1
|
Budgude P, Kale V, Vaidya A. Microvesicles and exosomes isolated from murine bone marrow-derived mesenchymal stromal cells primed with p38MAPK inhibitor differentially regulate hematopoietic stem cell function. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:122-137. [PMID: 40062630 DOI: 10.1080/21691401.2025.2475095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/07/2025] [Accepted: 02/27/2025] [Indexed: 05/13/2025]
Abstract
The signaling mechanisms active within mesenchymal stromal cells (MSCs) influence the composition of microvesicles (MVs) and exosomes (Exos) secreted by them. Previously, we showed that priming MSCs with a p38 pharmacological inhibitor (pMSCs) rejuvenates them and improves their ability to promote ex vivo hematopoietic stem cell (HSC) expansion. This study examined whether pMSCs exerted HSC-supportive ability via MVs (pMVs) and Exos (pExos). Our findings demonstrate distinct regulation of HSC fate by pMVs and pExos. pMVs promoted the expansion of long-term HSCs (LT-HSCs), distinguished by their robust self-renewal capacity and superior engraftment ability. In contrast, pExos facilitated expansion of short-term HSCs (ST-HSCs) with high proliferative and differentiation potential. Infusing a combination of pMVs- and pExos-expanded HSCs as a composite graft resulted in significantly higher HSC engraftment, emphasizing the synergistic interaction between LT- and ST-HSC populations. Gene expression studies, functional and phenotypic experiments showed that pMVs regulate HSC quiescence via the Egr1/Cdkn1a axis, while pExos control HSC proliferation via the Nfya/Cdkn1a axis. These findings provide insights into the molecular mechanisms underlying the differential regulation of HSC function by pMVs and pExos. It also proposes a composite graft strategy of using pMVs and pExos as "MSC-derived biologics" for improving the HSC transplantation success.
Collapse
Affiliation(s)
- Pallavi Budgude
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
2
|
Hwang S, Sung DK, Kim YE, Yang M, Ahn SY, Sung SI, Chang YS. Mesenchymal Stromal Cells Primed by Toll-like Receptors 3 and 4 Enhanced Anti-Inflammatory Effects against LPS-Induced Macrophages via Extracellular Vesicles. Int J Mol Sci 2023; 24:16264. [PMID: 38003458 PMCID: PMC10670946 DOI: 10.3390/ijms242216264] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Although it has been suggested that toll-like receptor (TLR) 3 and TLR4 activation alters mesenchymal stromal cells (MSCs)' immunoregulatory function as anti- or pro-inflammatory phenotypes, we have previously confirmed that TLR4-primed hUCB-MSCs alleviate lung inflammation and tissue injury in an E. coli-induced acute lung injury (ALI) mouse model. Therefore, we hypothesized that strong stimulation of TLR3 or TLR4 prompts hUCB-MSCs to exhibit an anti-inflammatory phenotype mediated by extracellular vesicles (EVs). In this study, we compared the anti-inflammatory effect of TLR3-primed and TLR4-primed hUCB-MSCs against an LPS-induced ALI in vitro model by treating MSCs, MSC-derived conditioned medium (CM), and MSC-derived extracellular vesicles (EVs). LPS-induced rat primary alveolar macrophage and RAW 264.7 cells were treated with naïve, TLR3-, and TLR4-primed MSCs and their derived CM and EVs. Flow cytometry and ELISA were used to evaluate M1-M2 polarization of macrophages and pro-inflammatory cytokine levels, respectively. LPS-stimulated macrophages showed significantly increased pro-inflammatory cytokines compared to those of the normal control, and the percentage of M2 macrophage phenotype was predominantly low. In reducing the inflammatory cytokines and enhancing M2 polarization, TLR3- and TLR4-primed MSCs were significantly more effective than the naïve MSCs, and this finding was also observed with the treatment of MSC-derived CMs and EVs. No significant difference between the efficacy of TLR3- and TLR-primed MSCs was observed. Strong stimulation of TLR3- and TLR4-stimulated hUCB-MSCs significantly reduced pro-inflammatory cytokine secretion from LPS-induced macrophages and significantly enhanced the M2 polarization of macrophages. We further confirmed that TLR-primed MSC-derived EVs can exert anti-inflammatory and immunosuppressive effects alone comparable to MSC treatment. We hereby suggest that in the LPS-induced macrophage in vitro model, EVs derived from both TLR3 and TLR4-primed MSCs can be a therapeutic candidate by promoting the M2 phenotype.
Collapse
Affiliation(s)
- Sein Hwang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Dong Kyung Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Young Eun Kim
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Misun Yang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - So Yoon Ahn
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Se In Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yun Sil Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
3
|
Ahn SY, Sung DK, Chang YS, Park WS. Intratracheal Transplantation of Mesenchymal Stem Cells Attenuates Hyperoxia-Induced Microbial Dysbiosis in the Lungs, Brain, and Gut in Newborn Rats. Int J Mol Sci 2022; 23:ijms23126601. [PMID: 35743045 PMCID: PMC9223745 DOI: 10.3390/ijms23126601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 01/25/2023] Open
Abstract
We attempted to determine whether intratracheal (IT) transplantation of mesenchymal stem cells (MSCs) could simultaneously attenuate hyperoxia-induced lung injuries and microbial dysbiosis of the lungs, brain, and gut in newborn rats. Newborn rats were exposed to hyperoxia (90% oxygen) for 14 days. Human umbilical cord blood-derived MSCs (5 × 105) were transplanted via the IT route on postnatal day (P) five. At P14, the lungs were harvested for histological, biochemical, and microbiome analyses. Bacterial 16S ribosomal RNA genes from the lungs, brain, and large intestine were amplified, pyrosequenced, and analyzed. IT transplantation of MSCs simultaneously attenuated hyperoxia-induced lung inflammation and the ensuing injuries, as well as the dysbiosis of the lungs, brain, and gut. In correlation analyses, lung interleukin-6 (IL-6) levels were significantly positively correlated with the abundance of Proteobacteria in the lungs, brain, and gut, and it was significantly inversely correlated with the abundance of Firmicutes in the gut and lungs and that of Bacteroidetes in the lungs. In conclusion, microbial dysbiosis in the lungs, brain, and gut does not cause but is caused by hyperoxic lung inflammation and ensuing injuries, and IT transplantation of MSCs attenuates dysbiosis in the lungs, brain, and gut, primarily by their anti-oxidative and anti-inflammatory effects.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea; (S.Y.A.); (Y.S.C.)
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Dong Kyung Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea; (S.Y.A.); (Y.S.C.)
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea;
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea; (S.Y.A.); (Y.S.C.)
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea;
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: ; Tel.: +82-2-3410-3523; Fax: +82-2-3410-0049
| |
Collapse
|
4
|
Buravkova LB, Ezdakova MI, Andrianova IV, Gornostaeva AN, Bobyleva PI, Andreeva ER. Сord blood hematopoietic stem cells ex vivo enhance the bipotential commitment of adipose mesenchymal stromal progenitors. Life Sci 2020; 268:118970. [PMID: 33383051 DOI: 10.1016/j.lfs.2020.118970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
AIMS Stroma-dependent ex vivo expansion of hematopoietic stem progenitor cells (HSPCs) is a valid approach for cell therapy needs. Our goal was to verify whether HSPCs can affect stromal cells to optimize their functions during ex vivo expansion. MAIN METHODS HSPCs from cord blood (cb) were cocultured with growth-arrested adipose mesenchymal stromal cells (MSCs). Commitment-related transcriptional and secretory profiles as well as hematopoiesis-supportive activity of intact and osteo-induced MSCs were examined. KEY FINDINGS During expansion, cbHSPCs affected the functional state of MSCs, contributing to the formation of early stromal progenitors with a bipotential osteo-adipogenic profile. This was evidenced by the upregulation of certain MSC genes of osteo- and adipodifferentiation (ALPL, RUNX2, BGLAP, CEBPA, ADIPOQ), as well as by elevated alkaline phosphatase activity and altered osteoprotein patterns. Joint paracrine profiles upon coculture were characterized by a balance of "positive" (GM-SCF) and "negative" (IP-10, MIP-1α, MCP-3) myeloid regulators, effectively supporting expansion of both committed and primitive cbHSPCs. Short-term (72 h) osteoinduction prior to coculture resulted in more pronounced shift of the bipotential transcriptomic and osteoprotein profiles. The increased proportions of late primitive CD133-/CD34+cbHSPCs and unipotent CFUs suggested that cbHSPCs after expansion on osteo-MSCs were more committed versus cbHSPCs from coculture with non-differentiated MSCs. SIGNIFICANCE During ex vivo expansion, cbHSPCs can drive the bipotential osteo-adipogenic commitment of MSCs, providing a specific hematopoiesis-supportive milieu. Short-term preliminary osteo-induction enhanced the development of the bipotential profile, leading to more pronounced functional polarization of cbHSPCs, which may be of interest in an applied context.
Collapse
Affiliation(s)
- L B Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia; Faculty of Fundamental Medicine, Moscow State University, Moscow, Russia
| | - M I Ezdakova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - I V Andrianova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - A N Gornostaeva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - P I Bobyleva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia; Faculty of Fundamental Medicine, Moscow State University, Moscow, Russia.
