) is known to be associated with graft dysfunction after liver transplantation. RIPC is used to lessen the harmful effects of IRI. METHODS A total of 148 donors were randomly assigned to RIPC (n = 75) and control (n = 73) groups. RIPC involves 3 cycles of 5-minute inflation of a blood pressure cuff to 200 mm Hg to the upper arm, followed by 5-minute reperfusion with cuff deflation. The primary aim was to assess postoperative liver function in donors and recipients and the incidence of early allograft dysfunction and graft failure in recipients. RESULTS RIPC was not associated with any differences in postoperative aspartate aminotransferase (AST) and alanine aminotransferase levels after living donor hepatectomy, and it did not decrease the incidence of delayed graft hepatic function (6.7% vs 0.0%, P = 0.074) in donors. AST level on postoperative day 1 [217.0 (158.0, 288.0) vs 259.5 (182.0, 340.0), P = 0.033] and maximal AST level within 7 postoperative days [244.0 (167.0, 334.0) vs 296.0 (206.0, 395.5), P = 0.029) were significantly lower in recipients who received a preconditioned graft. No differences were found in the incidence of early allograft dysfunction (4.1% vs 5.6%, P = 0.955) or graft failure (1.4% vs 5.6%, P = 0.346) among recipients. CONCLUSIONS RIPC did not improve liver function in living donor hepatectomy. However, RIPC performed in liver donors may be beneficial for postoperative liver function in recipients after living donor liver transplantation.
Collapse
|
24
|
Shen L, Uz Z, Verheij J, Veelo DP, Ince Y, Ince C, van Gulik TM. Interpatient heterogeneity in hepatic microvascular blood flow during vascular inflow occlusion (Pringle manoeuvre). Hepatobiliary Surg Nutr 2020; 9:271-283. [PMID: 32509813 PMCID: PMC7262621 DOI: 10.21037/hbsn.2020.02.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Vascular inflow occlusion (VIO) during liver resections (Pringle manoeuvre) can be applied to reduce blood loss, however may at the same time, give rise to ischemia-reperfusion injury (IRI). The aim of this study was to assess the characteristics of hepatic microvascular perfusion during VIO in patients undergoing major liver resection. METHODS Assessment of hepatic microcirculation was performed using a handheld vital microscope (HVM) at the beginning of surgery, end of VIO (20 minutes) and during reperfusion after the termination of VIO. The microcirculatory parameters assessed were: functional capillary density (FCD), microvascular flow index (MFI) and sinusoidal diameter (SinD). RESULTS A total of 15 patients underwent VIO; 8 patients showed hepatic microvascular perfusion despite VIO (partial responders) and 7 patients showed complete cessation of hepatic microvascular perfusion (full responders). Functional microvascular parameters and blood flow levels were significantly higher in the partial responders when compared to the full responders during VIO (FCD: 0.84±0.88 vs. 0.00±0.00 mm/mm2, P<0.03, respectively, and MFI: 0.69-0.22 vs. 0.00±0.00, P<0.01, respectively). CONCLUSIONS An interpatient heterogeneous response in hepatic microvascular blood flow was observed upon VIO. This may explain why clinical strategies to protect the liver against IRI lacked consistency.
Collapse
Affiliation(s)
- Lucinda Shen
- Department of Translational Physiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Zühre Uz
- Department of Translational Physiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Denise P Veelo
- Department of Anesthesiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yasin Ince
- Department of Translational Physiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Can Ince
- Department of Translational Physiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Thomas M van Gulik
- Department of Surgery, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Vetrugno L, Bove T. Ischemic preconditioning: light and shadow. Minerva Anestesiol 2020; 86:241-243. [PMID: 32013338 DOI: 10.23736/s0375-9393.20.14344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Luigi Vetrugno
- Department of Medicine, Anesthesia and Intensive Care Clinic, University of Udine, Udine, Italy -
- Department of Anesthesia and Intensive Care, University Hospital of Udine, Udine, Italy -
| | - Tiziana Bove
- Department of Medicine, Anesthesia and Intensive Care Clinic, University of Udine, Udine, Italy
- Department of Anesthesia and Intensive Care, University Hospital of Udine, Udine, Italy
| |
Collapse
|
26
|
