1
|
Avella P, Spiezia S, Rotondo M, Cappuccio M, Scacchi A, Inglese G, Guerra G, Brunese MC, Bianco P, Tedesco GA, Ceccarelli G, Rocca A. Real-Time Navigation in Liver Surgery Through Indocyanine Green Fluorescence: An Updated Analysis of Worldwide Protocols and Applications. Cancers (Basel) 2025; 17:872. [PMID: 40075718 PMCID: PMC11898688 DOI: 10.3390/cancers17050872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Indocyanine green (ICG) fluorescence has seen extensive application across medical and surgical fields, praised for its real-time navigation capabilities and low toxicity. Initially employed to assess liver function, ICG fluorescence is now integral to liver surgery, aiding in tumor detection, liver segmentation, and the visualization of bile leaks. This study reviews current protocols and ICG fluorescence applications in liver surgery, with a focus on optimizing timing and dosage based on clinical indications. METHODS Following PRISMA guidelines, we systematically reviewed the literature up to 27 January 2024, using PubMed and Medline to identify studies on ICG fluorescence used in liver surgery. A systematic review was performed to evaluate dosage and timing protocols for ICG administration. RESULTS Of 1093 initial articles, 140 studies, covering a total of 3739 patients, were included. The studies primarily addressed tumor detection (40%), liver segmentation (34.6%), and both (21.4%). The most common ICG fluorescence dose for tumor detection was 0.5 mg/kg, with administration occurring from days to weeks pre-surgery. Various near-infrared (NIR) camera systems were utilized, with the PINPOINT system most frequently cited. Tumor detection rates averaged 87.4%, with a 10.5% false-positive rate. Additional applications include the detection of bile leaks, lymph nodes, and vascular and biliary structures. CONCLUSIONS ICG fluorescence imaging has emerged as a valuable tool in liver surgery, enhancing real-time navigation and improving clinical outcomes. Standardizing protocols could further enhance ICG fluorescence efficacy and reliability, benefitting patient care in hepatic surgeries.
Collapse
Affiliation(s)
- Pasquale Avella
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80138 Naples, Italy
- Hepatobiliary and Pancreatic Surgery Unit, Department of General Surgery, Pineta Grande Hospital, 81030 Castel Volturno, Italy
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Salvatore Spiezia
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Marco Rotondo
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Micaela Cappuccio
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80138 Naples, Italy
| | - Andrea Scacchi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | - Giustiniano Inglese
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Germano Guerra
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Maria Chiara Brunese
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Paolo Bianco
- Hepatobiliary and Pancreatic Surgery Unit, Department of General Surgery, Pineta Grande Hospital, 81030 Castel Volturno, Italy
| | - Giuseppe Amedeo Tedesco
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Graziano Ceccarelli
- Division of General and Minimally Invasive Surgery, Department of Surgery, San Giovanni Battista Hospital, 06034 Foligno, Italy
- Minimally Invasive and Robotic Surgery Unit, San Matteo Hospital, 06049 Spoleto, Italy
| | - Aldo Rocca
- Hepatobiliary and Pancreatic Surgery Unit, Department of General Surgery, Pineta Grande Hospital, 81030 Castel Volturno, Italy
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
2
|
Strigalev M, Tzedakis S, Nassar A, Dhote A, Gavignet C, Gaillard M, Marchese U, Fuks D. Intra-operative indocyanine green fluorescence imaging in hepatobiliary surgery: a narrative review of the literature as a useful guide for the surgeon. Updates Surg 2023; 75:23-29. [PMID: 36370332 DOI: 10.1007/s13304-022-01388-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/17/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION In hepatobiliary surgery, intra-operative indocyanine green (ICG) fluorescence imaging use started in the late 2000s with Japanese surgical teams and is now gaining popularity among surgeons all over the world to improve accuracy and safety of surgical procedures. However, even if ICG fluorescence has been shown to be a safe imaging modality, only a few clinical efficacity studies have been performed and no guidance has been established. This narrative review aims at assessing the potential applications of ICG fluorescence imaging in hepatobiliary surgery. METHODS We screened the available international literature to identify the most used applications of ICG fluorescence imaging in hepatobiliary surgery. RESULTS Three main fields were identified: biliary duct visualization, hepatic segments' delimitation, and liver tumor detection. Comments, application protocols, prospects, and limitations of each technique were described. DISCUSSION These results could guide hepatobiliary surgeons in their use of ICG fluorescence imaging; nevertheless, further prospective studies are needed to assess the sensitivity and specificity of this modality.