| | - E R Andreeva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Ahn SY, Sung DK, Kim YE, Sung S, Chang YS, Park WS. Brain-derived neurotropic factor mediates neuroprotection of mesenchymal stem cell-derived extracellular vesicles against severe intraventricular hemorrhage in newborn rats. Stem Cells Transl Med 2020; 10:374-384. [PMID: 33319929 PMCID: PMC7900593 DOI: 10.1002/sctm.20-0301] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Brain-derived neurotropic factor (BDNF), which is secreted by mesenchymal stem cells (MSCs), protects against severe intraventricular hemorrhage (IVH)-induced brain injuries. Although the paracrine protective effects of MSCs are mediated primarily by extracellular vesicles (EVs), the therapeutic efficacy of MSC-derived EVs and the role of the BDNF in the EVs have not been studied. This study aimed to determine whether MSC-derived EVs attenuate severe IVH-induced brain injuries, and if so, whether this protection is mediated by BDNF transfer. We compared the therapeutic efficacy of MSCs, MSC-derived EVs with or without BDNF knockdown, and fibroblast-derived EVs in vitro in rat cortical neuronal cells challenged with thrombin and in vivo in newborn rats by injecting 200 μL of blood at postnatal day (P) 4 and transplanting 1 × 105 MSCs or 20 μg of EVs at P6. The MSCs and MSC-derived EVs, but not the EVs derived from BDNF-knockdown MSCs or fibroblasts, significantly attenuated in vitro thrombin-induced neuronal cell death and in vivo severe IVH-induced brain injuries such as increased neuronal cell death, astrogliosis, and inflammatory responses; reduced myelin basic protein and neurogenesis; led to progression of posthemorrhagic hydrocephalus; and impaired behavioral test performance. Our data indicate that MSC-derived EVs are as effective as parental MSCs in attenuating severe IVH-induced brain injuries, and this neuroprotection is primarily mediated by BDNF transfer via EVs.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Dong Kyung Sung
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Young Eun Kim
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Sein Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
6
|
Thrombin Preconditioning Boosts Biogenesis of Extracellular Vesicles from Mesenchymal Stem Cells and Enriches Their Cargo Contents via Protease-Activated Receptor-Mediated Signaling Pathways. Int J Mol Sci 2019; 20:ijms20122899. [PMID: 31197089 PMCID: PMC6627943 DOI: 10.3390/ijms20122899] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
We investigated the role of protease-activated receptor (PAR)-mediated signaling pathways in the biogenesis of human umbilical cord blood-derived mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) and the enrichment of their cargo content after thrombin preconditioning. Immunoblot analyses showed that MSCs expressed two PAR subtypes: PAR-1 and PAR-3. Thrombin preconditioning significantly accelerated MSC-derived EV biogenesis more than five-fold and enriched their cargo contents by more than two-fold via activation of Rab5, early endosomal antigen (EEA)-1, and the extracellular signal regulated kinase (ERK)1/2 and AKT signaling pathways. Blockage of PAR-1 with the PAR-1-specific antagonist, SCH79797, significantly suppressed the activation of Rab5, EEA-1, and the ERK1/2 and AKT pathways and subsequently increased EV production and enriched EV cargo contents. Combined blockage of PAR-1 and PAR-3 further and significantly inhibited the activation of Rab5, EEA-1, and the ERK1/2 and AKT pathways, accelerated EV production, and enriched EV cargo contents. In summary, thrombin preconditioning boosted the biogenesis of MSC-derived EVs and enriched their cargo contents largely via PAR-1-mediated pathways and partly via PAR-1-independent, PAR-3-mediated activation of Rab5, EEA-1, and the ERK1/2 and AKT signaling pathways.
Collapse
|
7
|
Sung DK, Chang YS, Sung SI, Ahn SY, Park WS. Thrombin Preconditioning of Extracellular Vesicles Derived from Mesenchymal Stem Cells Accelerates Cutaneous Wound Healing by Boosting Their Biogenesis and Enriching Cargo Content. J Clin Med 2019; 8:jcm8040533. [PMID: 31003433 PMCID: PMC6517934 DOI: 10.3390/jcm8040533] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to determine the optimal preconditioning regimen for the wound healing therapeutic efficacy of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs). To this end, we compared various preconditioning regimens for both the quantitative and qualitative production of MSC-derived EVs, and their therapeutic efficacy for proangiogenic activity in vitro and cutaneous wound healing in vivo. After preconditioning with thrombin (40 U), H2O2 (50 μM), lipopolysaccharide (1 μg/mL), or hypoxia (10% O2), EV secretion was assessed quantitatively by measuring production per cell and protein quantification, and qualitatively by measuring a proteome profiler and an enzyme-linked immunosorbent assay (ELISA) contained within EVs. The therapeutic efficacy of EVs was assessed in vitro by proliferation, migration and tube formation assays of human umbilical cord blood endothelial cells (HUVECs), and in vivo by quantification of cutaneous wound healing. Thrombin preconditioning optimally boosted EV production and enriched various growth factors including vascular endothelial growth factor and angiogenin contained within EVs compared to other preconditioning regimens. Thrombin preconditioning optimally enhanced proliferation, the migration and tube formation of HUVECs in vitro via pERK1/2 and pAKT signaling pathways, and cutaneous wound healing in vivo compared to other preconditioning regimens. Thrombin preconditioning exhibited optimal therapeutic efficacy compared with other preconditioning regimens in promoting proangiogenic activity in vitro and in enhancing cutaneous wound healing in vivo. These preconditioning regimen-dependent variations in therapeutic efficacy might be mediated by boosting EV production and enriching their cargo content.
Collapse
Affiliation(s)
- Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Samsung Biomedical Research Institute, Seoul 06351, Korea.
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Samsung Biomedical Research Institute, Seoul 06351, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea.
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Samsung Biomedical Research Institute, Seoul 06351, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea.
| |
Collapse
|
8
|
Beegle JR. A Preview of Selected Articles. Stem Cells 2018. [DOI: 10.1002/stem.2958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Julie R. Beegle
- Institute for Regenerative Cures, University of California, Davis, California, USA
| |
Collapse
|
9
|
Andreeva E, Andrianova I, Sotnezova E, Gornostaeva A, Khorkova S, Buravkova L. Hematopoiesis-supportive function of growth-arrested human adipose-tissue stromal cells under physiological hypoxia. J Biosci Bioeng 2018; 127:647-654. [PMID: 30503171 DOI: 10.1016/j.jbiosc.2018.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
Abstract
Ex vivo expansion of hematopoietic progenitors is considered as an attractive tool to increase the number of stem and progenitor cells (HSPCs) for cell therapy. The efficacy of ex vivo expansion is strongly depends on the feeder cell activity to mimic hematopoietic microenvironment. Here we demonstrated, that combination of mitomycin C-induced growth arrest and tissue-related O2 (physiological hypoxia) modulated stromal capacity of adipose tissue derived stromal cells (ASCs). Growth arrest did not affect viability, stromal phenotype and multilineage potential of ASCs permanently expanded at tissue-related O2. Meanwhile, the PCR analysis revealed an up-regulation of genes, encoded molecules of cell-cell (ICAM1, HCAM/CD44) and cell-matrix adhesion (ITGs), extracellular matrix production (COLs) and remodeling (MMPs, HAS1) in growth-arrested ASCs at physiological hypoxia in comparison with ambient O2 (20%). The number of ICAM-1 positive ASCs was increased under low O2 as well. These alterations contributed into the ex vivo expansion of cord blood HSPCs providing the preferential production of primitive HSPCs. The number of cobblestone area forming cell (CAFC) colonies was 1.5-fold higher at physiological hypoxia (p < 0.05). CAFCs considered as long-term culture-initiating cells (LTC-IC) known to support long-term hematopoiesis restoration in vivo. The presented data may be applicable in the development of upscale protocols of HSPC expansion.
Collapse
Affiliation(s)
- Elena Andreeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, 123007 Moscow, Russia.
| | - Irina Andrianova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, 123007 Moscow, Russia
| | - Elena Sotnezova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, 123007 Moscow, Russia
| | - Aleksandra Gornostaeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, 123007 Moscow, Russia
| | - Svetlana Khorkova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, 123007 Moscow, Russia
| | - Ludmila Buravkova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, 123007 Moscow, Russia; Faculty of Basic Medicine, Moscow State University, Lomonosovsky Prospekt, 31-5, 117192 Moscow, Russia
| |
Collapse
|
10
|
Jalnapurkar S, Moirangthem RD, Singh S, Limaye L, Kale V. Microvesicles Secreted by Nitric Oxide-Primed Mesenchymal Stromal Cells Boost the Engraftment Potential of Hematopoietic Stem Cells. Stem Cells 2018; 37:128-138. [PMID: 30290030 DOI: 10.1002/stem.2912] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/04/2018] [Accepted: 08/18/2018] [Indexed: 12/23/2022]
Abstract
Patients with leukemia, lymphoma, severe aplastic anemia, etc. are frequently the targets of bone marrow transplantation, the success of which critically depends on efficient engraftment by transplanted hematopoietic cells (HSCs). Ex vivo manipulation of HSCs to improve their engraftment ability becomes necessary when the number or quality of donor HSCs is a limiting factor. Due to their hematopoiesis-supportive ability, bone marrow-derived mesenchymal stromal cells (MSCs) have been traditionally used as feeder layers for ex vivo expansion of HSCs. MSCs form a special HSC-niche in vivo, implying that signaling mechanisms operative in them would affect HSC fate. We have recently demonstrated that AKT signaling prevailing in the MSCs affect the HSC functionality. Here we show that MSCs primed with nitric oxide donor, Sodium nitroprusside (SNP), significantly boost the engraftment potential of the HSCs co-cultured with them via intercellular transfer of microvesicles (MVs) harboring mRNAs encoding HSC-supportive genes. Our data suggest that these MVs could be used as HSC-priming agents to improve transplantation efficacy. Since both, nitric oxide donors and MSCs are already in clinical use; their application in clinical settings may be relatively straight forward. This approach could also be applied in regenerative medicine protocols. Stem Cells 2019;37:128-138.
Collapse
Affiliation(s)
| | | | - Shweta Singh
- Stem Cell Lab, National Centre for Cell Science, Pune, India
| | - Lalita Limaye
- Stem Cell Lab, National Centre for Cell Science, Pune, India
| | - Vaijayanti Kale
- Stem Cell Lab, National Centre for Cell Science, Pune, India
| |
Collapse
|
11
|
Evaluation of committed and primitive cord blood progenitors after expansion on adipose stromal cells. Cell Tissue Res 2018; 372:523-533. [DOI: 10.1007/s00441-017-2766-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
|
12
|
Timari H, Shamsasenjan K, Movassaghpour A, Akbarzadehlaleh P, Pashoutan Sarvar D, Aqmasheh S. The Effect of Mesenchymal Stem Cell-Derived Extracellular Vesicles on Hematopoietic Stem Cells Fate. Adv Pharm Bull 2017; 7:531-546. [PMID: 29399543 PMCID: PMC5788208 DOI: 10.15171/apb.2017.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells, with self-renewal ability as well as ability to generate all blood cells. Mesenchymal stem cells (MSCs) are multipotent stem cells, with self-renewal ability, and capable of differentiating into a variety of cell types. MSCs have supporting effects on hematopoiesis; through direct intercellular communications as well as secreting cytokines, chemokines, and extracellular vesicles (EVs). Recent investigations demonstrated that some biological functions and effects of MSCs are mediated by their EVs. MSC-EVs are the cell membrane and endosomal membrane compartments, which are important mediators in the intercellular communications. MSC-EVs contain some of the molecules such as proteins, mRNA, siRNA, and miRNA from their parental cells. MSC-EVs are able to inhibit tumor, repair damaged tissue, and modulate immune system responses. MSC-EVs compared to their parental cells, may have the specific safety advantages such as the lower potential to trigger immune system responses and limited side effects. Recently some studies demonstrated the effect of MSC-EVs on the expansion, differentiation, and clinical applications of HSCs such as improvement of hematopoietic stem cell transplantation (HSCT) and inhibition of graft versus host disease (GVHD). HSCT may be the only therapeutic choice for patients who suffer from malignant and non-malignant hematological disorders. However, there are several severe side effects such GVHD that restricts the successfulness of HSCT. In this review, we will discuss the most important effects of MSCs and MSC-EVs on the improvement of HSCT, inhibition and treatment of GVHD, as well as, on the expansion of HSCs.