Liu X, Cao L, Zhang T, Guo R, Lin W. Effect of Remote Ischemic Preconditioning in Patients Undergoing Hepatectomy With Portal Triad Clamping: A Randomized Controlled Trial. Anesth Analg 2019; 129:1742-1748. [PMID: 31743196 DOI: 10.1213/ane.0000000000004434] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Remote ischemic preconditioning (RIPC) is reported to reduce liver injury in patients undergoing hepatectomy for colorectal liver metastasis, but its role is unclear in hepatocellular carcinoma patients with portal triad clamping during hepatectomy. METHODS In this prospective, randomized trial, 140 patients with hepatocellular carcinoma undergoing liver resection requiring portal triad clamping were randomized to a RIPC group or a control group. Patients in the RIPC group received RIPC (3 cycles of 5-minute ischemia and 5-minute reperfusion in right upper limb with cuff pressure at 30 kPa [225 mm Hg]) approximately 10 minutes after induction of anesthesia. In the control group, patients received sham RIPC (the cuff was not inflated). The primary outcome was the postoperative peak level of total bilirubin (TBIL) and was analyzed with the independent t test. Secondary outcomes were liver function test at postoperative days 1, 3, and 5; postoperative morbidity and mortality during the first month; and the length of postoperative hospital stay. RESULTS Data from 136 patients (69 in the RIPC group and 67 in the control group) were analyzed. The RIPC group had on average a 5.9 μmol lower peak level of TBIL than the control group; the mean difference is -5.9, and the 95% confidence interval (CI) reverses to -17.9 to 6.1. There were no significant differences between the 2 groups in liver function test at postoperative days 1, 3, and 5; postoperative morbidity and mortality during the first month; and the length of postoperative hospital stay. CONCLUSIONS We found no evidence that RIPC can reduce postoperative liver injury after hepatectomy.
Collapse
Affiliation(s)
- Xiaoqing Liu
- From the Department of Anesthesia, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Anesthesia, Sun Yat-Sen Memorial hospital, Sun Yat-Sen University, Guangzhou, China
| | - Longhui Cao
- From the Department of Anesthesia, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tianhua Zhang
- From the Department of Anesthesia, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | | | - Wenqian Lin
- From the Department of Anesthesia, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Blood transfusion, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
27
|
Influence of remote ischemic conditioning on radial artery occlusion. Heart Vessels 2019; 34:771-776. [PMID: 30834949 DOI: 10.1007/s00380-018-1310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Abstract
This study aimed to explore the influence of remote ischemic conditioning (RIC) on radial artery occlusion (RAO) and distinguish the risk factors for RAO. A total of 640 consecutive patients who prospectively underwent transradial artery coronary angiography (TRACA) (322 patients received RIC before TRACA) were enrolled. RIC was not performed in 318 patients. RAO was estimated using Doppler ultrasonography after the procedure. Patients were divided into two groups according to the protocol of RIC: RIC and non-RIC. The rate of RAO was significantly lower in the RIC group than in the non-RIC group. Patients were divided into two groups according to the patency of radial artery: radial artery patency (RAP) and RAO. The radial artery diameter was significantly narrower in the RAO group (2.31 ± 0.53) than in the RAP group (2.59 ± 0.47). The rate of applying β-blocker was significantly higher in the RAP group (69%) than in the RAO group (41%). The rate of applying trimetazidine was significantly higher in the RAP group (49.1%) than in the RAO group (17.6%). The multiple logistic regression analysis using radial artery diameter, RIC, β-blocker, and trimetazidine treatments revealed that small radial artery diameter, lack of β-blockers, and RIC were independent predictors of RAO. RIC might help in improving the rate of RAO. The multiple logistic regression analysis showed that the lack of β-blockers, RIC, and small radial artery diameter were independent predictors of RAO.
Collapse
|
28
|
Xu F, Tang B, Jin TQ, Dai CL. Current status of surgical treatment of colorectal liver metastases. World J Clin Cases 2018; 6:716-734. [PMID: 30510936 PMCID: PMC6264988 DOI: 10.12998/wjcc.v6.i14.716] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/14/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023] Open
Abstract
Liver metastasis (LM) is one of the major causes of death in patients with colorectal cancer (CRC). Approximately 60% of CRC patients develop LM during the course of their illness. About 85% of these patients have unresectable disease at the time of presentation. Surgical resection is currently the only curative treatment for patients with colorectal LM (CRLM). In recent years, with the help of modern multimodality therapy including systemic chemotherapy, radiation therapy, and surgery, the outcomes of CRLM treatment have significantly improved. This article summarizes the current status of surgical treatment of CRLM including evaluation of resectability, treatment for resectable LM, conversion therapy and liver transplantation for unresectable cases, liver resection for recurrent CRLM and elderly patients, and surgery for concomitant hepatic and extra-hepatic metastatic disease (EHMD). We believe that with the help of modern multimodality therapy, an aggressive oncosurgical approach should be implemented as it has the possibility of achieving a cure, even when EHMD is present in patients with CRLM.