Collapse
Affiliation(s)
- Marie Strigalev
- Department of Digestive, Hepatobiliary and Pancreatic Surgery, Cochin Hospital, AP-HP Centre, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.
- Faculté de Médecine, Université de Paris, 75006, Paris, France.
| | - Stylianos Tzedakis
- Department of Digestive, Hepatobiliary and Pancreatic Surgery, Cochin Hospital, AP-HP Centre, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
- Faculté de Médecine, Université de Paris, 75006, Paris, France
| | - Alexandra Nassar
- Department of Digestive, Hepatobiliary and Pancreatic Surgery, Cochin Hospital, AP-HP Centre, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
- Faculté de Médecine, Université de Paris, 75006, Paris, France
| | - Alix Dhote
- Department of Digestive, Hepatobiliary and Pancreatic Surgery, Cochin Hospital, AP-HP Centre, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
- Faculté de Médecine, Université de Paris, 75006, Paris, France
| | - Chloe Gavignet
- Department of Digestive, Hepatobiliary and Pancreatic Surgery, Cochin Hospital, AP-HP Centre, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
- Faculté de Médecine, Université de Paris, 75006, Paris, France
| | - Martin Gaillard
- Department of Digestive, Hepatobiliary and Pancreatic Surgery, Cochin Hospital, AP-HP Centre, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
- Faculté de Médecine, Université de Paris, 75006, Paris, France
| | - Ugo Marchese
- Department of Digestive, Hepatobiliary and Pancreatic Surgery, Cochin Hospital, AP-HP Centre, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
- Faculté de Médecine, Université de Paris, 75006, Paris, France
| | - David Fuks
- Department of Digestive, Hepatobiliary and Pancreatic Surgery, Cochin Hospital, AP-HP Centre, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
- Faculté de Médecine, Université de Paris, 75006, Paris, France
| |
Collapse
|
3
|
Wakabayashi T, Cacciaguerra AB, Abe Y, Bona ED, Nicolini D, Mocchegiani F, Kabeshima Y, Vivarelli M, Wakabayashi G, Kitagawa Y. Indocyanine Green Fluorescence Navigation in Liver Surgery: A Systematic Review on Dose and Timing of Administration. Ann Surg 2022; 275:1025-1034. [PMID: 35121701 DOI: 10.1097/sla.0000000000005406] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Indocyanine green (ICG) fluorescence has proven to be a high potential navigation tool during liver surgery; however, its optimal usage is still far from being standardized. METHODS A systematic review was conducted on MEDLINE/PubMed for English articles that contained the information of dose and timing of ICG administration until February 2021. Successful rates of tumor detection and liver segmentation, as well as tumor/patient background and imaging settings were also reviewed. The quality assessment of the articles was performed in accordance with the Scottish Intercollegiate Guidelines Network (SIGN). RESULTS Out of initial 311 articles, a total of 72 manuscripts were obtained. The quality assessment of the included studies revealed usually low; only 9 articles got qualified as high quality. Forty articles (55%) focused on open resections, whereas 32 articles (45%) on laparoscopic and robotic liver resections. Thirty-four articles (47%) described tumor detection ability, and 25 articles (35%) did liver segmentation ability, and the others (18%) did both abilities. Negative staining was reported (42%) more than positive staining (32%). For tumor detection, majority used the dose of 0.5 mg/kg within 14 days before the operation day, and an additional administration (0.02-0.5 mg/kg) in case of longer preoperative interval. Tumor detection rate was reported to be 87.4% (range, 43%-100%) with false positive rate reported to be 10.5% (range, 0%-31.3%). For negative staining method, the majority used 2.5 mg/body, ranging from 0.025 to 25 mg/body. For positive staining method, the majority used 0.25 mg/body, ranging from 0.025 to 12.5 mg/body. Successful segmentation rate was 88.0% (range, 53%-100%). CONCLUSION The time point and dose of ICG administration strongly needs to be tailored case by case in daily practice, due to various tumor/patient backgrounds and imaging settings.