Collapse
Affiliation(s)
- Hamze Timari
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology Oncology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Aqmasheh
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Human Mesenchymal Stem/Stromal Cells from Umbilical Cord Blood and Placenta Exhibit Similar Capacities to Promote Expansion of Hematopoietic Progenitor Cells In Vitro. Stem Cells Int 2017; 2017:6061729. [PMID: 29675046 PMCID: PMC5840651 DOI: 10.1155/2017/6061729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/28/2017] [Accepted: 09/10/2017] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) from bone marrow (BM) have been used in coculture systems as a feeder layer for promoting the expansion of hematopoietic progenitor cells (HPCs) for hematopoietic cell transplantation. Because BM has some drawbacks, umbilical cord blood (UCB) and placenta (PL) have been proposed as possible alternative sources of MSCs. However, MSCs from UCB and PL sources have not been compared to determine which of these cell populations has the best capacity of promoting hematopoietic expansion. In this study, MSCs from UCB and PL were cultured under the same conditions to compare their capacities to support the expansion of HPCs in vitro. MSCs were cocultured with CD34+CD38-Lin- HPCs in the presence or absence of early acting cytokines. HPC expansion was analyzed through quantification of colony-forming cells (CFCs), long-term culture-initiating cells (LTC-ICs), and CD34+CD38-Lin- cells. MSCs from UCB and PL have similar capacities to increase HPC expansion, and this capacity is similar to that presented by BM-MSCs. Here, we are the first to determine that MSCs from UCB and PL have similar capacities to promote HPC expansion; however, PL is a better alternative source because MSCs can be obtained from a higher proportion of samples.
Collapse
|
14
|
Modification of Human Umbilical Cord Blood Stem Cells Using Polyethylenimine Combined with Modified TAT Peptide to Enhance BMP-2 Production. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2971413. [PMID: 28951869 PMCID: PMC5603109 DOI: 10.1155/2017/2971413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023]
Abstract
With the emerging role of umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) for bone regeneration and delivery of therapeutic proteins, there is an increasing need for effective gene delivery systems to modify such cells. mTAT, a TAT peptide sequence bearing histidine and cysteine residues, has been successfully used for intracellular gene delivery. Using a gWiz-GFP plasmid, we demonstrated that polyethylenimine combined with mTAT (mTAT/PEI) displayed good transfection efficacy in hUCB-MSC. hUCB-MSC transfected with mTAT/PEI were shown to express more BMP-2 protein and mRNA, indicating the feasibility of using the cells as a BMP-2 delivery system. Importantly, compared to PEI25, a "gold standard" nonviral transfection polymer, mTAT/PEI had limited toxicity to the cells. Furthermore, we demonstrated enhanced osteogenic activity in vitro for BMP-2 expressing hUCB-MSC. These results provide encouraging evidence for the potential use of mTAT/PEI to genetically modify hUCB-MSC as an approach to enhance tissue regeneration.
Collapse
|
15
|
Aqmasheh S, Shamsasanjan K, Akbarzadehlaleh P, Pashoutan Sarvar D, Timari H. Effects of Mesenchymal Stem Cell Derivatives on Hematopoiesis and Hematopoietic Stem Cells. Adv Pharm Bull 2017; 7:165-177. [PMID: 28761818 PMCID: PMC5527230 DOI: 10.15171/apb.2017.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/08/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis is a balance among quiescence, self-renewal, proliferation, and differentiation, which is believed to be firmly adjusted through interactions between hematopoietic stem and progenitor cells (HSPCs) with the microenvironment. This microenvironment is derived from a common progenitor of mesenchymal origin and its signals should be capable of regulating the cellular memory of transcriptional situation and lead to an exchange of stem cell genes expression. Mesenchymal stem cells (MSCs) have self-renewal and differentiation capacity into tissues of mesodermal origin, and these cells can support hematopoiesis through release various molecules that play a crucial role in migration, homing, self-renewal, proliferation, and differentiation of HSPCs. Studies on the effects of MSCs on HSPC differentiation can develop modern solutions in the treatment of patients with hematologic disorders for more effective Bone Marrow (BM) transplantation in the near future. However, considerable challenges remain on realization of how paracrine mechanisms of MSCs act on the target tissues, and how to design a therapeutic regimen with various paracrine factors in order to achieve optimal results for tissue conservation and regeneration. The aim of this review is to characterize and consider the related aspects of the ability of MSCs secretome in protection of hematopoiesis.
Collapse
Affiliation(s)
- Sara Aqmasheh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasanjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamze Timari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Kräter M, Jacobi A, Otto O, Tietze S, Müller K, Poitz DM, Palm S, Zinna VM, Biehain U, Wobus M, Chavakis T, Werner C, Guck J, Bornhauser M. Bone marrow niche-mimetics modulate HSPC function via integrin signaling. Sci Rep 2017; 7:2549. [PMID: 28566689 PMCID: PMC5451425 DOI: 10.1038/s41598-017-02352-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022] Open
Abstract
The bone marrow (BM) microenvironment provides critical physical cues for hematopoietic stem and progenitor cell (HSPC) maintenance and fate decision mediated by cell-matrix interactions. However, the mechanisms underlying matrix communication and signal transduction are less well understood. Contrary, stem cell culture is mainly facilitated in suspension cultures. Here, we used bone marrow-mimetic decellularized extracellular matrix (ECM) scaffolds derived from mesenchymal stromal cells (MSCs) to study HSPC-ECM interaction. Seeding freshly isolated HSPCs adherent (AT) and non-adherent (SN) cells were found. We detected enhanced expansion and active migration of AT-cells mediated by ECM incorporated stromal derived factor one. Probing cell mechanics, AT-cells displayed naïve cell deformation compared to SN-cells indicating physical recognition of ECM material properties by focal adhesion. Integrin αIIb (CD41), αV (CD51) and β3 (CD61) were found to be induced. Signaling focal contacts via ITGβ3 were identified to facilitate cell adhesion, migration and mediate ECM-physical cues to modulate HSPC function.
Collapse
Affiliation(s)
- Martin Kräter
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Angela Jacobi
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Oliver Otto
- Centre for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Greifswald, Mecklenburg-Western Pomerania, 17489, Germany
| | - Stefanie Tietze
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Katrin Müller
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - David M Poitz
- Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Sandra Palm
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Valentina M Zinna
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Ulrike Biehain
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Manja Wobus
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Saxony, 01307, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Martin Bornhauser
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany.
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, 01307, Germany.
| |
Collapse
|
17
|
Saleh M, Shamsasanjan K, Movassaghpour AA, Akbarzadehlaleh P, Molaeipour Z. Inhibitory Effect of Mesenchymal Stem Cell Co-Culture on Erythroid Differentiation of K562 Cells Compared to The Control Group. CELL JOURNAL 2016; 19:127-136. [PMID: 28367423 PMCID: PMC5241509 DOI: 10.22074/cellj.2016.4133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/12/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Bone marrow mesenchymal stem cells (BMMSCs) reside in the bone marrow and control the process of hematopoiesis. They are an excellent instrument for regenerative treatment and co-culture with hematopoietic stem cells (HSCs). MATERIALS AND METHODS In this experimental study, K562 cell lines were either treated with butyric acid and co-cultured with MSCs, or cultivated in a conditioned medium from MSCs plus butyric acid for erythroid differentiation. We used the trypan blue dye exclusion assay to determine cell counts and viability in each group. For each group, we separately assessed erythroid differentiation of the K562 cell line with Giemsa stain under light microscopy, expression of specific markers of erythroid cells by flowcytometry, and erythroidspecific gene expressions by real-time polymerase chain reaction (RT-PCR). RESULTS There was enhandced erythroid differentiation of K562 cells with butyric acid compared to the K562 cell line co-cultured with MSCs and butyric acid. Erythroid differentiation of the K562 cell line cultivated in conditioned medium with butyric acid was higher than the K562 cell line co-cultured with MSCs and butyric acid, but less than K562 cell line treated with butyric acid only. CONCLUSION Our results showed that MSCs significantly suppressed erythropoiesis. Therefore, MSCs would not be a suitable optimal treatment strategy for patients with erythroid leukemia.
Collapse
Affiliation(s)
- Mahshid Saleh
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasanjan
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parvin Akbarzadehlaleh
- Department of Pharmacutical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Molaeipour
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Sohrabi Akhkand S, Amirizadeh N, Nikougoftar M, Alizadeh J, Zaker F, Sarveazad A, Joghataei MT, Faramarzi M. Evaluation of umbilical cord blood CD34+ hematopoietic stem cells expansion with inhibition of TGF-β receptorII in co-culture with bone marrow mesenchymal stromal cells. Tissue Cell 2016; 48:305-11. [PMID: 27344285 DOI: 10.1016/j.tice.2016.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSCs). However, low number of HSCs in UCB has been an obstacle for adult hematopoietic stem cell transplantation. The expansion of HSCs in culture is one approach to overcome this problem. In this study, we investigated the expansion of UCB-HSCs by using human bone marrow mesenchymal stromal cells (MSCs) as feeder layer as well as inhibiting the TGF-β signaling pathway through reduction of TGF-βRII expression. MATERIALS AND METHODS CD34(+) cells were isolated from UCB and transfected by SiRNA targeting TGF-βRII mRNA. CD34(+) cells were expanded in four culture media with different conditions, including 1) expansion of CD34(+) cells in serum free medium containing growth factors, 2) expansion of cells transfected with SiRNA targeting TGF-βRII in medium containing growth factors, 3) expansion of cells in presence of growth factors and MSCs, 4) expansion of cells transfected with SiRNA targeting TGF-βRII on MSCs feeder layer in medium containing growth factors. These culture conditions were evaluated for the number of total nucleated cells (TNCs), CD34 surface marker as well as using CFU assay on 8th day after culture. RESULTS The fold increase in CD34(+) cells, TNCs, and colony numbers (71.8±6.9, 93.2±10.2 and 128±10, respectively) was observed to be highest in fourth culture medium compared to other culture conditions. The difference between number of cells in four culture media in 8th day compared to unexpanded cells (0day) before expansion was statistically significant (P<0.05). CONCLUSION The results showed that transfection of CD34(+) cells with SiRNA targeting TGF-βRII and their co-culture with MSCs could considerably increase the number of progenitors. Therefore, this method could be useful for UCB-HSCs expansion.