Collapse
Affiliation(s)
- Feng Xu
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Bin Tang
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Tian-Qiang Jin
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Chao-Liu Dai
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
29
|
Novel Benefits of Remote Ischemic Preconditioning Through VEGF-dependent Protection From Resection-induced Liver Failure in the Mouse. Ann Surg 2018; 268:885-893. [DOI: 10.1097/sla.0000000000002891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Ray S, Mehta N, Golhar A, Nundy S. Post hepatectomy liver failure - A comprehensive review of current concepts and controversies. Ann Med Surg (Lond) 2018; 34:4-10. [PMID: 30181871 PMCID: PMC6120608 DOI: 10.1016/j.amsu.2018.08.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/24/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
Post hepatectomy liver failure (PHLF) comprises of a conundrum of symptoms and signs following major hepatic resections. The pathophysiology essentially revolves around disruption of the normal hepatocyte regeneration and disturbed liver homeostasis. Prompt identification of the pre-operative predictors of PHLF in the form of biochemical parameters and imaging features are of paramount importance for any hepatic surgeon and forms the cornerstone of its management. Treatment revolves around a goal-directed resuscitation of the systemic organ failure. Auxiliary support systems such as liver dialysis devices and stem cell therapy are still under investigational trials for treatment of the same. Orthotopic liver transplantation (OLT) is the last resort in most cases not responding to other measures.
Collapse
Affiliation(s)
- S. Ray
- Department of Surgical Gastroenterology and Liver Transplantation, Sir Ganga Ram Hospital, New Delhi, India
| | | | | | | |
Collapse
|
31
|
Zhou D, Ding J, Ya J, Pan L, Wang Y, Ji X, Meng R. Remote ischemic conditioning: a promising therapeutic intervention for multi-organ protection. Aging (Albany NY) 2018; 10:1825-1855. [PMID: 30115811 PMCID: PMC6128414 DOI: 10.18632/aging.101527] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
Despite decades of formidable exploration, multi-organ ischemia-reperfusion injury (IRI) encountered, particularly amongst elderly patients with clinical scenarios, such as age-related arteriosclerotic vascular disease, heart surgery and organ transplantation, is still an unsettled conundrum that besets clinicians. Remote ischemic conditioning (RIC), delivered via transient, repetitive noninvasive IR interventions to distant organs or tissues, is regarded as an innovative approach against IRI. Based on the available evidence, RIC holds the potential of affording protection to multiple organs or tissues, which include not only the heart and brain, but also others that are likely susceptible to IRI, such as the kidney, lung, liver and skin. Neuronal and humoral signaling pathways appear to play requisite roles in the mechanisms of RIC-related beneficial effects, and these pathways also display inseparable interactions with each other. So far, several hurdles lying ahead of clinical translation that remain to be settled, such as establishment of biomarkers, modification of RIC regimen, and deep understanding of underlying minutiae through which RIC exerts its powerful function. As this approach has garnered an increasing interest, herein, we aim to encapsulate an overview of the basic concept and postulated protective mechanisms of RIC, highlight the main findings from proof-of-concept clinical studies in various clinical scenarios, and also to discuss potential obstacles that remain to be conquered. More well designed and comprehensive experimental work or clinical trials are warranted in future research to confirm whether RIC could be utilized as a non-invasive, inexpensive and efficient adjunct therapeutic intervention method for multi-organ protection.