Collapse
Affiliation(s)
- Taiga Wakabayashi
- Department of Surgery, Isehara Kyodo Hospital, Kanagawa, Japan
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
- Center for Advanced Treatment of Hepatobiliary and Pancreatic Diseases, Ageo Central General Hospital, Saitama, Japan
| | - Andrea Benedetti Cacciaguerra
- HPB Surgery and Transplantation Unit, Department of Clinical and Experimental Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Enrico Dalla Bona
- HPB Surgery and Transplantation Unit, Department of Clinical and Experimental Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Daniele Nicolini
- HPB Surgery and Transplantation Unit, Department of Clinical and Experimental Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Federico Mocchegiani
- HPB Surgery and Transplantation Unit, Department of Clinical and Experimental Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Yasuo Kabeshima
- Department of Surgery, Isehara Kyodo Hospital, Kanagawa, Japan
| | - Marco Vivarelli
- HPB Surgery and Transplantation Unit, Department of Clinical and Experimental Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Go Wakabayashi
- Center for Advanced Treatment of Hepatobiliary and Pancreatic Diseases, Ageo Central General Hospital, Saitama, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Mukunda DC, Rodrigues J, Joshi VK, Raghushaker CR, Mahato KK. A comprehensive review on LED-induced fluorescence in diagnostic pathology. Biosens Bioelectron 2022; 209:114230. [PMID: 35421670 DOI: 10.1016/j.bios.2022.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Sensitivity, specificity, mobility, and affordability are important criteria to consider for developing diagnostic instruments in common use. Fluorescence spectroscopy has been demonstrating substantial potential in the clinical diagnosis of diseases and evaluating the underlying causes of pathogenesis. A higher degree of device integration with appropriate sensitivity and reasonable cost would further boost the value of the fluorescence techniques in clinical diagnosis and aid in the reduction of healthcare expenses, which is a key economic concern in emerging markets. Light-emitting diodes (LEDs), which are inexpensive and smaller are attractive alternatives to conventional excitation sources in fluorescence spectroscopy, are gaining a lot of momentum in the development of affordable, compact analytical instruments of clinical relevance. The commercial availability of a broad range of LED wavelengths (255-4600 nm) has opened up new avenues for targeting a wide range of clinically significant molecules (both endogenous and exogenous), thereby diagnosing a range of clinical illnesses. As a result, we have specifically examined the uses of LED-induced fluorescence (LED-IF) in preclinical and clinical evaluations of pathological conditions, considering the present advancements in the field.