Collapse
Affiliation(s)
- Saman Sohrabi Akhkand
- Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Farhad Zaker
- Cellular and Molecular Research Center, Department of Hematology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Arash Sarveazad
- Colorectal Research center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Faramarzi
- Research Center of Pediatric Infectious Diseases, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Fajardo-Orduña GR, Mayani H, Montesinos JJ. Hematopoietic Support Capacity of Mesenchymal Stem Cells: Biology and Clinical Potential. Arch Med Res 2015; 46:589-96. [PMID: 26522615 DOI: 10.1016/j.arcmed.2015.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in the physiology and homeostasis of the hematopoietic system. Because MSCs generate most of the stromal cells present in the bone marrow (BM), form part of the hematopoietic stem cell (HSC) niche, and produce various molecules regulating hematopoiesis, their hematopoiesis-supporting capacity has been demonstrated. In the last decade, BM-MSCs have been proposed to be useful in some ex vivo protocols for HSC expansion, with the aim of expanding their numbers for transplant purposes (HSC transplant, HSCT). Furthermore, application of MSCs has been proposed as an adjuvant cellular therapy for promoting rapid hematopoietic recovery in HSCT patients. Although the MSCs used in preliminary clinical trials have come from the BM, isolation of MSCs from far more accessible sources such as neonatal tissues has now been achieved, and these cells have been found to possess similar biological characteristics to those isolated from the BM. Therefore, such tissues are now considered as a potential alternative source of MSCs for clinical applications. In this review, we discuss current knowledge regarding the biological characteristics of MSCs as related to their capacity to support the formation of hematopoietic stem and progenitor cells. We also describe MSC manipulation for ex vivo HSC expansion protocols used for transplants and their clinical relevance for hematopoietic recovery in HSCT patients.
Collapse
Affiliation(s)
- Guadalupe R Fajardo-Orduña
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico
| | - Héctor Mayani
- Hematopoietic Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico
| | - Juan J Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico.
| |
Collapse
|
20
|
Sung DK, Chang YS, Sung SI, Yoo HS, Ahn SY, Park WS. Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta- defensin- 2 via toll- like receptor 4 signalling. Cell Microbiol 2015; 18:424-36. [PMID: 26350435 PMCID: PMC5057339 DOI: 10.1111/cmi.12522] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 12/15/2022]
Abstract
Recently, we demonstrated that intratracheal transplantation of human umbilical cord blood‐ derived mesenchymal stem cells (MSCs) attenuates Escherichia (E) coli‐ induced acute lung injury primarily by down‐ modulating inflammation and enhancing bacterial clearance iQn mice. This study was performed to elucidate the mechanism underlying the antibacterial effects of MSCs. The growth of E. coli in vitro was significantly inhibited only by MSCs or their conditioned medium with bacterial preconditioning, but not by fibroblasts or their conditioned medium. Microarray analysis identified significant up‐ regulation of toll‐ like receptors (TLR)‐ 2 and TLR‐ 4, and β‐ defensin 2 (BD2) in MSCs compared with fibroblasts after E. coli exposure. The increased BD2 level and the in vitro antibacterial effects of MSCs were abolished by specific antagonist or by siRNA‐ mediated knockdown of TLR‐ 4, but not TLR‐ 2, and restored by BD2 supplementation. The in vivo down‐ modulation of the inflammatory response and enhanced bacterial clearance, increased BD2 secretion and the resultant protection against E. coli‐ induced pneumonia observed only with MSCs, but not fibroblasts, transplantation in mice, were abolished by knockdown of TLR‐ 4 with siRNA transfection. Our data indicate that BD2 secreted by the MSCs via the TLR‐ 4 signalling pathway is one of the critical paracrine factors mediating their microbicidal effects against E. coli, both in vitro and in vivo. Furthermore, TLR‐ 4 from the transplanted MSCs plays a seminal role in attenuating in vivo E. coli‐ induced pneumonia and the ensuing acute lung injury through both its anti‐ inflammatory and antibacterial effects.
Collapse
Affiliation(s)
- Dong Kyung Sung
- Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - Hye Soo Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| |
Collapse
|
21
|
Sung DK, Chang YS, Ahn SY, Sung SI, Yoo HS, Choi SJ, Kim SY, Park WS. Optimal Route for Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation to Protect Against Neonatal Hyperoxic Lung Injury: Gene Expression Profiles and Histopathology. PLoS One 2015; 10:e0135574. [PMID: 26305093 PMCID: PMC4549285 DOI: 10.1371/journal.pone.0135574] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/23/2015] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to determine the optimal route of mesenchymal stem cell (MSC) transplantation. To this end, gene expression profiling was performed to compare the effects of intratracheal (IT) versus intravenous (IV) MSC administration. Furthermore, the therapeutic efficacy of each route to protect against neonatal hyperoxic lung injury was also determined. Newborn Sprague-Dawley rats were exposed to hyperoxia (90% oxygen) from birth for 14 days. Human umbilical cord blood-derived MSCs labeling with PKH26 were transplanted through either the IT (5×105) or IV (2×106) route at postnatal day (P) 5. At P14, lungs were harvested for histological, biochemical and microarray analyses. Hyperoxic conditions induced an increase in the mean linear intercept and mean alveolar volume (MAV), indicative of impaired alveolarization. The number of ED-1 positive cells was significantly decreased by both IT and IV transplantations. However, IT administration of MSCs resulted in a greater decrease in MAV and ED-1 positive cells compared to IV administration. Moreover, the number of TUNEL-positive cells was significantly decreased in the IT group, but not in the IV group. Although the IT group received only one fourth of the number of MSCs that the IV group did, a significantly higher number of donor cell-derived red PKH 26 positivity were recovered in the IT group. Hyperoxic conditions induced the up regulation of genes associated with the inflammatory response, such as macrophage inflammatory protein-1 α, tumor necrosis factor-α and inter leukin-6; genes associated with cell death, such as p53 and caspases; and genes associated with fibrosis, such as connective tissue growth factor. In contrast, hyperoxic conditions induced the dwon-regulation of vascular endothelial growth factor and hepatocyte growth factor. These hyperoxia-induced changes in gene expression were decreased in the IT group, but not in the IV group. Thus, local IT MSC transplantation was more effective than systemic IV MSC administration in protecting against neonatal hyperoxic lung injury.
Collapse
Affiliation(s)
- Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Soo Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul, Korea
| | - Soo Yoon Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
22
|
Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Im GH, Choi SJ, Park WS. Optimal Route for Mesenchymal Stem Cells Transplantation after Severe Intraventricular Hemorrhage in Newborn Rats. PLoS One 2015. [PMID: 26208299 PMCID: PMC4514759 DOI: 10.1371/journal.pone.0132919] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recently, we showed that intracerebroventricular (IC) transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) significantly attenuates posthemorrhagic hydrocephalus (PHH) and brain damage after severe IVH in newborn rats. This study was performed to determine the optimal route for transplanting MSCs for severe IVH by comparing IC transplantation, intravenous (IV) transplantation, and IV transplantation plus mannitol infusion. Severe IVH was induced by injecting 100 uL of blood into each ventricle of Sprague-Dawley rats on postnatal day 4 (P4). After confirming severe IVH with brain magnetic resonance imaging (MRI) at P5, human UCB-derived MSCs were transplanted at P6 by an IC route (1×105), an IV route (5×105), or an IV route with mannitol infused. Follow-up brain MRIs and rotarod tests were performed. At P32, brain tissue samples were obtained for biochemical and histological analyses. Although more MSCs localized to the brain after IC than after IV delivery, both methods were equally effective in preventing PHH; attenuating impaired rotarod test; increasing the number of TUNEL-positive cells, inflammatory cytokines, and astrogliosis; and reducing corpus callosal thickness and myelin basic protein expression after severe IVH regardless of mannitol co-infusion. Despite the superior delivery efficacy with IC than with the IV route, both IC and IV transplantation of MSCs had equal therapeutic efficacy in protecting against severe IVH. These findings suggest that the less invasive IV route might be a good alternative for clinically unstable, very preterm infants that cannot tolerate a more invasive IC delivery of MSCs.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Soo Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Geun Ho Im
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
23
|
Pineault N, Abu-Khader A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol 2015; 43:498-513. [DOI: 10.1016/j.exphem.2015.04.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/24/2022]
|
24
|
Pelagiadis I, Stiakaki E, Choulaki C, Kalmanti M, Dimitriou H. The role of children's bone marrow mesenchymal stromal cells in the ex vivo expansion of autologous and allogeneic hematopoietic stem cells. Cell Biol Int 2015; 39:1099-110. [DOI: 10.1002/cbin.10483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/08/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Iordanis Pelagiadis
- Department of Pediatric Hematology-Oncology; Medical School; University of Crete; Heraklion Crete Greece
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology; Medical School; University of Crete; Heraklion Crete Greece
| | - Christianna Choulaki
- Department of Pediatric Hematology-Oncology; Medical School; University of Crete; Heraklion Crete Greece
| | - Maria Kalmanti
- Department of Pediatric Hematology-Oncology; Medical School; University of Crete; Heraklion Crete Greece
| | - Helen Dimitriou
- Department of Pediatric Hematology-Oncology; Medical School; University of Crete; Heraklion Crete Greece
| |
Collapse
|
25
|
Amirizadeh N, Oodi A, Mehrasa R, Nikougoftar M. Apoptosis, DAP-Kinase1 Expression and the Influences of Cytokine Milieu and Mesenchymal Stromal Cells on Ex Vivo Expansion of Umbilical Cord Blood-Derived Hematopoietic Stem Cells. Indian J Hematol Blood Transfus 2015; 32:67-77. [PMID: 26855509 DOI: 10.1007/s12288-015-0545-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 02/05/2014] [Indexed: 10/23/2022] Open
Abstract
Expansion of umbilical cord blood-derived CD34(+) cells can potentially provide them in numbers sufficient for clinical applications in adult humans. In this study apoptosis rate of expanded cells, mRNA expression and promoter methylation status of DAPK1 were evaluated during cord blood hematopoietic stem cell (CB-HSC) ex vivo expansion using cytokines and a co-culture system with mesenchymal stromal cells (MSCs). Ex vivo cultures of CB-HSCs were performed in three culture conditions for 14 days: cytokines with MSCs feeder layer, cytokines without MSCs feeder layer and co-culture with MSCs feeder layer without cytokine. Total number of cells, CD34(+) cells and colony forming unit assay were performed during expansion. Flow cytometric analysis by propidium iodide was performed to detection of apoptosis rate in expanded cells. Methylation status of the DAPK1 gene promoter was analyzed using methylation specific PCR, and DAPK1 mRNA expression was evaluated by real time-PCR. Maximum CB-CD34(+) cells expansion was observed in day 10 of expansion. The highest apoptosis rate was observed in cytokine culture without feeder layer that showed significant difference with co-culture condition. The data showed that ex vivo expansion of CD34(+) cells in all three culture conditions after 10 days resulted in, significant increased expression of DAPK1, also a significant difference between co-culture without cytokine and two other cytokine culture was observed (p < 0.01). DAPK1gene promoter of expanded CD34(+) cells at days 5, 10 and 14 of culture remained in unmethylated form similar to fresh CD34(+) cells. Expression of DAPK1 in hematopoietic cells was increased during 10 days expansion of CD34(+) cells. Also no methylation of DAPK1 promoter was observed; otherwise it would be capable of initiating some leukemic cell progression or disruption in hematopoietic regeneration.