Collapse
Affiliation(s)
- Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Equal contribution
| | - Jiayue Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Equal contribution
| | - Jingyuan Ya
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Liqun Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
32
|
Magyar Z, Varga G, Mester A, Ghanem S, Somogyi V, Tanczos B, Deak A, Bidiga L, Peto K, Nemeth N. Is the early or delayed remote ischemic preconditioning the more effective from a microcirculatory and histological point of view in a rat model of partial liver ischemia-reperfusion? Acta Cir Bras 2018; 33:597-608. [DOI: 10.1590/s0102-865020180070000005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/09/2018] [Indexed: 01/19/2023] Open
|
33
|
Rakić M, Patrlj L, Amić F, Aralica G, Grgurević I. Comparison of hepatoprotective effect from ischemia-reperfusion injury of remote ischemic preconditioning of the liver vs local ischemic preconditioning of the liver during human liver resections. Int J Surg 2018; 54:248-253. [PMID: 29733995 DOI: 10.1016/j.ijsu.2018.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/16/2018] [Accepted: 05/01/2018] [Indexed: 12/29/2022]
Abstract
AIM To compare and evaluate the hepatoprotective effect of remote ischemic preconditioning (RIPC) with local ischemic preconditioning (LIPC) of the liver during human liver resections. METHODS A prospective, single-centre, randomised control trial was conducted in the Clinical Hospital "***" from April 2017 to January 2018. A total of 60 patients, who underwent liver resection due to colorectal cancer liver metastasis, were randomised to one of three study arms: 1) a RIPC group, 2) an LIPC group and 3) a control group (CG) in which no ischemic preconditioning was done before liver resection. The hepatoprotective effect was evaluated by comparing serum transaminase levels, bilirubin levels, albumin, and protein levels, coagulograms and through pathohistological analysis. The trial was registered on ClinicalTrials.gov (NCT****). RESULTS Significant differences were found in serum levels of liver transaminases and bilirubin levels between thegroups, the highest level in the CG and the lowest level in the LIPC group. Levels of cholinesterase were also significantly higher in the LIPC group. Pathohistological findings graded by the Rodriguez score showed favourable changes in the LIPC and RIPC groups versus the CG. CONCLUSION Strong evidence supports the hepatoprotective effect of RIPC and LIPC preconditioning from an ischemia-reperfusion injury of the liver. Better synthetic liver function preservation in these two groups supports this conclusion.
Collapse
Affiliation(s)
- Mislav Rakić
- Department of Hepatobiliary Surgery, University Hospital Dubrava, Zagreb, Croatia.
| | - Leonardo Patrlj
- Department of Hepatobiliary Surgery, University Hospital Dubrava, Zagreb, Croatia
| | - Fedor Amić
- Department of Hepatobiliary Surgery, University Hospital Dubrava, Zagreb, Croatia
| | - Gorana Aralica
- Department of Pathology, University Hospital Dubrava, Zagreb, Croatia
| | - Ivica Grgurević
- Department of Gastroenterology, University Hospital Dubrava, Zagreb, Croatia
| |
Collapse
|
34
|
Robertson FP, Goswami R, Wright GP, Imber C, Sharma D, Malago M, Fuller BJ, Davidson BR. Remote ischaemic preconditioning in orthotopic liver transplantation (RIPCOLT trial): a pilot randomized controlled feasibility study. HPB (Oxford) 2017; 19:757-767. [PMID: 28651898 DOI: 10.1016/j.hpb.2017.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ischaemia Reperfusion (IR) injury is a major cause of morbidity, mortality and graft loss following Orthotopic Liver Transplantation (OLT). Utilising marginal grafts, which are more susceptible to IR injury, makes this a key research goal. Remote Ischaemic Preconditioning (RIPC) has been shown to ameliorate hepatic IR injury in experimental models. Whether RIPC can reduce IR injury in human liver transplant recipients is unknown. METHODS Forty patients undergoing liver transplantation were randomized to RIPC or a sham. RIPC was induced through three 5 min cycles of alternate ischaemia and reperfusion of the left leg prior to surgery. Data on clinical outcomes was collected prospectively. Per-operative cytokine levels were measured. RESULTS Fourty five of 51 patients approached (88%) were willing to enroll in the study. Five patients were excluded and 40 randomized, of which 20 underwent RIPC which was successfully completed in all patients. There were no complications following RIPC. Median day 3 AST levels were slightly higher in the RIPC group (221 IU vs 149 IU, p = 1.00). CONCLUSIONS RIPC is acceptable and safe in liver transplant recipients. This study has not demonstrated evidence of a reduction in short-term measures of IR injury. Longer follow up will be required and consideration of an altered protocol.
Collapse
Affiliation(s)
- Francis P Robertson
- Division of Surgery and Intervention Science, Royal Free Campus, University College London, Pond Street, NW3 2QG, UK.