Collapse
Affiliation(s)
| | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vijay Kumar Joshi
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
| |
Collapse
|
5
|
Wakabayashi T, Benedetti Cacciaguerra A, Ciria R, Ariizumi S, Durán M, Golse N, Ogiso S, Abe Y, Aoki T, Hatano E, Itano O, Sakamoto Y, Yoshizumi T, Yamamoto M, Wakabayashi G. Landmarks to identify segmental borders of the liver: A review prepared for PAM-HBP expert consensus meeting 2021. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2022; 29:82-98. [PMID: 33484112 DOI: 10.1002/jhbp.899] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND In preparation for the upcoming consensus meeting in Tokyo in 2021, this systematic review aimed to analyze the current available evidence regarding surgical anatomy of the liver, focusing on useful landmarks, strategies and technical tools to perform precise anatomic liver resection (ALR). METHODS A systematic review was conducted on MEDLINE/PubMed for English articles and on Ichushi database for Japanese articles until September 2020. The quality assessment of the articles was performed in accordance with the Scottish Intercollegiate Guidelines Network (SIGN). RESULTS A total of 3169 manuscripts were obtained, 1993 in English and 1176 in Japanese literature. Subsequently, 63 English and 20 Japanese articles were selected and reviewed. The quality assessment of comparative series and case series was revealed to be usually low; only six articles were qualified as high quality. Forty-two articles focused on analyzing intersegmental/sectional planes and their relationship with specific hepatic landmark veins. In 12 articles, the authors aimed to investigate liver surface anatomic structures, while 36 articles aimed to study technological tools and contrast agents for surgical segmentation during ALR. Although Couinaud's classification has remained the cornerstone in daily diagnostic/surgical practices, it does not always portray the realistic liver segmentation and there has been no standardization on which a single strategy should be followed to perform precise ALR. CONCLUSIONS A global consensus should be pursued in order to establish clear guidelines and proper recommendations to perform ALR in the era of minimally invasive surgery.
Collapse
Affiliation(s)
- Taiga Wakabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Andrea Benedetti Cacciaguerra
- Department of Surgery, Hepato-Pancreato-Biliary, Minimally Invasive and Robotic Unit, Istituto Fondazione Poliambulanza, Brescia, Italy
| | - Ruben Ciria
- Unit of Hepatobiliary Surgery and Liver Transplantation, University Hospital Reina Sofía, IMIBIC, Cordoba, Spain
| | - Shunichi Ariizumi
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Manuel Durán
- Unit of Hepatobiliary Surgery and Liver Transplantation, University Hospital Reina Sofía, IMIBIC, Cordoba, Spain
| | - Nicolas Golse
- Hepatobiliary Center, Paul Brousse Hospital, Villejuif, France
| | - Satoshi Ogiso
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Aoki
- Department of Gastroenterological and General Surgery, School of Medicine, Showa University, Tokyo, Japan
| | - Etsuro Hatano
- Department of Gastroenterological Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Osamu Itano
- Department of Hepato-Biliary-Pancreatic and Gastrointestinal Surgery, International University of Health and Welfare School of Medicine, Chiba, Japan
| | - Yoshihiro Sakamoto
- Department of Hepato-Biliary-Pancreatic Surgery, Kyorin University Hospital, Tokyo, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Go Wakabayashi
- Center for Advanced Treatment of Hepatobiliary and Pancreatic Diseases, Ageo Central General Hospital, Saitama, Japan
| |
Collapse
|
6
|
Ogrinc N, Saudemont P, Takats Z, Salzet M, Fournier I. Cancer Surgery 2.0: Guidance by Real-Time Molecular Technologies. Trends Mol Med 2021; 27:602-615. [PMID: 33965341 DOI: 10.1016/j.molmed.2021.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022]
Abstract
In vivo cancer margin delineation during surgery remains a major challenge. Despite the availability of several image guidance techniques and intraoperative assessment, clear surgical margins and debulking efficiency remain scarce. For this reason, there is particular interest in developing rapid intraoperative tools with high sensitivity and specificity to help guide cancer surgery in vivo. Recently, several emerging technologies including intraoperative mass spectrometry have paved the way for molecular guidance in a clinical setting. We evaluate these techniques and assess their relevance for intraoperative surgical guidance and how they can transform the future of molecular cancer surgery, diagnostics, patient management and care.
Collapse
Affiliation(s)
- Nina Ogrinc
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France
| | - Philippe Saudemont
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France
| | - Zoltan Takats
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France
| | - Michel Salzet
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France; Institut Universitaire de France (IUF), Paris, France.
| | - Isabelle Fournier
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|