Collapse
Affiliation(s)
- Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, IBTO Bldg. Hemmat Exp Way, Next to the Milad Tower, P.O. Box 14665-1157, Tehran, Iran
| | - Arezoo Oodi
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, IBTO Bldg. Hemmat Exp Way, Next to the Milad Tower, P.O. Box 14665-1157, Tehran, Iran
| | - Roya Mehrasa
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, IBTO Bldg. Hemmat Exp Way, Next to the Milad Tower, P.O. Box 14665-1157, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, IBTO Bldg. Hemmat Exp Way, Next to the Milad Tower, P.O. Box 14665-1157, Tehran, Iran
| |
Collapse
|
26
|
Ahn SY, Chang YS, Sung DK, Yoo HS, Sung SI, Choi SJ, Park WS. Cell type-dependent variation in paracrine potency determines therapeutic efficacy against neonatal hyperoxic lung injury. Cytotherapy 2015; 17:1025-35. [PMID: 25863963 DOI: 10.1016/j.jcyt.2015.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS The aim of this study was to determine the optimal cell type for transplantation to protect against neonatal hyperoxic lung injury. To this end, the in vitro and in vivo therapeutic efficacies and paracrine potencies of human umbilical cord blood-derived mesenchymal stromal cells (HUMs), human adipose tissue-derived mesenchymal stromal cells (HAMs) and human umbilical cord blood mononuclear cells (HMNs) were compared. METHODS Hyperoxic injury was induced in vitro in A549 cells by challenge with H2O2. Alternatively, hyperoxic injury was induced in newborn Sprague-Dawley rats in vivo by exposure to hyperoxia (90% oxygen) for 14 days. HUMs, HAMs or HMNs (5 × 10(5) cells) were given intratracheally at postnatal day 5. RESULTS Hyperoxia-induced increases in in vitro cell death and in vivo impaired alveolarization were significantly attenuated in both the HUM and HAM groups but not in the HMN group. Hyperoxia impaired angiogenesis, increased the cell death and pulmonary macrophages and elevated inflammatory cytokine levels. These effects were significantly decreased in the HUM group but not in the HAM or HMN groups. The levels of human vascular endothelial growth factor and hepatocyte growth factor produced by donor cells were highest in HUM group, followed by HAM group and then HMN group. CONCLUSIONS HUMs exhibited the best therapeutic efficacy and paracrine potency than HAMs or HMNs in protecting against neonatal hyperoxic lung injury. These cell type-dependent variations in therapeutic efficacy might be associated or mediated with the paracrine potency of the transplanted donor cells.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Soo Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
27
|
Park WS, Sung SI, Ahn SY, Yoo HS, Sung DK, Im GH, Choi SJ, Chang YS. Hypothermia augments neuroprotective activity of mesenchymal stem cells for neonatal hypoxic-ischemic encephalopathy. PLoS One 2015; 10:e0120893. [PMID: 25816095 PMCID: PMC4376738 DOI: 10.1371/journal.pone.0120893] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/27/2015] [Indexed: 01/21/2023] Open
Abstract
Though hypothermia is the only clinically available treatment for neonatal hypoxic-ischemic encephalopathy (HIE), it is not completely effective in severe cases. We hypothesized that combined treatment with hypothermia and transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) would synergistically attenuate severe HIE compared to stand-alone therapy. To induce hypoxia-ischemia (HI), male Sprague-Dawley rats were subjected to 8% oxygen for 120 min after unilateral carotid artery ligation on postnatal day (P) 7. After confirmation of severe HIE involving >50% of the ipsilateral hemisphere volume as determined by diffusion-weighted brain magnetic resonance imaging (MRI) within 2 h after HI, intraventricular MSC transplantation (1 × 105 cells) and/or hypothermia with target temperature at 32°C for 24 h were administered 6 h after induction of HI. Follow-up brain MRI at P12 and P42, sensorimotor function tests at P40–42, evaluation of cytokines in the cerebrospinal fluid (CSF) at P42, and histologic analysis of peri-infarct tissues at P42 were performed. Severe HI resulted in progressively increased brain infarction over time as assessed by serial MRI, increased number of cells positive for terminal deoxynucleotidyl transferase nick-end labeling, microgliosis and astrocytosis, increased CSF cytokine levels, and impaired function in behavioral tests such as rotarod and cylinder tests. All of the abnormalities observed in severe HIE showed greater improvement after combined treatment with hypothermia and MSC transplantation than with either therapy alone. Overall, these findings suggest that combined treatment with hypothermia and human UCB-derived MSC transplantation might be a novel therapeutic modality to improve the prognosis of severe HIE, an intractable disease that currently has no effective treatment.
Collapse
Affiliation(s)
- Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Soo Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Kyung Sung
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Geun Ho Im
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
28
|
Zhao G, Liu F, Lan S, Li P, Wang L, Kou J, Qi X, Fan R, Hao D, Wu C, Bai T, Li Y, Liu JY. Large-scale expansion of Wharton's jelly-derived mesenchymal stem cells on gelatin microbeads, with retention of self-renewal and multipotency characteristics and the capacity for enhancing skin wound healing. Stem Cell Res Ther 2015; 6:38. [PMID: 25889402 PMCID: PMC4413550 DOI: 10.1186/s13287-015-0031-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Successful stem cell therapy relies on large-scale generation of stem cells and their maintenance in a proliferative multipotent state. This study aimed to establish a three-dimension culture system for large-scale generation of hWJ-MSC and investigated the self-renewal activity, genomic stability and multi-lineage differentiation potential of such hWJ-MSC in enhancing skin wound healing. METHODS hWJ-MSC were seeded on gelatin microbeads and cultured in spinning bottles (3D). Cell proliferation, karyotype analysis, surface marker expression, multipotent differentiation (adipogenic, chondrogenic, and osteogenic potentials), and expression of core transcription factors (OCT4, SOX2, NANOG, and C-MYC), as well as their efficacy in accelerating skin wound healing, were investigated and compared with those of hWJ-MSC derived from plate cultres (2D), using in vivo and in vitro experiments. RESULTS hWJ-MSC attached to and proliferated on gelatin microbeads in 3D cultures reaching a maximum of 1.1-1.30×10(7) cells on 0.5 g of microbeads by days 8-14; in contrast, hWJ-MSC derived from 2D cultures reached a maximum of 6.5 -11.5×10(5) cells per well in a 24-well plate by days 6-10. hWJ-MSC derived by 3D culture incorporated significantly more EdU (P<0.05) and had a significantly higher proliferation index (P<0.05) than those derived from 2D culture. Immunofluorescence staining, real-time PCR, flow cytometry analysis, and multipotency assays showed that hWJ-MSC derived from 3D culture retained MSC surface markers and multipotency potential similar to 2D culture-derived cells. 3D culture-derived hWJ-MSC also retained the expression of core transcription factors at levels comparable to their 2D culture counterparts. Direct injection of hWJ-MSC derived from 3D or 2D cultures into animals exhibited similar efficacy in enhancing skin wound healing. CONCLUSIONS Thus, hWJ-MSC can be expanded markedly in gelatin microbeads, while retaining MSC surface marker expression, multipotent differential potential, and expression of core transcription factors. These cells also efficiently enhanced skin wound healing in vivo, in a manner comparable to that of hWJ-MSC obtained from 2D culture.
Collapse
Affiliation(s)
- Guifang Zhao
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China. .,Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, P.R. China.
| | - Feilin Liu
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Shaowei Lan
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Pengdong Li
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Li Wang
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Junna Kou
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Xiaojuan Qi
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Ruirui Fan
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Deshun Hao
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Chunling Wu
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China. .,Harbin Veterinary Research Institute, CAAS - Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, 150001, P R China.
| | - Tingting Bai
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Yulin Li
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Jin Yu Liu
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China. .,Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, P.R. China.
| |
Collapse
|
29
|
Mamidi MK, Dutta S, Bhonde R, Das AK, Pal R. Allogeneic and autologous mode of stem cell transplantation in regenerative medicine: Which way to go? Med Hypotheses 2014; 83:787-91. [DOI: 10.1016/j.mehy.2014.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023]
|
30
|
In-vitro Behavior of Human Umbilical Cord Blood Stem Cells Towards Serum Based Minimal Cytokine Growth Conditions. Indian J Clin Biochem 2014; 29:279-89. [PMID: 24966475 DOI: 10.1007/s12291-013-0346-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
We tried here to optimize the proliferation of both Hematopoietic and Mesenchymal stem cells of Umbilical Cord blood in minimal cytokine growth condition. Failing to get good results of expansion of non-adherent Hematopoietic Total Nucleated Cells and adherent Fibroblastic Mesenchymal Stem Cells derived from 10-12 ml of collected Cord blood, we designed the further experimental study by increasing the volume of Cord blood sample up to 65-70 ml. We harvested the non-adherent as well as adherent fraction separately derived from the primary culture of Umbilical Cord blood stem cells under the influence of growth promoting Cytokines or Growth Factors. The proliferation study was conducted by taking different combinations of two hematopoietic growth stimulatory Cytokines like stem cell factor (SCF) and Fms like tyrosine kinase-3Ligand (Flt3L) at concentrations (10 ng/ml, 100 ng/ml) while we preferred Mesenchymal specific growth factor i.e. basic Fibroblast growth factor (FGF-β) at its 10 ng/ml concentration for adherent cells to get optimal results. The Hematopoietic and Fibroblast Colony forming abilities of the expanded stem cells were performed through Colony Forming Unit assay. Culture Medium containing cytokine combination like SCF 100 ng/ml with Flt3L 10 ng/ml was found to be optimal for the proliferation of hematopoietic stem cells. But the number of hematopoietic colonies like Erythroid colonies generated were less in case of media supplemented with SCF & Flt3L while more number of Myeloid colonies were observed in Growth factor supplemented media in comparison to the control one. The FGF-β supplemented media successfully enhanced the proliferation of Mesenchymal Stem Cells and exhibited its efficient Fibroblast colony forming ability. Our experimental study supports the minimal utilization of cytokines for haematopoietic and mesenchymal stem cell proliferation which may help in future safe Cord blood stem cell infusion.