| | - Rup Goswami
- Department of Hepatico Pancreatico Biliary Surgery and Liver Transplantation, Royal Free Hospital Foundation Trust, Pond Street, NW3 2QG, UK
| | - Graham P Wright
- Department of Immunology, Edinburgh Napier University, Craiglockhart Campus, Glenlockhart Road, EH14 1DJ, UK
| | - Charles Imber
- Department of Hepatico Pancreatico Biliary Surgery and Liver Transplantation, Royal Free Hospital Foundation Trust, Pond Street, NW3 2QG, UK
| | - Dinesh Sharma
- Department of Hepatico Pancreatico Biliary Surgery and Liver Transplantation, Royal Free Hospital Foundation Trust, Pond Street, NW3 2QG, UK
| | - Massimo Malago
- Department of Hepatico Pancreatico Biliary Surgery and Liver Transplantation, Royal Free Hospital Foundation Trust, Pond Street, NW3 2QG, UK
| | - Barry J Fuller
- Division of Surgery and Intervention Science, Royal Free Campus, University College London, Pond Street, NW3 2QG, UK
| | - Brian R Davidson
- Division of Surgery and Intervention Science, Royal Free Campus, University College London, Pond Street, NW3 2QG, UK; Department of Hepatico Pancreatico Biliary Surgery and Liver Transplantation, Royal Free Hospital Foundation Trust, Pond Street, NW3 2QG, UK
| |
Collapse
|
35
|
Robertson FP, Fuller BJ, Davidson BR. An Evaluation of Ischaemic Preconditioning as a Method of Reducing Ischaemia Reperfusion Injury in Liver Surgery and Transplantation. J Clin Med 2017; 6:jcm6070069. [PMID: 28708111 PMCID: PMC5532577 DOI: 10.3390/jcm6070069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 12/16/2022] Open
Abstract
Liver Ischaemia Reperfusion (IR) injury is a major cause of post-operative liver dysfunction, morbidity and mortality following liver resection surgery and transplantation. There are no proven therapies for IR injury in clinical practice and new approaches are required. Ischaemic Preconditioning (IPC) can be applied in both a direct and remote fashion and has been shown to ameliorate IR injury in small animal models. Its translation into clinical practice has been difficult, primarily by a lack of knowledge regarding the dominant protective mechanisms that it employs. A review of all current studies would suggest that IPC/RIPC relies on creating a small tissue injury resulting in the release of adenosine and l-arginine which act through the Adenosine receptors and the haem-oxygenase and endothelial nitric oxide synthase systems to reduce hepatocyte necrosis and improve the hepatic microcirculation post reperfusion. The next key step is to determine how long the stimulus requires to precondition humans to allow sufficient injury to occur to release the potential mediators. This would open the door to a new therapeutic chapter in this field.
Collapse
Affiliation(s)
- Francis P Robertson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Barry J Fuller
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Brian R Davidson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
- Department of Hepaticopancreatobiliary Surgery and Liver Transplantation, Royal Free Foundation Trust, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| |
Collapse
|
36
|
Chen YT, Wallace CG, Yang CC, Chen CH, Chen KH, Sung PH, Chen YL, Chai HT, Chung SY, Chua S, Lee FY, Ko SF, Lee MS, Yip HK. DPP-4 enzyme deficiency protects kidney from acute ischemia-reperfusion injury: role for remote intermittent bowel ischemia-reperfusion preconditioning. Oncotarget 2017; 8:54821-54837. [PMID: 28903385 PMCID: PMC5589624 DOI: 10.18632/oncotarget.18962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/17/2017] [Indexed: 01/25/2023] Open
Abstract
We analyzed the effects of acute ischemia-reperfusion (KIR) injury on the status of kidney function and architecture in dipeptidyl peptidase4-difficient (DPP4D) rats and the effect of remote small bowel ischemia-reperfusion (BIR) preconditioning. DPP4-deficient (DPP4D) and normal Fischer344 (F344) rats were divided into 6 groups: (1) sham-F344, (2) sham-DPP4D, (3) KIR-F344 (4) KIR-DPP4D, (5) DPP4D-KIR-extendin-9-39 and (6) BIR-KIR-F344. Blood creatinine and urea nitrogen levels and the urinary protein-to-creatinine ratio was higher in KIR-F344 rats than BIR-KIR-F344 or KIR-DPP4D rats 72 h after acute KIR. Conversely, the circulating glucagon-like peptide 1 (GLP-1) levels were higher in BIR-KIR-F344 and KIR-DPP4D than KIR-F344 rats after acute KIR. KIR-F344 rats showed greater inflammation, oxidative stress, apoptosis, DNA damage and kidney injury than other rat groups. Damage to the kidney architecture in KIR-F344 rats was greater than in BIR-KIR-F344 or KIR-DPP4D rats. Expression of antioxidant proteins and GLP-1 receptor was higher in kidneys from KIR-DPP4D and BIR-KIR-F344 than KIR-F344 rats, which suggests better intrinsic responses. We therefore suggest that elevated circulating GLP-1 levels due to DPP4 deficiency and BIR preconditioning protect kidney function and architecture during acute IR injury.
Collapse
Affiliation(s)
- Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Hung Chen
- Division of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yung-Lung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Han-Tan Chai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Ying Chung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sarah Chua
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fan-Yen Lee
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|