Collapse
|
31
|
Amirizadeh N, Oodi A, Nikougoftar M, Soltanpour MS. Expression and promoter methylation changes of the P15INK4b during ex vivo cord blood CD34+ cell expansion following co-culture with mesenchymal stromal cells. ACTA ACUST UNITED AC 2014; 18:260-8. [PMID: 24020488 DOI: 10.1179/1607845412y.0000000062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Because of the insufficient number of cord blood hematopoietic stem cells (CB-HSC), expansion of these cells seems to be important for clinical application in adults. Cell cycle inhibitors are important regulators in normal hematopoietic regeneration. In this study, mRNA expression and promoter methylation status of p15(INK4b) were evaluated during CB-HSC ex vivo expansion using cytokines and in co-culture system with a mesenchymal stem cells (MSCs) feeder layer. METHODS ex vivo cultures of CB-HSCs were performed in three culture conditions for 14 days: cytokines with an MSCs feeder layer, cytokines without a MSCs feeder layer, and co-culture with MSCs without cytokines. After expansion, measuring the total number of cells, CD34(+) cells, and CFU assay was performed. Methylation status of the p15(INK4b) gene promoter was analyzed using methylation-specific polymerase chain reaction and p15 mRNA expression was evaluated by real-time reverse transcriptase polymerase chain reaction. RESULTS Maximum CB-HSC expansion was observed on day 10 of expansion. The data showed that after 10 days, p15 mRNA expression in the expanded cells in all the three culture conditions was higher than in CD34(+) fresh cells (P < 0.01). p15 gene promoter of expanded CD34(+) cells remained in an unmethylated form just like fresh CD34(+) cells in all the three culture conditions at days 5, 10, and 14 of culture. CONCLUSIONS Expression of p15(INK4b) in HSCs was not decreased during ex vivo expansion. Also, no methylation of p15 promoter was observed, otherwise it would be capable of initiating some leukemic cell progression or disruption in hematopoietic regeneration.
Collapse
Affiliation(s)
- Naser Amirizadeh
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | | | | | | |
Collapse
|
32
|
Maslova EV, Andreeva ER, Andrianova IV, Bobyleva PI, Romanov YA, Kabaeva NV, Balashova EE, Ryaskina SS, Dugina TN, Buravkova LB. Enrichment of Umbilical Cord Blood Mononuclears with Hemopoietic Precursors in Co-Culture with Mesenchymal Stromal Cells from Human Adipose Tissue. Bull Exp Biol Med 2014; 156:584-9. [DOI: 10.1007/s10517-014-2400-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Indexed: 11/30/2022]
|
33
|
Chi Y, Jin Y, He Z, Yu T. Detection of cytokines in supernatant from hematopoietic stem/progenitor cells co-cultured with mesenchymal stem cells and endothelial progenitor cells. Cell Tissue Bank 2013; 15:397-402. [PMID: 24146301 DOI: 10.1007/s10561-013-9404-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/12/2013] [Indexed: 02/03/2023]
Abstract
This study aimed to investigate the significance of cytokine expression in supernatant from hematopoietic stem/progenitor cells (HSCs/HPCs) co-cultured with mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs). Mononuclear cells (MNCs) were isolated from normal human umbilical cord blood and then cultured solely or co-cultured with MSCs or EPCs. Changes in the number of MNCs and HSCs/HPCs were observed, and MNC proliferation was tested by carboxyfluorescein diacetate succinimidyl ester. The cultured supernatants of the treated MSCs and EPCs were collected at 24 h after co-culture and used to determine the concentrations of IL-3, IL-6, stem cell factor (SCF), TPO, Flt3l, and VEGF. The total number and proliferation of MNCs increased significantly when co-cultured with MSCs or EPCs than when cultured alone, particularly when MNCs were co-cultured with EPCs. The differences in IL-3 and Flt3l concentrations between groups were not significant. However, IL-6 in the MSC group was significantly higher than that in the two other groups. The SCF and TPO concentrations were highly expressed in the EPC group. The VEGF concentrations in the MSC group and the EPC group were higher than those in the control group. These results indicated that MSCs and EPCs possibly favor the proliferation of MNCs and HSCs/HPCs. IL-6 and VEGF may be related to hematopoietic reconstitution and homing ability of HSCs/HPCs. TPO may have a specific relationship with the promotion of HSCs/HPCs differentiation.
Collapse
Affiliation(s)
- Yue Chi
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, 130041, China
| | | | | | | |
Collapse
|
34
|
Flores-Guzmán P, Fernández-Sánchez V, Mayani H. Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl Med 2013; 2:830-8. [PMID: 24101670 DOI: 10.5966/sctm.2013-0071] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play key roles in the production of mature blood cells and in the biology and clinical outcomes of hematopoietic transplants. The numbers of these cells, however, are extremely low, particularly in umbilical cord blood (UCB); thus, ex vivo expansion of human UCB-derived HSCs and HPCs has become a priority in the biomedical field. Expansion of progenitor cells can be achieved by culturing such cells in the presence of different combinations of recombinant stimulatory cytokines; in contrast, expansion of actual HSCs has proved to be more difficult because, in addition to needing recombinant cytokines, HSCs seem to deeply depend on the presence of stromal cells and/or elements that promote the activation of particular self-renewal signaling pathways. Hence, there is still controversy regarding the optimal culture conditions that should be used to achieve this. To date, UCB transplants using ex vivo-expanded cells have already been performed for the treatment of different hematological disorders, and although results are still far from being optimal, the advances are encouraging. Recent studies suggest that HSCs may also give rise to nonhematopoietic cells, such as neural, cardiac, mesenchymal, and muscle cells. Such plasticity and the possibility of producing nonhematopoietic cells at the clinical scale could bring new alternatives for the treatment of neural, metabolic, orthopedic, cardiac, and neoplastic disorders. Once standardized, ex vivo expansion of human HSCs/HPCs will surely have a positive impact in regenerative medicine.
Collapse
Affiliation(s)
- Patricia Flores-Guzmán
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico
| | | | | |
Collapse
|
35
|
Raynaud CM, Butler JM, Halabi NM, Ahmad FS, Ahmed B, Rafii S, Rafii A. Endothelial cells provide a niche for placental hematopoietic stem/progenitor cell expansion through broad transcriptomic modification. Stem Cell Res 2013; 11:1074-90. [PMID: 23978474 DOI: 10.1016/j.scr.2013.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/17/2013] [Accepted: 07/31/2013] [Indexed: 11/26/2022] Open
Abstract
Umbilical cord blood (UCB) is an attractive source of hematopoietic stem cells (HSCs). However, the number of HSCs in UCB is limited, and attempts to amplify them in vitro remain inefficient. Several publications have documented amplification of hematopoietic stem/progenitor cells (HSPCs) on endothelial or mesenchymal cells, but the lack of homogeneity in culture conditions and HSC definition impairs direct comparison of these results. We investigated the ability of different feeder layers, mesenchymal progenitors (MPs) and endothelial cells (ECs), to amplify hematopoietic stem/progenitor cells. Placental derived HSPCs (defined as Lin(-)CD45(-/dim)CD34(+)CD38(-)CD90(+)) were maintained on confluent feeder layers and the number of cells and their marker expression were monitored over 21 days. Although both types of feeder layers supported hematopoietic expansion, only endothelial cells triggered amplification of Lin(-)CD45(-/dim)CD34(+)CD38(-)CD90(+) cells, which peaked at 14 days. The amplified cells differentiated into all cell lineages, as attested by in vitro colony-forming assays, and were capable of engraftment and multi-lineage differentiation in sub-lethally irradiated mice. Mesenchymal progenitors promoted amplification of CD38(+) cells, previously defined as precursors with more limited differentiation potential. A competitive assay demonstrated that hematopoietic stem/progenitor cells had a preference for interacting with endothelial cells in vitro. Cytokine and transcriptomic analysis of both feeder cell types identified differences in gene expression that correlated with propensity of ECs and MPs to support hematopoietic cell amplification and differentiation respectively. Finally, we used RNA sequencing of endothelial cells and HSPCs to uncover relevant networks illustrating the complex interaction between endothelial cells and HSPCs leading to stem/progenitor cell expansion.
Collapse
Affiliation(s)
- Christophe M Raynaud
- Qatar Cardiovascular Research Center, Qatar Foundation, Qatar Science and Technology Park, Doha, Qatar
| | | | | | | | | | | | | |
Collapse
|
36
|
Soltanpour MS, Amirizadeh N, Zaker F, Oodi A, Nikougoftar M, Kazemi A. mRNA expression and promoter DNA methylation status of CDKi p21 and p57 genes inex vivoexpanded CD34+cells following co-culture with mesenchymal stromal cells and growth factors. Hematology 2013; 18:30-8. [DOI: 10.1179/1607845412y.0000000030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Mohammad Soleiman Soltanpour
- Department of Hematology and Blood BankingSchool of Allied Medical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Naser Amirizadeh
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood BankingSchool of Allied Medical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Arezoo Oodi
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Tehran, Iran
| | - Mahin Nikougoftar
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Tehran, Iran
| | - Ahmad Kazemi
- Department of Hematology and Blood BankingSchool of Allied Medical Sciences, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
37
|
Oodi A, Noruzinia M, Habibi Roudkenar M, Nikougoftar M, Soltanpour MS, Khorshidfar M, Amirizadeh N. Expression of P16 cell cycle inhibitor in human cord blood CD34+ expanded cells following co-culture with bone marrow-derived mesenchymal stem cells. Hematology 2013; 17:334-40. [DOI: 10.1179/1607845412y.0000000009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Arezoo Oodi
- Blood Transfusion Research CenterHigh Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Mehrdad Noruzinia
- Department of Medical GeneticsFaculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehryar Habibi Roudkenar
- Blood Transfusion Research CenterHigh Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research CenterHigh Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | | | - Mona Khorshidfar
- Blood Transfusion Research CenterHigh Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research CenterHigh Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
38
|
Abstract
Human hematopoietic stem cells (hHSCs) cannot be maintained in vitro for extended time periods because they rapidly differentiate or die. To extend in vitro culture time, researchers have made attempts to use human mesenchymal stem cells (hMSCs) to create feeder layers that mimic the stem cell niche. We have conducted an array of experiments including adipocytes in these feeder layers that inhibit hHSC differentiation and by that prolong stem cell survival in vitro. The amount of CD34+ cells was quantified using flow cytometry. In a first experiment, feeder layers of undifferentiated hMSCs were compared with feeder layers differentiated toward osteoblasts or adipocytes using minimal medium, showing the highest survival rate where adipocytes were included. The same conclusion was drawn in a second experiment in comparing hMSCs with adipogenic feeder cells, using a culture medium supplemented with a cocktail of hHSC growth factors. In a third experiment, it was shown that direct cell–cell contact is necessary for the supportive effect of the feeder layers. In a fourth and fifth experiment the amount of adipocytes in the feeder layers were varied, and in all experiments a higher amount of adipocytes in the feeder layers showed a less rapid decay of CD34+ cells at later time points. We therefore concluded that adipocytes assist in suppressing hHSC differentiation and aid in prolonging their survival in vitro.
Collapse
Affiliation(s)
- Dean Liang Glettig
- Department of Biomedical Engineering, School of Engineering, Tufts University , Medford, Massachusetts
| | | |
Collapse
|
39
|
Chang YS, Choi SJ, Ahn SY, Sung DK, Sung SI, Yoo HS, Oh WI, Park WS. Timing of umbilical cord blood derived mesenchymal stem cells transplantation determines therapeutic efficacy in the neonatal hyperoxic lung injury. PLoS One 2013; 8:e52419. [PMID: 23349686 PMCID: PMC3549907 DOI: 10.1371/journal.pone.0052419] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/14/2012] [Indexed: 11/30/2022] Open
Abstract
Intratracheal transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuates the hyperoxia-induced neonatal lung injury. The aim of this study was to optimize the timing of MSCs transplantation. Newborn Sprague-Dawley rats were randomly exposed to hyperoxia (90% for 2 weeks and 60% for 1 week) or normoxia after birth for 21 days. Human UCB-derived MSCs (5×10(5) cells) were delivered intratracheally early at postnatal day (P) 3 (HT3), late at P10 (HT10) or combined early+late at P3+10 (HT3+10). Hyperoxia-induced increase in mortality, TUNEL positive cells, ED1 positive alveolar macrophages, myeloperoxidase activity and collagen levels, retarded growth and reduced alveolarization as evidenced by increased mean linear intercept and mean alveolar volume were significantly better attenuated in both HT3 and HT3+10 than in HT10. Hyperoxia-induced up-regulation of both cytosolic and membrane p47(phox) indicative of oxidative stress, and increased inflammatory markers such as tumor necrosis factor-α, interleukin (IL) -1α, IL-1β, IL-6, and transforming growth factor-β measured by ELISA, and tissue inhibitor of metalloproteinase-1, CXCL7, RANTES, L-selectin and soluble intercellular adhesion molecule-1 measured by protein array were consistently more attenuated in both HT3 and HT3+10 than in HT10. Hyperoxia-induced decrease in hepatocyte growth factor and vascular endothelial growth factor was significantly up-regulated in both HT3 and HT3+10, but not in HT10. In summary, intratracheal transplantation of human UCB derived MSCs time-dependently attenuated hyperoxia-induced lung injury in neonatal rats, showing significant protection only in the early but not in the late phase of inflammation. There were no synergies with combined early+late MSCs transplantation.
Collapse
Affiliation(s)
- Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Kyung Sung
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Soo Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Il Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH, Oh WI, Park WS. Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke 2013; 44:497-504. [PMID: 23287782 DOI: 10.1161/strokeaha.112.679092] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Severe intraventricular hemorrhage (IVH) in premature infants and the ensuing posthemorrhagic hydrocephalus cause significant mortality and neurological disabilities, and there are currently no effective therapies. This study determined whether intraventricular transplantation of human umbilical cord blood-derived mesenchymal stem cells prevents posthemorrhagic hydrocephalus development and attenuates brain damage after severe IVH in newborn rats. METHODS To induce severe IVH, 100 μL of blood was injected into each lateral ventricle of postnatal day 4 (P4) Sprague-Dawley rats. Human umbilical cord blood-derived mesenchymal stem cells or fibroblasts (1 × 10(5)) were transplanted intraventricularly under stereotaxic guidance at P6. Serial brain MRI and behavioral function tests, such as the negative geotaxis test and rotarod test, were performed. At P32, brain tissue and cerebrospinal fluid were obtained for histological and biochemical analyses. RESULTS Intraventricular transplantation of umbilical cord blood-derived mesenchymal stem cells, but not fibroblasts, prevented posthemorrhagic hydrocephalus development and significantly attenuated impairment on behavioral tests; the increased terminal deoxynycleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling-positive cells; increased expression of inflammatory cytokines, such as interleukin-1α, interleukin-1β, interleukin-6, and tumor necrosis factor-α; increased astrogliosis; and reduced corpus callosal thickness and myelin basic protein expression after inducing severe IVH. CONCLUSIONS Intraventricular transplantation of umbilical cord blood-derived mesenchymal stem cells significantly attenuated the posthemorrhagic hydrocephalus and brain injury after IVH. This neuroprotective mechanism appears to be mediated by the anti-inflammatory effects of these cells.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Seoul 135-710, Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang L, Weiss ML, Detamore MS. Recent Patents Pertaining to Immune Modulation and Musculoskeletal Regeneration with Wharton's Jelly Cells. RECENT PATENTS ON REGENERATIVE MEDICINE 2013; 3:182-192. [PMID: 26279972 PMCID: PMC4533117 DOI: 10.2174/22102965113039990020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Umbilical cord mesenchymal stromal cells (UCMSCs) are isolated from Wharton's jelly in the umbilical cord at birth, and offer advantages over adult mesenchymal stromal cells (MSCs) such as highly efficient isolation, faster proliferation in vitro, a broader differentiation potential, and non-invasive harvesting procedure. Their expansion and differentiation potential renders them a promising cell source for tissue engineering and clinical applications. This review discusses recent updates on the differentiation strategies for musculoskeletal tissue engineering including cartilage, bone, and muscle. In addition to tissue engineering applications, UCMSCs can be utilized to support hematopoiesis and modulate immune response. We review the patents relevant to the application of MSCs including UCMSCs in hematopoiesis and immune modulation. Finally, the current hurdles in the clinical translation of UCMSCs are discussed. During clinical translation, it is critical to develop large-scale manufacturing of UCMSCs as well as the composition of expansion and differentiation media. Four clinical trials to date have examined the safety and efficacy of UCMSCs. Once public banking of UCMSCs is available to supply matched allogeneic units and once UCMSC manufacturing is standardized, we anticipate that UCMSCs will be more widely used in clinical trials.
Collapse
Affiliation(s)
- Limin Wang
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Mark L. Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Michael S. Detamore
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
42
|
Lim YJ, Hwang K, Kim M, Cho YH, Lee JH, Lee YH, Seo JJ. Effect of human parathyroid hormone on hematopoietic progenitor cells in NOD/SCID mice co-transplanted with human cord blood mononuclear cells and mesenchymal stem cells. Yonsei Med J 2013; 54:238-45. [PMID: 23225826 PMCID: PMC3521258 DOI: 10.3349/ymj.2013.54.1.238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE We evaluated the effect of human parathyroid hormone (hPTH) on the engraftment and/or in vivo expansion of hematopoietic stem cells in an umbilical cord blood (UCB)-xenotransplantation model. In addition, we assessed its effect on the expression of cell adhesion molecules. MATERIALS AND METHODS Female NOD/SCID mice received sublethal total body irradiation with a single dose of 250 cGy. Eighteen to 24 hours after irradiation, 1 × 10(7) human UCB-derived mononuclear cells (MNCs) and 5 × 10(6) human UCB-derived mesenchymal stem cells (MSCs) were infused via the tail vein. Mice were randomly divided into three groups: Group 1 mice received MNCs only, Group 2 received MNCs only and were then treated with hPTH, Group 3 mice received MNCs and MSCs, and were treated with hPTH. RESULTS Engraftment was achieved in all the mice. Bone marrow cellularity was approximately 20% in Group 1, but 70-80% in the hPTH treated groups. Transplantation of MNCs together with MSCs had no additional effect on bone marrow cellularity. However, the proportion of human CD13 and CD33 myeloid progenitor cells was higher in Group 3, while the proportion of human CD34 did not differ significantly between the three groups. The proportion of CXCR4 cells in Group 3 was larger than in Groups 1 and 2 but without statistical significance. CONCLUSION We have demonstrated a positive effect of hPTH on stem cell proliferation and a possible synergistic effect of MSCs and hPTH on the proportion of human hematopoietic progenitor cells, in a xenotransplantation model. Clinical trials of the use of hPTH after stem cell transplantation should be considered.
Collapse
Affiliation(s)
- Yeon-Jung Lim
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, Korea
| | - Kyoujung Hwang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Korea
| | - Miyeon Kim
- Biomedical Research Institute, MEDIPOST, Co., Ltd., Seoul, Korea
| | - Youl-Hee Cho
- Department of Genetics, Hanyang University College of Medicine, Seoul, Korea
| | - Jong-Hwa Lee
- Department of Pediatrics, Wonkwang University Sanbon Medical Center, Gunpo, Korea
| | - Young-Ho Lee
- Department of Pediatrics, Hanyang University Medical Center, Seoul, Korea
| | - Jong-Jin Seo
- Department of Pediatrics, Ulsan University Asan Medical Center, Seoul, Korea
| |
Collapse
|
43
|
Zaker F, Nasiri N, Oodi A, Amirizadeh N. Evaluation of umbilical cord blood CD34 (+) hematopoietic stem cell expansion in co-culture with bone marrow mesenchymal stem cells in the presence of TEPA. ACTA ACUST UNITED AC 2012; 18:39-45. [PMID: 23321686 DOI: 10.1179/1607845412y.0000000034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND During the last three decades hematopoietic stem cells (HSC) have become a standard protocol for the treatment of many hematologic malignancies and non-malignant disorders. Umbilical cord blood (UCB), as a source of HSCs, has many advantages compared with other sources. One major drawback in using this source in treatment of adult patients is the low HSC dose available. Ex vivo expansion of HSCs is a solution to overcome this limitation. In this study we used TEPA, as a Cu chelator, and human bone marrow (BM) mesenchymal stem cells (MSCs) to investigate expansion rate of UCB-HSCs. MATERIALS AND METHODS CB-HSCs were isolated using miniMACS magnetic separation system. We cultured the enriched CD34(+)cells in various conditions: culture condition A, supplemented only with recombinant cytokines; culture condition B, supplemented with BM-MSCs as a cell feeder layer and recombinant cytokines; culture condition C, supplemented with recombinant cytokines and TEPA; culture condition D, supplemented with recombinant cytokines, BM-MSCs as a cell feeder layer and TEPA. In order to evaluate the HSC expansion, we performed cell count, analysis of CD34(+) expression by flow cytometry, and colony-forming cell assay on Day 10 after culture. RESULTS The most fold increase in CD34(+) cell, total cell, and total colony numbers was observed in culture condition D (110.11 ± 15.3, 118.5 ± 21, and 172.9 ± 44.7, respectively) compared to other conditions. CONCLUSION The results showed that co-culture of HSCs with BM-MSCs in the presence of copper chelating agent (TEPA) could dramatically increase expansion rate of UCB-HSCs. Therefore, this strategy could be useful for HSC expansion.
Collapse
Affiliation(s)
- Farhad Zaker
- Department of Hematology, School of Allied Medicine and Molecular and Cellular Research Center, Tehran University of Medical Sciences, 14155-6183 Tehran, Iran.
| | | | | | | |
Collapse
|
44
|
Mesenchymal stem cells promote a primitive phenotype CD34+c-kit+ in human cord blood-derived hematopoietic stem cells during ex vivo expansion. Cell Mol Biol Lett 2012; 18:11-33. [PMID: 23104253 PMCID: PMC6275752 DOI: 10.2478/s11658-012-0036-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 10/22/2012] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to evaluate the influence of bone marrow-mesenchymal stem cells (BM-MSC) and exogenously added cytokines on the proliferation, primitive cell subpopulation maintenance (including the c-kit+ marker) and clonogenic capacity of hematopoietic stem cells (HSC). BM-MSC were collected from volunteer donors, isolated and characterized. Umbilical cord blood (UCB) samples were collected from healthy full-term deliveries. UCB-CD34+ cells were cultured in the presence or absence of BM-MSC and/or cytokines for 3 and 7 days. CD34+ cell proliferation was evaluated using the CSFE method and cell phenotype was determined by CD34, c-kit, CD33, CD38, HLA-DR, cyCD22 and cyCD3 detection. Cell clonogenic ability was also assessed. Exogenously added SCF, TPO and FLT3L increased CD34+ cell proliferation in the presence or absence of BM-MSC, but with concomitant cell differentiation. Without any added cytokines, BM-MSC are able to increase the percentage of primitive progenitors as evaluated by c-kit expression and CFU-GEMM increase. Interestingly, this latter effect was dependent on both cell-cell interactions and secreted factors. A 7-day co-culture period will be optimal for obtaining an increased primitive HSC level. Including c-kit as a marker for primitive phenotype evaluation has shown the relevance of BM-MSC and their secreted factors on UCB-HSC stemness function. This effect could be dissociated from that of the addition of exogenous cytokines, which induced cellular differentiation instead.
Collapse
|
45
|
Clapes T, Robin C. Embryonic development of hematopoietic stem cells: implications for clinical use. Regen Med 2012; 7:349-68. [PMID: 22594328 DOI: 10.2217/rme.11.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation is an important treatment modality for hematological malignancies or to correct congenital immunodeficiency disorders. Several stem cell sources are currently applied clinically, with a recent increased application of umbilical cord blood. The low number of HSCs available, particularly in umbilical cord blood, is a limiting factor, and different lines of research are ongoing to circumvent this issue. In this review, we will describe the research strategies developed to expand adult HSCs in vitro and to generate new HSCs from pluripotent stem cell lines. We will also discuss the importance of studying the embryonic microenvironment since it allows both generation and extensive expansion of HSCs. Understanding the mechanisms that underlie HSC production, self-renewal and differentiation is necessary for the establishment of optimal in vitro HSC cultures, where a limitless and manipulatable resource of HSCs would be available for both clinical and fundamental research.
Collapse
Affiliation(s)
- Thomas Clapes
- Erasmus Medical Center, Department of Cell Biology, Erasmus Stem Cell Institute, PO Box 2040, Dr. Molewaterplein 50, 3000 CA, Rotterdam, The Netherlands
| | | |
Collapse
|
46
|
Lee-Thedieck C, Spatz JP. Artificial Niches: Biomimetic Materials for Hematopoietic Stem Cell Culture. Macromol Rapid Commun 2012; 33:1432-8. [DOI: 10.1002/marc.201200219] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/26/2012] [Indexed: 12/27/2022]
|
47
|
Winkler DA, Burden FR. Robust, quantitative tools for modelling ex-vivo expansion of haematopoietic stem cells and progenitors. MOLECULAR BIOSYSTEMS 2012; 8:913-20. [PMID: 22282302 DOI: 10.1039/c2mb05439f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite substantial research activity on bioreactor design and experiments, there are very few reports of modelling tools that can be used to generate predictive models describing how bioreactor parameters affect performance. New developments in mathematics, such as sparse Bayesian feature selection methods and nonlinear model-free modelling regression methods, offer considerable promise for modelling diverse types of data. The utility of these mathematical tools in stem cell biology are demonstrated by analysis of a large set of bioreactor data derived from the literature. In spite of the diversity of the data sources, and the inherent difficulty in representing bioreactor variables, these modelling methods were able to develop robust, quantitative, predictive models. These models relate bioreactor operational parameters to the degree of expansion of haematopoietic stem cells or their progenitors, and also identify the bioreactor variables that are most likely to affect performance across many experiments. These methods show substantial promise in assisting the design and optimisation of stem cell bioreactors.
Collapse
|
48
|
Ko E, Lee KY, Hwang DS. Human umbilical cord blood-derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress. Stem Cells Dev 2011; 21:1877-86. [PMID: 22066510 DOI: 10.1089/scd.2011.0284] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Since human mesenchymal stem cells (MSCs) are therapeutically attractive for tissue regeneration and repair, we examined the physiological responses of human umbilical cord blood-derived MSCs (hUCB-MSCs) to genotoxic stress. We found that that sublethal doses of reactive oxygen species (ROS) and ionizing radiation cause DNA damage and reduce DNA synthesis and cell proliferation in hUCB-MSCs, resulting in cellular senescence. In contrast, these physiological changes were limited in human fibroblast and cancer cells. Our data show that reduced activities of antioxidant enzymes, which may occur due to low gene expression levels, cause hUCB-MSCs to undergo cellular senescence in response to oxidative stress and ionizing radiation. Resistance of hUCB-MSCs to oxidative stresses was restored by increasing the intracellular antioxidant activity in hUCB-MSCs via exogenous addition of antioxidants. Therefore, the proliferation and fate of hUCB-MSCs can be controlled by exposure to oxidative stresses.
Collapse
Affiliation(s)
- Eun Ko
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
49
|
Choi YS, Lim DS, Lim SM, Kim DI. Effects of mixed feeder cells on the expansion of CD34⁺ cells. J Biosci Bioeng 2011; 113:389-94. [PMID: 22153715 DOI: 10.1016/j.jbiosc.2011.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 12/18/2022]
Abstract
Synergistic effects of mesenchymal stem cells (MSCs) isolated from bone marrow (BM), umbilical cord blood (UCB) and periosteum, and fibroblasts as mixed feeder cells (MFCs) on the expansion of hematopoietic progenitor cells (HPCs) were investigated in serum- and exogenous cytokine-free conditions. Enriched CD34(+) cells were cultured for 2weeks over the cell lines alone, individually, or selected combinations of them. When the cells were cultured over MFCs, the maximum increase in expansion of total nucleated cells and CD34(+)/CD38(-) cells was 157.3- and 128.6-fold, respectively. Furthermore, hematopoietic cytokine such as IL-6 and chemokines (e.g., IL-8, growth related oncogene (GRO), GRO-alpha, matrix metalloproteinase (MMP)-1, and MMP-3) were significantly increased in mixed feeder cells. Based on these results, MFCs can be more efficient for the ex vivo expansion of HPCs. These results strongly suggest that MFCs are more suitable for HPCs mass production.
Collapse
Affiliation(s)
- Yong-Soo Choi
- Department of Applied Bioscience, CHA University, Seoul 135-081, Republic of Korea
| | | | | | | |
Collapse
|
50
|
Sun HP, Zhang X, Chen XH, Zhang C, Gao L, Feng YM, Peng XG, Gao L. Human umbilical cord blood-derived stromal cells are superior to human umbilical cord blood-derived mesenchymal stem cells in inducing myeloid lineage differentiation in vitro. Stem Cells Dev 2011; 21:1429-40. [PMID: 22023173 DOI: 10.1089/scd.2011.0348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Stromal cells and mesenchymal stem cells (MSCs), 2 important cell populations within the hematopoietic microenvironment, may play an important role in the development of hematopoietic stem/progenitor cells. We have successfully cultured human umbilical cord blood-derived stromal cells (hUCBDSCs). It has been demonstrated that MSCs also exist in hUCB. However, we have not found any reports on the distinct characteristics of hUCBDSCs and human umbilical cord blood-derived mesenchymal stem cells (hUCBDMSCs). In this study, hUCBDSCs and hUCBDMSCs were isolated from the cord blood of full-term infants using the same density gradient centrifugation and cultured in the appropriate medium. Some biological characteristics and hematopoietic supportive functions were compared in vitro. hUCBDSCs were distinct from hUCBDMSCs in morphology, proliferation, cell cycle, passage, immunophenotype, and the capacity for classical tri-lineage differentiation. Finally, quantitative real-time polymerase chain reaction analysis revealed that granulocyte colony-stimulating factor (G-CSF) gene expression was higher in hUCBDSCs than that in hUCBDMSCs. Enzyme-linked immunosorbent assay revealed that the secretion of G-CSF, thrombopoietin (TPO), and granulocyte macrophage colony-stimulating factor (GM-CSF) by hUCBDSCs was higher than that by hUCBDMSCs. After coculture, the granulocyte/macrophage colony-forming units (CFU-GM) of hematopoietic cells from the hUCBDSC feeder layer was more than that from the hUCBDMSC feeder layer. Flow cytometry was used to detect CD34(+) hematopoietic stem/progenitor cell committed differentiation during 14 days of coculture; the results demonstrated that CD14 and CD33 expression in hUCBDSCs was significantly higher than their expression in hUCBDMSCs. This observation was also true for the granulocyte lineage marker, CD15. This marker was expressed beginning at day 7 in hUCBDSCs. It was expressed earlier and at a higher level in hUCBDSCs compared with hUCBDMSCs. In conclusion, hUCBDSCs are different from hUCBDMSCs. hUCBDSCs are superior to hUCBDMSCs in supporting hematopoiesis stem/progenitor cells differentiation into myeloid lineage cells at an early stage in vitro.
Collapse
Affiliation(s)
- Hao-Ping Sun
- Department of Hematology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|